JP6941556B2 - Liquefaction countermeasure method - Google Patents

Liquefaction countermeasure method Download PDF

Info

Publication number
JP6941556B2
JP6941556B2 JP2017247417A JP2017247417A JP6941556B2 JP 6941556 B2 JP6941556 B2 JP 6941556B2 JP 2017247417 A JP2017247417 A JP 2017247417A JP 2017247417 A JP2017247417 A JP 2017247417A JP 6941556 B2 JP6941556 B2 JP 6941556B2
Authority
JP
Japan
Prior art keywords
freezing
frozen
liquefaction
ground
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017247417A
Other languages
Japanese (ja)
Other versions
JP2019112836A (en
Inventor
良祐 辻
良祐 辻
吉田 輝
輝 吉田
秀幸 照井
秀幸 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2017247417A priority Critical patent/JP6941556B2/en
Publication of JP2019112836A publication Critical patent/JP2019112836A/en
Application granted granted Critical
Publication of JP6941556B2 publication Critical patent/JP6941556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液状化対策方法に関するものである。 The present invention relates to a liquefaction countermeasure method.

従来、地盤の液状化対策として、パワーブレンダー工法、鉛直ボーリングによる高圧噴射工法や薬液注入工法などによって地盤改良をする方法が用いられてきた。また、既設構造物下方の地盤の補強方法として、既設構造物下方の地盤に対して、地盤内をほぼ水平にボーリングしながらボーリング孔の周囲に地盤改良部分を造成し、地盤改良部分を鉛直断面で見て補強対象となる地盤を取り囲むように設ける方法が提案されていた(例えば、特許文献1参照)。 Conventionally, as measures against liquefaction of the ground, a method of improving the ground by a power blender method, a high-pressure injection method by vertical boring, a chemical solution injection method, or the like has been used. In addition, as a method of reinforcing the ground below the existing structure, a ground improvement part is created around the boring hole while boring the ground almost horizontally with respect to the ground below the existing structure, and the ground improvement part is vertically crossed. A method has been proposed in which the ground is provided so as to surround the ground to be reinforced (see, for example, Patent Document 1).

特許第3714395号公報Japanese Patent No. 3714395

近年では、従来では考えられない深度、粒径の地盤に対しても液状化対策が求められている。しかしながら、パワーブレンダー工法は、大深度の地盤には適用できなかった。また、鉛直ボーリングによる高圧噴射工法や薬液注入工法は、多くの本数を施工する必要があることに加え、非液状化層が間にあると無駄が多く、経済的でなかった。さらに、薬液注入工法では、液状化層中に粘性土層が介在する場合や互層が存在する場合、薬液が行き届かないという問題点があった。 In recent years, liquefaction countermeasures have been required even for grounds having a depth and particle size that were unthinkable in the past. However, the power blender method could not be applied to the deep ground. In addition, the high-pressure injection method and the chemical injection method by vertical boring require a large number of constructions, and if there is a non-liquefied layer in between, there is a lot of waste and it is not economical. Further, in the chemical solution injection method, there is a problem that the chemical solution does not reach when the cohesive soil layer is present in the liquefied layer or when alternating layers are present.

本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、凍結工法を用いて、地上構造物の支持地盤の液状化層のみを効率良く地盤改良することができる液状化対策方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to efficiently improve only the liquefied layer of the supporting ground of the above-ground structure by using the freezing method. It is to provide a liquefaction countermeasure method.

前述した目的を達成するために本発明は、地上から削孔ロッドを発進させて、地上構造物の支持地盤の液状化層に向けて曲がりボーリング孔を削孔する工程aと、前記液状化層内を略水平方向に通過するように曲がりボーリング孔をさらに削孔する工程bと、前記液状化層内の前記曲がりボーリング孔に凍結管を配置して、前記凍結管に凍結冷媒を循環させて凍結梁を形成する工程cと、を具備し、前記工程aおよび前記工程bを、前記液状化層内において前記曲がりボーリング孔が所定の間隔で削孔されるように繰り返すことを特徴とする液状化対策方法である。 In order to achieve the above-mentioned object, the present invention comprises a step a of starting a drilling rod from the ground to drill a curved boring hole toward the liquefaction layer of the supporting ground of the ground structure, and the liquefaction layer. A step b of further drilling a curved boring hole so as to pass through the inside in a substantially horizontal direction, a freezing tube is arranged in the curved boring hole in the liquefaction layer, and a frozen refrigerant is circulated in the freezing tube. A liquid characterized by comprising a step c of forming a frozen beam, and repeating the steps a and b so that the curved boring holes are drilled at predetermined intervals in the liquefaction layer. It is a countermeasure against liquefaction.

本発明では、地上から液状化層に到達して液状化層内を略水平方向に通過するように曲がりボーリング孔を削孔し、液状化層内の曲がりボーリング孔に凍結管を配置することにより、液状化層のみに凍結梁を形成することができる。凍結工法を用いれば、薬液注入工法を適用しにくい粘性土層や互層が存在する場合にも、確実に地盤改良を行うことができる。また、凍結梁を仮設で使用し、不要となった時に融解させることにより、元の地盤に容易に戻すことができるため、期間限定での液状化対策にも適用が可能である。 In the present invention, a curved boring hole is drilled so as to reach the liquefaction layer from the ground and pass through the liquefaction layer in a substantially horizontal direction, and a freezing tube is arranged in the curved boring hole in the liquefaction layer. , A frozen beam can be formed only in the liquefied layer. If the freezing method is used, the ground can be reliably improved even when there are cohesive soil layers or alternating layers to which the chemical injection method is difficult to apply. In addition, by using a frozen beam temporarily and melting it when it is no longer needed, it can be easily returned to the original ground, so it can be applied to liquefaction countermeasures for a limited time.

