JP6942082B2 - Integrated air conditioner - Google Patents
Integrated air conditioner Download PDFInfo
- Publication number
- JP6942082B2 JP6942082B2 JP2018080029A JP2018080029A JP6942082B2 JP 6942082 B2 JP6942082 B2 JP 6942082B2 JP 2018080029 A JP2018080029 A JP 2018080029A JP 2018080029 A JP2018080029 A JP 2018080029A JP 6942082 B2 JP6942082 B2 JP 6942082B2
- Authority
- JP
- Japan
- Prior art keywords
- cold air
- air
- hot air
- temperature
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007664 blowing Methods 0.000 claims description 28
- 238000001035 drying Methods 0.000 claims description 13
- 239000003507 refrigerant Substances 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 6
- 238000013021 overheating Methods 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 description 9
- 238000009423 ventilation Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
この発明は、一体型空気調和機に係り、詳しくはユニットを居室内にて冷風機又は除湿機として使用する一体型空気調和機に関するものである。 The present invention relates to an integrated air conditioner, and more particularly to an integrated air conditioner in which the unit is used as a cold air conditioner or a dehumidifier in a living room.
従来より部屋の間取り等の関係で冷媒配管の接続工事が困難等の理由により、セパレートタイプの空気調和機を取付ることができない場合や、手軽に且つスポット的に冷風にて涼を求める場合に、小能力の圧縮機を内蔵し冷凍回路を備えた一体型の冷風機が利用されている。この冷風機は蒸発器にて冷却された冷風を前面の吹出口より使用者に向けて吹き出すと同時に、凝縮器によって排熱された温風を背面から吹き出すものであった。このような冷風機は夏期以外では洗濯物の乾燥などの目的で除湿機としても利用されている。 When it is not possible to install a separate type air conditioner because it is difficult to connect the refrigerant pipes due to the room layout, etc., or when you want to cool down easily and spotted with cold air. An integrated cold air conditioner with a built-in small-capacity compressor and a refrigeration circuit is used. In this cold air blower, the cold air cooled by the evaporator was blown out from the front outlet toward the user, and at the same time, the warm air exhausted by the condenser was blown out from the back. Such a cold air conditioner is also used as a dehumidifier for the purpose of drying laundry except in the summer.
図7、図8は従来例の平面の概略断面図で、筐体に冷風用吸込口aと冷風用吹出口b、温風用吸込口c、温風用吹出口dとを有し、前記筐体内に圧縮機と膨張弁、蒸発器e、冷風用ファンf、凝縮器g、温風用ファンhとを有し、前記冷風用吸込口aと蒸発器e、冷風用ファンf、冷風用吹出口bとを連通して冷風用送風経路iを形成し、前記温風用吸込口cと凝縮器g、温風用ファンh、温風用吹出口dとを連通して温風用送風経路jを形成し、前記冷風用送風経路iと温風用送風経路jとを隔壁kを介して隣接配置し、前記冷風用吹出口b近傍に冷風用送風経路iと温風用送風経路jを連通するバイパス部lを前記冷風用吹出口b近傍備え、前記バイパス部lには冷風用吹出口bを閉塞すると共に、冷風用送風経路iと温風用送風経路jを連通する切換手段mを有し、前記切換手段mにて、前記冷風用吹出口bから蒸発器eによって冷却された冷風を吹き出すと同時に、前記温風用吹出口dから凝縮器gで放熱して温風で排熱を行う冷風モード(図7参照)と、冷風用吹出口bを閉塞して蒸発器eによって冷却除湿した冷風を凝縮器gに送って加熱し、前記温風用吹出口dから乾燥風を吹き出す乾燥モード(図7参照)とを、選択する制御部を備える。 7 and 8 are schematic cross-sectional views of a plane of a conventional example, wherein the housing has a cold air suction port a, a cold air outlet b, a hot air suction port c, and a hot air outlet d. A compressor, an expansion valve, an evaporator e, a cold air fan f, a condenser g, and a hot air fan h are provided in the housing, and the cold air suction port a and the evaporator e, a cold air fan f, and a cold air fan h are provided. A cold air blowing path i is formed by communicating with the air outlet b, and the hot air suction port c and the condenser g, a hot air fan h, and a hot air outlet d are communicated with each other to form a hot air blowing path i. A path j is formed, the cold air blowing path i and the hot air blowing path j are arranged adjacent to each other via the partition wall k, and the cold air blowing path i and the hot air blowing path j are arranged in the vicinity of the cold air outlet b. A bypass portion l for communicating with the cold air outlet b is provided in the vicinity of the cold air outlet b. At the same time, the switching means m blows out the cold air cooled by the evaporator e from the cold air outlet b, and at the same time, dissipates heat from the hot air outlet d with the condenser g and discharges it with warm air. In the cold air mode for heating (see FIG. 7), the cold air outlet b is closed, the cold air cooled and dehumidified by the evaporator e is sent to the condenser g to heat it, and the dry air is blown from the hot air outlet d. A control unit for selecting a blowing drying mode (see FIG. 7) is provided.
