JP6938278B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP6938278B2
JP6938278B2 JP2017164535A JP2017164535A JP6938278B2 JP 6938278 B2 JP6938278 B2 JP 6938278B2 JP 2017164535 A JP2017164535 A JP 2017164535A JP 2017164535 A JP2017164535 A JP 2017164535A JP 6938278 B2 JP6938278 B2 JP 6938278B2
Authority
JP
Japan
Prior art keywords
conductor
power supply
grounding
core
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017164535A
Other languages
Japanese (ja)
Other versions
JP2019046824A (en
Inventor
林太郎 上村
林太郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017164535A priority Critical patent/JP6938278B2/en
Publication of JP2019046824A publication Critical patent/JP2019046824A/en
Application granted granted Critical
Publication of JP6938278B2 publication Critical patent/JP6938278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

この発明は、配線基板に関する。 The present invention relates to a wiring board.

従来、配線基板には、配線層や電力供給に係る構成が絶縁層を挟んで積層された積層基板がある。この配線基板では、入出力に係る電極数や配線数の増加や配置の高密度化に伴って、絶縁層の両側の配線間を接続する貫通電極の径や配置間隔に対する要求が高くなってきている。これに対し、特許文献1では、4個の電源用の電極パッドを一つのランドを介して共通の貫通導体に接続し、また、当該貫通導体に対する4個の電極パッドの配置を隣り合う貫通導体に係るもの同士で相対的に傾けることで、電極数に比して貫通導体間の間隔を広げ、また、電極間の幅を確保する技術が開示されている。 Conventionally, a wiring board includes a laminated board in which a wiring layer and a configuration related to power supply are laminated with an insulating layer interposed therebetween. In this wiring board, as the number of electrodes and the number of wirings related to input / output increase and the arrangement becomes denser, the demand for the diameter and arrangement interval of the through electrodes connecting between the wirings on both sides of the insulating layer has increased. There is. On the other hand, in Patent Document 1, four electrode pads for power supply are connected to a common penetrating conductor via one land, and the arrangement of the four electrode pads with respect to the penetrating conductor is adjacent to the penetrating conductor. Disclosed is a technique for widening the distance between through-conductors with respect to the number of electrodes and securing the width between electrodes by inclining relative to each other.

特許第3847190号公報Japanese Patent No. 3847190

しかしながら、従来の技術では、電極数に比して貫通導体の間隔に余裕があり、効率よく十分に電気抵抗やインダクタンスを低下させられないという課題がある。 However, in the conventional technique, there is a problem that the space between the through conductors has a margin in comparison with the number of electrodes, and the electric resistance and the inductance cannot be reduced efficiently and sufficiently.

この発明の目的は、より効率よく貫通導体における電気抵抗やインダクタンスを低下させることができる配線基板を提供することにある。 An object of the present invention is to provide a wiring board capable of more efficiently reducing electrical resistance and inductance in a through conductor.

上記目的を達成するため、請求項1記載の発明は、
コア基板と、
該コア基板を貫通し、第1の正方格子の縦横の格子点上に交互に位置する複数の電力供給用コア貫通導体および複数の接地用コア貫通導体と、
前記コア基板の第1の面上に設けられ、前記電力供給用コア貫通導体を中心とする第1の正方形の4頂点に位置する第1の接続位置と、
前記第1の面上に設けられ、前記接地用コア貫通導体を中心とする第2の正方形の4頂点に位置する第2の接続位置と、
前記第1の面上に位置し、前記電力供給用コア貫通導体から前記第1の接続位置にかけて延在する十字形状の電力供給用導体面と、
前記電力供給用導体面を囲むととともに、前記接地用コア貫通導体上および前記第2の接続位置上を含んで前記第1の面上に位置する接地面と、
前記第1の面に積層されており、前記電力供給用導体面、および前記接地面を覆う絶縁層と、
該絶縁層を貫通し、前記第1の接続位置で前記電力供給用導体面に接続されている電力供給用貫通導体と、
前記絶縁層を貫通し、前記第2の接続位置で前記接地面に接続されている接地用貫通導体と、
を具備し、
前記第1の正方格子において対角に位置する前記電力供給用コア貫通導体同士は、前記第1の正方形の一方の対角線を1.5倍するとともに他方の対角線を0.5倍した相対位置に配置されているとともに、前記第1の正方格子において対角に位置する前記接地用コア貫通導体同士は、前記第2の正方形の一方の対角線を1.5倍するとともに他方の対角線を0.5倍した相対位置に配置されている、配線基板である。
In order to achieve the above object, the invention according to claim 1 is
With the core board
A plurality of power supply core through conductors and a plurality of grounding core through conductors that penetrate the core substrate and are alternately located on the vertical and horizontal grid points of the first square lattice.
A first connection position provided on the first surface of the core substrate and located at four vertices of the first square centered on the power supply core penetrating conductor, and
A second connection position provided on the first surface and located at four vertices of the second square centered on the grounding core penetrating conductor, and
A cross-shaped power supply conductor surface located on the first surface and extending from the power supply core penetrating conductor to the first connection position.
A grounding surface that surrounds the power supply conductor surface and is located on the first surface including the grounding core penetrating conductor and the second connection position.
An insulating layer laminated on the first surface and covering the power supply conductor surface and the ground plane,
A power supply through conductor that penetrates the insulating layer and is connected to the power supply conductor surface at the first connection position,
A grounding through conductor that penetrates the insulating layer and is connected to the grounding surface at the second connection position.
Equipped with
The power supply core penetrating conductors located diagonally in the first square lattice are at relative positions obtained by multiplying one diagonal of the first square by 1.5 and multiplying the other diagonal by 0.5. The grounding core through conductors that are arranged and diagonally located in the first square lattice are 1.5 times the diagonal line of one of the second squares and 0.5 diagonal lines of the other. It is a wiring board that is arranged at a doubled relative position.

請求項記載の発明は、請求項記載の配線基板において、
前記第1の面と反対側の第2の面上に、前記電力供給用導体面と同一形状かつ同一の角度配置で前記接地用コア貫通導体に繋がる接地用導体面が位置しており、前記電力供給用導体面及び前記接地用導体面は、平面視で投影して見た場合に、一方の十字形状における凸部分が他方の十字形状における凹部分と少なくとも一部で組み合わされた配置パターンで設けられている
The invention according to claim 2 is the wiring board according to claim 1.
On the second surface opposite to the first surface, a grounding conductor surface connected to the grounding core penetrating conductor is located in the same shape and at the same angle arrangement as the power supply conductor surface. The power supply conductor surface and the grounding conductor surface have an arrangement pattern in which the convex portion in one cross shape is at least partially combined with the concave portion in the other cross shape when projected in a plan view. It is provided .

請求項記載の発明は、請求項1又は2記載の配線基板において、
面視で投影して見た場合に、1つの前記電力供給用コア貫通導体、2つの前記電力供給用貫通導体および1つの前記接地用貫通導体と、1つの前記接地用コア貫通導体、2つの前記接地用貫通導体および1つの前記電力供給用貫通導体と、2つの前記電力供給用貫通導体および2つの前記接地用貫通導体とのそれぞれが第2の正方格子の縦横の格子点上に配置されている。
The invention according to claim 3 is the wiring board according to claim 1 or 2.
When viewed by projecting flat face view, one of the power supply core through conductors, two of the the power supply through-conductors and one of the ground vias, one of the grounding core through conductors, 2 One of the grounding through conductors and one of the power supply through conductors, and two of the power supply through conductors and two of the grounding through conductors are arranged on the vertical and horizontal grid points of the second square lattice. that has been.

本発明に従うと、配線基板において、より効率よく貫通導体と電極パッドとを配置することができるという効果がある。 According to the present invention, there is an effect that the through conductor and the electrode pad can be arranged more efficiently on the wiring board.

本発明の実施形態の配線基板の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the wiring board of embodiment of this invention. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. コア基板の上側導体層及び絶縁層を上面側から透視して見た平面図である。It is a top view of the upper conductor layer and the insulating layer of a core substrate seen through from the upper surface side. コア基板の下側導体層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the lower conductor layer and the insulating layer of a core substrate from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線基板の配線層及び絶縁層を上面側から透視して見た平面図である。It is a top view which saw through the wiring layer and the insulation layer of a wiring board from the upper surface side. 配線層及び絶縁層を下面側から透視して見た場合の底面図である。It is a bottom view when the wiring layer and the insulation layer are seen through from the lower surface side. 上側導体層の供給電圧面内に設けられるランドと下側導体層の接地面内に設けられるランドの配置の変形例を説明する図である。It is a figure explaining the modification of the arrangement of the land provided in the supply voltage plane of the upper conductor layer, and the land provided in the ground plane of the lower conductor layer.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の配線基板1の積層構造を示す断面図である。
ここでは、配線基板1のうち、各電極パッドを通る断面の半分を示している。
この配線基板1は、コア基板30をビルドアップ層20、40(少なくとも絶縁層I4、I5)で上下を挟んで積層したものの上下両端面を更にソルダーレジスト層10、50で被覆したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a laminated structure of the wiring board 1 of the present embodiment.
Here, half of the cross section of the wiring board 1 passing through each electrode pad is shown.
The wiring board 1 is obtained by laminating a core substrate 30 with build-up layers 20 and 40 (at least insulating layers I4 and I5) sandwiching the upper and lower surfaces, and further covering both upper and lower end surfaces with solder resist layers 10 and 50.

