JP6941918B2 - Method for Producing Alkali Metal Salt of Sulfonimide - Google Patents

Method for Producing Alkali Metal Salt of Sulfonimide Download PDF

Info

Publication number
JP6941918B2
JP6941918B2 JP2016015214A JP2016015214A JP6941918B2 JP 6941918 B2 JP6941918 B2 JP 6941918B2 JP 2016015214 A JP2016015214 A JP 2016015214A JP 2016015214 A JP2016015214 A JP 2016015214A JP 6941918 B2 JP6941918 B2 JP 6941918B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
linear
general formula
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015214A
Other languages
Japanese (ja)
Other versions
JP2017132728A (en
Inventor
彰宏 藤
彰宏 藤
泰輔 佐藤
泰輔 佐藤
真治 尾添
真治 尾添
真一 曽我
真一 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2016015214A priority Critical patent/JP6941918B2/en
Publication of JP2017132728A publication Critical patent/JP2017132728A/en
Application granted granted Critical
Publication of JP6941918B2 publication Critical patent/JP6941918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、電子材料等の原料あるいは合成中間体として工業的に重要なスルホンイミドのアルカリ金属塩の製造方法に関するものである。 The present invention relates to a method for producing an alkali metal salt of sulfonimide, which is industrially important as a raw material for electronic materials or a synthetic intermediate.

従来、スルホンイミドのアルカリ金属塩を製造する方法としては、以下の二工程よりなる方法が知られている。すなわち、スルホニルクロリド、スルホンアミドと三級アミンを反応させてスルホンイミドのアミン塩を得る工程と、得られたアミン塩にアルカリ金属塩を反応させることでスルホンイミドのアルカリ金属塩を得る工程からなる製造方法である(例えば特許文献1参照)。また、スルホニルクロリドとスルホンアミドを、塩基を使わずに反応させる方法についても例示されている(例えば特許文献2参照)。 Conventionally, as a method for producing an alkali metal salt of sulfonimide, a method including the following two steps is known. That is, it comprises a step of reacting a sulfonyl chloride or sulfonamide with a tertiary amine to obtain an amine salt of sulfonimide, and a step of reacting the obtained amine salt with an alkali metal salt to obtain an alkali metal salt of sulfonimide. This is a manufacturing method (see, for example, Patent Document 1). Further, a method of reacting a sulfonyl chloride with a sulfonamide without using a base is also exemplified (see, for example, Patent Document 2).

特許文献1において、原料である三級アミンは、スルホンイミドのアミン塩を形成させるだけでなく、副生する塩化水素を捕捉する為に用いられている。しかしながら、発生する塩化水素を三級アミンにより完全に除去することは容易とは言えず、生成する塩化水素および三級アミンの塩化水素塩は反応系に残存する可能性がある。この点は、スルホンイミドのアルカリ金属塩が多用される電子材料分野において好ましくない。一般に、塩化水素および三級アミンの塩化水素塩についてはできる限り除去されること、更には塩化水素を発生させないことが望まれる。 In Patent Document 1, the tertiary amine as a raw material is used not only for forming an amine salt of sulfonimide but also for capturing hydrogen chloride produced as a by-product. However, it is not easy to completely remove the generated hydrogen chloride with a tertiary amine, and the produced hydrogen chloride and the hydrogen chloride salt of the tertiary amine may remain in the reaction system. This point is not preferable in the field of electronic materials in which alkali metal salts of sulfonimide are often used. In general, it is desired that hydrogen chloride and hydrogen chloride salts of tertiary amines be removed as much as possible, and that hydrogen chloride is not generated.

また特許文献2において、原料にスチレンスルホン酸を用いた反応式の例示があるものの、該化合物は極めて重合しやすいため取り扱いが容易ではなく、この反応を実際に工業的に利用することは現実的ではない。
従って、スルホンイミドのアルカリ金属塩を製造するにあたり、効率的に実施可能な製造方法が求められていた。
Further, although Patent Document 2 exemplifies a reaction formula using styrene sulfonic acid as a raw material, the compound is extremely easy to polymerize and is not easy to handle, and it is practical to actually use this reaction industrially. is not it.
Therefore, in producing an alkali metal salt of sulfonimide, an efficiently feasible production method has been required.

米国特許第6420607号明細書U.S. Pat. No. 6420607 国際公開第2015/029248号International Publication No. 2015/029248

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、従来の方法では製造が困難であったスルホンイミドのリチウム塩またはナトリウム塩を、工業的規模においても安定して得るための製造方法を提供することにある。また本発明は、アミン類を原料に用いずに簡便且つ効率よくスルホンイミドのリチウム塩またはナトリウム塩、殊にリチウム塩を工業的スケールで製造し得る製造方法を提供することも目的とする。 An object of the present invention has been proposed in view of the conventional circumstances, and is for stably obtaining a lithium salt or a sodium salt of sulfonimide, which has been difficult to produce by a conventional method, even on an industrial scale. To provide a manufacturing method for. Another object of the present invention is to provide a production method capable of easily and efficiently producing a lithium salt or a sodium salt of sulfonimide, particularly a lithium salt, on an industrial scale without using amines as a raw material.