これによって、夏期には図7のように前面に備えた冷風用吹出口bから引き出される冷風を浴びることで冷風機として使用する。冷風機として使用しないときには図7のように、冷風用吸込口aから吸い込んだ空気を蒸発器eで冷却し、蒸発器eでの結露により空気中の水分が取り除かれた乾燥空気を凝縮器gに導いて加熱し、背面に備えた温風用吹出口dから略室温と同じ温度の乾燥風を吹き出すことで乾燥機や除湿機として利用されている。(例えば、特許文献1参照) As a result, in the summer, as shown in FIG. 7, it is used as a cold air conditioner by being exposed to the cold air drawn from the cold air outlet b provided on the front surface. When not used as a cold air blower, as shown in FIG. 7, the air sucked from the cold air suction port a is cooled by the evaporator e, and the dry air from which the moisture in the air has been removed by the dew condensation on the evaporator e is condensed into the condenser g. It is used as a dryer or a dehumidifier by blowing dry air at a temperature substantially the same as room temperature from the hot air outlet d provided on the back surface. (See, for example, Patent Document 1)
このような従来例の一体型空気調和機では、夏期で特に室温の高く、比較的狭い室内で使用したときには、運転を継続するにつれて熱が室内に蓄積し、圧縮機や冷凍回路の温度が過熱され限界温度(圧縮機の温度で約130℃)が近づくと、圧縮機の破損を防止するために圧縮機が備える過負荷継電器が作動して圧縮機の電源を遮断し運転を停止する。前記過負荷継電器はバイメタルで形成され、作動後に復帰するには約80℃まで温度が低下する必要があるが、バイメタルが復帰するまで約20分間、圧縮機の運転が再開できないだけでなく、頻繁に過負荷継電器が作動した場合には圧縮機の寿命を短縮するものだった。そこで、制御部では冷風モードを継続した状態で、凝縮器や凝縮器近傍の温度を検出し、過負荷継電器が作動する以前に圧縮機を事前に短時間停止して送風ファンのみを運転することで、圧縮機や冷凍回路の温度を下げることで、圧縮機の損傷を防止すると共に、長時間の停止によって使用者に不快感を与えることを防止していたが、冷風モードで圧縮機が停止した状態では、冷風用吹出口からも暑い送風が続くことで使用者に不快感をあたえるものであり、更なる性能向上が求められていた。 In such a conventional integrated air conditioner, when used in a relatively small room where the room temperature is particularly high in summer, heat accumulates in the room as the operation is continued, and the temperature of the compressor or refrigeration circuit becomes overheated. When the limit temperature (about 130 ° C. at the temperature of the compressor) is approached, the overload relay provided in the compressor is activated to prevent damage to the compressor, shutting off the power supply of the compressor and stopping the operation. The overload relay is made of bimetal, and the temperature needs to drop to about 80 ° C. to recover after operation. However, it is not only impossible to restart the compressor operation for about 20 minutes until the bimetal recovers, but also frequently When the overload relay was activated, the life of the compressor was shortened. Therefore, the control unit detects the temperature of the condenser and the vicinity of the condenser while continuing the cold air mode, stops the compressor for a short time in advance before the overload relay operates, and operates only the blower fan. By lowering the temperature of the compressor and refrigeration circuit, damage to the compressor was prevented and it was prevented from causing discomfort to the user due to a long stop, but the compressor stopped in cold air mode. In this state, the hot air blown from the cold air outlet continues to cause discomfort to the user, and further improvement in performance has been required.