ビルドアップ層20、40では、複数の配線層L1〜L8が絶縁層I1〜I8によって互いに隔てられて積層されている。半導体素子に接続される上面側のビルドアップ層20の上面(コア基板30と接する面とは反対側の面)には、半導体素子との接続に係るフリップチップパッド(FCパッド)として用いられる複数の電極パッド211が設けられて、ソルダーレジスト層10の開口から各々露出されている。
電極パッド211には、信号の伝送に係るシグナルパッド211a、電力供給に係る電力供給パッド211b及び接地電圧の供給に係る接地パッド211cが含まれる。電極パッド211の設置範囲は、接続対象の半導体素子に応じてビルドアップ層20上面における正方形状の中央領域200(図2も参照)の内部とされている。
In the build-up layers 20 and 40, a plurality of wiring layers L1 to L8 are laminated so as to be separated from each other by insulating layers I1 to I8. On the upper surface of the build-up layer 20 on the upper surface side connected to the semiconductor element (the surface opposite to the surface in contact with the core substrate 30), a plurality of flip chip pads (FC pads) used for connection with the semiconductor element are used. The electrode pads 211 of the above are provided and are each exposed from the openings of the solder resist layer 10.
The electrode pad 211 includes a signal pad 211a related to signal transmission, a power supply pad 211b related to power supply, and a ground pad 211c related to the supply of ground voltage. The installation range of the electrode pad 211 is set to be inside a square central region 200 (see also FIG. 2) on the upper surface of the build-up layer 20 depending on the semiconductor element to be connected.

シグナルパッド211a、電力供給パッド211b及び接地パッド211cは、それぞれ、ビルドアップ層40の下面(コア基板30と接する面とは反対側の面)に設けられてソルダーレジスト層50の開口から各々露出されたシグナル出力パッド418a、電力供給出力パッド418b及び接地出力パッド418c(まとめて出力パッド418;図11参照)につながっている。 The signal pad 211a, the power supply pad 211b, and the ground pad 211c are each provided on the lower surface of the build-up layer 40 (the surface opposite to the surface in contact with the core substrate 30) and are exposed from the openings of the solder resist layer 50, respectively. It is connected to the signal output pad 418a, the power supply output pad 418b, and the ground output pad 418c (collectively, the output pad 418; see FIG. 11).

ビルドアップ層20は、ここでは、4層の配線層L1〜L4が4層の絶縁層I1〜I4上にそれぞれ設けられて積層されている。配線層L1〜L4間及び配線層L4とコア基板30の上側導体層L31との間は、絶縁層I1〜I4を貫いて設けられた貫通導体(スルービア)により電気的に接続されている。シグナル伝送に係るシグナル用貫通導体221a〜224aは、各々別個にコア基板30のシグナル用コア貫通導体320aと接続されている。一方で、電力供給に係る電力供給用貫通導体221b〜224bは、配線層L1、L3に設けられた供給電圧面231、233に接続され、また、当該供給電圧面231、233と電力供給用コア貫通導体320bとを接続している。また、接地に係る接地用貫通導体221c〜224cは、配線層L2、L4に設けられた接地面232、234に接続され、また、当該接地面232、234と接地用コア貫通導体320cとを接続している。 Here, in the build-up layer 20, four wiring layers L1 to L4 are provided and laminated on the four insulating layers I1 to I4, respectively. The wiring layers L1 to L4 and the wiring layer L4 and the upper conductor layer L31 of the core substrate 30 are electrically connected by a through conductor (through via) provided through the insulating layers I1 to I4. The signal through conductors 221a to 224a related to signal transmission are individually connected to the signal core through conductor 320a of the core substrate 30. On the other hand, the power supply through conductors 221b to 224b related to the power supply are connected to the supply voltage surfaces 231 and 233 provided in the wiring layers L1 and L3, and the supply voltage surfaces 231 and 233 and the power supply core. It is connected to the through conductor 320b. Further, the grounding through conductors 221c to 224c related to grounding are connected to the grounding surfaces 232 and 234 provided in the wiring layers L2 and L4, and the grounding surfaces 232 and 234 are connected to the grounding core through conductor 320c. doing.

ビルドアップ層40は、ここでは、4層の配線層L5〜L8が4層の絶縁層I5〜I8の下面側にそれぞれ設けられて積層されている。配線層L5〜L8間及び配線層L5とコア基板30の下側導体層L32との間は、配線層L1と上側導体層L31との間と同様に、絶縁層I5〜I8に設けられた貫通導体(シグナル用貫通導体425a〜428a、電力供給用貫通導体425b〜428b、接地用貫通導体425c〜428c)により電気的に接続されている。配線層L5、L7には、供給電圧面435、437が設けられ、配線層L6、L8には、接地面436、438が設けられている。 Here, in the build-up layer 40, four wiring layers L5 to L8 are provided and laminated on the lower surface side of each of the four insulating layers I5 to I8. The penetration between the wiring layers L5 to L8 and between the wiring layer L5 and the lower conductor layer L32 of the core substrate 30 is provided in the insulating layers I5 to I8 as well as between the wiring layer L1 and the upper conductor layer L31. It is electrically connected by conductors (signal through conductors 425a to 428a, power supply through conductors 425b to 428b, grounding through conductors 425c to 428c). The wiring layers L5 and L7 are provided with supply voltage surfaces 435 and 437, and the wiring layers L6 and L8 are provided with ground planes 436 and 438.

コア基板30は、配線基板1の支持基板であり、絶縁層I31の上下面にそれぞれ上側導体層L31(第2の面)及び下側導体層L32(第1の面)が設けられている。ここでは、上面側の上側導体層L31に供給電圧面331が設けられ、下側導体層L32に接地面332が設けられている。絶縁層I31を上下方向に貫通するスルーホールの内壁面には、コア貫通導体(シグナル用コア貫通導体320a、電力供給用コア貫通導体320b、接地用コア貫通導体320c)が設けられている。コア貫通導体は、ビルドアップ層20とビルドアップ層40との間で信号及び電圧(供給電圧及び接地電圧)の経路を接続している。 The core substrate 30 is a support substrate for the wiring substrate 1, and an upper conductor layer L31 (second surface) and a lower conductor layer L32 (first surface) are provided on the upper and lower surfaces of the insulating layer I31, respectively. Here, the upper conductor layer L31 on the upper surface side is provided with the supply voltage surface 331, and the lower conductor layer L32 is provided with the ground plane 332. Core penetrating conductors (signal core penetrating conductor 320a, power supply core penetrating conductor 320b, grounding core penetrating conductor 320c) are provided on the inner wall surface of the through hole that penetrates the insulating layer I31 in the vertical direction. The core through conductor connects the signal and voltage (supply voltage and ground voltage) paths between the build-up layer 20 and the build-up layer 40.

絶縁層I1〜I8としては、例えば、絶縁性の各種樹脂材料が用いられるが、その他各種有機化合物や無機材料(セラミクス)が用いられても良い。貫通導体には、タングステンや銅などのうち、絶縁層の材質に応じて適切な組み合わせとなるものが用いられる。
なお、絶縁層I1〜I8、I31及び配線層L1〜L8、上側導体層L31、下側導体層L32の厚さの比や、貫通導体、電極パッド211及び出力パッド418の形状、サイズなどは、説明のため強調又は簡略化したものであり、特定の値や形状を反映したものではない。また、ここでいう上下は、説明の便宜上のものであり、固定されるものではない。保管時や利用時の向きなどは、適宜変更され得る。
As the insulating layers I1 to I8, for example, various insulating resin materials are used, but various other organic compounds and inorganic materials (ceramics) may also be used. As the through conductor, a combination of tungsten, copper, or the like that is appropriate depending on the material of the insulating layer is used.
The thickness ratios of the insulating layers I1 to I8 and I31, the wiring layers L1 to L8, the upper conductor layer L31, and the lower conductor layer L32, and the shapes and sizes of the through conductor, the electrode pad 211, and the output pad 418 are described. It is emphasized or simplified for explanation and does not reflect a specific value or shape. Further, the upper and lower parts referred to here are for convenience of explanation and are not fixed. The orientation during storage and use can be changed as appropriate.

図2は、本実施形態の配線基板1の配線層L1及び絶縁層I1を上面側から透視して見た平面図である。ここでは、全体のうち一頂点(上面側から見て右上角)を含む1/4を示している。
また、図3は、配線層L2及び絶縁層I2を上面側から透視して見た平面図である。
FIG. 2 is a plan view of the wiring layer L1 and the insulating layer I1 of the wiring board 1 of the present embodiment as viewed through from the upper surface side. Here, 1/4 including one vertex (upper right corner when viewed from the upper surface side) is shown.
Further, FIG. 3 is a plan view of the wiring layer L2 and the insulating layer I2 seen through from the upper surface side.

上述のように、配線層L1では、中央領域200の内部にシグナルパッド211a、電力供給パッド211b及び接地パッド211cが二次元マトリクス状(正方格子の格子点上)に配列されて設けられている。3種類の電極パッド211の配列パターンは、特には限られないが、ここでは、シグナルパッド211aが中央領域200の周縁部に設けられ、電力供給パッド211b及び接地パッド211cは、主に中央領域200の中央付近にシグナルパッド211aに囲まれて配置されている。中央領域200の周囲(配線層L1の周縁部)は、供給電圧面231となっている。 As described above, in the wiring layer L1, the signal pads 211a, the power supply pads 211b, and the ground pads 211c are arranged in a two-dimensional matrix (on the grid points of the square grid) inside the central region 200. The arrangement pattern of the three types of electrode pads 211 is not particularly limited, but here, the signal pad 211a is provided on the peripheral edge of the central region 200, and the power supply pad 211b and the ground pad 211c are mainly provided in the central region 200. It is arranged around the center of the signal pad 211a. The periphery of the central region 200 (the peripheral edge of the wiring layer L1) is the supply voltage surface 231.