前記地上構造物は、例えば、盛土、鉄道盛土、道路盛土、堤防、護岸、高架橋のいずれかである。
地上構造物が、上述したような線状構造物である場合、線状構造物の延長方向に沿ってボーリング孔を削孔することにより、効率良く凍結梁を形成できる。
The above-ground structure is, for example, embankment, railway embankment, road embankment, embankment, revetment, or viaduct.
When the above-ground structure is a linear structure as described above, a frozen beam can be efficiently formed by drilling a boring hole along the extension direction of the linear structure.

前記凍結管の群の間を通るように、前記曲がりボーリング孔に沿った方向に第1の測温管を設置することが望ましい。
また、前記凍結管の群の間を通るように、鉛直方向に第2の測温管を設置してもよい。
第1の測温管または/および第2の測温管を設置して地盤の温度を測定すれば、工程cにおいて、液状化層の凍結状況を適切に把握することができる。
It is desirable to install the first temperature measuring tube in the direction along the curved boring hole so as to pass between the groups of freezing tubes.
Further, a second temperature measuring tube may be installed in the vertical direction so as to pass between the groups of the freezing tubes.
If the temperature of the ground is measured by installing the first temperature measuring tube and / and the second temperature measuring tube, the freezing state of the liquefied layer can be appropriately grasped in the step c.

第1の測温管を設置する場合、前記凍結梁の完成後に、前記第1の測温管による温度計測結果に基づいて、前記凍結管の運転を制御することが望ましい。
また、第2の測温管を設置する場合、前記凍結梁の完成後に、前記第2の測温管による温度計測結果に基づいて、前記凍結管の運転を制御することが望ましい。
このように、前記第1の測温管前記第2の測温管による温度計測結果に基づいて、前記凍結管の運転を制御すれば、凍結梁の融解や凍上を防ぐことができ、凍結膨張によって構造物に影響が生じる可能性を低減できる。
When installing the first temperature measuring tube, after completion of the freeze beam, based on the temperature measurement result by the first temperature measuring tube, it is desirable to control the operation of the freezing tube.
Further, when installing the second temperature measuring tube, it is desirable to control the operation of the freezing tube based on the temperature measurement result by the second temperature measuring tube after the completion of the freezing beam.
In this way, if the operation of the freezing tube is controlled based on the temperature measurement results of the first temperature measuring tube and the second temperature measuring tube, it is possible to prevent the freezing beam from thawing and frost heaving, and freezing. The possibility that expansion will affect the structure can be reduced.

本発明によれば、凍結工法を用いて、地上構造物の支持地盤の液状化層のみを効率良く地盤改良することができる液状化対策方法を提供できる。 According to the present invention, it is possible to provide a liquefaction countermeasure method capable of efficiently improving only the liquefaction layer of the supporting ground of the above-ground structure by using the freezing method.

曲がりボーリング孔11を削孔する工程を示す図The figure which shows the process of drilling a curved boring hole 11. 曲がりボーリング孔11に凍結管13を配置する工程を示す図The figure which shows the process of arranging the freezing tube 13 in a curved boring hole 11. 凍結梁23を形成する工程を示す図The figure which shows the process of forming a frozen beam 23 地中温度の変化を示す図Diagram showing changes in underground temperature 盛土3の両側部の凍結管13のみに凍結冷媒21を循環させる例を示す図The figure which shows the example which circulates the frozen refrigerant 21 only in the freezing pipe 13 of both side part of the embankment 3. ヒートパイプを併用して凍結梁23を維持する例を示す図The figure which shows the example which maintains the frozen beam 23 together with a heat pipe. 液状化層5の一部を凍結させた例を示す図The figure which shows the example which frozen a part of the liquefaction layer 5. 液状化層5に格子状凍結梁39を形成した例を示す図The figure which shows the example which formed the grid-like frozen beam 39 in the liquefaction layer 5.

以下、図面に基づいて、本発明の実施形態を詳細に説明する。
図1は、曲がりボーリング孔11を削孔する工程を示す図である。図1(a)は、地上から液状化層5に向けて曲がりボーリング孔11を削孔する工程を示す図である。図1(b)、図1(c)は、液状化層5に曲がりボーリング孔11を削孔する工程を示す図である。図1(c)は、図1(b)に示す矢印A−Aによる断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a step of drilling a curved boring hole 11. FIG. 1A is a diagram showing a step of drilling a curved boring hole 11 from the ground toward the liquefaction layer 5. 1 (b) and 1 (c) are views showing a step of drilling a curved boring hole 11 in the liquefaction layer 5. FIG. 1 (c) is a cross-sectional view taken along the line AA shown in FIG. 1 (b).

図1に示すように、地盤1上には、地上構造物である盛土3が設置されている。盛土3の支持地盤には、液状化層5が存在する。地盤1中の液状化層5の位置は、ボーリング調査によってあらかじめ把握しておく。盛土3の延長線上の地盤1上には、削孔ロッド9を駆動するためのボーリングマシン7が配置される。 As shown in FIG. 1, an embankment 3 which is a ground structure is installed on the ground 1. A liquefaction layer 5 exists on the supporting ground of the embankment 3. The position of the liquefaction layer 5 in the ground 1 is grasped in advance by a boring survey. A boring machine 7 for driving the drilling rod 9 is arranged on the ground 1 on the extension line of the embankment 3.