上記課題を解決するために、特にその構成を、筐体に冷風用吸込口と冷風用吹出口、温風用吸込口、温風用吹出口とを有し、前記筐体内に圧縮機と膨張弁、蒸発器、冷風用ファン、凝縮器、温風用ファンとを有し、前記圧縮機と凝縮器、膨張弁、蒸発器とを冷媒配管で順次接続して冷凍回路を形成し、前記冷風用吸込口と蒸発器、冷風用ファン、冷風用吹出口とを連通して冷風用送風経路を形成し、前記温風用吸込口と凝縮器、温風用ファン、温風用吹出口とを連通して温風用送風経路を形成し、前記冷風用送風経路と温風用送風経路とを隔壁を介して隣接配置し、前記冷風用吹出口近傍に冷風用送風経路と温風用送風経路を連通するバイパス部を備え、前記バイパス部には切換手段を有し、前記切換手段は、冷風用吹出口を開くと共に、冷風用送風経路と温風用送風経路の間を閉じることで前記冷風用吹出口から冷風を吹き出す冷風モードと、前記冷風用吹出口を閉じると共に、冷風用送風経路と温風用送風経路を連通することで前記温風用吹出口から乾燥風を吹き出す乾燥モードとを、選択する制御部を備えた一体型空気調和機に於いて、前記凝縮器や凝縮器近傍の冷媒配管の温度を検知する熱交センサと、前記冷風用ファンと前記温風用ファンを多段階の回転数Fで回転する送風モータと、を備え、前記冷風モード運転時に前記熱交センサが検出する熱交温度Xが第3所定温度X3以上を検出したときには前記送風モータの回転数Fを第2所定回転数F2とし、前記熱交温度Xが第3所定温度X3よりも大きい第2所定温度X2以上を検出したとき、前記送風モータの回転数Fを前記第2所定回転数F2よりも大きい第1所定回転数F1とし、前記熱交温度Xが第2所定温度X2よりも大きい第1所定温度X1以上を検出したとき、前記切換手段によって送風経路を前記冷風モードから前記乾燥モードに切り換える過昇温保護部を備えるものである。
In order to solve the above-mentioned problems, in particular, the configuration is provided with a cold air suction port, a cold air outlet, a hot air suction port, and a hot air outlet in the housing, and a compressor and expansion are provided in the housing. It has a valve, an evaporator, a fan for cold air, a condenser, and a fan for hot air, and the compressor and the condenser, an expansion valve, and an evaporator are sequentially connected by a refrigerant pipe to form a refrigeration circuit, and the cold air is formed. The suction port for cold air and the evaporator, the fan for cold air, and the air outlet for cold air are communicated to form a blower path for cold air. A hot air blowing path is formed by communicating with each other, and the cold air blowing path and the hot air blowing path are arranged adjacent to each other via a partition wall, and the cold air blowing path and the hot air blowing path are arranged in the vicinity of the cold air outlet. The bypass portion is provided with a bypass portion that communicates with the above, and the switching means opens a cold air outlet and closes between a cold air blower path and a hot air blower path to close the cold air outlet. A cold air mode that blows cold air from the air outlet and a drying mode that closes the cold air outlet and blows dry air from the hot air outlet by communicating the cold air air passage and the hot air air passage. In an integrated air conditioner equipped with a control unit to select, a heat exchange sensor that detects the temperature of the compressor and the refrigerant pipe near the compressor, and the cold air fan and the hot air fan are multistaged. When the heat exchange temperature X detected by the heat exchange sensor detects a third predetermined temperature X3 or higher during the operation in the cold air mode, the rotation speed F of the blower motor is set to the third. 2 When the heat exchange temperature X is set to a predetermined rotation speed F2 and a second predetermined temperature X2 or higher in which the heat exchange temperature X is larger than the third predetermined temperature X3 is detected, the rotation speed F of the blower motor is larger than the second predetermined rotation speed F2. When the first predetermined rotation speed F1 is set and the first predetermined temperature X1 or higher in which the heat exchange temperature X is larger than the second predetermined temperature X2 is detected, the blowing path is switched from the cold air mode to the drying mode by the switching means. It is provided with a temperature rise protection unit.