本発明者らは、アミン類を原料に用いずに簡便且つ効率よくスルホンイミドのリチウム塩またはナトリウム塩を工業的スケールで製造し得る製造方法を提供することを目的とし、鋭意研究を行った。その結果、原料にスルホンアミドとリチウム塩またはナトリウム塩を用いてスルホンアミドのリチウム塩またはナトリウム塩を取得後、得られたものを更にスルホニルハライドと反応させることにより、スルホンイミドのリチウム塩またはナトリウム塩を製造できることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies with the aim of providing a production method capable of easily and efficiently producing a lithium salt or a sodium salt of sulfonimide on an industrial scale without using amines as a raw material. As a result, after obtaining the lithium salt or sodium salt of sulfonamide using sulfonamide and lithium salt or sodium salt as raw materials, the obtained product is further reacted with sulfonyl halide to obtain the lithium salt or sodium salt of sulfonamide. We have found that we can manufacture the above, and have completed the present invention.

すなわち本発明は、下記一般式(1) That is, the present invention has the following general formula (1).

Figure 0006941918
Figure 0006941918

(式(1)中、R1はフッ素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示す。)で表されるスルホンアミドと、下記一般式(2) (In the formula (1), R 1 is fluorine, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number of carbon atoms. A sulfonamide represented by 2 to 10 linear or branched alkynyl groups or a cyclic alkyl group having 3 to 10 carbon atoms) and the following general formula (2).

Figure 0006941918
Figure 0006941918

(式(2)中、M+はリチウムイオンまたはナトリウムイオンを示し、Xn-はn価の陰イオンを示し、nは1または2である。)で表されるリチウム塩またはナトリウム塩と、を反応させて下記一般式(3) (In the formula (2), M + represents a lithium ion or a sodium ion, X n- represents an n-valent anion, and n is 1 or 2). To react with the following general formula (3)

Figure 0006941918
Figure 0006941918

(式(3)中、R1及びM+は前記式(1)および(2)に同じ。)を得る工程と、上記一般式(3)と下記一般式(4) (In the formula (3), R 1 and M + are the same as those in the formulas (1) and (2)), and the general formula (3) and the following general formula (4).

Figure 0006941918
Figure 0006941918

(式(4)中、R2、R3およびR4はそれぞれ独立して、水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示し、R5、R6、R7およびR8はそれぞれ独立して、水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示し、それぞれが環状構造を形成しても構わない。また、Yはハロゲン原子を示す。)で表されるスルホニルハライドと、を反応させて下記一般式(5) (In formula (4), R 2 , R 3 and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, and 2 to 10 carbon atoms. , A linear or branched alkynyl group having 2 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms, and R 5 , R 6 , R 7 and R 8 are independent of each other. Then, hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, a linear or branched alkenyl group having 2 to 10 carbon atoms, a linear or branched alkyl group having 2 to 10 carbon atoms. It may represent a branched alkynyl group or a cyclic alkyl group having 3 to 10 carbon atoms, each of which may form a cyclic structure. Y represents a halogen atom) and reacts with a sulfonyl halide. Let me do the following general formula (5)

Figure 0006941918
Figure 0006941918

(式(5)中、R1及びM+は前記式(1)および(2)に同じ。)で表されるスルホンイミドのリチウム塩またはナトリウム塩を得る工程よりなる、スルホンイミドのリチウム塩またはナトリウム塩の製造方法に係る。 (In the formula (5), R 1 and M + are the same as those in the formulas (1) and (2)). It relates to a method for producing a sodium salt.

本発明の方法によれば、電子材料等の原料あるいは合成中間体として工業的に重要な化合物であるスルホンイミドのリチウム塩またはナトリウム塩を高収率かつ高純度で効率よく得ることができるため、本製造法は工業的製造方法として有用である。 According to the method of the present invention, a lithium salt or a sodium salt of sulfonimide, which is an industrially important compound as a raw material for electronic materials or the like or as a synthetic intermediate, can be efficiently obtained in high yield and with high purity. This manufacturing method is useful as an industrial manufacturing method.