電力供給パッド211bは、いずれも直接又は他の電力供給パッド211bを介して配線層L1内で供給電圧面231に接続されるように配置されている。シグナルパッド211a及び接地パッド211cは、それぞれ絶縁部分により供給電圧面231とは隔離されている。シグナルパッド211a及び接地パッド211cが隣り合って配置されている部分については、絶縁部分が共通に設けられていてよい。ここでは、二次元配列された電極パッド211のうち最外周に設けられた電力供給パッド211b(図2内では6個)以外は、それぞれ絶縁層I1のビアホール内を貫通する貫通導体221(シグナル用貫通導体221a、電力供給用貫通導体221b、接地用貫通導体221c)により配線層L2に接続されている。 Each of the power supply pads 211b is arranged so as to be connected to the supply voltage surface 231 in the wiring layer L1 either directly or via another power supply pad 211b. The signal pad 211a and the ground pad 211c are each isolated from the supply voltage surface 231 by an insulating portion. An insulating portion may be provided in common for a portion where the signal pad 211a and the ground pad 211c are arranged adjacent to each other. Here, except for the power supply pads 211b (six in FIG. 2) provided on the outermost periphery of the two-dimensionally arranged electrode pads 211, the through conductors 221 (for signals) penetrating the via holes of the insulating layer I1 respectively. It is connected to the wiring layer L2 by a through conductor 221a, a through conductor 221b for power supply, and a through conductor 221c for grounding).

配線層L2において、複数のシグナルパッド211aとそれぞれつながっているシグナル用貫通導体221aとの接続位置212a(根元)からは、配線25が配線層L2における中央領域200の平面視で投影される範囲から外縁方向へ延びている。これら配線25は、絶縁層I2を貫通して配線層L3と接続するシグナル用貫通導体222aを平面視で投影して見た位置(以降、平面視位置と記す)まで延びて、当該シグナル用貫通導体222aと接続されている。 In the wiring layer L2, from the connection position 212a (root) of the signal through conductors 221a connected to the plurality of signal pads 211a, the wiring 25 is projected from the plan view of the central region 200 in the wiring layer L2. It extends toward the outer edge. These wirings 25 extend to a position (hereinafter referred to as a plan view position) when the signal penetration conductor 222a that penetrates the insulating layer I2 and is connected to the wiring layer L3 is projected in a plan view and extends to the signal penetration. It is connected to the conductor 222a.

シグナル用貫通導体222aの平面視位置は、配線層L8におけるシグナル出力パッド418aの位置に対応する。シグナル用貫通導体222aの平面視位置(すなわち、シグナル出力パッド418aの位置)は、配線層L2における中央領域200の平面視投影範囲外、すなわち配線層L2の周縁部に、中央領域200内での電極パッド211の配列よりも広い間隔で二次元マトリクス状(正方格子の格子点上)に配置されている。 The position of the signal through conductor 222a in a plan view corresponds to the position of the signal output pad 418a in the wiring layer L8. The plan view position of the signal through conductor 222a (that is, the position of the signal output pad 418a) is outside the plan view projection range of the central region 200 in the wiring layer L2, that is, in the peripheral portion of the wiring layer L2 and in the central region 200. They are arranged in a two-dimensional matrix (on the grid points of a square lattice) at intervals wider than the arrangement of the electrode pads 211.

配線層L2において、各貫通導体の根元位置、配線25及びこれらの周囲の絶縁部分以外は、接地面232となっている。複数の接地パッド211cの位置で絶縁層I1を貫通する接地用貫通導体221cの配線層L2との接続位置212cは、いずれも直接又は他の接続位置212cを介して接地面232とつながっている。 In the wiring layer L2, the ground plane is 232 except for the root position of each through conductor, the wiring 25, and the insulating portion around them. The connection positions 212c of the grounding through conductor 221c penetrating the insulating layer I1 at the positions of the plurality of ground pads 211c with the wiring layer L2 are all connected to the ground surface 232 directly or via other connection positions 212c.

絶縁層I1を貫通する電力供給用貫通導体221b及び接地用貫通導体221cの配線層L2との接続位置212b、212cのうち、二次元配列の最外周に設けられた接地用貫通導体221c(ここでは3個)の接続位置212c以外は、更に、絶縁層I2を貫通する電力供給用貫通導体222b及び接地用貫通導体222cにより配線層L3と接続されている。 Of the connection positions 212b and 212c of the power supply through conductor 221b penetrating the insulating layer I1 and the grounding through conductor 221c with the wiring layer L2, the grounding through conductor 221c provided on the outermost periphery of the two-dimensional arrangement (here, here). Except for the connection positions 212c (3), the wiring layer L3 is further connected by a power supply through conductor 222b and a grounding through conductor 222c that penetrate the insulating layer I2.

図4は、配線層L3及び絶縁層I3を上面側から透視して見た平面図である。また、図5は、配線層L4及び絶縁層I4を上面側から透視して見た平面図である。 FIG. 4 is a plan view of the wiring layer L3 and the insulating layer I3 seen through from the upper surface side. Further, FIG. 5 is a plan view of the wiring layer L4 and the insulating layer I4 as seen through from the upper surface side.

配線層L3には、供給電圧面233が設けられている。絶縁層I2を貫くシグナル用貫通導体222a及び接地用貫通導体222cと配線層L3との接続位置213a、213cは、各々供給電圧面233から絶縁、分離されている。これらの接続位置213a、213cは、絶縁層I3を貫くシグナル用貫通導体223a及び接地用貫通導体223cと下面側で接している。一方、絶縁層I3を貫く電力供給用貫通導体223bは、コア基板30を貫通するスルーホールの配置(後述)に応じて供給電圧面233に対して接続されて設けられている。すなわち、供給電圧面233に対し、電力供給用貫通導体222b(供給電圧面233との接続位置213b)、223bの平面視位置は、少なくとも一部が同一ではない。 The wiring layer L3 is provided with a supply voltage surface 233. The signal through conductor 222a penetrating the insulating layer I2 and the connection positions 213a and 213c between the grounding through conductor 222c and the wiring layer L3 are respectively insulated and separated from the supply voltage surface 233. These connection positions 213a and 213c are in contact with the signal through conductor 223a and the grounding through conductor 223c penetrating the insulating layer I3 on the lower surface side. On the other hand, the power supply through conductor 223b penetrating the insulating layer I3 is provided so as to be connected to the supply voltage surface 233 according to the arrangement (described later) of the through holes penetrating the core substrate 30. That is, at least a part of the power supply through conductor 222b (connection position 213b with the supply voltage surface 233) and the plan view position of 223b are not the same with respect to the supply voltage surface 233.

配線層L4では、絶縁層I3を貫くシグナル用貫通導体223a及び電力供給用貫通導体223bと、絶縁層I4を貫くシグナル用貫通導体224a及び電力供給用貫通導体224bとが接続位置214a、214bで接続されている。これら接続位置214a、214bの周囲には、絶縁部分を介して接地面234が設けられている。 In the wiring layer L4, the signal penetrating conductor 223a and the power supply penetrating conductor 223b penetrating the insulating layer I3 and the signal penetrating conductor 224a and the power supply penetrating conductor 224b penetrating the insulating layer I4 are connected at connection positions 214a and 214b. Has been done. A ground plane 234 is provided around these connection positions 214a and 214b via an insulating portion.

電力供給用貫通導体224bは、上述のように、コア基板30に設けられたスルーホール(電力供給用コア貫通導体320b)(図1、図6など参照)の位置に合わせて配置されている電力供給用貫通導体223bと同一の平面視位置に設けられている。ここでは、電力供給用貫通導体224bは、4個ずつで1組のグループ24bとなり、当該4個の位置が配線層L4の外周に対して45度傾いた正方形の4頂点をなすように配置されている。すなわち、4頂点の2本の対角線は、配線層L4の外周の隣り合う2辺にそれぞれ平行であって直交する十字形状をとる。これら2本の長さの等しい対角線の交点(すなわち、4頂点の中心位置、4頂点の重みを等しいとした場合の重心位置)がスルーホールの中心位置となる。また、隣り合うグループ24bは、一方のグループ24bのスルーホールの中心位置から一方の対角線の長さを1.5倍し、他方の対角線の長さを0.5倍した位置に他方のグループ24bのスルーホールの中心位置が設けられるように配列されている。 As described above, the power supply through conductor 224b is arranged so as to align with the position of the through hole (power supply core through conductor 320b) (see FIGS. 1, 6, etc.) provided in the core substrate 30. It is provided at the same plan view position as the supply through conductor 223b. Here, four through conductors 224b for power supply form a set of group 24b, and the four positions are arranged so as to form four vertices of a square inclined by 45 degrees with respect to the outer circumference of the wiring layer L4. ing. That is, the two diagonal lines of the four vertices have a cross shape parallel to and orthogonal to the two adjacent sides of the outer circumference of the wiring layer L4. The intersection of these two diagonal lines of equal length (that is, the center position of the four vertices and the center of gravity position when the weights of the four vertices are equal) is the center position of the through hole. Further, the adjacent groups 24b are located at a position where the length of one diagonal line is multiplied by 1.5 and the length of the other diagonal line is multiplied by 0.5 from the center position of the through hole of one group 24b. It is arranged so that the center position of the through hole is provided.