この発明によれば、冷風モード運転時に熱交センサが検出する熱交温度が過熱状態を検出したときに、切換手段で送風経路を冷風モードから乾燥モードに切り換えることで蒸発器で冷却された冷風を凝縮器に導くくことで冷凍回路を効率的に冷却することができる。また、圧縮機が停止した状態で冷風用吹出口から不快な送風が行われることを防止できる。また、圧縮機を停止せずに凝縮器を冷却することで、蒸発器で冷却された冷風で凝縮器を積極的に冷却でき、使用者に不快感を与える時間が短くなる。 According to the present invention, when the heat exchange temperature detected by the heat exchange sensor during cold air mode operation detects an overheated state, the air passage is switched from the cold air mode to the dry mode by the switching means, so that the cold air cooled by the evaporator is cooled. The refrigeration circuit can be cooled efficiently by guiding the freezing circuit to the condenser. In addition, it is possible to prevent unpleasant air blowing from the cold air outlet when the compressor is stopped. Further, by cooling the condenser without stopping the compressor, the condenser can be positively cooled by the cold air cooled by the evaporator, and the time that causes discomfort to the user is shortened.
この発明の空気調和機の実施形態について、図1〜6の図面を基に説明する。1は空気調和機の筐体で、底板2と前面、上面、背面の中央にて係合する右枠3と左枠4にて構成している。前記筐体1内には冷凍回路の蒸発器5と凝縮器6と圧縮機7と膨張弁40を備え、前記蒸発器5の下流側には冷風用ファン8を、凝縮器6の下流側には温風用ファン9を設け、前記冷風用ファン8と温風用ファン9を同一の軸にて回転する送風モータ10を隔壁11の冷風用ファン8側に固定している。
An embodiment of the air conditioner of the present invention will be described with reference to the drawings of FIGS. 1 to 6.
前記右枠3は右側面の中央から上部にかけて冷風用吸込口12を備え、この冷風用吸込口12を吸込空気内の埃を除去するフィルタ13で覆っている。前記冷風用吸込口12の下方にはドレンタンク14を着脱するタンク穴15を設けている。前記ドレンタンク14装着時には、ドレンタンク14の外表面は右枠3の外表面と同一面に形成されている。前記冷風用吸込口12の上方には運搬時の手掛用凹部16が一体に形成されている。
The right frame 3 is provided with a cold
前記左枠4は左側面の中央から上部にかけて温風用吸込口17を備え、この温風用吸込口17を冷風用吸込口12と同様にフィルタ13で覆っている。また前記右枠3の手掛用凹部16と対向する位置に同じ形状の凹部16が一体に形成されている。
The left frame 4 is provided with a hot
前面下部中央の右枠3・左枠4の合わせ面から上方には前パネル18を備え、この前パネル18の上部には冷風用吹出口19を設けている。この冷風用吹出口19には冷風の左右方向の風向を調整すると共に停止時や乾燥モード運転時に冷風用吹出口19を閉じる縦ルーバ20が左右1対設けられ、この縦ルーバ20に冷風の上下方向の風向を調整する多数の横ルーバ21が取付けられている。
A
前記隔壁11の右側には、冷風用吸込口12と蒸発器5、冷風用ファン8、冷風用吹出口19を連通して冷風用送風経路22を形成し、また、前記隔壁11の左側には温風用吸込口17と凝縮器6、温風用ファン9、温風用吹出口23を連通して温風用送風経路24を形成している。
前記冷風用吹出口19の右側の冷風用送風経路22は、凝縮器6と温風用吸込口17の間の温風用送風経路24と連通するバイパス部25が設けられ、乾燥モード運転時に冷風を凝縮器6へ導いて加熱する。
On the right side of the
The cold
前記縦ルーバ20は内側と外側の2枚の羽根が略平行に一体に形成され、この2枚の羽根の間に横ルーバ21が回動自在に設けられ、多数の横ルーバ21どうしは連接板(図示せず)によって接続されることで、各の横ルーバ21の角度を一定にする。