図1(a)に示す工程では、ボーリングマシン7を用いて、地上から削孔ロッド9を発進させて、盛土3の支持地盤である地盤1の液状化層5に向けて曲がりボーリング孔11を削孔する。 In the step shown in FIG. 1 (a), the drilling rod 9 is started from the ground by using the boring machine 7, and the boring hole 11 is bent toward the liquefaction layer 5 of the ground 1 which is the supporting ground of the embankment 3. Drill holes.

図1(b)に示す工程では、液状化層5内を略水平方向に通過するように、曲がりボーリング孔11をさらに削孔する。曲がりボーリング孔11は、盛土3の延長方向に削孔される。曲がりボーリング孔11は、盛土3の下方の液状化層5内に設定された凍結管設置範囲15を通過するように削孔される。 In the step shown in FIG. 1B, the curved boring hole 11 is further drilled so as to pass through the liquefaction layer 5 in a substantially horizontal direction. The curved boring hole 11 is drilled in the extension direction of the embankment 3. The curved boring hole 11 is drilled so as to pass through the freezing pipe installation range 15 set in the liquefaction layer 5 below the embankment 3.

図1に示す工程では、図1(a)に示す工程と図1(b)に示す工程とを繰り返して、図1(c)に示すように、液状化層5内に曲がりボーリング孔11を所定の間隔17で削孔する。 In the step shown in FIG. 1, the step shown in FIG. 1 (a) and the step shown in FIG. 1 (b) are repeated to form a curved boring hole 11 in the liquefaction layer 5 as shown in FIG. 1 (c). Holes are drilled at predetermined intervals 17.

なお、図1(c)では、曲がりボーリング孔11が一定の間隔17で削孔された例を示しているが、削孔の間隔17は一定に限らない。曲がりボーリング孔11の削孔間隔は、例えば、凍りにくいと想定される部位を密とするなど、液状化層5の条件によって適切に設定される。 Note that FIG. 1C shows an example in which the curved boring holes 11 are drilled at regular intervals 17, but the drilling intervals 17 are not limited to constant. The drilling interval of the curved boring hole 11 is appropriately set according to the conditions of the liquefaction layer 5, for example, the portion that is expected to be hard to freeze is made dense.

また、図1(c)では、水平方向に間隔17をおいて曲がりボーリング孔11を1段に削孔した例を示しているが、曲がりボーリング孔11の削孔段数は1段に限らない。例えば、液状化層5が厚い場合は、曲がりボーリング孔11を鉛直方向に間隔をおいて削孔し、図1(c)に示すような曲がりボーリング孔11の群を上下2段以上に配置してもよい。 Further, FIG. 1C shows an example in which the curved boring holes 11 are drilled in one step at intervals 17 in the horizontal direction, but the number of drilling steps of the curved boring holes 11 is not limited to one. For example, when the liquefaction layer 5 is thick, the curved boring holes 11 are drilled at intervals in the vertical direction, and a group of curved boring holes 11 as shown in FIG. 1C is arranged in two or more stages above and below. You may.

図2は、曲がりボーリング孔11に凍結管13を配置する工程を示す図である。図2(b)は、図2(a)に示す矢印B−Bによる断面図である。図2に示す工程では、図2(a)に示すように、液状化層5内の曲がりボーリング孔11に凍結管13を配置する。凍結管13は、凍結管設置範囲15に設置される。 FIG. 2 is a diagram showing a step of arranging the freezing tube 13 in the curved boring hole 11. FIG. 2B is a cross-sectional view taken along the line BB shown in FIG. 2A. In the step shown in FIG. 2, as shown in FIG. 2A, the freezing tube 13 is arranged in the curved boring hole 11 in the liquefaction layer 5. The freezing pipe 13 is installed in the freezing pipe installation range 15.

そして、図2(b)に示すように、凍結管13の群の間を通るように、曲がりボーリング孔11に沿った方向、すなわち水平方向に第1の測温管19aを設置する。また、凍結管13の群の間を通るように、鉛直方向に第2の測温管19bを設置する。測温管19(以下、測温管19a、19bを総称して測温管19とする)には、光ファイバセンサ等の測温計が配置される。 Then, as shown in FIG. 2B, the first temperature measuring tube 19a is installed in the direction along the curved boring hole 11, that is, in the horizontal direction so as to pass between the groups of the freezing tubes 13. In addition, a second temperature measuring tube 19b is installed in the vertical direction so as to pass between the groups of the freezing tubes 13. A temperature measuring meter such as an optical fiber sensor is arranged in the temperature measuring tube 19 (hereinafter, the temperature measuring tubes 19a and 19b are collectively referred to as the temperature measuring tube 19).

なお、図2(b)では、測温管19を、凍結管13の群の中央付近に設置した例を示したが、測温管19の設置位置はこれに限らない。 Note that FIG. 2B shows an example in which the temperature measuring tube 19 is installed near the center of the group of the freezing tubes 13, but the installation position of the temperature measuring tube 19 is not limited to this.

図3は、凍結梁23を形成する工程を示す図である。図4は、地中温度の変化を示す図である。図4の縦軸は測温管19の位置での地中温度、横軸は時間である。 FIG. 3 is a diagram showing a process of forming the frozen beam 23. FIG. 4 is a diagram showing changes in underground temperature. The vertical axis of FIG. 4 is the underground temperature at the position of the temperature measuring tube 19, and the horizontal axis is time.

図3に示す工程では、凍結冷媒21を供給、回収するための図示しない送り用ヘッダー管、戻り用ヘッダー管等を用いて、凍結管13に凍結冷媒21を循環させる。図3に示す工程では、全ての凍結管13に凍結冷媒21を循環させて、液状化層5と略同等の厚さの凍結梁23を形成する。 In the step shown in FIG. 3, the frozen refrigerant 21 is circulated in the frozen pipe 13 by using a feed header pipe, a return header pipe, or the like (not shown) for supplying and recovering the frozen refrigerant 21. In the step shown in FIG. 3, the frozen refrigerant 21 is circulated in all the freezing pipes 13 to form the frozen beam 23 having a thickness substantially equal to that of the liquefaction layer 5.

図3に示す工程では、測温管19a、測温管19bに配置した図示しない測温計を用いて、例えば1m毎に設定された測温箇所で地盤1の地中温度を測定する。そして、特定の深度の地中温度または全深度の平均地中温度を用いて、凍結梁23の凍結状態を判断する。 In the step shown in FIG. 3, the underground temperature of the ground 1 is measured at a temperature measuring point set every 1 m, for example, by using a temperature measuring meter (not shown) arranged on the temperature measuring tube 19a and the temperature measuring tube 19b. Then, the frozen state of the frozen beam 23 is determined using the underground temperature at a specific depth or the average underground temperature at all depths.

図4に示す例では、例えば、−5℃を凍結冷媒21の循環停止の基準となる管理値としている。これは、低温下では凍土の造成が促され、液状化層5だけではなく近傍の粘土層が凍って凍上のリスクが高まるためである。また、−0.5℃を凍結冷媒21の再循環開始の基準となる管理値としている。これは、凍土温度が0℃近くまで上昇しても融解しない限り強度が保たれることが、実験により確認されているためである。 In the example shown in FIG. 4, for example, −5 ° C. is set as a control value that serves as a reference for stopping the circulation of the frozen refrigerant 21. This is because the formation of frozen soil is promoted at low temperatures, and not only the liquefaction layer 5 but also the nearby clay layer freezes, increasing the risk of frost heaving. Further, −0.5 ° C. is set as a control value that serves as a reference for starting the recirculation of the frozen refrigerant 21. This is because it has been confirmed by experiments that the strength is maintained as long as the frozen soil temperature rises to near 0 ° C. as long as it is not thawed.

図3に示す工程で、通常運転として全ての凍結管13への凍結冷媒21の循環を開始すると、図4の実線31に示すように、時間の経過とともに測温管19の位置での地中温度が低下する。通常運転の開始後、測温管19で計測した所定の位置での地中温度が−5℃を下回ったら、凍結梁23の形成が完了したと判断し、通常運転実施期間25を終了する。 In the process shown in FIG. 3, when the circulation of the frozen refrigerant 21 to all the freezing tubes 13 is started as a normal operation, as shown by the solid line 31 in FIG. 4, the temperature measuring tube 19 is in the ground with the passage of time. The temperature drops. After the start of the normal operation, when the underground temperature at the predetermined position measured by the temperature measuring tube 19 falls below −5 ° C., it is determined that the formation of the frozen beam 23 is completed, and the normal operation implementation period 25 ends.

図4に示すように、凍結梁23の形成が完了し、通常運転実施期間25を終了した後は、凍結梁23を必要以上に成長させず且つ融解させないように、凍結管13への凍結冷媒21の循環と停止を繰り返す間欠運転実施期間27に移行する。測温管19を用いた地中温度の測定は、間欠運転実施期間27にも継続される。 As shown in FIG. 4, after the formation of the frozen beam 23 is completed and the normal operation period 25 is completed, the frozen refrigerant in the freezing pipe 13 is not allowed to grow and thaw more than necessary. The transition to the intermittent operation implementation period 27 in which the circulation and stop of 21 are repeated. The measurement of the underground temperature using the temperature measuring tube 19 is continued during the intermittent operation implementation period 27.

間欠運転実施期間27には、測温管19による地中温度の計測結果に基づいて、凍結管13の運転を制御する。例えば、測温管19で計測した地中温度が循環停止の基準となる管理値である−5℃以下となると、凍結管13への凍結冷媒の循環を停止する。また、測温管19で計測した地中温度が再循環開始の基準となる管理値である−0.5℃を上回ると、凍結管13への凍結冷媒の循環を再開する。 During the intermittent operation implementation period 27, the operation of the freezing pipe 13 is controlled based on the measurement result of the underground temperature by the temperature measuring pipe 19. For example, when the underground temperature measured by the temperature measuring tube 19 becomes −5 ° C. or lower, which is a control value that serves as a reference for stopping the circulation, the circulation of the frozen refrigerant to the freezing tube 13 is stopped. Further, when the underground temperature measured by the temperature measuring tube 19 exceeds the control value of −0.5 ° C., which is a reference for starting recirculation, the circulation of the frozen refrigerant to the freezing tube 13 is restarted.

間欠運転実施期間27中は、凍結冷媒の停止期間27aと運転期間27bとを繰り返すことにより、地中温度を適切な範囲に保ち、凍結梁23の融解や過大生成を防止し、凍結梁23の厚さを適度に維持する。なお、停止期間27aと運転期間27bとの繰り返しの回数は、2回に限らない。 During the intermittent operation implementation period 27, the underground temperature is maintained in an appropriate range by repeating the stop period 27a and the operation period 27b of the frozen refrigerant, and the freezing beam 23 is prevented from being thawed or excessively formed. Maintain a moderate thickness. The number of repetitions of the stop period 27a and the operation period 27b is not limited to two.

凍結梁23が仮設である場合には、凍結梁23が不要となる前後の適切な時期に間欠運転実施期間27を終了し、自然融解期間29に移行する。自然融解期間29には、凍結管13への凍結冷媒21の循環を終了する。凍結冷媒21の循環を終了すると、凍結梁23は徐々に融解し、地盤1が元の状態に戻る。 When the frozen beam 23 is temporarily installed, the intermittent operation implementation period 27 is ended at an appropriate time before and after the frozen beam 23 is no longer needed, and the natural melting period 29 is started. In the natural thawing period 29, the circulation of the frozen refrigerant 21 to the freezing pipe 13 is terminated. When the circulation of the frozen refrigerant 21 is completed, the frozen beam 23 is gradually thawed and the ground 1 returns to the original state.

このように、本実施の形態によれば、地上から液状化層5に到達して液状化層5内を略水平方向に通過するように曲がりボーリング孔11を削孔し、液状化層5内の曲がりボーリング孔11に凍結管13を配置することにより、液状化層5のみに凍結梁23を形成することができる。凍結工法を用いれば、薬液注入工法を適用しにくい粘性土層や互層が存在する場合にも、確実に地盤改良を行うことができる。 As described above, according to the present embodiment, the curved boring hole 11 is drilled so as to reach the liquefaction layer 5 from the ground and pass through the liquefaction layer 5 in a substantially horizontal direction, and the inside of the liquefaction layer 5 is formed. By arranging the freezing pipe 13 in the curved boring hole 11, the frozen beam 23 can be formed only in the liquefaction layer 5. If the freezing method is used, the ground can be reliably improved even when there are cohesive soil layers or alternating layers to which the chemical injection method is difficult to apply.

本実施の形態では、線状構造物である盛土3の延長方向に沿って曲がりボーリング孔11を削孔することにより、無駄な地盤改良箇所が生じることがないように、効率良く凍結梁23を形成できる。 In the present embodiment, the frozen beam 23 is efficiently provided so that unnecessary ground improvement points are not generated by drilling the curved boring hole 11 along the extension direction of the embankment 3 which is a linear structure. Can be formed.

本実施の形態では、凍結管13の群の間を通るように、曲がりボーリング孔11に沿った方向に第1の測温管19aを設置し、鉛直方向に第2の測温管19bを設置して地中温度を測定することにより、凍結梁23を形成する際に液状化層5の凍結状況を適切に把握することができる。また、凍結梁23の完成後、第1の測温管19a、第2の測温管19bによる温度計測結果に基づいて凍結管13の運転を制御すれば、凍結梁23の融解や凍上を防ぐことができ、凍結膨張によって盛土3等の地上構造物に影響が生じる可能性を低減できる。 In the present embodiment, the first temperature measuring tube 19a is installed in the direction along the curved boring hole 11 and the second temperature measuring tube 19b is installed in the vertical direction so as to pass between the groups of the freezing tubes 13. By measuring the underground temperature, the freezing state of the liquefied layer 5 can be appropriately grasped when the frozen beam 23 is formed. Further, after the completion of the freezing beam 23, if the operation of the freezing tube 13 is controlled based on the temperature measurement results by the first temperature measuring tube 19a and the second temperature measuring tube 19b, the freezing beam 23 can be prevented from melting or freezing. It is possible to reduce the possibility that the above-ground structure such as the filling 3 will be affected by freezing and expansion.

本実施の形態では、図4に示す間欠運転実施期間27に凍結梁23を仮設で使用し、その後自然融解期間29に移行して凍結梁23を融解させることにより、地盤1を元の状態に容易に戻すことができる。凍結梁23は、期間限定での液状化対策にも適用が可能である。 In the present embodiment, the frozen beam 23 is temporarily used during the intermittent operation implementation period 27 shown in FIG. 4, and then the ground 1 is returned to the original state by shifting to the natural thawing period 29 and thawing the frozen beam 23. It can be easily returned. The frozen beam 23 can also be applied to liquefaction countermeasures for a limited time.

なお、本発明は、上述した実施の形態に限定されない。以降の例では、上述した実施の形態と異なる点について説明し、同様の点については図等で同じ符号を付すなどして説明を省略する。 The present invention is not limited to the above-described embodiment. In the following examples, points different from the above-described embodiment will be described, and the same points will be omitted by adding the same reference numerals in figures and the like.

本実施の形態では、測温管19による温度計測結果に基づいて凍結管13の運転を制御する際に、全ての凍結管13への凍結冷媒21の循環と停止との切り替えを一斉に行う間欠運転を行ったが、制御方法はこれに限らない。 In the present embodiment, when the operation of the freezing pipe 13 is controlled based on the temperature measurement result by the temperature measuring pipe 19, the freezing refrigerant 21 is intermittently switched between circulation and stopping in all the freezing pipes 13. The operation was performed, but the control method is not limited to this.

図5は、盛土3の両側部の凍結管13のみに凍結冷媒21を循環させる例を示す図である。図5に示す例では、凍結梁23が完成した後、盛土3の両側部の凍結管13のみに凍結冷媒21を循環させて、その他の凍結管13への凍結冷媒21の循環を終了する間引き運転を行う。凍結梁23が完成された状態では、未形成の状態よりも液状化層5内での冷熱の伝わりが良くなるので、盛土3の両側部の凍結管13のみに凍結冷媒21を循環すれば、凍結梁23の全体を維持することができる。 FIG. 5 is a diagram showing an example in which the frozen refrigerant 21 is circulated only in the freezing pipes 13 on both sides of the embankment 3. In the example shown in FIG. 5, after the freezing beam 23 is completed, the frozen refrigerant 21 is circulated only in the freezing pipes 13 on both sides of the embankment 3, and the freezing refrigerant 21 is thinned out to end the circulation to the other freezing pipes 13. Drive. In the completed state of the frozen beam 23, the transfer of cold heat in the liquefaction layer 5 is better than in the unformed state. Therefore, if the frozen refrigerant 21 is circulated only in the freezing pipes 13 on both sides of the embankment 3, the frozen refrigerant 21 can be circulated. The entire frozen beam 23 can be maintained.

図6は、ヒートパイプを併用して凍結梁23を維持する例を示す図である。図6(a)は、鉛直方向にヒートパイプ33を設置する例を示す図である。図6(a)に示す図では、ヒートパイプ33を鉛直方向に設置する。図8(a)に示す例では、夏季には凍結管13の間欠運転(図4)や間引き運転(図5)によって凍結梁23を維持し、冬季の零下環境ではヒートパイプ33で地盤1中の熱を放出する。 FIG. 6 is a diagram showing an example of maintaining the frozen beam 23 in combination with a heat pipe. FIG. 6A is a diagram showing an example in which the heat pipe 33 is installed in the vertical direction. In the figure shown in FIG. 6A, the heat pipe 33 is installed in the vertical direction. In the example shown in FIG. 8A, the frozen beam 23 is maintained by the intermittent operation (FIG. 4) and the thinning operation (FIG. 5) of the freezing pipe 13 in the summer, and the heat pipe 33 is used in the ground 1 in the subzero environment in the winter. Dissipate heat.

図6(b)は、水平方向にヒートパイプ35を設置する例を示す図である。図6(b)に示す例では、液状化層5内にヒートパイプ35を水平に設置する。ヒートパイプ35の両端は、地上に設置したチャンバ37に接続される。図8(b)に示す例では、夏季には凍結管13の間欠運転(図4)や間引き運転(図5)によって凍結梁23を維持し、冬季の零下環境ではチャンバ37内の冷熱をヒートパイプ35に供給する。 FIG. 6B is a diagram showing an example in which the heat pipe 35 is installed in the horizontal direction. In the example shown in FIG. 6B, the heat pipe 35 is horizontally installed in the liquefaction layer 5. Both ends of the heat pipe 35 are connected to a chamber 37 installed on the ground. In the example shown in FIG. 8 (b), the frozen beam 23 is maintained by the intermittent operation (FIG. 4) and the thinning operation (FIG. 5) of the freezing pipe 13 in the summer, and the cold heat in the chamber 37 is heated in the subzero environment in the winter. Supply to pipe 35.

図6に示す例では、凍結管13とヒートパイプを併用したが、ヒートパイプを用いず、地盤1中にパイプを設置して冬季にパイプ中に冷水や液体窒素を注入してもよい。夏季には凍結管13の間欠運転(図4)や間引き運転(図5)を行い、冬季には凍結冷媒21を循環させるための機器類の使用を全面的に停止して上述したような手段を用いることにより、少ない電力で凍結梁23を維持することができる。 In the example shown in FIG. 6, the freezing pipe 13 and the heat pipe are used in combination, but instead of using the heat pipe, a pipe may be installed in the ground 1 and cold water or liquid nitrogen may be injected into the pipe in winter. Intermittent operation (FIG. 4) and thinning operation (FIG. 5) of the freezing pipe 13 are performed in the summer, and in winter, the use of equipment for circulating the frozen refrigerant 21 is completely stopped and the means as described above. By using the above, the frozen beam 23 can be maintained with a small amount of electric power.

上述した実施の形態では、液状化層5の全面を凍結させて凍結梁23を形成したが、液状化層5の全面が凍結していなくてもよい。図7は、液状化層5の一部を凍結させた例を示す図である。図7に示す例では、盛土3の支持地盤の液状化層5の一部に凍結梁23aが形成される。液状化層5が全面凍結していなくても、一部が凍っていれば液状化はしない可能性がある。 In the above-described embodiment, the entire surface of the liquefaction layer 5 is frozen to form the frozen beam 23, but the entire surface of the liquefaction layer 5 may not be frozen. FIG. 7 is a diagram showing an example in which a part of the liquefaction layer 5 is frozen. In the example shown in FIG. 7, the frozen beam 23a is formed in a part of the liquefaction layer 5 of the supporting ground of the embankment 3. Even if the liquefaction layer 5 is not completely frozen, it may not be liquefied if a part of the liquefaction layer 5 is frozen.

図8は、液状化層5に格子状凍結梁39を形成した例を示す図である。図8(a)は、凍結管13a、13bを配置した状態を示す図、図8(b)は、格子状凍結梁39を形成した状態を示す図である。 FIG. 8 is a diagram showing an example in which a grid-like frozen beam 39 is formed on the liquefaction layer 5. FIG. 8A is a diagram showing a state in which the freezing tubes 13a and 13b are arranged, and FIG. 8B is a diagram showing a state in which the lattice-shaped freezing beam 39 is formed.

図8に示す例においても、上述した実施の形態と同様に、盛土3の支持地盤の液状化層5に向けて曲がりボーリング孔を削孔し、液状化層5内を略水平方向に通過するように曲がりボーリング孔をさらに削孔するが、このとき、図8(a)に示すように、盛土3の長手方向に曲がりボーリング孔11aを、短手方向に曲がりボーリング孔11bを削孔する。そして、曲がりボーリング孔11aに凍結管13aを配置し、曲がりボーリング孔11bに凍結管13bを配置する。 Also in the example shown in FIG. 8, similarly to the above-described embodiment, a curved boring hole is drilled toward the liquefaction layer 5 of the supporting ground of the embankment 3 and passes through the liquefaction layer 5 in a substantially horizontal direction. As shown in FIG. 8A, the curved boring hole 11a is drilled in the longitudinal direction of the embankment 3 and the curved boring hole 11b is drilled in the lateral direction. Then, the freezing tube 13a is arranged in the curved boring hole 11a, and the freezing tube 13b is arranged in the curved boring hole 11b.

その後、凍結管13a、凍結管13bに凍結冷媒を循環させて、図8(b)に示すように、盛土3の長手方向の凍結梁39aと、短手方向の凍結梁39bとからなる格子状凍結梁39を形成する。格子状凍結梁39を形成する際には、鉛直方向に測温管を設置して、液状化層5の層厚の全体を凍結させる。格子状に凍結させると、格子状凍結梁39に囲まれた部分は液状化が発生しない。格子状凍結梁39を用いれば、液状化層5の全面を凍結させる場合と比較して、凍土造成量を減らすことができる。 After that, the frozen refrigerant is circulated through the freezing pipe 13a and the freezing pipe 13b, and as shown in FIG. The frozen beam 39 is formed. When forming the lattice-shaped freezing beam 39, a temperature measuring tube is installed in the vertical direction to freeze the entire layer thickness of the liquefaction layer 5. When frozen in a grid pattern, liquefaction does not occur in the portion surrounded by the grid-shaped freezing beam 39. When the lattice-shaped frozen beam 39 is used, the amount of frozen soil formed can be reduced as compared with the case where the entire surface of the liquefaction layer 5 is frozen.

図1から図8では、地上構造物として盛土3を例に示したが、地上構造物は盛土3に限らない。地上構造物は、例えば、鉄道盛土、道路盛土、堤防、護岸、高架橋等の線状の構造物でもよいし、円形の低温タンク等の線状以外の形状の構造物でもよい。また、地上構造物は、新設の構造物でもよいし、既設の構造物でもよい。図1から図7に示す例では、線状の地上構造物の延長方向すなわち長手方向に凍結管13を設置したが、短手方向に凍結管を設置して凍結梁を形成してもよい。 In FIGS. 1 to 8, the embankment 3 is shown as an example of the above-ground structure, but the above-ground structure is not limited to the embankment 3. The above-ground structure may be, for example, a linear structure such as a railway embankment, a road embankment, an embankment, a revetment, or a viaduct, or a non-linear structure such as a circular low-temperature tank. Further, the above-ground structure may be a new structure or an existing structure. In the examples shown in FIGS. 1 to 7, the freezing pipe 13 is installed in the extension direction, that is, the longitudinal direction of the linear above-ground structure, but the freezing pipe may be installed in the lateral direction to form the frozen beam.

本実施の形態では、図4に示すように自然融解期間29を設けて、凍結梁23を期間限定の仮設の液状化対策に用いたが、自然融解期間29を設けず、本設の液状化対策に用いてもよい。 In the present embodiment, as shown in FIG. 4, a natural thawing period 29 is provided and the frozen beam 23 is used as a temporary liquefaction countermeasure for a limited period, but the natural thawing period 29 is not provided and the main liquefaction is performed. It may be used as a countermeasure.

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1………地盤
3………盛土
5………液状化層
7………ボーリングマシン
9………削孔ロッド
11、11a、11b………曲がりボーリング孔
13、13a、13b………凍結管
15………凍結管設置範囲
17………間隔
19、19a、19b………測温管
21………凍結冷媒
23、23a、39a、39b………凍結梁
25………通常運転実施期間
27………間欠運転実施期間
27a………停止期間
27b………運転期間
29………自然融解期間
31………実線
33、35………ヒートパイプ
37………チャンバ
39………格子状凍結梁
1 ………… Ground 3 ………… Fill 5 ………… Liquefied layer 7 ………… Boring machine 9 ………… Drilling rods 11, 11a, 11b ………… Bent boring holes 13, 13a, 13b ………… Freezing Pipe 15 ………… Freezing pipe installation range 17 ………… Interval 19, 19a, 19b ………… Temperature measuring pipe 21 ………… Frozen refrigerant 23, 23a, 39a, 39b ………… Frozen beam 25 ………… Normal operation Period 27 ………… Intermittent operation period 27a ………… Stop period 27b ………… Operation period 29 ………… Spontaneous melting period 31 ………… Solid line 33, 35 ………… Heat pipe 37 ………… Chamber 39 ………… Lattice frozen beam

Claims (6)

地上から削孔ロッドを発進させて、地上構造物の支持地盤の液状化層に向けて曲がりボーリング孔を削孔する工程aと、
前記液状化層内を略水平方向に通過するように曲がりボーリング孔をさらに削孔する工程bと、
前記液状化層内の前記曲がりボーリング孔に凍結管を配置して、前記凍結管に凍結冷媒を循環させて凍結梁を形成する工程cと、
を具備し、
前記工程aおよび前記工程bを、前記液状化層内において前記曲がりボーリング孔が所定の間隔で削孔されるように繰り返すことを特徴とする液状化対策方法。
Step a of starting a drilling rod from the ground and drilling a curved boring hole toward the liquefied layer of the supporting ground of the ground structure.
A step b of further drilling a curved boring hole so as to pass through the liquefaction layer in a substantially horizontal direction.
A step c of arranging a freezing pipe in the curved boring hole in the liquefaction layer and circulating a frozen refrigerant through the freezing pipe to form a frozen beam.
Equipped with
A liquefaction countermeasure method, wherein the step a and the step b are repeated so that the curved boring holes are drilled at predetermined intervals in the liquefaction layer.
前記地上構造物は、盛土、鉄道盛土、道路盛土、堤防、護岸、高架橋のいずれかであることを特徴とする請求項1記載の液状化対策方法。 The liquefaction countermeasure method according to claim 1, wherein the above-ground structure is any one of embankment, railway embankment, road embankment, embankment, revetment, and viaduct. 前記凍結管の群の間を通るように、前記曲がりボーリング孔に沿った方向に第1の測温管を設置することを特徴とする請求項1または請求項2に記載の液状化対策方法。 The liquefaction countermeasure method according to claim 1 or 2, wherein the first temperature measuring tube is installed in a direction along the curved boring hole so as to pass between the groups of freezing tubes. 前記凍結管の群の間を通るように、鉛直方向に第2の測温管を設置することを特徴とする請求項1から請求項3のいずれかに記載の液状化対策方法。 The liquefaction countermeasure method according to any one of claims 1 to 3, wherein a second temperature measuring tube is installed in the vertical direction so as to pass between the groups of freezing tubes. 前記凍結梁の完成後に、前記第1の測温管による温度計測結果に基づいて、前記凍結管の運転を制御することを特徴とする請求項3記載の液状化対策方法。 Wherein after completion of the freezing beam, the first based on the temperature measurement result by the temperature measuring tube, liquefaction countermeasure method according to claim 3 Symbol mounting and controlling the operation of the freezing tube. 前記凍結梁の完成後に、前記第2の測温管による温度計測結果に基づいて、前記凍結管の運転を制御することを特徴とする請求項4記載の液状化対策方法。 Wherein after completion of the freezing beam, before SL on the basis of the temperature measurement result by the second temperature measuring tube,Motomeko 4 liquefaction countermeasure method according you and controls the operation of the freezing tube.
JP2017247417A 2017-12-25 2017-12-25 Liquefaction countermeasure method Active JP6941556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247417A JP6941556B2 (en) 2017-12-25 2017-12-25 Liquefaction countermeasure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247417A JP6941556B2 (en) 2017-12-25 2017-12-25 Liquefaction countermeasure method

Publications (2)

Publication Number Publication Date
JP2019112836A JP2019112836A (en) 2019-07-11
JP6941556B2 true JP6941556B2 (en) 2021-09-29

Family

ID=67222298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247417A Active JP6941556B2 (en) 2017-12-25 2017-12-25 Liquefaction countermeasure method

Country Status (1)

Country Link
JP (1) JP6941556B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714395B2 (en) * 2000-01-27 2005-11-09 鹿島建設株式会社 Reinforcement method for the ground below existing structures
JP2001214429A (en) * 2000-02-03 2001-08-07 Chem Grouting Co Ltd Method for improving ground
JP3841679B2 (en) * 2001-12-21 2006-11-01 鹿島建設株式会社 Ground improvement method
JP2006132079A (en) * 2004-11-02 2006-05-25 Chem Grouting Co Ltd Construction method for dissipating excess pore water pressure
US9611608B2 (en) * 2012-03-28 2017-04-04 Daniel Mageau Zone freeze pipe

Also Published As

Publication number Publication date
JP2019112836A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN104790961A (en) Vertical cup type freezing reinforcement structure and method at shield tunnel end
CN205260038U (en) Wall reinforced structure is freezed to shield tunnel end box
JP6931618B2 (en) Flow control method
JP6997614B2 (en) How to maintain frozen soil and how to create frozen soil
RU2454506C2 (en) Cooling device for temperature stabilisation of permafrost soils and method to install such device
JP5443200B2 (en) Construction method of shaft
JP6941556B2 (en) Liquefaction countermeasure method
CN103924980A (en) Obstacle removing construction method
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
RU2157872C2 (en) Mechanical design of cooled fill footing of structures and method for temperature control of permafrost soils
JP2003239270A (en) Freezing method and pipe material used for the same
CN114032938B (en) Deep foundation pit horizontal freezing back cover construction method
CN114876467A (en) Refrigeratable assembled supporting structure for high-frozen-soil-content tunnel and construction method
KR100764590B1 (en) The methods of earth grouting for dam up a groundwater used by the technics of plasma glassification
JP7333287B2 (en) Foundation reinforcement method and structure
WO2008091173A1 (en) Method for pitching a pile into a permanently frozen ground
RU2552253C1 (en) Method of arrangement of foundation slab on piles for low-temperature product tank
JP2000329413A (en) Shallow geothermal heat collecting unit with heat storing tank
CN112031008A (en) Controllable reinforced concrete strong freezing pile continuous wall and construction method thereof
Khromyshev et al. Problems of Design, Construction, and Operation of the Foundations of Transmission Towers in the Northern Regions of Western Siberia
JP6072336B1 (en) Reinforcement method before repairing retaining wall structure
JPH0941356A (en) Freezing control method in method of freezing construction
JP2018165430A (en) Ground freezing structure and ground freezing method
CN115306399A (en) Freezing construction method and apparatus for building structures in a formation
JP2007010183A (en) Heat exchange pipe burying structure of underground thermal energy storage system and its burying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150