接地面234の下面側には、絶縁層I4を貫いて当該接地面234とコア基板30の上面側の供給電圧面331とを接続する接地用貫通導体224cが設けられている。この接地用貫通導体224cは、電力供給用貫通導体224bの各グループ24bの正方形の隙間に収まるように同一形状の配列パターンで配置されている。すなわち、接地用貫通導体224cは、4個が一組のグループ24cとなって各々配線層L4(配線基板1)に対して45度傾いた正方形の4頂点をなすように配置されている。4頂点の2本の対角線は、それぞれ配線層L4の隣り合う2辺にそれぞれ平行であって直交する十字形状をとる。この2本の対角線の交点(4頂点の中心位置、4頂点の重みを等しいとした場合の重心位置)がコア基板30に設けられるスルーホール(接地用コア貫通導体320c)の中心位置となる。また、隣り合うグループ24cは、一方のグループ24cのスルーホールの位置から一方の対角線の長さを1.5倍し、他方の対角線の長さを0.5倍した位置に他方のグループ24cのスルーホールの中心位置が設けられるように配列されている。接地面234に対し、接地用貫通導体223c(接地面234との接続位置214c)、224cの平面視位置は、少なくとも一部が同一ではない。 On the lower surface side of the grounding surface 234, a grounding through conductor 224c is provided which penetrates the insulating layer I4 and connects the grounding surface 234 and the supply voltage surface 331 on the upper surface side of the core substrate 30. The grounding through conductor 224c is arranged in an arrangement pattern of the same shape so as to fit in the square gap of each group 24b of the power supply through conductor 224b. That is, the grounding through conductors 224c are arranged so as to form four vertices of a square inclined by 45 degrees with respect to the wiring layer L4 (wiring board 1), in which four of them form a set of groups 24c. The two diagonal lines of the four vertices each have a cross shape parallel to and orthogonal to the two adjacent sides of the wiring layer L4. The intersection of these two diagonal lines (the center position of the four vertices (the position of the center of gravity when the weights of the four vertices are equal) is the center position of the through hole (grounding core penetrating conductor 320c) provided in the core substrate 30. Further, in the adjacent group 24c, the length of one diagonal line is multiplied by 1.5 from the position of the through hole of one group 24c, and the length of the other diagonal line is multiplied by 0.5. They are arranged so that the center position of the through hole is provided. The plan view positions of the grounding through conductor 223c (connection position 214c with the grounding surface 234) and 224c with respect to the grounding surface 234 are not at least partially the same.

図6は、コア基板30の上側導体層L31及び絶縁層I31を上面側から透視して見た平面図である。また、図7は、コア基板30の下側導体層L32及び絶縁層I5を上面側から透視して見た平面図である。 FIG. 6 is a plan view of the upper conductor layer L31 and the insulating layer I31 of the core substrate 30 as viewed through from the upper surface side. Further, FIG. 7 is a plan view of the lower conductor layer L32 and the insulating layer I5 of the core substrate 30 as viewed through from the upper surface side.

上述のように、上側導体層L31には、供給電圧面331が設けられ、また、下側導体層L32には、接地面332が設けられている。シグナル用貫通導体224aの上側導体層L31との接続位置311a(根元)には、シグナル用コア貫通導体320aを有するスルーホールがコア基板30を貫いて設けられて接続されている。シグナル用コア貫通導体320aの下側導体層L32との接続位置312a(根元)には、絶縁層I5を貫いて設けられたシグナル用貫通導体425aが接続されている。 As described above, the upper conductor layer L31 is provided with a supply voltage surface 331, and the lower conductor layer L32 is provided with a ground plane 332. A through hole having a signal core through conductor 320a is provided and connected to the connection position 311a (root) of the signal through conductor 224a with the upper conductor layer L31 through the core substrate 30. A signal penetrating conductor 425a provided through the insulating layer I5 is connected to the connection position 312a (root) with the lower conductor layer L32 of the signal core penetrating conductor 320a.

上側導体層L31において、上述のように4個一組のグループ24cについて配置された接地用貫通導体224cとの接続位置311c及びこれらの対角線を含む範囲には、十字形状(接地用コア貫通導体320cの周囲に配置された接地用貫通導体224cの位置関係に応じた凹凸を有する形状)を有する接地用導体平面(接地用導体面)であるランド341cが供給電圧面331に取り囲まれて設けられている。コア基板30におけるこの対角線の交点位置(平面視)には、絶縁層I4(第2の絶縁層)を貫く4個の接地用貫通導体224cについて共通の1個の接地用コア貫通導体320cを有するスルーホールが設けられ、下側導体層L32における接地面332に接続される。すなわち、ここでは、接地用コア貫通導体320cの平面視位置の周囲に均等な角度間隔(90度間隔)で4個の接地用貫通導体224cが配置されている。当該接地面332の下面側には、接地用貫通導体224cと同一の平面視位置(すなわち、接地用コア貫通導体320cとの接続位置312cの周囲)に絶縁層I5を貫く接地用貫通導体425cが設けられて、接地面332(下側導体層L32)と配線層L5とを接続している。 In the upper conductor layer L31, the connection position 311c with the grounding through conductor 224c arranged for the group 24c of a set of four as described above and the range including these diagonal lines have a cross shape (grounding core through conductor 320c). A land 341c, which is a grounding conductor plane (grounding conductor surface) having a shape having irregularities according to the positional relationship of the grounding through conductor 224c arranged around the grounding conductor, is provided so as to be surrounded by the supply voltage surface 331. There is. At the intersection position (plan view) of the diagonal lines on the core substrate 30, one grounding core through conductor 320c common to the four grounding through conductors 224c penetrating the insulating layer I4 (second insulating layer) is provided. A through hole is provided and is connected to the ground contact surface 332 of the lower conductor layer L32. That is, here, four grounding through conductors 224c are arranged at equal angular intervals (90 degree intervals) around the plan view position of the grounding core through conductor 320c. On the lower surface side of the grounding surface 332, a grounding through conductor 425c penetrating the insulating layer I5 at the same plan view position as the grounding through conductor 224c (that is, around the connection position 312c with the grounding core through conductor 320c). It is provided and connects the grounding surface 332 (lower conductor layer L32) and the wiring layer L5.

下側導体層L32には、ランド341cと相補的な位置関係で、十字形状(電力供給用コア貫通導体320bの周囲に設けられた複数の電力供給用貫通導体425bの位置関係に応じた凹凸を有する形状)を有する電力供給用の導体平面(電力供給用導体面)であるランド342bが接地面332に取り囲まれて設けられている。ランド342bの各先端、すなわち、電力供給用貫通導体224bと上側導体層L31との接続位置311bと同一の平面視位置には、それぞれ絶縁層I5(第1の絶縁層)を貫いて配線層L5と接続する電力供給用貫通導体425bが設けられている。これら4個の電力供給用貫通導体425bの対角線の交点位置(平面視)には、1個の電力供給用コア貫通導体320bを有するスルーホールが設けられ、上端が上側導体層L31における供給電圧面331に接続され、根元がランド342bとの接続位置312bとなる。すなわち、電力供給用コア貫通導体320bの平面視位置の周囲に均等な角度間隔(90度間隔)で4個の電力供給用貫通導体425bが配置されている。 The lower conductor layer L32 has a cross shape (unevenness corresponding to the positional relationship of a plurality of power supply through conductors 425b provided around the power supply core through conductor 320b) in a positional relationship complementary to the land 341c. A land 342b, which is a conductor plane for power supply (conductor surface for power supply) having a shape (having a shape), is provided so as to be surrounded by a ground plane 332. At each tip of the land 342b, that is, at the same plan view position as the connection position 311b between the power supply through conductor 224b and the upper conductor layer L31, the wiring layer L5 penetrates the insulating layer I5 (first insulating layer). A power supply through conductor 425b is provided to connect to the power supply. A through hole having one power supply core through conductor 320b is provided at a diagonal intersection position (plan view) of these four power supply through conductors 425b, and the upper end is a supply voltage surface in the upper conductor layer L31. It is connected to 331, and the base is the connection position 312b with the land 342b. That is, four power supply through conductors 425b are arranged at equal angular intervals (90 degree intervals) around the plan view position of the power supply core through conductor 320b.

このように、接地用のランド341cと電力供給用のランド342bとは、平面視で投影して見た場合に、電力供給用コア貫通導体320bの位置から各電力供給用貫通導体425bの位置へ延びるランド342bの凸部分と、接地用コア貫通導体320cの位置から見た複数の接地用貫通導体224cの間に生じるランド341cの凹部分とが組み合わされ(ここでは、凹部内部に凸部が入り込むように設けられ)、また、接地用コア貫通導体320cの位置から各接地用貫通導体224cの位置へ延びるランド341cの凸部分と、電力供給用コア貫通導体320bの位置から見た複数の電力供給用貫通導体425bの間に生じるランド342bの凹部分とが組み合わされる(同様に凹部内部に凸部が入り込む)ような配置パターンで設けられる。ここでは、ランド341c、342bは、いずれも十字形状(同一形状)であり、同一の角度配置で設けられることで、ランド341cの凸部とランド342bの凸部とが平行に組み合わされている。これにより、ランド341c、342bは、必要以上にスペースを占有せず、また、ランド341c、342b間に必要以上にスペースを生じさせない。また、より効率的に多数の電力供給用コア貫通導体320b及び接地用コア貫通導体320cを配置する。 In this way, the grounding land 341c and the power supply land 342b are projected from the position of the power supply core through conductor 320b to the position of each power supply through conductor 425b when projected in a plan view. The convex portion of the extending land 342b and the concave portion of the land 341c generated between the plurality of grounding through conductors 224c seen from the position of the grounding core penetrating conductor 320c are combined (here, the convex portion enters the inside of the concave portion). The convex portion of the land 341c extending from the position of the grounding core through conductor 320c to the position of each grounding through conductor 224c, and a plurality of power supplies viewed from the position of the power supply core through conductor 320b. It is provided in an arrangement pattern such that the concave portion of the land 342b generated between the through conductors 425b is combined (similarly, the convex portion enters the inside of the concave portion). Here, the lands 341c and 342b both have a cross shape (same shape), and by being provided at the same angle arrangement, the convex portion of the land 341c and the convex portion of the land 342b are combined in parallel. As a result, the lands 341c and 342b do not occupy more space than necessary, and the lands 341c and 342b do not generate more space than necessary. Further, a large number of power supply core through conductors 320b and grounding core through conductors 320c are arranged more efficiently.