In the
また、前記縦ルーバ20の左側内部にはダンパ26が設けられ、乾燥モード運転や運転停止時には縦ルーバ20はルーバーモータ27によって自動的に閉じられ、前記ダンパ26は縦ルーバ20と連動して縦ルーバ20の内側羽根に連なって、冷風用吹出口19を2重に閉塞することで、縦ルーバ20の外表面が冷風によって結露する事を防止する。
前記ルーバーモータ27は2個の縦ルーバ20とダンパ26の軸を同時に回転する機構を有し直流のステップモータを使用している。前記ダンパ26によってバイパス部25の開閉を行うことで、冷風用送風経路22と温風用送風経路24の連通と遮断をコントロールすることができる。切換手段としての縦ルーバ20とダンパ26とルーバーモータ27の作動によってバイパス部25の開閉を行うと同時に、冷風モードでの運転時には冷風用吹出口19を2重に閉塞する。
Further, a
The
28は前記筐体1上面の前側に設けられた操作部で、運転停止を行う運転スイッチ29や冷風モード運転と除湿モード運転の切替を行うモード切替スイッチ30やタイマースイッチ31等を備えると共に、運転状態を表示する多数のランプ32を備えている。
前記温風用吹出口23は、筐体1上面の後ろ側から背面にかけて位置し、排気ルーバ33の切替で温風の吹き出し方向を上方向と後ろ方向に切替る。前記排気ルーバ33は上面と同一面で上面側の温風用吹出口23を覆い後方へ温風の排気を行う後方排気位置から、温風用吹出口23内部の左右に設けられた回動軸(図示せず)を支点として約90度手動にて上方へ回動する事で、排気ルーバ33は背面よりもやや突出する状態で、背面側の温風用吹出口23を覆い上方へ温風の排気を行う。
The
前記蒸発器5と凝縮器6は熱伝導性良好な多数のアルミウムフィンに銅管が貫通したフィンチューブ式の熱交換器である。前記底板2上には圧縮機7を備え、この圧縮機7と前記凝縮器6と、膨張弁40と、蒸発器5を順次冷媒配管で連通し冷凍回路を形成している。前記蒸発器5の下方にはドレンパン(図示せず)を設け、このドレンパンによって蒸発器5で発生した結露水を集め前記ドレンタンク14に蓄える。
The
34は制御部で、入力側に前記運転スイッチ29やモード切換スイッチ30等のスイッチ類と温度センサ35や湿度センサ36や熱交センサ37等が接続され、出力側には前記送風モータ10や圧縮機7やルーバモータ27やランプ32等が接続され、操作部28でのスイッチ操作や各センサ35・36・37の信号に応じて運転モードや送風量を変化させる。前記熱交センサ37は前記凝縮器6や凝縮器6近傍の冷媒配管の温度(熱交温度X)を検知することで、圧縮機7の温度を推測することができる。それによって、冷風モードで運転を行ったときに室温が過度に上昇して、過負荷運転が発生して圧縮機7が備える過負荷継電器38が作動して圧縮機の電源を遮断して長時間運転を停止することがないように、前記制御部34に過昇温保護部39を備えている。前記膨張弁40は電子式の膨張弁で圧縮機7の回転数や前記熱交センサ37や冷凍回路の温度等に応じて制御部34によって開度が調整される。
前記過負荷継電器38は、前記圧縮機7が過熱され限界温度(圧縮機7の温度で約130℃)が近づくと圧縮機7の破損を防止するために圧縮機7が備える安全装置で、圧縮機7自身への電源を遮断し圧縮機7の運転を停止する。また、前記過負荷継電器38はバイメタルで形成され、作動後に復帰するには約80℃まで温度が低下する必要があるが、バイメタルが復帰するまで約20分間、圧縮機7の運転が再開できないだけでなく、頻繁に過負荷継電器38が作動した場合には圧縮機7の寿命を短縮する。
The
冷風モード運転時の送風経路について説明すれば、縦ルーバ20によって冷風用吹出口19が開放され、同時に連動するダンパ26がバイパス部25を閉じることで冷風用送風経路22と温風用送風経路24を分離する。これによって、冷風用吸込口12から吸い込まれた空気はフィルタ13で埃が取り除かれ、低温の蒸発器5で冷却された後、冷風用ファン8を通って、冷風用吹出口19から縦ルーバ20及び横ルーバ21で冷風が案内され吹き出される。また、同時に温風用吸込口17から吸い込まれた空気はフィルタ13で埃が取り除かれ、高温の凝縮器6で加熱され、温風用ファン9を通って温風用吹出口23から温風として排熱が行われる。
Explaining the air flow path during the cold air mode operation, the cold
次に、乾燥モード運転時の送風経路について説明すれば、縦ルーバ20によって冷風用吹出口19が閉じられ、同時に連動するダンパ26がバイパス部25を開放することで冷風用送風経路22と温風用送風経路24を連通する。これによって、冷風用吸込口12から吸い込まれた空気はフィルタ13で埃が取り除かれ、低温の蒸発器5で冷却されることで空気中の水分が取り除かれた後、冷風用ファン8を通って、冷風用吹出口19へ向かうが、縦ルーバ20とダンパ26によって冷風用吹出口19は閉塞されているので冷風はバイパス部25を通過して凝縮器6に送られ、凝縮器6で加熱された後、温風用ファン9を通って、温風用吹出口23から乾燥した空気が吹き出される。この乾燥空気で洗濯物の乾燥や室内の除湿を行うものである。