本発明を実施するに当たり、原料として用いられるスルホンアミドは上記一般式(1)で表される。
一般式(1)中、R1はフッ素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示す。R1は具体的に、フッ素、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロプロピル基、1’−メチルシクロブチル基、2’−メチルシクロブチル基、1’−メチルシクロペンチル基、2’−メチルシクロペンチル基、1’−メチルシクロヘキシル基、2’−メチルシクロヘキシル基、3’−メチルシクロヘキシル基、1’,1’−ジメチルシクロプロピル基、1’,2’−ジメチルシクロプロピル基、1’,1’−ジメチルシクロブチル基、1’ ,2’−ジメチルシクロブチル基、1’,3’−ジメチルシクロブチル基、2’,2’−ジメチルシクロブチル基等が挙げられ、反応を阻害しない範囲で任意の位置に置換基を有していてもよい。これらの内でも、トリフルオロメチル基を有するものが好ましく用いられる。
In carrying out the present invention, the sulfonamide used as a raw material is represented by the above general formula (1).
In the general formula (1), R 1 is fluorine, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon number of carbon atoms. It represents a linear or branched alkynyl group of 2 to 10 or a cyclic alkyl group having 3 to 10 carbon atoms. R 1 is specifically a fluorine, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and a 1-methylbutyl group. , 2-Methylbutyl group, 3-Methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group , Cyclohexyl group, methylcyclopropyl group, 1'-methylcyclobutyl group, 2'-methylcyclobutyl group, 1'-methylcyclopentyl group, 2'-methylcyclopentyl group, 1'-methylcyclohexyl group, 2'-methyl Cyclohexyl group, 3'-methylcyclohexyl group, 1', 1'-dimethylcyclopropyl group, 1', 2'-dimethylcyclopropyl group, 1', 1'-dimethylcyclobutyl group, 1', 2'-dimethyl Cyclobutyl group, 1', 3'-dimethylcyclobutyl group, 2', 2'-dimethylcyclobutyl group and the like can be mentioned, and a substituent may be provided at an arbitrary position as long as the reaction is not inhibited. Among these, those having a trifluoromethyl group are preferably used.

一般式(2)中、M+はアルカリ金属イオンのうちリチウムイオンまたはナトリウムイオンを示し、さらにリチウムイオンが好ましい。
一般式(2)中、Xn-はn価の陰イオンを示し、具体的に、ヒドリドイオン、水酸化物イオン、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、炭酸イオン、硫酸イオン等が挙げられる。なお、本発明に係る反応を阻害しない範囲で制限されないが、ヒドリドイオン、水酸化物イオン、炭酸イオンであることが好ましい。これらはリチウム塩またはナトリウム塩である化合物であれば使用できる。例えば化合物として、水素化リチウム、水酸化リチウム、炭酸ナトリウムを挙げることができる。
In the general formula (2), M + represents lithium ion or sodium ion among alkali metal ions, and lithium ion is more preferable.
In the general formula (2), X n- indicates an n-valent anion, and specifically, hydride ion, hydroxide ion, fluorine ion, chlorine ion, bromine ion, iodine ion, carbonate ion, sulfate ion and the like. Can be mentioned. The reaction is not limited as long as it does not inhibit the reaction according to the present invention, but hydride ion, hydroxide ion, and carbonate ion are preferable. These can be used as long as they are compounds that are lithium salts or sodium salts. For example, examples of the compound include lithium hydride, lithium hydroxide, and sodium carbonate.

一般式(4)中、R2、R3およびR4はそれぞれ独立して水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示す。R2、R3およびR4は具体的に、水素、フッ素、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロプロピル基、1’−メチルシクロブチル基、2’−メチルシクロブチル基、1’−メチルシクロペンチル基、2’−メチルシクロペンチル基、1’−メチルシクロヘキシル基、2’−メチルシクロヘキシル基、3’−メチルシクロヘキシル基、1’,1’−ジメチルシクロプロピル基、1’,2’−ジメチルシクロプロピル基、1’,1’−ジメチルシクロブチル基、1’,2’−ジメチルシクロブチル基、1’,3’−ジメチルシクロブチル基、2’,2’−ジメチルシクロブチル基等が挙げられ、反応を阻害しない範囲で任意の位置に置換基を有していてもよい。 In the general formula (4), R 2 , R 3 and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, and 2 to 10 carbon atoms. A linear or branched alkenyl group, a linear or branched alkynyl group having 2 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms is shown. Specifically, R 2 , R 3 and R 4 are hydrogen, fluorine, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n. -Pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, cyclo Propyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, methylcyclopropyl group, 1'-methylcyclobutyl group, 2'-methylcyclobutyl group, 1'-methylcyclopentyl group, 2'-methylcyclopentyl group, 1'- Methylcyclohexyl group, 2'-methylcyclohexyl group, 3'-methylcyclohexyl group, 1', 1'-dimethylcyclopropyl group, 1', 2'-dimethylcyclopropyl group, 1', 1'-dimethylcyclobutyl group , 1', 2'-dimethylcyclobutyl group, 1', 3'-dimethylcyclobutyl group, 2', 2'-dimethylcyclobutyl group and the like, and substituents at arbitrary positions within a range that does not inhibit the reaction. May have.

一般式(4)中、R5、R6、R7およびR8はそれぞれ独立して水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示す。R5、R6、R7およびR8は具体的に、水素、フッ素、塩素、臭素、ヨウ素、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロプロピル基、1’−メチルシクロブチル基、2’−メチルシクロブチル基、1’−メチルシクロペンチル基、2’−メチルシクロペンチル基、1’−メチルシクロヘキシル基、2’−メチルシクロヘキシル基、3’−メチルシクロヘキシル基、1’,1’−ジメチルシクロプロピル基、1’,2’−ジメチルシクロプロピル基、1’,1’−ジメチルシクロブチル基、1’,2’−ジメチルシクロブチル基、1’,3’−ジメチルシクロブチル基、2’,2’−ジメチルシクロブチル基等が挙げられ、反応を阻害しない範囲で任意の位置に置換基を有していてもよい。さらに、R5、R6、R7およびR8はそれぞれが環状構造を形成しても構わない。 In the general formula (4), R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, and 2 carbon atoms. A linear or branched alkenyl group having 10 to 10 carbon atoms, a linear or branched alkynyl group having 2 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms is shown. R 5 , R 6 , R 7 and R 8 are specifically hydrogen, fluorine, chlorine, bromine, iodine, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl group, tert-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, methylcyclopropyl group, 1'-methylcyclobutyl group, 2'-methylcyclobutyl group, 1'-methylcyclopentyl group, 2 '-Methylcyclopentyl group, 1'-methylcyclohexyl group, 2'-methylcyclohexyl group, 3'-methylcyclohexyl group, 1', 1'-dimethylcyclopropyl group, 1', 2'-dimethylcyclopropyl group, 1 ', 1'-dimethylcyclobutyl group, 1', 2'-dimethylcyclobutyl group, 1', 3'-dimethylcyclobutyl group, 2', 2'-dimethylcyclobutyl group and the like, which inhibit the reaction. It may have a substituent at any position as long as it does not. Further, R 5 , R 6 , R 7 and R 8 may each form an annular structure.

また、Yは反応を阻害しない範囲で特に制限されるものではないが、ハロゲン原子が好ましく、フッ素原子であることが特に好ましい。 Further, Y is not particularly limited as long as it does not inhibit the reaction, but a halogen atom is preferable, and a fluorine atom is particularly preferable.

一般式(4)で表されるスルホニルハライドは以上の通りであり、これらの内でも、スチレンスルホン酸クロライドが好ましく用いられる。 The sulfonyl halide represented by the general formula (4) is as described above, and among these, styrene sulfonic acid chloride is preferably used.

本発明の製造方法に係る反応は、溶媒の存在下において実施するか、あるいは溶媒を用いずに実施しても構わない。用いられる溶媒としては、具体的に、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン等の直鎖状脂肪族炭化水素類、2−メチルブタン、2−メチルペンタン、3−メチルペンタン、2−メチルヘキサン、3−メチルヘキサン等の分岐状脂肪族炭化水素類、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、1−クロロプロパン、1,2−ジクロロプロパン、1,3−ジクロロプロパン、1−クロロブタン、2−クロロブタン、1,2−ジクロロブタン、1,3−ジクロロブタン、1,4−ジクロロブタン、2,3−ジクロロブタン、ジブロモメタン、ブロモホルム、四臭化炭素、1,1−ジブロモエタン、1−ブロモプロパン、2−ブロモプロパン、1,2−ジブロモプロパン、1,3−ジブロモプロパン、1−ブロモブタン、2−ブロモブタン、1,2−ジブロモブタン、1,3−ジブロモブタン、1,4−ジブロモブタン、2,3−ジブロモブタン等の脂肪族ハロゲン化合物類、クロロベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン、ブロモベンゼン、o−ジブロモベンゼン、m−ジブロモベンゼン、p−ジブロモベンゼン等の芳香族ハロゲン化合物類、テトラヒドロフラン、アセトン、アセトニトリル、酢酸エチル、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性の極性の溶媒を用いることができ、中でも非プロトン性の極性の溶媒を用いるのが好ましく、アセトニトリルもしくは酢酸エチル、N,N−ジメチルホルムアミドを用いるのがさらに好ましい。また、本製造方法に係る溶媒の使用量は特に制限されないが、一般式(1)に示されるスルホンアミドに対して重量比で1から100にするのが好ましく、重量比で1から30がさらに好ましい。 The reaction according to the production method of the present invention may be carried out in the presence of a solvent or may be carried out without using a solvent. Specific examples of the solvent used include linear aliphatic hydrocarbons such as pentane, hexane, heptane, octane, dichloromethane, dichloromethane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane, 2-. Branched aliphatic hydrocarbons such as methylbutane, 2-methylpentane, 3-methylpentane, 2-methylhexane and 3-methylhexane, and aromatics such as benzene, toluene, o-xylene, m-xylene and p-xylene. Hydrocarbons, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1-chloropropane, 1,2-dichloropropane, 1,3-dichloropropane, 1-chlorobutane, 2-chlorobutane, 1,2-dichloro Butane, 1,3-dichlorobutane, 1,4-dichlorobutane, 2,3-dichlorobutane, dibromomethane, bromoform, carbon tetrabromide, 1,1-dibromoethane, 1-bromopropane, 2-bromopropane, 1,2-Dibromopropane, 1,3-dibromopropane, 1-bromobutane, 2-bromobutane, 1,2-dibromobutane, 1,3-dibromobutane, 1,4-dibromobutane, 2,3-dibromobutane, etc. Hydrocarbon compounds such as chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, bromobenzene, o-dibromobenzene, m-dibromobenzene, p-dibromobenzene and other aromatic halogen compounds, tetrahydrofuran. , Aprotonic polar solvents such as acetone, acetonitrile, ethyl acetate, N, N-dimethylformamide, and dimethylsulfoxide can be used, and among them, aprotonic polar solvents are preferably used, and acetonitrile or ethyl acetate is preferable. , N, N-dimethylformamide is more preferred. The amount of the solvent used in the present production method is not particularly limited, but it is preferably 1 to 100 by weight with respect to the sulfonamide represented by the general formula (1), and 1 to 30 by weight is further used. preferable.

本発明のスルホンイミドのアルカリ金属塩に用いられる一般式(2)の使用量は特に制限するものではないが、反応を定量的に進行させる為には原料であるスルホンアミド類に対して2当量〜10当量使用するのが好ましく、さらに好ましくは2当量〜3当量である。 The amount of the general formula (2) used for the alkali metal salt of the sulfonimide of the present invention is not particularly limited, but is equivalent to 2 equivalents with respect to the sulfone amides as raw materials in order to proceed the reaction quantitatively. It is preferably used in an amount of 10 to 10 equivalents, more preferably 2 equivalents to 3 equivalents.

本発明のスルホンイミドのアルカリ金属塩を合成する際の反応温度は0℃〜80℃で実施可能であるが、0℃〜60℃で実施するのが好ましい。なお、一般式(3)を得た後においては特に低温を必要とすることはなく、20℃〜60℃で反応を実施することが可能である。 The reaction temperature for synthesizing the alkali metal salt of the sulfonimide of the present invention can be carried out at 0 ° C. to 80 ° C., but is preferably carried out at 0 ° C. to 60 ° C. After obtaining the general formula (3), a low temperature is not particularly required, and the reaction can be carried out at 20 ° C to 60 ° C.

また、本発明のスルホンイミドのアルカリ金属塩を合成する際に使用する反応器は、大気開放型の反応器、またはオートクレーブ等の密閉系の反応器のいずれも可能であり、反応圧力は、大気圧下、または加圧下のいずれも可能である。
本発明のスルホンイミドのアルカリ金属塩の製造方法にて合成されたスルホンイミドのアルカリ金属塩は、反応終了後の反応液から、ろ過、抽出、晶析など常法により分離、精製することができる。
Further, the reactor used for synthesizing the alkali metal salt of the sulfonimide of the present invention can be either an open-air reactor or a closed reactor such as an autoclave, and the reaction pressure is large. It can be under pressure or under pressure.
The alkali metal salt of sulfoneimide synthesized by the method for producing an alkali metal salt of sulfonimide of the present invention can be separated and purified from the reaction solution after completion of the reaction by a conventional method such as filtration, extraction and crystallization. ..

以下、実施例により本発明を説明するが、それらは本発明を限定するものではない。
なお、本発明により得られる化合物については、核磁気共鳴分析(以下、「NMR分析」と示す)により反応系中における目的化合物の生成、および反応生成物を同定した。
[NMR分析]
装置:ブルカー・バイオスピン社製、 AV−400M
測定サンプルの調製方法:内部標準物質として約0.05%のテトラメチルシランを含むジメチルスルホキシド−d6(99.5%)約0.7mLに試料を溶解し、1H−NMRおよび19F−NMRを測定した。
Hereinafter, the present invention will be described with reference to examples, but they are not limited to the present invention.
For the compound obtained by the present invention, the production of the target compound in the reaction system and the reaction product were identified by nuclear magnetic resonance analysis (hereinafter referred to as “NMR analysis”).
[NMR analysis]
Equipment: Bruker Biospin, AV-400M
Method for preparing measurement sample: Dissolve the sample in about 0.7 mL of dimethyl sulfoxide-d6 (99.5%) containing about 0.05% tetramethylsilane as an internal standard, and 1 H-NMR and 19 F-NMR. Was measured.

(実施例1)リチウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
100mLの四口フラスコに撹拌子と温度計を装着し、水素化リチウム0.21g(26.8mmol)、無水アセトニトリル9.50gを入れた後に撹拌しながら0℃に冷却した。次に、トリフルオロメタンスルホンアミド2.00g(13.4mmol)を無水アセトニトリル 9.50gに溶解したものを滴下した。続いて、34%4−スチレンスルホニルクロリド/トルエン溶液8.00g(13.4mmol)を滴下し、さらに室温で撹拌を17時間継続した。得られた反応液にトルエン20.00gを加え、30分間撹拌した後に、ろ過により無機塩を除去した。ロータリーエバポレータで溶媒を留去したところ、目的化合物であるリチウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドが78%の収率で得られた。
1H−NMR (400 MHz, DMSO−d6): δ (ppm) 7.70 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.24−7.10 (dd, J = 12.0 Hz, 20.0 Hz, 1H), 5.93 (d, J = 20.0 Hz, 1H), 5.37 (d, J = 12.0 Hz, 1H)
19F−NMR (376 MHz, DMSO−d6): δ (ppm)−77.89(s).
(Example 1) Synthesis of lithium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide A stirrer and a thermometer were attached to a 100 mL four-necked flask, and 0.21 g (26.8 mmol) of lithium hydride and anhydrous acetonitrile 9. After adding 50 g, the mixture was cooled to 0 ° C. with stirring. Next, 2.00 g (13.4 mmol) of trifluoromethanesulfonamide dissolved in 9.50 g of anhydrous acetonitrile was added dropwise. Subsequently, 8.00 g (13.4 mmol) of a 34% 4-styrenesulfonyl chloride / toluene solution was added dropwise, and stirring was further continued at room temperature for 17 hours. Toluene (20.00 g) was added to the obtained reaction solution, and the mixture was stirred for 30 minutes, and then the inorganic salt was removed by filtration. When the solvent was distilled off with a rotary evaporator, the target compound, lithium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide, was obtained in a yield of 78%.
1 1 H-NMR (400 MHz, DMSO-d6): δ (ppm) 7.70 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7 .24-7.10 (dd, J = 12.0 Hz, 20.0 Hz, 1H), 5.93 (d, J = 20.0 Hz, 1H), 5.37 (d, J = 12. 0 Hz, 1H)
19 F-NMR (376 MHz, DMSO-d6): δ (ppm) -77.89 (s).

(実施例2)リチウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
実施例1の原料である水素化リチウムを水酸化リチウム0.64g(26.8mmol)、反応溶媒である無水アセトニトリルをN,N−ジメチルホルムアミドに変え、60℃で反応を行ったところ、目的化合物であるリチウム4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドが66%の収率で得られた。
(Example 2) Synthesis of lithium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide 0.64 g (26.8 mmol) of lithium hydride, which is the raw material of Example 1, and N anhydrous acetonitrile, which is the reaction solvent, are used. , N-Dimethylformamide was changed and the reaction was carried out at 60 ° C., and the target compound, lithium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide, was obtained in a yield of 66%.

(実施例3)リチウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
実施例1の反応溶媒である無水アセトニトリルを酢酸エチルに変え、60℃で反応を行ったところ、目的化合物であるリチウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドが48%の収率で得られた。
(Example 3) Synthesis of lithium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide When anhydrous acetonitrile, which is the reaction solvent of Example 1, was changed to ethyl acetate and the reaction was carried out at 60 ° C., the target compound, lithium 4 -Stylonylsulfonyl (trifluoromethylsulfonyl) imide was obtained in a yield of 48%.

(実施例4)ナトリウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
100mLの四口フラスコに撹拌子と温度計を装着し、炭酸ナトリウム2.97g(28.1mmol)、酢酸エチル20.00g、トリフルオロメタンスルホンアミド2.09g(14.0mmol)、41%4−スチレンスルホニルクロリド/トルエン溶液7.00g(14.0mmol)、4−ターシャリブチルカテコール0.10g(0.6mmol)を入れた後に撹拌しながら60℃に加熱し、さらに撹拌を17時間継続した。その後、反応液に水20.00gを加えて分液し、得られた有機層を20%食塩水で洗浄した。トルエンを加えて、濃縮したところ、目的化合物であるナトリウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドが77%の収率で得られた。
1H−NMR (400 MHz, DMSO−d6): δ (ppm) 7.70 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.24−7.10 (dd, J = 12.0 Hz, 20.0 Hz, 1H), 5.93 (d, J = 20.0 Hz, 1H), 5.37 (d, J = 12.0 Hz, 1H)
19F−NMR (376 MHz, DMSO−d6): δ (ppm)−77.89(s).
(Example 4) Synthesis of sodium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide A stirrer and a thermometer were attached to a 100 mL four-necked flask, and 2.97 g (28.1 mmol) of sodium carbonate and 20.00 g of ethyl acetate were attached. , 2.09 g (14.0 mmol) of trifluoromethanesulfonamide, 7.00 g (14.0 mmol) of 41% 4-styrenesulfonyl chloride / toluene solution, and 0.10 g (0.6 mmol) of 4-tarsial butyl catechol. After that, the mixture was heated to 60 ° C. with stirring, and the stirring was continued for 17 hours. Then, 20.00 g of water was added to the reaction solution to separate the layers, and the obtained organic layer was washed with 20% saline solution. When toluene was added and concentrated, the target compound sodium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide was obtained in a yield of 77%.
1 1 H-NMR (400 MHz, DMSO-d6): δ (ppm) 7.70 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7 .24-7.10 (dd, J = 12.0 Hz, 20.0 Hz, 1H), 5.93 (d, J = 20.0 Hz, 1H), 5.37 (d, J = 12. 0 Hz, 1H)
19 F-NMR (376 MHz, DMSO-d6): δ (ppm) -77.89 (s).

(比較例1)(アルカリ金属塩の有無に関する検討)
実施例4の原料である炭酸ナトリウムを加えず、反応溶媒である酢酸エチルをテトラヒドロフランに変え、反応を行ったところ、目的化合物であるナトリウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドは得られなかった。
(Comparative Example 1) (Examination of presence / absence of alkali metal salt)
When the reaction was carried out by changing ethyl acetate as a reaction solvent to tetrahydrofuran without adding sodium carbonate as a raw material of Example 4, sodium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide as a target compound could not be obtained. rice field.

(比較例2)カルシウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
実施例4の原料である炭酸ナトリウムを炭酸カルシウム2.69g(28.1mmol)に変え、反応を行ったところ、目的化合物であるカルシウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドは得られなかった。
(Comparative Example 2) Synthesis of calcium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide When sodium carbonate, which is the raw material of Example 4, was changed to 2.69 g (28.1 mmol) of calcium carbonate and a reaction was carried out, the target compound was obtained. Calcium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide was not obtained.

(比較例3)マグネシウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドの合成
実施例4の原料である炭酸ナトリウムを炭酸マグネシウム2.26g(28.1mmol)に変え、反応を行ったところ、目的化合物であるマグネシウム 4−スチレンスルホニル(トリフルオロメチルスルホニル)イミドは得られなかった。
(Comparative Example 3) Synthesis of magnesium 4-styrenesulfonyl (trifluoromethylsulfonyl) imide When sodium carbonate, which is the raw material of Example 4, was changed to 2.26 g (28.1 mmol) of magnesium carbonate and a reaction was carried out, the target compound was obtained. Magnesium 4-styrene sulfonyl (trifluoromethylsulfonyl) imide was not obtained.

本発明により得られるスルホンイミドのアルカリ金属塩は、電子材料等の原料あるいは合成中間体として、工業的に極めて有用である。 The alkali metal salt of sulfonimide obtained by the present invention is extremely useful industrially as a raw material for electronic materials or the like or as a synthetic intermediate.

Claims (4)

下記一般式(1)
Figure 0006941918
(式(1)中、R1はフッ素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示す。)で表されるスルホンアミドと、前記スルホンアミドに対して2当量〜10当量の水素化リチウム、水酸化リチウムまたは炭酸ナトリウムと、を反応させて、下記一般式(3)
Figure 0006941918
(式(3)中、R1及びM+は前記式(1)および(2)に同じ。)を得た後、続いて、一般式(3)で表される化合物及び、前記水素化リチウム、水酸化リチウムまたは炭酸ナトリウムを含む組成物と、下記一般式(4)
Figure 0006941918
(式(4)中、R2、R3およびR4はそれぞれ独立して、水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示し、R5、R6、R7およびR8はそれぞれ独立して、水素、任意の数の置換基を有する炭素数1〜10の直鎖もしくは分岐状アルキル基、炭素数2〜10の直鎖もしくは分岐状アルケニル基、炭素数2〜10の直鎖もしくは分岐状アルキニル基、または炭素数3〜10の環状アルキル基を示し、それぞれが環状構造を形成しても構わない。また、Yはハロゲンを示す。)で表されるスルホニルハライドと、を反応させて下記一般式(5)
Figure 0006941918
(式(5)中、R1、R2、R3、R4、R5、R6、R7、R8及びM+は前記式(1)、(2)、および(4)に同じ。)で表される化合物を得る工程よりなる、スルホンイミドのアルカリ金属塩の製造方法。
The following general formula (1)
Figure 0006941918
(In the formula (1), R 1 is fluorine, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, a linear or branched alkenyl group having 2 to 10 carbon atoms, and a carbon element number. A sulfonamide represented by 2 to 10 linear or branched alkynyl groups or a cyclic alkyl group having 3 to 10 carbon atoms) and 2 to 10 equivalents of lithium hydride with respect to the sulfonamide. By reacting with lithium hydroxide or sodium carbonate, the following general formula (3)
Figure 0006941918
(In the formula (3), R 1 and M + are the same as those in the formulas (1) and (2)) , followed by the compound represented by the general formula (3) and the lithium hydride. , Lithium hydroxide or sodium carbonate and the following general formula (4)
Figure 0006941918
(In formula (4), R 2 , R 3 and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, and 2 to 10 carbon atoms. , A linear or branched alkynyl group having 2 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms, and R 5 , R 6 , R 7 and R 8 are independent of each other. Then, hydrogen, a linear or branched alkyl group having 1 to 10 carbon atoms having an arbitrary number of substituents, a linear or branched alkenyl group having 2 to 10 carbon atoms, a linear or branched alkyl group having 2 to 10 carbon atoms. It may react with a branched alkynyl group or a cyclic alkyl group having 3 to 10 carbon atoms, each of which may form a cyclic structure, and Y is a sulfonyl halide represented by halogen.) The following general formula (5)
Figure 0006941918
(In equation (5), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and M + are the same as those in equations (1), (2) and (4). A method for producing an alkali metal salt of sulfonimide, which comprises a step of obtaining a compound represented by.).
1がトリフルオロメチル基である、請求項1に記載のスルホンイミドのアルカリ金属塩の製造方法。 The method for producing an alkali metal salt of sulfonimide according to claim 1, wherein R 1 is a trifluoromethyl group. 上記一般式(4)に示されるスルホニルハライドがスチレンスルホン酸クロライドである、請求項1又は請求項2に記載のスルホンイミドのアルカリ金属塩の製造方法。 The method for producing an alkali metal salt of sulfonimide according to claim 1 or 2, wherein the sulfonyl halide represented by the general formula (4) is styrene sulfonic acid chloride. 反応に用いる溶媒がアセトニトリル、酢酸エチル、またはN,N−ジメチルホルムアミドのいずれかである、請求項1〜3のいずれかに記載のスルホンイミドのアルカリ金属塩の製造方法。 The method for producing an alkali metal salt of sulfonimide according to any one of claims 1 to 3, wherein the solvent used in the reaction is either acetonitrile, ethyl acetate, or N, N-dimethylformamide.
JP2016015214A 2016-01-29 2016-01-29 Method for Producing Alkali Metal Salt of Sulfonimide Active JP6941918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015214A JP6941918B2 (en) 2016-01-29 2016-01-29 Method for Producing Alkali Metal Salt of Sulfonimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015214A JP6941918B2 (en) 2016-01-29 2016-01-29 Method for Producing Alkali Metal Salt of Sulfonimide

Publications (2)

Publication Number Publication Date
JP2017132728A JP2017132728A (en) 2017-08-03
JP6941918B2 true JP6941918B2 (en) 2021-09-29

Family

ID=59502238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015214A Active JP6941918B2 (en) 2016-01-29 2016-01-29 Method for Producing Alkali Metal Salt of Sulfonimide

Country Status (1)

Country Link
JP (1) JP6941918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237606B2 (en) * 2019-01-25 2023-03-13 国立大学法人東京農工大学 Polymer obtained by polymerizing 4-styrene derivative, binder or coating agent for magnesium secondary battery using the same, and magnesium secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962546A (en) * 1996-03-26 1999-10-05 3M Innovative Properties Company Cationically polymerizable compositions capable of being coated by electrostatic assistance
JP3623452B2 (en) * 2000-01-31 2005-02-23 森田化学工業株式会社 Method for producing sulfonylimide compound
JP2008266155A (en) * 2007-04-17 2008-11-06 Asahi Kasei Corp Method for producing sulfonimide lithium salt
JP5427393B2 (en) * 2008-11-13 2014-02-26 東京応化工業株式会社 Resist composition and resist pattern forming method
JP2011046915A (en) * 2009-02-17 2011-03-10 Jsr Corp Ionic functional group-containing epoxy resin
JP5518573B2 (en) * 2010-05-26 2014-06-11 三菱マテリアル株式会社 Method for producing fluorinated sulfonimide compound
JP5832370B2 (en) * 2012-05-14 2015-12-16 日本合成化学工業株式会社 Ionic liquid
CN103804713B (en) * 2014-02-19 2016-05-18 华中农业大学 The acid resin of a kind of porous perfluoroalkyl sulfimide and application thereof

Also Published As

Publication number Publication date
JP2017132728A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
BR102014033010A2 (en) 5-Fluoro-4-imino-3- (alkyl / substituted alkyl) -1- (arylsulfonyl) -3,4-dihydropyrimidin-2 (1h) -one and processes for its preparation
CA2857831A1 (en) Process for producing arylsulfur pentafluorides
PT2285779E (en) Method for manufacturing aryl carboxamides
TWI695824B (en) Process for preparing 3-chloro-2-vinylphenylsulfonates
CN109311786B (en) Process for aromatic fluorination
PT2279175E (en) Process for the preparation of naphthalen-2-yl-pyrazol-3-one intermediates useful in the synthesis of sigma receptor inhibitors
PT2670751E (en) Methods of making hiv attachment inhibitor prodrug compound and intermediates
WO2015129654A1 (en) Method for manufacturing 1,1-disubstituted hydrazine compound
Zhang et al. Determination of pKa values of fluoroalkanesulfonamides and investigation of their nucleophilicity
JP6941918B2 (en) Method for Producing Alkali Metal Salt of Sulfonimide
JP2016190818A (en) Method for producing 1,1-disubstituted hydrazine compounds
Zonov et al. The first carbonylation of perfluoroorganic compounds: The reactions of perfluorobenzocyclobutene and its perfluoroalkyl and pentafluorophenyl derivatives with CO in SbF5 medium
JP2009242270A (en) Method for producing 4-perfluoroisopropylaniline
JP5186910B2 (en) Method for producing tris (perfluoroalkanesulfonyl) methidoate
EP3207009A1 (en) Process for the preparation of halo-substituted benzenes
DE69902071T2 (en) Process for the preparation of 2-substituted pyridines
JPWO2018061677A1 (en) Substituted bis (trifluorovinyl) benzene compounds
EP3133063A1 (en) Pocess for the preparation of 2-amino-1,3,4-oxadiazoles
JP6498056B2 (en) Process for producing brominated cyclopropanes
HU188159B (en) Process for the preparation of n-bracket-halo-methyl-bracket closed-acyl-amide derivatives
KR102162624B1 (en) Organic solvent solution of sulfonimide having polymerizable functional group with reduced halide
US10875869B1 (en) Diazacyclobutene derivatives and methods of synthesis thereof
AU695772B2 (en) Intermediates and methods for the synthesis of anthrapyrazolone anticancer agents
JP5917514B2 (en) Method for selective meta-chlorination of alkylanilines
CZ290533B6 (en) Process for preparing o-aminophenyl cyclopropyl ketone

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200515

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200605

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200610

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210106

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210414

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210623

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210728

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210901

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6941918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250