また、上側導体層L31及び下側導体層L32において、電力供給用貫通導体425b、電力供給用コア貫通導体320b、接地用貫通導体224c及び接地用コア貫通導体320cの配置を全体で見ると、連続して定められた範囲内の正方格子の格子点上に各々いずれかが配置されていることになる。すなわち、これら貫通導体は、全て適切な間隔で配置されており、これらの配置に応じて上側導体層L31のランド341c及び下側導体層L32のランド342bがそれぞれ適切に設けられることで、効率良く高密度で電力供給用コア貫通導体320b及び接地用コア貫通導体320cが配置されることとなる。 Further, in the upper conductor layer L31 and the lower conductor layer L32, the arrangement of the power supply through conductor 425b, the power supply core through conductor 320b, the grounding through conductor 224c, and the grounding core through conductor 320c is continuous. One of them is arranged on the grid points of the square grid within the range defined in the above. That is, all of these through conductors are arranged at appropriate intervals, and the land 341c of the upper conductor layer L31 and the land 342b of the lower conductor layer L32 are appropriately provided according to these arrangements, so that the lands 342b of the lower conductor layer L32 are efficiently provided. A core penetrating conductor 320b for power supply and a core penetrating conductor 320c for grounding are arranged at high density.

図8は、配線層L5及び絶縁層I6を上面側から透視して見た平面図である。また、図9は、配線層L6及び絶縁層I7を上面側から透視して見た平面図である。 FIG. 8 is a plan view of the wiring layer L5 and the insulating layer I6 seen through from the upper surface side. Further, FIG. 9 is a plan view of the wiring layer L6 and the insulating layer I7 seen through from the upper surface side.

下側導体層L32から配線層L6までは、各貫通導体は、全て配線層L4と上側導体層L31との間に設けられた貫通導体と同一の平面視位置に設けられている。すなわち、コア基板30上部におけるシグナル用貫通導体224a(すなわち、コア基板30におけるシグナル用コア貫通導体320a)と同一の平面視位置には、絶縁層I5を貫くシグナル用貫通導体425a及び絶縁層I6を貫くシグナル用貫通導体426aが設けられている。また、一つの電力供給用コア貫通導体320bを取り囲む4個の電力供給用貫通導体224bと同一の平面視位置には、ランド342bにつながる電力供給用貫通導体425b、426bが設けられている。また、ランド341cにそれぞれつながる4個の接地用貫通導体224cと同一の平面視位置には、接地用貫通導体425c、426cが設けられている。 From the lower conductor layer L32 to the wiring layer L6, all the through conductors are provided at the same plan view positions as the through conductors provided between the wiring layer L4 and the upper conductor layer L31. That is, the signal penetrating conductor 425a and the insulating layer I6 penetrating the insulating layer I5 are placed at the same plan view position as the signal penetrating conductor 224a (that is, the signal core penetrating conductor 320a in the core substrate 30) on the upper part of the core substrate 30. A penetrating conductor 426a for a penetrating signal is provided. Further, power supply through conductors 425b and 426b connected to the land 342b are provided at the same plan view positions as the four power supply through conductors 224b surrounding one power supply core through conductor 320b. Further, grounding through conductors 425c and 426c are provided at the same plan view positions as the four grounding through conductors 224c connected to the land 341c, respectively.

配線層L5には、シグナル用貫通導体425aとの接続位置415a及び接地用貫通導体425cとの接続位置415c並びにこれらの周囲の絶縁部分を除いて供給電圧面435が設けられている。当該供給電圧面435上には、電力供給用貫通導体425bとの接続位置415bが配列されている。配線層L6には、シグナル用貫通導体426aとの接続位置416a及び電力供給用貫通導体426bとの接続位置416b並びにこれらの周囲の絶縁部分を除いて接地面436が設けられている。接地面436上には、接地用貫通導体426cとの接続位置416cが配列されている。 The wiring layer L5 is provided with a supply voltage surface 435 excluding a connection position 415a with the signal through conductor 425a, a connection position 415c with the grounding through conductor 425c, and an insulating portion around them. Connection positions 415b with the power supply through conductor 425b are arranged on the supply voltage surface 435. The wiring layer L6 is provided with a ground plane 436 excluding a connection position 416a with the signal through conductor 426a, a connection position 416b with the power supply through conductor 426b, and an insulating portion around them. Connection positions 416c with the grounding through conductor 426c are arranged on the grounding surface 436.

配線層L6への接地用貫通導体426cの接続位置416cのうち一部には、絶縁層I7を貫通する接地用貫通導体427cがつながれて、配線層L7に接続されている。 A grounding through conductor 427c penetrating the insulating layer I7 is connected to a part of the connection position 416c of the grounding through conductor 426c to the wiring layer L6 and is connected to the wiring layer L7.

図10は、配線層L7及び絶縁層I8を上面側から透視して見た場合の平面図である。図11は、配線層L8及び絶縁層I8を下面側から透視して見た場合の底面図である。 FIG. 10 is a plan view of the wiring layer L7 and the insulating layer I8 as viewed through from the upper surface side. FIG. 11 is a bottom view when the wiring layer L8 and the insulating layer I8 are viewed through from the lower surface side.

配線層L6、L7間の絶縁層I7及び配線層L7、L8間の絶縁層I8では、シグナル用貫通導体427a、428aは、それぞれ、シグナル用貫通導体426aと同一の平面視位置に配線層L7の接続位置417aを挟んで設けられている。すなわち、信号経路は、配線層L2でシグナルパッド211aの位置から中央領域200外に引き出された位置からシグナル出力パッド418aまで上下方向に貫通して設けられている。 In the insulating layer I7 between the wiring layers L6 and L7 and the insulating layer I8 between the wiring layers L7 and L8, the signal-through conductors 427a and 428a are located at the same plan-view positions as the signal-through conductors 426a, respectively. It is provided so as to sandwich the connection position 417a. That is, the signal path is provided so as to penetrate in the vertical direction from the position of the signal pad 211a in the wiring layer L2 to the position of the signal pad 211a drawn out of the central region 200 to the signal output pad 418a.

絶縁層I7、I8を貫く接地用貫通導体427c、428cは、シグナル用貫通導体427a、428aの二次元配列に係る正方格子の格子点に対して平面視位置が重なる接地用コア貫通導体320cに応じたグループ24cの位置に4個ずつ配線層L7上の接続位置417cを挟んで設けられている。 The grounding through conductors 427c and 428c penetrating the insulating layers I7 and I8 correspond to the grounding core through conductor 320c whose plan-viewing positions overlap with respect to the grid points of the square lattice related to the two-dimensional arrangement of the signal through conductors 427a and 428a. Four of them are provided at the positions of the group 24c with the connection position 417c on the wiring layer L7 interposed therebetween.

絶縁層I7を貫く電力供給用貫通導体427bは、電力供給用貫通導体426bと同一の平面視位置に設けられ、配線層L7の接続位置417bで供給電圧面437に接続されている。絶縁層I8を貫く電力供給用貫通導体428bは、シグナル用貫通導体428aの二次元配列に係る正方格子の格子点に対して平面視位置が重なる電力供給用コア貫通導体320bに応じたグループ24bの位置に4個ずつ設けられている。各グループ24bの4個の電力供給用貫通導体428bは、配線層L8においてそれぞれ一個の電力供給出力パッド418bに接続されている。 The power supply through conductor 427b penetrating the insulating layer I7 is provided at the same plan view position as the power supply through conductor 426b, and is connected to the supply voltage surface 437 at the connection position 417b of the wiring layer L7. The power supply through conductor 428b penetrating the insulating layer I8 is a group 24b corresponding to the power supply core through conductor 320b whose plan view position overlaps with the grid points of the square lattice related to the two-dimensional arrangement of the signal through conductor 428a. Four are provided at each position. The four power supply through conductors 428b of each group 24b are connected to one power supply output pad 418b in the wiring layer L8.

配線層L8の下面側(絶縁層I8とは反対側)は、ソルダーレジスト層50に被覆されている。ソルダーレジスト層50には、シグナル出力パッド418a、電力供給出力パッド418b及びこれらのパッドと対応する大きさで上述の4個一組の接地用貫通導体428cをそれぞれ含む接地出力パッド418cを正方格子状に露出させるように開口が設けられている。これらの出力パッド418は、図示略のはんだボールが接続(形成、接着)可能なBGAパッド(Ball Grid Array)として当該はんだボールのサイズに応じたサイズ、間隔となっている。 The lower surface side of the wiring layer L8 (the side opposite to the insulating layer I8) is covered with the solder resist layer 50. The solder resist layer 50 includes a signal output pad 418a, a power supply output pad 418b, and a grounding output pad 418c having a size corresponding to these pads and including the above-mentioned four sets of grounding through conductors 428c, respectively, in a square grid pattern. An opening is provided so as to be exposed to the air. These output pads 418 are sized and spaced according to the size of the solder balls as BGA pads (Ball Grid Array) to which the solder balls (not shown) can be connected (formed and adhered).