Next, to explain the ventilation path during the drying mode operation, the
次に、冷風モード運転時の前記過昇温保護部39の作動について図6を基に説明する。冷風モード運転は前記で説明した送風経路で運転される。室温が高い状態で長時間運転を継続すると圧縮機7や冷凍回路全体の温度が上昇する。そこで、凝縮器6や凝縮器近6傍の配管温度を検出し(熱交温度)、過負荷継電器38が作動しないように事前に過昇温保護部39で圧縮機7の温度を下げるように作動する。
Next, the operation of the
室温が高温であり、かつ、狭い部屋で冷風モード運転を継続すると冷風用吹出口19からは涼風を得ることはできるが、温風用吹出口23からは熱風が排出されることで、室内の換気が行われない場合では室温は徐々に上昇してゆく、熱交温度Xが60℃(第3所定温度X3)以上を検出したときには、通常700rpm前後で回転する送風モータ10の回転数Fを800rpm(第2所定回転数F2)まで上昇してすることで凝縮器6からの排熱を促進することで熱交温度Xの上昇を抑えようとする。この状態で更に熱交温度Xが上昇して62℃(第2所定温度X2)以上を検出したときには、送風モータ10の回転数Fを最高回転数の900rpm(第1所定回転数F1)まで上昇してすることで凝縮器6からの排熱を更に促進することで熱交温度Xの上昇を抑えようとする。
If the room temperature is high and the cold air mode operation is continued in a small room, cool air can be obtained from the
更に熱交温度Xが上昇して64℃(第1所定温度X1)以上を検出したときには、ダンパ26を作動して送風経路を乾燥モード側に切り換えることで、蒸発器5を通過した冷風で凝縮器6を急激に冷却することで圧縮機7や凝縮器6の温度を短時間で下げることができる。
When the heat exchange temperature X further rises and detects 64 ° C. (first predetermined temperature X1) or higher, the
次に、熱交温度Xが下降して58℃(第4所定温度X4)以下を検出したとき、送風モータ10の回転数Fを800rpm(第2所定回転数F2)に戻して運転を継続し、熱交温度Xが55℃(第5所定温度X5)以下を検出したとき、ダンパ26を作動して送風経路を乾燥モードから冷風モードに戻して運転を継続する。
Next, when the heat exchange temperature X drops to 58 ° C. (fourth predetermined temperature X4) or less, the rotation speed F of the
このように、冷風モード運転時に熱交センサ37が検出する熱交温度Xが過熱状態を検出したときに、切換手段で送風経路を冷風モードから乾燥モードに切り換えることで蒸発器5で冷却された冷風を凝縮器6に導くことで冷凍回路を効率的に冷却することができる。また、圧縮機7が停止した状態で冷風用吹出口19から不快な送風が行われることを防止できる。また、圧縮機7を停止せずに凝縮器6を冷却することで、蒸発器5で冷却された冷風で凝縮器6を積極的に冷却でき、圧縮機7の過熱保護に要する時間を短縮することで、使用者に不快感を与える時間が短くなる。
In this way, when the heat exchange temperature X detected by the
この発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、熱交温度Xや送風モータ10の回転数Fは機種の特性に応じて任意に異ならせても良い。
Although embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof. For example, the heat exchange temperature X and the rotation speed F of the
1 筐体
5 蒸発器
6 凝縮器
7 圧縮機
8 冷風用ファン
9 温風用ファン
12 冷風用吸込口
17 温風用吸込口
19 冷風用吹出口
20 縦ルーバ(切換手段)
22 冷風用送風経路
23 温風用吹出口
24 温風用送風経路
25 バイパス部
26 ダンパ(切換手段)
34 制御部
37 熱交センサ
38 過負荷継電器
39 過昇温保護部
1
22 Cold
34
Claims (2)
前記筐体内に圧縮機と膨張弁、蒸発器、冷風用ファン、凝縮器、温風用ファンとを有し、 It has a compressor, an expansion valve, an evaporator, a fan for cold air, a condenser, and a fan for hot air in the housing.
前記圧縮機と凝縮器、膨張弁、蒸発器とを冷媒配管で順次接続して冷凍回路を形成し、 The compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by a refrigerant pipe to form a freezing circuit.
前記冷風用吸込口と蒸発器、冷風用ファン、冷風用吹出口とを連通して冷風用送風経路を形成し、 The cold air suction port and the evaporator, the cold air fan, and the cold air outlet are communicated with each other to form a cold air blowing path.
前記温風用吸込口と凝縮器、温風用ファン、温風用吹出口とを連通して温風用送風経路を形成し、 The hot air suction port and the condenser, the hot air fan, and the hot air outlet are communicated with each other to form a hot air blowing path.
前記冷風用送風経路と温風用送風経路とを隔壁を介して隣接配置し、 The cold air blowing path and the hot air blowing path are arranged adjacent to each other via a partition wall.
前記冷風用吹出口近傍に冷風用送風経路と温風用送風経路を連通するバイパス部を備え、 A bypass section for communicating the cold air air passage and the hot air air passage is provided in the vicinity of the cold air outlet.
前記バイパス部には切換手段を有し、 The bypass portion has a switching means and has a switching means.
前記切換手段は、冷風用吹出口を開くと共に、冷風用送風経路と温風用送風経路の間を閉じることで前記冷風用吹出口から冷風を吹き出す冷風モードと、 The switching means has a cold air mode in which cold air is blown out from the cold air outlet by opening the cold air outlet and closing between the cold air air passage and the hot air air passage.
前記冷風用吹出口を閉じると共に、冷風用送風経路と温風用送風経路を連通することで前記温風用吹出口から乾燥風を吹き出す乾燥モードとを、選択する制御部を備えた一体型空気調和機に於いて、 An integrated air equipped with a control unit that closes the cold air outlet and selects a drying mode in which dry air is blown out from the hot air outlet by communicating the cold air air passage and the hot air air passage. In the harmony machine
前記凝縮器や凝縮器近傍の冷媒配管の温度を検知する熱交センサと、 A heat exchange sensor that detects the temperature of the condenser and the refrigerant piping near the condenser,
前記冷風用ファンと前記温風用ファンを多段階の回転数Fで回転する送風モータと、を備え、 A blower motor that rotates the cold air fan and the hot air fan at a multi-stage rotation speed F is provided.
前記冷風モード運転時に前記熱交センサが検出する熱交温度Xが第3所定温度X3以上を検出したときには前記送風モータの回転数Fを第2所定回転数F2とし、 When the heat exchange temperature X detected by the heat exchange sensor during the cold air mode operation detects a third predetermined temperature X3 or higher, the rotation speed F of the blower motor is set to the second predetermined rotation speed F2.