以上のように、本実施形態の配線基板1は、コア基板30と、コア基板30を挟んで上下に積層された絶縁層I4、I5と、を備える。コア基板30の第1の面である下側導体層L32には、当該下側導体層L32の面の側に積層された絶縁層I5を貫通する複数の電力供給用貫通導体425bを、コア基板30を貫通する共通の電力供給用コア貫通導体320bに対して電気的に接続する電力供給用のランド342bと、当該ランド342bを取り囲む接地面332と、が設けられている。また、コア基板30の第2の面である上側導体層L31には、当該上側導体層L31の側に積層された絶縁層I4を貫通する複数の接地用貫通導体224cを、コア基板30を貫通する共通の接地用コア貫通導体320cに対して電気的に接続する接地用のランド341cと、当該ランド341cを取り囲む供給電圧面331と、が設けられている。電力供給用コア貫通導体320bは、上側導体層L31で供給電圧面331と接続され、接地用コア貫通導体320cは、下側導体層L32で接地面332と接続される。電力供給用のランド342bは、電力供給用コア貫通導体320bの周囲に配置された複数の電力供給用貫通導体425bの位置関係に応じた凹凸を有する形状であり、接地用のランド341cは、接地用コア貫通導体320cの周囲に設けられた複数の接地用貫通導体224cの位置関係に応じた凹凸を有する形状である。そして、電力供給用のランド342b及び接地用のランド341cは、上方側から平面視で投影して見た場合に、一方の凸部分と他方の凹部分のうち少なくとも一部が組み合わされた、すなわち、当該一部で特に狭い間隔とされることで接地用コア貫通導体320c及び電力供給用コア貫通導体320bの距離が近づくような配置パターンで設けられている。狭い間隔としては、ゼロが含まれ、あるいは、接地用貫通導体224c(425c)と電力供給用貫通導体224b(425b)との間に必要な最小限の絶縁距離程度の値が定められ得る。
このように、平面視で投影して見た場合に、電力供給用のランド342bと接地用のランド341cを効果的に詰めて配置することで、当該ランド342b、341cにそれぞれ応じた電力供給用コア貫通導体320b及び接地用コア貫通導体320cの配置密度を無理なくかつ問題を生じさせずに増大させて多数配置することが可能になる。これにより、配線基板1では、より効率よく貫通導体における電気抵抗やインダクタンスを低下させることができる。
As described above, the wiring board 1 of the present embodiment includes the core board 30 and the insulating layers I4 and I5 laminated vertically with the core board 30 interposed therebetween. The lower conductor layer L32, which is the first surface of the core substrate 30, is provided with a plurality of power supply through conductors 425b penetrating the insulating layer I5 laminated on the surface side of the lower conductor layer L32. A power supply land 342b that is electrically connected to a common power supply core through conductor 320b that penetrates the 30 and a ground contact surface 332 that surrounds the land 342b are provided. Further, in the upper conductor layer L31 which is the second surface of the core substrate 30, a plurality of grounding through conductors 224c penetrating the insulating layer I4 laminated on the side of the upper conductor layer L31 penetrate the core substrate 30. A grounding land 341c that is electrically connected to the common grounding core penetrating conductor 320c and a supply voltage surface 331 that surrounds the grounding 341c are provided. The power supply core through conductor 320b is connected to the supply voltage surface 331 by the upper conductor layer L31, and the grounding core through conductor 320c is connected to the ground surface 332 by the lower conductor layer L32. The power supply land 342b has a shape having irregularities according to the positional relationship of a plurality of power supply through conductors 425b arranged around the power supply core through conductor 320b, and the grounding land 341c is grounded. It has a shape having irregularities according to the positional relationship of a plurality of grounding through conductors 224c provided around the core through conductor 320c. When the land 342b for power supply and the land 341c for grounding are projected from above in a plan view, at least a part of one convex portion and the other concave portion are combined, that is, The grounding core penetrating conductor 320c and the power supply core penetrating conductor 320b are provided in an arrangement pattern such that the distance between the grounding core penetrating conductor 320c and the power supply core penetrating conductor 320b is shortened by setting a particularly narrow interval in a part thereof. The narrow spacing may include zeros, or may be defined as the minimum insulation distance required between the grounding through conductor 224c (425c) and the power supply through conductor 224b (425b).
In this way, when projected in a plan view, the land 342b for power supply and the land 341c for grounding are effectively packed and arranged, so that the land 342b and 341c can be used for power supply. It is possible to increase the arrangement densities of the core through conductor 320b and the grounding core through conductor 320c reasonably and without causing problems so that a large number of them can be arranged. As a result, in the wiring board 1, the electric resistance and the inductance of the through conductor can be reduced more efficiently.

また、ランド342bに接続される複数の電力供給用貫通導体425bは、接続される電力供給用コア貫通導体320bの周囲に均等な角度間隔で設けられており、ランド341cに接続される複数の接地用貫通導体224cは、接続される接地用コア貫通導体320cの周囲に均等な角度間隔で設けられている。このような配置により、容易かつ柔軟に効率的な電力供給用コア貫通導体320b及び接地用コア貫通導体320cの密な配置を行うことができる。 Further, the plurality of power supply through conductors 425b connected to the land 342b are provided around the power supply core through conductor 320b to be connected at equal angular intervals, and a plurality of grounds connected to the land 341c. The through-conductor 224c is provided around the grounding core through-conductor 320c to be connected at equal angular intervals. With such an arrangement, it is possible to easily and flexibly and efficiently arrange the power supply core through conductor 320b and the grounding core through conductor 320c densely.

また、電力供給用のランド342b及び接地用のランド341cは、平面視で投影して見た場合に、同一形状かつ同一の角度配置で設けられている。このように、ランド341c、342bを一様な形状及び角度配置とすることで、更に容易に電力供給用コア貫通導体320b及び接地用コア貫通導体320cの密な配置を行うことができる。 Further, the land 342b for power supply and the land 341c for grounding are provided with the same shape and the same angle arrangement when projected in a plan view. By arranging the lands 341c and 342b in a uniform shape and angle in this way, it is possible to more easily arrange the power supply core penetrating conductor 320b and the grounding core penetrating conductor 320c densely.

また、ランド342b、341cにより接続される接地用貫通導体224c、接地用コア貫通導体320c、電力供給用貫通導体425b及び電力供給用コア貫通導体320bは、平面視で投影して見た場合に、所定の格子形状(ここでは、正方格子)の格子点上に各々配置されている。このように、格子構造を用いて格子点上に各端子の接続位置を配置していくことで、接地用コア貫通導体320c及び電力供給用コア貫通導体320bを等間隔で詰めて多数配置することができる。また、ランド342b、341cに接続される接地用貫通導体224c及び電力供給用貫通導体425bを無駄な隙間なく配置する一方で、無理に部分的に詰めたりしないでよいので、これらを容易に効率良く配列した適切な形状のランド342b、341cを二次元配列することができる。 Further, the grounding through conductor 224c, the grounding core through conductor 320c, the power supply through conductor 425b, and the power supply core through conductor 320b connected by the lands 342b and 341c are projected in a plan view. They are arranged on the grid points of a predetermined grid shape (here, a square grid). By arranging the connection positions of each terminal on the lattice points using the lattice structure in this way, the grounding core penetrating conductor 320c and the power supply core penetrating conductor 320b are packed at equal intervals and arranged in large numbers. Can be done. Further, while the grounding through conductor 224c and the power supply through conductor 425b connected to the lands 342b and 341c are arranged without unnecessary gaps, they do not have to be forcibly partially packed, so that they can be easily and efficiently packed. Lands 342b and 341c having appropriate shapes can be arranged two-dimensionally.

[変形例]
図12は、配線基板1において、上側導体層L31の供給電圧面331内に設けられるランド341cと下側導体層L32の接地面332内に設けられるランド342bの配置の変形例を説明する図である。ここでは、コア基板30の上側導体層L31、絶縁層I31及び下側導体層L32を上面側から透視して見た場合の平面図を示している。
[Modification example]
FIG. 12 is a diagram illustrating a modified example of the arrangement of the land 341c provided in the supply voltage surface 331 of the upper conductor layer L31 and the land 342b provided in the ground plane 332 of the lower conductor layer L32 in the wiring board 1. be. Here, a plan view is shown when the upper conductor layer L31, the insulating layer I31, and the lower conductor layer L32 of the core substrate 30 are viewed through from the upper surface side.

電力供給用コア貫通導体320b及び接地用コア貫通導体320cは、二次元マトリクス状(正方格子の格子点上)に縦横ともそれぞれ交互に配置されている。電力供給用貫通導体224b、425bは、図12の面内で左右方向に長い長方形の4頂点にそれぞれ設けられ、直交しない対角線の交点が電力供給用コア貫通導体320bの中心位置となる。また、一つの接地用コア貫通導体320cに対応する接地用貫通導体224c、425cは、図12の面内で上下方向に長い長方形の4頂点にそれぞれ設けられ、対角線の交点が接地用コア貫通導体320cの中心位置となる。すなわち、この変形例では、電力供給用コア貫通導体320bの中心位置を通る対称軸に対して2つずつ(半分に対して残り半分)の電力供給用貫通導体が線対称に配置され、接地用コア貫通導体320cの中心位置を通る対称軸に対して2つずつの接地用貫通導体が線対称に配置されている。 The power supply core through conductor 320b and the grounding core through conductor 320c are alternately arranged vertically and horizontally in a two-dimensional matrix (on the grid points of a square lattice). The power supply through conductors 224b and 425b are provided at four vertices of a rectangle long in the left-right direction in the plane of FIG. 12, and the intersections of non-orthogonal diagonal lines are the center positions of the power supply core through conductor 320b. Further, the grounding through conductors 224c and 425c corresponding to one grounding core through conductor 320c are provided at four vertices of a rectangle long in the vertical direction in the plane of FIG. 12, and the diagonal intersections are the grounding core through conductors. It is the center position of 320c. That is, in this modification, two power supply through conductors (the other half with respect to half) are arranged line-symmetrically with respect to the axis of symmetry passing through the center position of the power supply core through conductor 320b for grounding. Two grounding through conductors are arranged line-symmetrically with respect to the axis of symmetry passing through the center position of the core through conductor 320c.

接地用のランド341c1及び電力供給用のランド342b1は、同一形状であって、それぞれ、各頂点間の距離に応じた凹部を有し、すなわち、距離の大きい長辺側の2つの凹部が大きなくぼみを有して形成されている。これら2つの大きな凹部に対し、短辺の両端をなす2つずつの凸部がそれぞれ組み合わされるように、ランド341c1に対してランド342b1を90度異なる向きで配置することで、平面視で隣り合うランド341c1、342b1間の距離を短縮している。ここでは、凹部の内部に凸部が入り込んではいないが、組み合わせに係る凹部と凸部の距離を適切に狭く定めることでランド341c1に係る接地用コア貫通導体320cとランド342b1に係る電力供給用コア貫通導体320bとの距離を必要以上に広くせずに狭めることが可能になる。
なお、ここでは平面視でランド341c1、342b1が重ならないように設けられているが、ランド341c1、342b1は、互いに異なる平面内(上側導体層L31、下側導体層L32)にそれぞれ設けられるので、電力供給用貫通導体224b、425b及び接地用貫通導体224c、425cが適切に配置可能であれば、ランド341c1、342b1が平面視で接していたり重なっていたりしてもよい。
The land 341c1 for grounding and the land 342b1 for power supply have the same shape, and each has a recess according to the distance between the vertices, that is, the two recesses on the long side with a large distance are large recesses. Is formed with. By arranging the lands 342b1 with respect to the lands 341c1 in 90 degrees different directions so that the two convex portions forming both ends of the short sides are combined with respect to these two large concave portions, they are adjacent to each other in a plan view. The distance between the lands 341c1 and 342b1 is shortened. Here, the convex portion does not enter the inside of the concave portion, but by appropriately narrowing the distance between the concave portion and the convex portion related to the combination, the grounding core penetrating conductor 320c related to the land 341c1 and the power supply core related to the land 342b1. It is possible to narrow the distance from the penetrating conductor 320b without making it unnecessarily wide.
Here, the lands 341c1 and 342b1 are provided so as not to overlap each other in a plan view, but the lands 341c1 and 342b1 are provided in different planes (upper conductor layer L31 and lower conductor layer L32), respectively. If the power supply through conductors 224b and 425b and the grounding through conductors 224c and 425c can be appropriately arranged, the lands 341c1 and 342b1 may be in contact with each other or overlap with each other in a plan view.

以上のように、変形例の配線基板1では、電力供給用コア貫通導体320bに共通に接続される電力供給用貫通導体425b、及び接地用コア貫通導体320cに共通に接続される接地用貫通導体224cがそれぞれ偶数個である場合に、複数の電力供給用貫通導体224bは、ランド342b1の面内で接続される電力供給用コア貫通導体320bの中心位置を通る直線に対して半数が残り半数に対して線対称の位置に設けられており、複数の接地用貫通導体は、ランド341c1の面内で接続される接地用コア貫通導体320cの中心位置を通る直線に対して半数が残り半数に対して線対称の位置に設けられている。
このように、ランド341c1、342b1において電力供給用コア貫通導体320bや接地用コア貫通導体320cに対して複数の電力供給用貫通導体425bや接地用貫通導体224cが完全に等間隔で設けられていなくても、半分ずつが線対称に設けられている場合などには、同様に効率良く多数の電力供給用コア貫通導体320b及び接地用コア貫通導体320cを配列して設けることができる。
As described above, in the wiring board 1 of the modified example, the power supply through conductor 425b commonly connected to the power supply core through conductor 320b and the grounding through conductor commonly connected to the grounding core through conductor 320c. When the number of 224c is even, half of the plurality of power supply through conductors 224b is the other half of the straight line passing through the center position of the power supply core through conductor 320b connected in the plane of the land 342b1. On the other hand, half of the plurality of grounding through conductors are provided at line-symmetrical positions with respect to the straight line passing through the center position of the grounding core through conductor 320c connected in the plane of the land 341c1 with respect to the other half. It is provided at a line-symmetrical position.
As described above, in the lands 341c1 and 342b1, a plurality of power supply through conductors 425b and grounding through conductors 224c are not completely provided at equal intervals with respect to the power supply core through conductor 320b and the grounding core through conductor 320c. However, when the halves are provided line-symmetrically, a large number of power supply core through conductors 320b and grounding core through conductors 320c can be provided in an array in the same manner.

また、電力供給用のランド342b1及び接地用のランド341c1は、平面視で投影して見た場合に、同一形状かつ90度異なる向きで設けられている。4個の電力供給用貫通導体425bや接地用貫通導体224cなどが線対称に配置されている場合、ランド341c1、342b1を対称軸について互いに90度回転させた位置関係で配置させることで、効率良く複数のランドを詰めて配置し、多くの電力供給用コア貫通導体320b及び接地用コア貫通導体320cを配線基板1に配置することができる。 Further, the land 342b1 for power supply and the land 341c1 for grounding are provided with the same shape and 90 degrees different directions when projected in a plan view. When four power supply through conductors 425b and grounding through conductors 224c are arranged line-symmetrically, lands 341c1 and 342b1 are efficiently arranged in a positional relationship rotated by 90 degrees with respect to the axis of symmetry. A plurality of lands can be packed and arranged, and many power supply core through conductors 320b and grounding core through conductors 320c can be arranged on the wiring board 1.

なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、正方格子の格子点上に各貫通導体を配列させた例について説明したが、格子の縦横間隔が異なる矩形格子の格子点上や、六角格子の格子点上に各貫通導体が配列された同一形状及び同一の角度方向のランド配置がなされてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, an example in which each through conductor is arranged on the lattice points of a square lattice has been described, but each of them is on a lattice point of a rectangular lattice having different vertical and horizontal intervals of the lattice or on a lattice point of a hexagonal lattice. Land arrangements of the same shape and the same angular direction in which the through conductors are arranged may be made.

また、上記実施の形態では、一個の電力供給用コア貫通導体320b及び接地用コア貫通導体320cに対して各々4個ずつの電力供給用貫通導体425b及び接地用貫通導体224cが接続されたが、6個などの他の数であってもよく、あるいは、3個などの奇数個であってもよい。これらの場合には、適切な格子形状が選択されればよく、あるいは、各貫通導体の配置は、変形例と同様に格子点上の配置に限られなくてもよい。 Further, in the above embodiment, four power supply through conductors 425b and a ground through conductor 224c are connected to one power supply core through conductor 320b and a grounding core through conductor 320c, respectively. It may be another number such as 6, or it may be an odd number such as 3. In these cases, an appropriate lattice shape may be selected, or the arrangement of each through conductor may not be limited to the arrangement on the lattice points as in the modified example.

また、上記実施の形態では、電力供給用コア貫通導体320bに接続される電力供給用貫通導体425bと接地用コア貫通導体320cに接続される接地用貫通導体224cとを同一の相対位置関係又は角度のみを異ならせて配置することとしたが、異なる形状であってもよい。 Further, in the above embodiment, the power supply through conductor 425b connected to the power supply core through conductor 320b and the grounding through conductor 224c connected to the grounding core through conductor 320c have the same relative positional relationship or angle. Although it was decided to arrange only different shapes, different shapes may be used.

また、上記実施の形態では、シグナルパッド211aが電力供給パッド211b及び接地パッド211cをほぼ包囲するように配置されている場合に、シグナルパッド211aからシグナル出力パッド418aへの信号経路上のシグナル用コア貫通導体320aを配線基板1の周縁部付近に再配置して空いた当該配線基板1の中央付近のスペースを利用した場合を例に挙げて説明したが、信号経路はこれに限られるものではなく、シグナルパッド211aの数や初期配置などに応じて適宜な場所にランド341c、342b、電力供給用コア貫通導体320bや接地用コア貫通導体320cを配置することができる。 Further, in the above embodiment, when the signal pad 211a is arranged so as to substantially surround the power supply pad 211b and the ground pad 211c, the signal core on the signal path from the signal pad 211a to the signal output pad 418a. The case where the through conductor 320a is rearranged near the peripheral edge of the wiring board 1 and the space near the center of the wiring board 1 is used has been described as an example, but the signal path is not limited to this. Lands 341c and 342b, the power supply core penetrating conductor 320b, and the grounding core penetrating conductor 320c can be arranged at appropriate locations according to the number of signal pads 211a and the initial arrangement.

また、上記実施の形態では、コア基板30の上下のビルドアップ層20、40における配線層の数を等しく説明したが、シグナルパッド211aの数などに応じて異なる数、例えば、ビルドアップ層20における配線層数のほうがビルドアップ層40における配線層数より多く形成されていてもよい。 Further, in the above embodiment, the numbers of the wiring layers in the upper and lower build-up layers 20 and 40 of the core substrate 30 have been described equally, but different numbers depending on the number of signal pads 211a and the like, for example, in the build-up layer 20. The number of wiring layers may be larger than the number of wiring layers in the build-up layer 40.

また、上記実施の形態では、4つの凹部に1つずつ凸部が組み合わされ、変形例では、2つの大きな凹部に2つずつ凸部が組み合わされることとしたが、全ての凸部と凹部とが組み合わされなくてもよい。すなわち、凸部のうち一部が凹部と組み合わされずに配置されてもよい。変形例では、小さな凹部が凸部とは組み合わされていない。 Further, in the above embodiment, one convex portion is combined with each of the four concave portions, and in the modified example, two convex portions are combined with each of the two large concave portions. Do not have to be combined. That is, a part of the convex portion may be arranged without being combined with the concave portion. In the modified example, the small recesses are not combined with the protrusions.

また、ここで、組み合わせるとは、一方の凹部の内部に他方の凸部の少なくとも一部が入り込んで(挿入されて)いるものに限られない。凹部が狭い(細い)場合や、形状が必ずしも単純でない場合など、また、平面視位置で凸部と凹部との間に最低限の絶縁部分が必要な場合において、凸部が内部に入り込まずともその凹凸形状に応じて相対配置可能な範囲で近接されて配置されるものが、ここでは組み合わせに含まれる。具体的には、ランドの他の部分と比較して組み合わされる凹凸部分の少なくとも一部が隣り合うランド間で最も狭い間隔となる場合や、凹凸部分の中で最も間隔の広い部分の当該間隔が、最小間隔部分に比して所定の比率以下に抑えられたりすることで、組み合わせを行わない場合よりも接地用コア貫通導体320c及び電力供給用コア貫通導体320bの配列間隔を狭めることができる配置パターンの場合などが挙げられる。凸部内部に凹部が入り込み得るか否かは、狭い間隔(絶縁幅)の大きさや凹凸部分のサイズ、曲率などによって定まる。 Further, the combination here is not limited to the case where at least a part of the other convex portion is inserted (inserted) into the inside of one concave portion. Even if the concave part does not get inside when the concave part is narrow (thin), the shape is not always simple, or when the minimum insulating part is required between the convex part and the concave part in the plan view position. Here, the combination includes those that are arranged close to each other within a range in which they can be arranged relative to each other according to the uneven shape. Specifically, when at least a part of the uneven parts to be combined as compared with other parts of the lands has the narrowest distance between adjacent lands, or when the distance between the widest parts of the uneven parts is the same. By suppressing the ratio to a predetermined ratio or less compared to the minimum spacing portion, the arrangement spacing of the grounding core penetrating conductor 320c and the power supply core penetrating conductor 320b can be narrowed as compared with the case where no combination is performed. For example, in the case of a pattern. Whether or not the concave portion can enter the inside of the convex portion is determined by the size of the narrow interval (insulation width), the size of the uneven portion, the curvature, and the like.

また、上記実施の形態で具体的に示した配置パターンなどと、変形例で具体的に示した配置パターンなどは、互いに矛盾したり効果を相殺したりしない限りにおいて任意に組み合わせて用いられてよい。
その他、上記実施の形態で示した構成、構造や配線などの具体的な細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
Further, the arrangement pattern specifically shown in the above embodiment and the arrangement pattern specifically shown in the modified example may be used in any combination as long as they do not contradict each other or cancel the effects. ..
In addition, specific details such as the configuration, structure, and wiring shown in the above embodiment can be appropriately changed without departing from the spirit of the present invention.

1 配線基板
10、50 ソルダーレジスト層
20、40 ビルドアップ層
200 中央領域
211 電極パッド
211a シグナルパッド
211b 電力供給パッド
211c 接地パッド
212a〜212c、213a〜213c、214a〜214c 接続位置
221 貫通導体
221a〜224a、425a〜428a シグナル用貫通導体
221b〜224b、425b〜428b 電力供給用貫通導体
221c〜224c、425c〜428c 接地用貫通導体
231、233、331、435、437 供給電圧面
232、234、332、436、438 接地面
24b、24c グループ
25 配線
415a〜415c、416a〜416c、417a〜417c 接続位置
418 出力パッド
418a シグナル出力パッド
418b 電力供給出力パッド
418c 接地出力パッド
30 コア基板
311a〜311c、312a〜312c 接続位置
320a シグナル用コア貫通導体
320b 電力供給用コア貫通導体
320c 接地用コア貫通導体
341c、341c1、342b、342b1 ランド
I1〜I8、I31 絶縁層
L1〜L8 配線層
L31 上側導体層
L32 下側導体層
1 Wiring board 10, 50 Solder resist layer 20, 40 Build-up layer 200 Central region 211 Electrode pad 211a Signal pad 211b Power supply pad 211c Ground pad 212a to 212c, 213a to 213c, 214a to 214c Connection position 221 Through conductor 221a to 224a 425a to 428a Signal penetrating conductors 221b to 224b, 425b to 428b Power supply penetrating conductors 221c to 224c, 425c to 428c Grounding through conductors 231, 233, 331, 435, 437 Supply voltage planes 232, 234, 332, 436 438 Ground plane 24b, 24c Group 25 Wiring 415a to 415c, 416a to 416c, 417a to 417c Connection position 418 Output pad 418a Signal output pad 418b Power supply output pad 418c Ground output pad 30 Core board 311a to 311c, 312a to 312c Connection Position 320a Signal core through conductor 320b Power supply core through conductor 320c Grounding core through conductor 341c, 341c1, 342b, 342b1 Lands I1 to I8, I31 Insulation layer L1 to L8 Wiring layer L31 Upper conductor layer L32 Lower conductor layer

Claims (3)

コア基板と、
該コア基板を貫通し、第1の正方格子の縦横の格子点上に交互に位置する複数の電力供給用コア貫通導体および複数の接地用コア貫通導体と、
前記コア基板の第1の面上に設けられ、前記電力供給用コア貫通導体を中心とする第1の正方形の4頂点に位置する第1の接続位置と、
前記第1の面上に設けられ、前記接地用コア貫通導体を中心とする第2の正方形の4頂点に位置する第2の接続位置と、
前記第1の面上に位置し、前記電力供給用コア貫通導体から前記第1の接続位置にかけて延在する十字形状の電力供給用導体面と、
前記電力供給用導体面を囲むととともに、前記接地用コア貫通導体上および前記第2の接続位置上を含んで前記第1の面上に位置する接地面と、
前記第1の面に積層されており、前記電力供給用導体面、および前記接地面を覆う絶縁層と、
該絶縁層を貫通し、前記第1の接続位置で前記電力供給用導体面に接続されている電力供給用貫通導体と、
前記絶縁層を貫通し、前記第2の接続位置で前記接地面に接続されている接地用貫通導体と、
を具備し、
前記第1の正方格子において対角に位置する前記電力供給用コア貫通導体同士は、前記第1の正方形の一方の対角線を1.5倍するとともに他方の対角線を0.5倍した相対位置に配置されているとともに、前記第1の正方格子において対角に位置する前記接地用コア貫通導体同士は、前記第2の正方形の一方の対角線を1.5倍するとともに他方の対角線を0.5倍した相対位置に配置されている、
線基板。
With the core board
A plurality of power supply core through conductors and a plurality of grounding core through conductors that penetrate the core substrate and are alternately located on the vertical and horizontal grid points of the first square lattice.
A first connection position provided on the first surface of the core substrate and located at four vertices of the first square centered on the power supply core penetrating conductor, and
A second connection position provided on the first surface and located at four vertices of the second square centered on the grounding core penetrating conductor, and
A cross-shaped power supply conductor surface located on the first surface and extending from the power supply core penetrating conductor to the first connection position.
A grounding surface that surrounds the power supply conductor surface and is located on the first surface including the grounding core penetrating conductor and the second connection position.
An insulating layer laminated on the first surface and covering the power supply conductor surface and the ground plane,
A power supply through conductor that penetrates the insulating layer and is connected to the power supply conductor surface at the first connection position,
A grounding through conductor that penetrates the insulating layer and is connected to the grounding surface at the second connection position.
Equipped with
The power supply core penetrating conductors located diagonally in the first square lattice are at relative positions obtained by multiplying one diagonal of the first square by 1.5 and multiplying the other diagonal by 0.5. The grounding core through conductors that are arranged and diagonally located in the first square lattice are 1.5 times the diagonal line of one of the second squares and 0.5 diagonal lines of the other. It is placed in a doubled relative position,
Wiring board.
前記第1の面と反対側の第2の面上に、前記電力供給用導体面と同一形状かつ同一の角度配置で前記接地用コア貫通導体に繋がる接地用導体面が位置しており、前記電力供給用導体面及び前記接地用導体面は、平面視で投影して見た場合に、一方の十字形状における凸部分が他方の十字形状における凹部分と少なくとも一部で組み合わされた配置パターンで設けられている請求項記載の配線基板。 On the second surface opposite to the first surface, a grounding conductor surface connected to the grounding core penetrating conductor is located in the same shape and at the same angle arrangement as the power supply conductor surface. The power supply conductor surface and the grounding conductor surface have an arrangement pattern in which the convex portion in one cross shape is at least partially combined with the concave portion in the other cross shape when projected in a plan view. wiring board according to claim 1, wherein is provided. 面視で投影して見た場合に、1つの前記電力供給用コア貫通導体、2つの前記電力供給用貫通導体および1つの前記接地用貫通導体と、1つの前記接地用コア貫通導体、2つの前記接地用貫通導体および1つの前記電力供給用貫通導体と、2つの前記電力供給用貫通導体および2つの前記接地用貫通導体とのそれぞれが第2の正方格子の縦横の格子点上に配置されている、請求項1又は2記載の配線基板。 When viewed by projecting flat face view, one of the power supply core through conductors, two of the the power supply through-conductors and one of the ground vias, one of the grounding core through conductors, 2 One of the grounding through conductors and one of the power supply through conductors, and two of the power supply through conductors and two of the grounding through conductors are arranged on the vertical and horizontal grid points of the second square lattice. The wiring board according to claim 1 or 2.
JP2017164535A 2017-08-29 2017-08-29 Wiring board Active JP6938278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017164535A JP6938278B2 (en) 2017-08-29 2017-08-29 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017164535A JP6938278B2 (en) 2017-08-29 2017-08-29 Wiring board

Publications (2)

Publication Number Publication Date
JP2019046824A JP2019046824A (en) 2019-03-22
JP6938278B2 true JP6938278B2 (en) 2021-09-22

Family

ID=65814608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017164535A Active JP6938278B2 (en) 2017-08-29 2017-08-29 Wiring board

Country Status (1)

Country Link
JP (1) JP6938278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465823B2 (en) 2021-01-29 2024-04-11 京セラ株式会社 Wiring Board

Also Published As

Publication number Publication date
JP2019046824A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US7051434B2 (en) Designing a ball assignment for a ball grid array package
US6310398B1 (en) Routable high-density interfaces for integrated circuit devices
JP6730960B2 (en) Wiring board
US10993321B2 (en) Wiring substrate
JPH0230200B2 (en)
JP2003188508A (en) Printed circuit board, surface-mount circuit component, and circuit module
JP6272173B2 (en) Wiring board
JP6938278B2 (en) Wiring board
US7282796B2 (en) Electronic assembly having a more dense arrangement of contacts that allows for routing of traces to the contacts
JP2001085465A (en) Semiconductor device
KR20010021191A (en) Multilayer circuit board
US6591410B1 (en) Six-to-one signal/power ratio bump and trace pattern for flip chip design
US6774498B2 (en) Flip-chip package substrate
US7884478B2 (en) Semiconductor apparatus
KR101033169B1 (en) Multilayer wiring board
JP3896038B2 (en) Multilayer semiconductor module
CA2305977A1 (en) Connection method and structure to printed circuit board
JP6924654B2 (en) Wiring board
KR20180069629A (en) Semiconductor device
US7196908B2 (en) Dual pitch contact pad footprint for flip-chip chips and modules
JP6863852B2 (en) Wiring board for probe card
JP2021086897A (en) Semiconductor device
JP6652302B2 (en) Printed wiring board, printed circuit board and electronic equipment
US7825496B2 (en) Semiconductor device having a filling pattern around a storage structure and method of forming the same
JP6817906B2 (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150