前記熱交温度Xが第3所定温度X3よりも大きい第2所定温度X2以上を検出したとき、前記送風モータの回転数Fを前記第2所定回転数F2よりも大きい第1所定回転数F1とし、 When the second predetermined temperature X2 or higher in which the heat exchange temperature X is larger than the third predetermined temperature X3 is detected, the rotation speed F of the blower motor is set to the first predetermined rotation speed F1 larger than the second predetermined rotation speed F2. ,
前記熱交温度Xが第2所定温度X2よりも大きい第1所定温度X1以上を検出したとき、前記切換手段によって送風経路を前記冷風モードから前記乾燥モードに切り換える過昇温保護部を備えることを特徴とする一体型空気調和機。 When the first predetermined temperature X1 or higher in which the heat exchange temperature X is larger than the second predetermined temperature X2 is detected, the overheating protection unit for switching the blowing path from the cold air mode to the drying mode by the switching means is provided. An integrated air conditioner that features it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018080029A JP6942082B2 (en) | 2018-04-18 | 2018-04-18 | Integrated air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018080029A JP6942082B2 (en) | 2018-04-18 | 2018-04-18 | Integrated air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019190670A JP2019190670A (en) | 2019-10-31 |
JP6942082B2 true JP6942082B2 (en) | 2021-09-29 |
Family
ID=68387601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018080029A Active JP6942082B2 (en) | 2018-04-18 | 2018-04-18 | Integrated air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6942082B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111023506A (en) * | 2019-12-20 | 2020-04-17 | 宁波奥克斯电气股份有限公司 | Method for reducing operation load of compressor and air conditioner |
CN112361559A (en) * | 2020-11-16 | 2021-02-12 | 南京天加环境科技有限公司 | Control method for forced heating of multi-split air conditioner |
CN113587389A (en) * | 2021-07-21 | 2021-11-02 | 青岛海信日立空调系统有限公司 | Air conditioning system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3035950B2 (en) * | 1990-02-13 | 2000-04-24 | 松下電器産業株式会社 | Air conditioner |
JP2626157B2 (en) * | 1990-04-25 | 1997-07-02 | 松下電器産業株式会社 | Air conditioner |
JPH07305881A (en) * | 1994-05-09 | 1995-11-21 | Zexel Corp | Air conditioner |
JP2004197991A (en) * | 2002-12-17 | 2004-07-15 | Matsushita Ecology Systems Co Ltd | Multi-functional dehumidifier |
JP4589140B2 (en) * | 2005-02-15 | 2010-12-01 | 株式会社コロナ | Integrated air conditioner |
-
2018
- 2018-04-18 JP JP2018080029A patent/JP6942082B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019190670A (en) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6723948B2 (en) | Integrated air conditioner | |
KR102149736B1 (en) | Indoor unit of air conditioner | |
JP6942082B2 (en) | Integrated air conditioner | |
JP4975019B2 (en) | Dehumidifier | |
JP4880377B2 (en) | Air conditioner | |
JP5241935B2 (en) | Dehumidifier | |
JP4990841B2 (en) | Air conditioner | |
JP4589140B2 (en) | Integrated air conditioner | |
JP3986280B2 (en) | Air conditioner | |
JP6675057B2 (en) | Heat exchange ventilator | |
JP2004360951A (en) | Air conditioner | |
JP6022387B2 (en) | Dehumidifier | |
JP2020146663A (en) | Dehumidifier | |
KR20100007303A (en) | Air conditioner | |
KR102436120B1 (en) | Dehumidifier for lowering temperature of output air | |
JP4597637B2 (en) | Integrated air conditioner | |
JP3986287B2 (en) | Air conditioner | |
JP7132097B2 (en) | Dehumidifier with drying function | |
KR102538124B1 (en) | Dehumidifier that secures improved dehumidification amount by reducing wind loss | |
KR102538127B1 (en) | Dehumdifying apparatus | |
JP4489571B2 (en) | Integrated air conditioner | |
JPWO2020079764A1 (en) | Air conditioner | |
KR100487380B1 (en) | structure for draining condensing water in the air conditioner | |
JP6896041B2 (en) | Air conditioner | |
JP2021108916A (en) | Dehumidifier with drying function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6942082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |