JP6937539B1 - 組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム - Google Patents

組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム Download PDF

Info

Publication number
JP6937539B1
JP6937539B1 JP2021531781A JP2021531781A JP6937539B1 JP 6937539 B1 JP6937539 B1 JP 6937539B1 JP 2021531781 A JP2021531781 A JP 2021531781A JP 2021531781 A JP2021531781 A JP 2021531781A JP 6937539 B1 JP6937539 B1 JP 6937539B1
Authority
JP
Japan
Prior art keywords
optimization
variable
analysis
value
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021531781A
Other languages
English (en)
Other versions
JPWO2021187233A1 (ja
Inventor
真之 大関
真之 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Application granted granted Critical
Publication of JP6937539B1 publication Critical patent/JP6937539B1/ja
Publication of JPWO2021187233A1 publication Critical patent/JPWO2021187233A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Business, Economics & Management (AREA)
  • Remote Sensing (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

複数の移動体と路とを有する系における滞りの度合を表す関数であり第1変数及び第2変数で表される関数における第2変数を固定して度合を極小値にする第1変数の値を取得する第1最適化処理実行部と、第1変数を固定して度合を極小値にする第2変数の値を取得する第2最適化処理実行部と、終了条件が満たされるまで第1最適化処理実行部と第2最適化処理実行部とに交互に処理を実行させる統合制御部とを備え、第1最適化処理実行部は第2最適化処理実行部が取得した第2変数の値を用い、第2最適化処理実行部は第1最適化処理実行部が取得した第1変数の値を用い、第1変数は路の隣接する分岐点間の区間を移動体が通過する回数の多さを示し、第2変数は移動体の経路の候補を示す組合せ最適化問題処理システム。

Description

本発明は、組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラムに関する。
本願は、2020年3月16日に、日本に出願された特願2020−045766号に基づき優先権を主張し、その内容をここに援用する。
近年、交通渋滞を解消するための経路を見つけることや津波が起きた際の最適な避難経路を見つけること等の、複数の移動体と各移動体が通過する路とを有する解析対象の系において移動の滞りが起きる確率の低い経路の候補を知ることに関心が高まっている(非特許文献1参照)。これまで、このような経路の候補は解析対象の系における移動の滞りの度合を表す数理モデルに対して最適化を行うことで得られている。
Masayuki Ohzeki, Akira Miki, Masamichi J. Miyama, Masayoshi Terabe, "Control of automated guided vehicles without collision by quantum annealer and digital devices", Front. Comput. Sci., 19 (2019)
しかしながらこれまでは解析対象の系における移動の滞りの度合を表す数理モデルが必ずしも適切でないために、解析結果にしたがって経路を活用したとしても、解析結果が示すほどの効果が得られない場合があった。このように、これまでは解析結果が有用では無い場合があった。
上記事情に鑑み、本発明は、複数の移動体と各移動体が通過する路とを有する系に対する移動の滞りに関する解析結果の有用性を高める技術を提供することを目的としている。
本発明の一態様は、複数の移動体と各前記移動体が通過する路とを有する解析対象の系における前記移動体の移動の滞りの度合を表す関数であって第1変数と第2変数との2つの変数で表される関数である解析関数における第2変数の値を固定して前記度合を極小値にする前記第1変数の値を取得する最適化処理を実行する第1最適化処理実行部と、前記解析関数における第1変数の値を固定して前記度合を極小値にする前記第2変数の値を取得する最適化処理を実行する第2最適化処理実行部と、所定の終了条件が満たされるまで、前記第1最適化処理実行部と前記第2最適化処理実行部とに交互に最適化処理を実行させる統合制御部と、を備え、前記第1最適化処理実行部は、前記第2変数の値として前記第2最適化処理実行部が取得した前記第2変数の値を取得し、前記第2最適化処理実行部は、前記第1変数の値として前記第1最適化処理実行部が取得した前記第1変数の値を取得し、前記第1変数は前記路の一部の区間であって前記路の隣接する分岐点間の区間である分割区間を前記移動体が通過する回数の多さを示す区間通過指標であり、前記第2変数は前記移動体の経路の候補を示す選択経路指標である、組合せ最適化問題処理システムである。
本発明の一態様は、上記の組合せ最適化問題処理システムであって、前記第2最適化処理実行部は、量子アニーリングによって前記第1変数の値を取得する。
本発明の一態様は、複数の移動体と各前記移動体が通過する路とを有する解析対象の系における前記移動体の移動の滞りの度合を表す関数であって第1変数と第2変数との2つの変数で表される関数である解析関数における第2変数の値を固定して前記度合を極小値にする前記第1変数の値を取得する最適化処理を実行する第1最適化処理実行ステップと、前記解析関数における第1変数の値を固定して前記度合を極小値にする前記第2変数の値を取得する最適化処理を実行する第2最適化処理実行ステップと、所定の終了条件が満たされるまで、前記第1最適化処理実行ステップと前記第2最適化処理実行ステップとを交互に実行させる統合制御ステップと、を有し、前記第1最適化処理実行ステップにおいては、前記第2変数の値として前記第2最適化処理実行ステップにおいて取得された前記第2変数の値が取得され、前記第2最適化処理実行ステップにおいては、前記第1変数の値として前記第1最適化処理実行ステップにおいて取得された前記第1変数の値が取得され、前記第1変数は前記路の一部の区間であって前記路の隣接する分岐点間の区間である分割区間を前記移動体が通過する回数の多さを示す区間通過指標であり、前記第2変数は前記移動体の経路の候補を示す選択経路指標である、組合せ最適化問題処理方法である。
本発明の一態様は、上記の組合せ最適化問題処理システムとしてコンピュータを機能させるためのプログラムである。
本発明により、複数の移動体と各移動体が通過する路とを有する系に対する移動の滞りに関する解析結果の有用性を高める技術を提供することが可能となる。
実施形態の組合せ最適化問題処理システム100の概要を説明する説明図。 実施形態における組合せ最適化問題処理システム100の構成の一例を示す図。 実施形態における選択経路指標取得部24の構成の一例を示す図。 実施形態における制御部10の機能構成の一例を示す図。 実施形態における制御部20の機能構成の一例を示す図。 実施形態における組合せ最適化問題処理システム100が実行する処理の流れの一例を示す第1のフローチャート。 実施形態における組合せ最適化問題処理システム100が実行する処理の流れの一例を示す第2のフローチャート。 従来処理技術を用いて取得した解析結果情報の一例を示す図。 実施形態の組合せ最適化問題処理システム100を用いて取得した解析結果情報の一例を示す第1の図。 実施形態の組合せ最適化問題処理システム100を用いて取得した解析結果情報の一例を示す第2の図。
(実施形態)
図1は、実施形態の組合せ最適化問題処理システム100の概要を説明する説明図である。組合せ最適化問題処理システム100は、解析対象系を解析対象として解析する。解析対象系は、複数の移動体と各解析移動体が通過する路とを有する系である。以下、解析対象系が有する移動体を解析移動体という。
解析移動体は、例えば自動車である。解析移動体が自動車である場合、路は、例えば道路である。解析移動体は、例えば電車である。解析移動体が電車である場合、路は、例えば線路である。解析移動体は、例えば飛行機である。解析移動体が飛行機である場合、路は、例えば空路である。解析移動体は、必ずしも自走するものでなくてもよく、運ばれるものであってもよい。解析移動体は、例えば工場のベルトコンベアで運ばれる生産対象であってもよい。解析移動体が工場のベルトコンベアで運ばれる生産対象である場合、路は、例えばベルトコンベアである。路は必ずしも物理的な実態である必要はない。路は、例えば工場の生産ラインであってもよい。このような場合、解析移動体は、例えば生産ラインで生産される生産対象である。以下、解析対象系が有する路を解析路という。
以下、説明の簡単のため、解析対象が自動車であって、解析路が道路である場合を例に組合せ最適化問題処理システム100を説明する。このような場合、解析対象系は、例えば交差点を有する複数の道路が存在する地域を複数の自動車が通過する系である。
解析対象系において解析移動体が出発する位置(以下「解析出発位置」という。)は解析移動体ごとに異なってもよいし同一であってもよい。また、解析対象系において各解析移動体の到達点(以下「解析到達位置」という。)も解析移動体ごとに異なってもよいし同一であってもよい。解析出発位置と解析到達位置とを結ぶ全ての解析路は、各解析移動体が通過する可能性のある解析路である。以下、解析出発位置と解析到達位置とを区別しない場合、端点位置という。
図1における移動体K1、K2及びK3は、それぞれ解析移動体の一例である。図1において、位置P1−1、位置P2−1及び位置P3−1は解析出発位置の一例である。図1において、位置P1−2、位置2−2及び位置P3−2は解析到達位置の一例である。
位置P1−1は移動体K1の解析出発位置を示し、位置P1−2は移動体K1の解析到達位置を示す。位置P2−1は移動体K2の解析出発位置を示し、位置P2−2は移動体K2の解析到達位置を示す。位置P3−1は移動体K3の解析出発位置を示し、位置P3−2は移動体K3の解析到達位置を示す。
組合せ最適化問題処理システム100は解析対象系の解析により、解析結果情報を取得する。解析結果情報は、解析対象系における解析移動体の移動の滞りの度合(以下「滞り度合」という。)を極小値にする各解析移動体の経路の候補を示す情報である。
滞り度合は、例えば解析対象系において渋滞が発生する確率である。滞り度合は、例えば解析路が工場の生産ラインであり解析移動体が工場の生産ラインで運ばれる生産対象である場合、例えば生産ライン上を搬送される生産対象が生産ライン上で滞留する時間である。
組合せ最適化問題処理システム100は、具体的には、滞り度合を表現する関数(以下「解析関数」という。)を用いて、解析結果情報を取得する。
解析関数は、第1変数と第2変数とを用いて表された関数である。第1変数は、区間通過指標である。区間通過指標は、分割区間の1つに対応付けられた指標であり対応する分割区間を解析移動体が通過する回数の多さを示す指標である。区間通過指標の1つは1つの分割区間に対応付けられている。異なる区間通過指標は異なる分割区間に対応付けられている。分割区間は、解析路の一部の区間であって解析路上の隣接する分岐点間の区間である。分岐点は、解析路が交差する位置である。例えば解析路が道路である場合、分岐点は道路の交差点である。図1における分割区間L101は、分割区間の一例である。
区間通過指標は、回数の多さとして、例えば対応する分割区間が使用されるか否かを示す。このような場合、区間通過指標は、例えば0又は1の値で表される。このような場合、区間通過指標が0とは、対応する分割区間が使用されない(すなわち解析移動体が通過する回数が0である)ことを示す。また、区間通過指標が1とは、対応する分割区間が使用される(すなわち解析移動体が通過する回数が0より大きい)ことを示す。以下説明の簡単のため、このような、区間通過指標が0又は1の値によって対応する分割区間が使用されるか否かを示す場合を例に組合せ最適化問題処理システム100を説明する。
第2変数は、選択経路指標である。選択経路指標は、解析移動体の経路の候補(以下「解析経路候補」という。)を示す。選択経路指標は、例えば0又は1の値によって解析経路候補を示す。このような場合、0が解析経路候補ではない解析路を示し1が解析経路候補である解析路を示してもよいし、0が解析経路候補である解析路を示し1が解析経路候補ではない解析路を示してもよい。以下説明の簡単のため、選択経路指標がこのような0又は1の値によって解析経路候補を示す場合であって0が解析経路候補ではない解析路を示し1が解析経路候補である解析路を示す場合を例に組合せ最適化問題処理システム100を説明する。
解析経路候補は、具体的には、第2最適化処理の次に実行される第1最適化処理においては、直前の第2最適化処理において第2最適化条件を満たした選択経路指標が示す解析路である。第1最適化処理、第2最適化処理及び第2最適化条件については後述する。また、解析初期条件として選択経路指標の初期値が与えられる場合における解析経路候補は、選択経路指標の初期値が示す解析路である。解析初期条件については後述する。
以下の式(1)は、解析関数の一例である。
Figure 0006937539
式(1)においてf(x|C)は、解析関数の値(以下「解析関数値」という。)である。式(1)においてμは、解析経路候補を識別するための識別子である。式(1)においてeは、分割区間を識別するための識別子である。式(1)においてiは、解析移動体を識別するための識別子である。式(1)においてNは1以上の整数である。式(1)においてMは、識別子iの解析移動体についての解析経路候補の集合を表す。
式(1)においてλは、所定の係数である。式(1)におけるCe、μは区間通過指標の一例である。式(1)におけるxμは選択経路指標の一例である。式(1)においてxは、式(1)の右辺の選択経路指標の集合である。式(1)においてCは、式(1)の右辺の区間通過指標の集合である。区間通過指標の集合は、具体的には、各要素がそれぞれ異なる1つの分割区間に対応付けられたテンソルであり各要素の値は対応する分割区間における区間通過指標を表すテンソルによって表現される。テンソルはベクトルであってもよい。
以下、説明の簡単のため、解析関数が式(1)で表される場合を例に組合せ最適化問題処理システム100を説明する。
組合せ最適化問題処理システム100は、所定の初期条件(以下「解析初期条件」という。)の元に第1最適化処理と第2最適化処理とを所定の終了条件が満たされるまで交互に繰り返し行うことで、解析結果情報を取得する。所定の終了条件(以下「解析終了条件」という。)は、例えば繰り返し回数が所定の回数に達したという条件である。以下、組合せ最適化問題処理システム100が第1最適化処理と第2最適化処理とを交互に繰り返し行う処理を自己無撞着処理という。
第1最適化処理は、選択経路指標を定数として扱い区間通過指標が変数である解析関数に対して実行される最適化処理である。最適化処理は、最適化を行う処理である。第2最適化処理は、区間通過指標を定数として扱い選択経路指標を変数として扱う解析関数に対して実行される最適化処理である。また、第1最適化処理における最適化の条件(以下「第1最適化条件」という。)は、滞り度合を極小値にするという条件である。第2最適化処理における最適化の条件(以下「第2最適化条件」という。)は、滞り度合を極小値にするという条件である。
そのため、第1最適化処理は、第2変数の値を固定して滞り度合を極小値にする第1変数の値を取得する最適化処理である。また、第2最適化処理は、第1変数の値を固定して滞り度合を極小値にする第2変数の値を取得する最適化処理である。
自己無撞着処理における1回目の最適化処理の実行後において、第1最適化処理の解析関数における区間通過指標は第2最適化処理の実行結果である。また、自己無撞着処理における1回目の最適化処理の実行後において、第2最適化処理の解析関数における選択経路指標は、第1最適化処理の実行結果である。自己無撞着処理における1回目の最適化処理は、第1最適化処理又は第2最適化処理のいずれか一方である。自己無撞着処理における1回目の最適化処理は、解析初期条件の元で実行される。
そのため自己無撞着処理は、区間通過指標及び選択経路指標を解析終了条件が満たされるまで更新する自己無撞着な処理である。
解析初期条件は、第1最適化処理又は第2最適化処理に関する初期条件であればどのような条件であってもよい。解析初期条件は、例えば選択経路指標の初期値を与える条件であってもよい。解析初期条件が選択経路指標の初期値を与える条件である場合、自己無撞着処理における1回目の最適化処理は第1最適化処理である。
解析初期条件は、例えば区間通過指標の初期値を与える条件である。解析初期条件が区間通過指標の初期値を与える条件である場合、自己無撞着処理における1回目の最適化処理は第2最適化処理である。
以下、説明の簡単のため解析初期条件が選択経路指標の初期値を与える条件である場合を例に組合せ最適化問題処理システム100を説明する。したがって、以下、自己無撞着処理における1回目の最適化処理が第1最適化処理である場合を例に組合せ最適化問題処理システム100を説明する。
以下の式(2)は、解析関数が式(1)である場合において、区間通過指標が満たす条件の一例である。
Figure 0006937539
式(2)においてνは、解析経路候補を識別するための識別子である。式(2)においてdは、解析経路候補を識別するための識別子である。式(2)においてDは、1以上の整数である。式(2)における{A}の左側の記号は、第1最適化処理によって取得する区間通過指標ベクトルはAの最小値を与えるCであることを意味する。式(2)においてαは、区間通過指標の最適化に関する所定の係数である。式(2)における以下の式(3)は式(1)の解析関数の第1最適化処理を経て得られた暫定的なxの結果を代入した関数を示す。暫定的なxとは、解析終了条件が満たされるまでの期間におけるxであって、直前の第1最適化処理の実行結果のxを意味する。
Figure 0006937539
上述したように第1最適化処理は選択経路指標を定数として扱い区間通過指標を変数として扱う解析関数に対して最適化を行う処理である。そのため、解析関数が式(1)である場合、第1最適化処理は式(2)を満たす区間通過指標を取得する処理である。
図2は、実施形態における組合せ最適化問題処理システム100の構成の一例を示す図である。組合せ最適化問題処理システム100は、大規模最適化装置1及び高速最適化装置2を備える。組合せ最適化問題処理システム100は、大規模最適化装置1及び高速最適化装置2によって自己無撞着処理を実行する。
大規模最適化装置1は、第1最適化処理を実行する。大規模最適化装置1は、バスで接続されたCPU(Central Processing Unit)等のプロセッサ91とメモリ92とを備える制御部10を備え、プログラムを実行する。大規模最適化装置1は、プログラムの実行によって制御部10、通信部11、記憶部12及びユーザインタフェース13を備える装置として機能する。
より具体的には、大規模最適化装置1は、プロセッサ91が記憶部12に記憶されているプログラムを読み出し、読み出したプログラムをメモリ92に記憶させる。プロセッサ91が、メモリ92に記憶させたプログラムを実行することによって、大規模最適化装置1は、制御部10、通信部11、記憶部12及びユーザインタフェース13を備える装置として機能する。
制御部10は、自装置(大規模最適化装置1)が備える各機能部の動作を制御する。制御部10は、例えば第1最適化処理の実行結果を記憶部12に記録する。制御部10は、例えば通信部11の動作を制御する。制御部10は、例えば通信部11の動作を制御して、高速最適化装置2に第1最適化処理の実行結果を送信する。
通信部11は、大規模最適化装置1を高速最適化装置2に接続するための通信インタフェースを含んで構成される。通信部11は、例えば通信先の高速最適化装置2に第1最適化処理の実行結果を送信する。通信部11は、例えば高速最適化装置2から第2最適化処理の実行結果を取得する。
通信部11は、例えば通信先の高速最適化装置2に解析初期条件を送信する。通信部11は、例えば通信先の高速最適化装置2に解析対象系情報を送信する。解析対象系情報は、解析対象系が有する解析移動体を示す情報と、各解析移動体の解析出発位置を示す情報と、各解析移動体の解析到達位置を示す情報と、解析路を示す情報とを含む解析対象系の情報である。解析路を示す情報は、解析路上の分岐点の位置を示す情報を含む。
記憶部12は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部12は大規模最適化装置1に関する各種情報を記憶する。記憶部12は、例えば大規模最適化装置1が備える各機能部の動作を制御するプログラムを予め記憶する。
記憶部12は、例えば予め解析関数を記憶する。記憶部12は、例えば解析初期条件を記憶する。記憶部12は、解析対象系情報を記憶する。記憶部12は、例えば選択経路指標を記憶する。記憶部12は、例えば区間通過指標を記憶する。
ユーザインタフェース13は、大規模最適化装置1に対する入力を受け付ける入力部131と大規模最適化装置1に関する各種情報を出力する出力部132とを備える。ユーザインタフェース13は、例えばタッチパネルである。入力部131は、自装置に対する入力を受け付ける。
入力部131は、例えばマウスやキーボード、タッチパネル等の入力端末である。入力部131は、例えばこれらの入力端末を自装置に接続するインタフェースとして構成されてもよい。入力部131が受け付ける入力は、例えば解析対象系情報である。
出力部132は、例えば液晶ディスプレイ、有機ELディスプレイ等の表示装置である。出力部132は、例えばこれらの表示装置を自装置に接続するインタフェースとして構成されてもよい。出力部132は、例えばスピーカー等の音声出力装置であってもよい。出力部132は、例えばこれらの音声出力装置を自装置に接続するインタフェースとして構成されてもよい。出力部132は、例えば入力部131に入力された情報を出力する。出力部132は、例えば第1最適化処理の実行結果を出力する。出力部132は、例えば解析結果情報を出力する。
高速最適化装置2は、第2最適化処理を実行する。高速最適化装置2は、第2最適化処理を実行可能な装置であればどのような装置であってもよい。高速最適化装置2は、例えば量子アニーリングによって第2最適化処理を実行する装置(以下「量子アニーリング装置」という。)であってもよい。以下、説明の簡単のため高速最適化装置2が量子アニーリング装置である場合を例に、組合せ最適化問題処理システム100を説明する。
高速最適化装置2は、バスで接続されたCPU等のプロセッサ93とメモリ94とを備える制御部20を備え、プログラムを実行する。高速最適化装置2は、プログラムの実行によって制御部20、通信部21、記憶部22、ユーザインタフェース23及び選択経路指標取得部24を備える装置として機能する。
より具体的には、高速最適化装置2は、プロセッサ93が記憶部22に記憶されているプログラムを読み出し、読み出したプログラムをメモリ94に記憶させる。プロセッサ93が、メモリ94に記憶させたプログラムを実行することによって、高速最適化装置2は、制御部20、通信部21、記憶部22、ユーザインタフェース23及び選択経路指標取得部24を備える装置として機能する。
制御部20は、自装置(高速最適化装置2)が備える各機能部の動作を制御する。制御部20は、例えば選択経路指標取得部24の動作を制御する。制御部20は、例えば第2最適化処理の実行結果を記憶部22に記録する。制御部20は、例えば通信部21の動作を制御する。制御部20は、例えば通信部21の動作を制御して、大規模最適化装置1に第2最適化処理の実行結果を送信する。
通信部21は、高速最適化装置2を大規模最適化装置1に接続するための通信インタフェースを含んで構成される。通信部21は、例えば通信先の大規模最適化装置1に第2最適化処理の実行結果を送信する。通信部21は、例えば大規模最適化装置1が送信した第1最適化処理の実行結果を受信する。
通信部21は、例えば通信先の大規模最適化装置1が送信した解析初期条件を受信する。通信部21は、例えば大規模最適化装置1が送信した解析対象系情報を受信する。
記憶部22は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部22は高速最適化装置2に関する各種情報を記憶する。記憶部22は、例えば高速最適化装置2が備える各機能部の動作を制御するプログラムを予め記憶する。
記憶部22は、例えば解析関数を記憶する。記憶部22は、例えば解析初期条件を記憶する。記憶部22は、解析対象系情報を記憶する。記憶部22は、例えば選択経路指標を記憶する。記憶部22は、例えば区間通過指標を記憶する。記憶部22が記憶する解析関数は、予め記憶されたものでもよいし、通信部21を介して大規模最適化装置1の記憶部12から読み出されたものであってもよい。
ユーザインタフェース23は、高速最適化装置2に対する入力を受け付ける入力部231と高速最適化装置2に関する各種情報を出力する出力部232とを備える。ユーザインタフェース23は、例えばタッチパネルである。
入力部231は、自装置に対する入力を受け付ける。入力部231は、例えばマウスやキーボード、タッチパネル等の入力端末である。入力部231は、例えばこれらの入力端末を自装置に接続するインタフェースとして構成されてもよい。
出力部232は、例えば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の表示装置である。出力部232は、例えばこれらの表示装置を自装置に接続するインタフェースとして構成されてもよい。出力部232は、例えばスピーカー等の音声出力装置であってもよい。出力部232は、例えばこれらの音声出力装置を自装置に接続するインタフェースとして構成されてもよい。出力部232は、例えば入力部231に入力された情報を出力する。出力部232は、例えば第2最適化処理の実行結果を出力する。出力部232は、例えば解析結果情報を出力する。
選択経路指標取得部24は、ハミルトニアンが解析ハミルトニアンである量子系に対して量子アニーリングを実行することで第2最適化条件を満たす選択経路指標を取得する。解析ハミルトニアンは、解析関数における区間通過指標が定数であり選択経路指標が変数である関数で表されるハミルトニアンである。
図3は、実施形態における選択経路指標取得部24の構成の一例を示す図である。選択経路指標取得部24は、量子ビット体410、断熱制御部420、測定装置430及び適合指標取得部440を備える。
量子ビット体410は、複数の量子ビット411を有する。量子ビット体410は、例えば量子ドットを有する半導体基板である。このような場合、量子ビット411は、例えば量子ドット中の電子のスピンである。量子ビット体410は、窒素欠陥を有するダイヤモンド基盤であってもよい。このような場合、量子ビット411は、例えば窒素欠陥中の電子のスピンである。量子ビット体410は、超電導回路であってもよい。このような場合、量子ビット411は、例えば超電導量子ビットである。量子ビット体410は量子系の一例である。
量子ビット体410の量子状態は、区間通過指標の変化に応じて値が変化する物理量(以下「区間通過物理量」という。)と選択経路指標の変化に応じて値が変化する物理量(以下「選択経路物理量」という。)とによって表される。区間通過物理量は、例えばスピンのX成分であり、選択経路物理量はスピンのZ成分である。
断熱制御部420は、制御部20の制御によって動作する。断熱制御部420は、量子ビット体410の量子状態を、ハミルトニアンが解析ハミルトニアンで表される量子状態であるように制御する。また、断熱制御部420は、ハミルトニアンが解析ハミルトニアンで表される量子ビット体410の量子状態を断熱的に変化させる。
より具体的には、断熱制御部420は、区間通過物理量を変化させず選択経路物理量を断熱的に変化させることで、ハミルトニアンが解析ハミルトニアンで表される量子ビット体410の量子状態を断熱的に変化させる。断熱制御部420は、例えば量子ビット体410に対して断熱的に変化する横磁場を印加することで選択経路物理量だけを断熱的に変化させる。量子ビット体410の量子状態とは、具体的には、量子ビット体410が含む全ての量子ビット411から成る複合量子系の量子状態である。
測定装置430は、制御部20の制御によって動作し、量子ビット体410の量子状態を測定する。測定装置430は、量子ビット体410の量子状態を取得可能であればどのようなものであってもよい。測定装置430は、例えば磁束計を備える装置であって磁束計によって量子ビット体410の量子状態を測定する装置である。測定装置430は、例えばレーザーと光センサとを備える装置であってレーザーによって照射した光の散乱や反射等を光センサで受光することによって量子ビット体410の量子状態を測定する装置であってもよい。
適合指標取得部440は、CPU等のプロセッサ441とメモリ442とを備えプログラムを実行する。適合指標取得部440は、プログラムの実行により、測定装置430の測定結果に基づいて第2最適化条件を満たす選択経路指標を取得する。例えば解析関数値が極小値という条件が第2最適化条件である場合、適合指標取得部440は解析ハミルトニアンが極小値であるとき(すなわち量子ビット体410の量子状態が基底状態にあるとき)の選択経路指標を取得する。適合指標取得部440の動作は、制御部20によって制御される。
図4は、実施形態における制御部10の機能構成の一例を示す図である。制御部10は、通信制御部101、入力制御部102、出力制御部103、第1最適化処理実行部104、外部情報取得部105、記録部106、初期条件取得部107及び統合制御部108を備える。
通信制御部101は、通信部11の動作を制御する。入力制御部102は、入力部131の動作を制御する。出力制御部103は、出力部132の動作を制御する。第1最適化処理実行部104は、第1最適化処理を実行する。外部情報取得部105は、入力部131又は通信部11を介して入力された情報を取得する。
記録部106は、大規模最適化装置1に関する各種情報を記憶部12に記録する。記録部106は、例えば外部情報取得部105が取得した情報を記憶部12に記録する。記録部106は、例えば第1最適化処理実行部104による第1最適化処理の実行結果である第1最適化条件を満たす区間通過指標を記憶部12に記録する。
初期条件取得部107は、解析初期条件を取得する。初期条件取得部107は、例えば解析対象系情報に基づき解析初期条件を取得する。初期条件取得部107が解析初期条件を取得する方法は、解析初期条件を取得可能であればどのような方法であってもよい。初期化条件を取得する方法は、例えば解析出発位置と解析到達位置とを結ぶ直線との違いの小ささが1番目に小さい解析路からQ番目に小さい解析路までの各解析路を示す各選択経路指標の値を1とする方法である。Qは1以上の整数である。
統合制御部108は、大規模最適化装置1及び高速最適化装置2の動作を制御し、組合せ最適化問題処理システム100に自己無撞着処理を実行させる。具体的には、統合制御部108は、解析終了条件が満たされたか否かを判定する。統合制御部108は、第1最適化処理の実行後に解析終了条件が満たされていない場合、第1最適化処理の実行後に後述する第2最適化処理実行部204に第2最適化処理を実行させる。統合制御部108は、第2最適化処理の実行後に解析終了条件が満たされていない場合、第2最適化処理の実行後に第1最適化処理実行部104に第1最適化処理を実行させる。
このように、統合制御部108は、解析終了条件が満たされるまで、第1最適化処理実行部104と第2最適化処理実行部204とに交互に最適化処理を実行させる。
図5は、実施形態における制御部20の機能構成の一例を示す図である。制御部20は、通信制御部201、入力制御部202、出力制御部203、第2最適化処理実行部204、外部情報取得部205及び記録部206を備える。
通信制御部201は、通信部21の動作を制御する。入力制御部202は、入力部231の動作を制御する。出力制御部203は、出力部232の動作を制御する。第2最適化処理実行部204は、選択経路指標取得部24の動作を制御し第2最適化処理を実行する。外部情報取得部205は、入力部231又は通信部21を介して入力された情報を取得する。
記録部206は、高速最適化装置2に関する各種情報を記憶部22に記録する。記録部206は、例えば外部情報取得部205に入力された情報を記憶部22に記録する。記録部206は、例えば選択経路指標取得部24が取得した第2最適化条件を満たす選択経路指標を記憶部22に記録する。
図6及び図7を用いて、組合せ最適化問題処理システム100が実行する処理の流れの一例を説明する。以下、説明の簡単のため、出力部132が表示装置である場合を例に組合せ最適化問題処理システム100を説明する。
図6は、実施形態における組合せ最適化問題処理システム100が実行する処理の流れの一例を示す第1のフローチャートである。図7は、実施形態における組合せ最適化問題処理システム100が実行する処理の流れの一例を示す第2のフローチャートである。
入力部131に解析対象系情報が入力される(ステップS101)。次に、外部情報取得部105が解析対象系情報を取得する(ステップS102)。
次に、初期条件取得部107が、解析対象系情報に基づき解析初期条件を取得する(ステップS103)。第1最適化処理実行部104が解析初期条件の元で第1最適化処理を実行する(ステップS104)。ステップS104の処理によって、第1最適化処理実行部104は第1最適化条件を満たす区間通過指標を取得する。
ステップS104の次に、解析終了条件が満たされたか否かを統合制御部108が判定する(ステップS105)。解析終了条件が満たされた場合(ステップS105:YES)、出力制御部103が出力部132の動作を制御して出力部132に解析結果情報を表示させる(ステップS106)。ステップS106の処理で表示される解析結果情報は、ステップS103の処理で取得された解析初期条件が示す選択経路指標とステップS104の処理で取得された区間通過指標とである。
解析終了条件が満たされない場合(ステップS105:NO)、通信制御部101が通信部11の動作を制御して、高速最適化装置2にステップS104の処理で取得された区間通過指標を送信する(ステップS107)。
次に、高速最適化装置2が備える外部情報取得部205が通信部21を介して大規模最適化装置1から送信された区間通過指標を取得する(ステップS108)。
次に、第2最適化処理実行部204が解析関数における区間通過指標を直前に実行された第1最適化処理によって取得された区間通過指標に置き換えて第2最適化処理を実行する(ステップS109)。ステップS109において、直前に実行された第1最適化処理によって取得された区間通過指標とはステップS108で取得した区間通過指標である。ステップS109の処理によって、第2最適化処理実行部204は第2最適化条件を満たす選択経路指標を取得する。
ステップS109の次に、解析終了条件が満たされたか否かを統合制御部108が判定する(ステップS110)。解析終了条件が満たされた場合(ステップS110:YES)、出力制御部103が出力部132の動作を制御して出力部132に解析結果情報を表示させる(ステップS111)。ステップS111の処理で表示される解析結果情報は、ステップS109の処理で取得された選択経路指標とステップS104の処理で取得された区間通過指標とである。
一方、解析終了条件が満たされない場合(ステップS110:NO)、通信制御部201が通信部21の動作を制御して、大規模最適化装置1にステップS109の処理で取得された選択経路指標を送信する(ステップS112)。
次に、大規模最適化装置1が備える外部情報取得部105が通信部11を介して高速最適化装置2から送信された選択経路指標を取得する(ステップS113)。
次に、第1最適化処理実行部104が解析関数における選択経路指標を直前に実行された第2最適化処理によって取得された選択経路指標に置き換えて第1最適化処理を実行する(ステップS114)。ステップS114において、直前に実行された第2最適化処理によって取得された選択経路指標とはステップS113の処理で取得された選択経路指標である。ステップS114の処理によって、第1最適化処理実行部104は第1最適化条件を満たす区間通過指標を取得する。
ステップS114の次に、解析終了条件が満たされたか否かを統合制御部108が判定する(ステップS115)。解析終了条件が満たされた場合(ステップS115:YES)、出力制御部103が出力部132の動作を制御して出力部132に解析結果情報を表示させる(ステップS116)。ステップS116の処理で表示される解析結果情報は、例えばステップS113の処理で取得された選択経路指標とステップS114の処理で取得された区間通過指標とである。
解析終了条件が満たされない場合(ステップS115:NO)、通信制御部101が通信部11の動作を制御して、高速最適化装置2にステップS114の処理で取得された区間通過指標を送信する(ステップS117)。
次に、高速最適化装置2が備える外部情報取得部205が通信部21を介して大規模最適化装置1から送信された区間通過指標を取得する(ステップS118)。
次に、第2最適化処理実行部204が解析関数における区間通過指標を直前に実行された第1最適化処理によって取得された区間通過指標に置き換えて第2最適化処理を実行する(ステップS119)。ステップS119において、直前に実行された第1最適化処理によって取得された区間通過指標とはステップS118で取得した区間通過指標である。ステップS119の処理によって、第2最適化処理実行部204は第2最適化条件を満たす選択経路指標を取得する。
ステップS119の次に、解析終了条件が満たされたか否かを統合制御部108が判定する(ステップS120)。解析終了条件が満たされた場合(ステップS120:YES)、出力制御部103が出力部132の動作を制御して出力部132に解析結果情報を表示させる(ステップS121)。ステップS121の処理で表示される解析結果情報は、例えばステップS119の処理で取得された選択経路指標とステップS118の処理で取得された区間通過指標とである。
一方、解析終了条件が満たされない場合(ステップS120:NO)、通信制御部201が通信部21の動作を制御して、大規模最適化装置1にステップS119の処理で取得された選択経路指標を送信する(ステップS122)。ステップS122の次にステップS113の処理が実行される。
図8、図9及び図10を用いて、実施形態の組合せ最適化問題処理システム100を用いて取得した実験結果の一例を説明する。実験結果の説明に際して、比較のため従来処理技術による実験結果も説明する。従来処理技術とは、解析関数を用いることで解析結果情報を取得する技術であるものの区間通過指標を変化させず選択経路指標のみを変化させることで解析結果情報を取得する技術である。
図8、図9及び図10の実験結果を示す実験は、図8については従来処理技術を用いた実験であり、図9及び図10については組合せ最適化問題処理システム100を用いた実験である点以外には違いはない。図8、図9及び図10の実験結果を示す実験において、解析対象系は同一であった。図8、図9及び図10の実験結果を示す実験では、具体的には、解析移動体の数は20であり、Qは3であり、αは1.0であり、λは5.0であった。図8、図9及び図10の実験結果を示す実験において第1最適化処理は、1.6 GHz デュアルコアのCPUを用いて実行された。図8、図9及び図10の実験結果を示す実験において、第1最適化処理における具体的な最適化の方法は、メトロポリス法によるマルコフ連鎖モンテカルロ法(無次元化された温度パラメータ T=1.0)であった。図8、図9及び図10の実験結果を示す実験において、各解析移動体の解析出発位置及び解析到達位置は同一であった。また、図8、図9及び図10の実験結果を示す実験では、高速最適化装置2として量子アニーリング方式の量子コンピュータを用いた。
図8は、従来処理技術を用いて取得した解析結果情報の一例を示す図である。図8は、地図を示す。地図は解析路を示す情報である。図8は、地図上に、解析移動体ごとの端点位置と、解析結果情報が示す各解析移動体の経路の候補とを示す。
図9は、実施形態の組合せ最適化問題処理システム100を用いて取得した解析結果情報の一例を示す第1の図である。図9が示す解析結果情報は、図8が示す解析結果情報に比べて、領域A1、領域A2及び領域A3を通過する経路が増えている。領域A1、領域A2及び領域A3は、従来処理技術では見つけることができなかった迂回の経路である。このように、組合せ最適化問題処理システム100は、従来処理技術よりも有用である確率が高い解析結果情報を取得可能である。
図10は、実施形態の組合せ最適化問題処理システム100を用いて取得した解析結果情報の一例を示す第2の図である。図10の横軸は、自己無撞着処理において第1最適化処理が実行された回数を示す。図10の縦軸は、式(2)が示す条件の元での解析関数値を示す。横軸の値が0における解析関数値は、従来処理技術によって得られた値を示す。図10は、組合せ最適化問題処理システム100を用いた場合、従来処理技術よりも小さな解析関数値を取得可能なことを示す。このことは、組合せ最適化問題処理システム100を用いた場合に従来処理技術よりも最適化の度合が高いことを意味する。
このように構成された組合せ最適化問題処理システム100は、解析関数の選択経路指標と区間通過指標とを逐次的に最適化することで解析結果情報を取得する。そのため、組合せ最適化問題処理システム100は、区間通過指標を変化させず選択経路指標のみを変化させることで解析結果情報を取得する組合せ最適化問題処理システム100よりも有用性の高い解析結果情報を取得することができる。
(変形例)
なお、選択経路指標取得部24が実行する量子アニーリングを行う構成は、必ずしも図3に示した構成でなくてもよい。選択経路指標取得部24が実行する量子アニーリングを行う構成は、例えば温度の変化によって量子ビット体410の状態を断熱的に変化させる構成であってもよい。
選択経路指標取得部24は、第2最適化条件を満たす選択経路指標を取得可能であれば必ずしも量子アニーリングの手法によって第2最適化条件を満たす選択経路指標を取得する必要は無い。選択経路指標取得部24は、例えばCMOS(Complementary MOS)アニーリング等の非量子的なアニーリングによって第2最適化条件を満たす選択経路指標を取得してもよい。選択経路指標取得部24は、例えば量子ゲート方式の量子計算等の量子アニーリング以外の量子計算の技術を用いて第2最適化条件を満たす選択経路指標を取得してもよい。選択経路指標取得部24は、例えば量子アニーリング等の量子計算を行うことなくノイマン型のコンピュータと同様の原理で演算を行うことで第2最適化条件を満たす選択経路指標を取得してもよい。
量子アニーリング等の量子計算の技術を用いた場合、ノイマン型のコンピュータと同様の原理で取得する場合に比べて短時間で第2最適化条件を満たす選択経路指標を取得することができる。そのため、組合せ最適化問題処理システム100は、量子アニーリング等の量子計算の技術を用いて解析結果情報を取得することが望ましい。特に、量子アニーリングの技術は、最適化問題の解を他の量子計算の技術よりも高速に取得可能であるため、組合せ最適化問題処理システム100は、量子アニーリングの技術を用いて解析結果情報を取得することが望ましい。
なお、大規模最適化装置1は量子アニーリング等の量子計算の技術を用いて区間通過指標を取得してもよい。
大規模最適化装置1が備えるメモリ92のメモリ容量は、高速最適化装置2が備えるメモリ94よりも大容量であることが望ましい。なぜなら、分割区間の数が経路候補の数以上であるため、第1最適化処理において区間通過指標を変数として第1最適化条件を満たす区間通過指標ベクトルを取得する際に第2最適化処理を実行するよりも多くのメモリ容量が必要とされるからである。
なお、解析関数は解析対象系における滞り度合を表す関数であれば必ずしも式(1)でなくてもよい。解析関数は、例えばx及びCの3次以上の高次の非線形関数であってもよい。
なお、初期条件取得部107は、必ずしも解析対象系情報に基づき解析初期条件を取得する必要は無い。初期条件取得部107は、解析初期条件を取得可能であればどのような方法で解析初期条件を取得してもよい。初期条件取得部107は、例えば予め記憶部12に解析初期条件が記憶されている場合には、記憶部12から解析初期条件を読み出すことで解析初期条件を取得してもよい。初期条件取得部107は、例えば入力部131を介して解析初期条件が入力される場合には、入力された解析初期条件を取得してもよい。
なお、統合制御部108は必ずしも大規模最適化装置1が備える必要は無い。統合制御部108は、高速最適化装置2が備えてもよい。このような場合、より具体的には、制御部20が統合制御部108を備える。
なお、通信部11は、区間通過指標等の大規模最適化装置1に関する各種情報を記憶するUSB(Universal Serial Bus)メモリ等の外部記憶装置に接続するためのインタフェースを含んで構成されてもよい。このような場合、通信部11は区間通過指標を接続先の外部記憶装置に出力してもよい。
なお、通信部21は、選択経路指標等の高速最適化装置2に関する各種情報を記憶するUSBメモリ等の外部記憶装置に接続するためのインタフェースを含んで構成されてもよい。このような場合、通信部21は選択経路指標を接続先の外部記憶装置に出力してもよい。
なお、大規模最適化装置1と高速最適化装置2とは、必ずしも異なる装置として実装される必要は無い。大規模最適化装置1と高速最適化装置2とは、例えば両者の機能を併せ持つ1つの装置として実装されてもよい。
なお、大規模最適化装置1は、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。この場合、大規模最適化装置1が備える各機能部は、複数の情報処理装置に分散して実装されてもよい。第1最適化処理実行部104と初期条件取得部107と統合制御部108とは、例えばそれぞれ異なる情報処理装置に実装されてもよい。
なお、高速最適化装置2は、ネットワークを介して通信可能に接続された複数台の情報処理装置を用いて実装されてもよい。この場合、高速最適化装置2が備える各機能部は、複数の情報処理装置に分散して実装されてもよい。
なお、大規模最適化装置1と高速最適化装置2の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
100…組合せ最適化問題処理システム、1…大規模最適化装置、2…高速最適化装置、10…制御部、11…通信部、12…記憶部、13…ユーザインタフェース、131…入力部、132…出力部、20…制御部、21…通信部、22…記憶部、23…ユーザインタフェース、231…入力部、232…出力部、24…選択経路指標取得部、410…量子ビット体、411…量子ビット、420…断熱制御部、430…測定装置、440…適合指標取得部、441…プロセッサ、442…メモリ、101…通信制御部、102…入力制御部、103…出力制御部、104…第1最適化処理実行部、105…外部情報取得部、106…記録部、107…初期条件取得部、108…統合制御部、201…通信制御部、202…入力制御部、203…出力制御部、204…第2最適化処理実行部、205…外部情報取得部、206…記録部、91…プロセッサ、92…メモリ、93…プロセッサ、94…メモリ

Claims (4)

  1. 複数の移動体と各前記移動体が通過する路とを有する解析対象の系における前記移動体の移動の滞りの度合を表す関数であって第1変数と第2変数との2つの変数で表される関数である解析関数における第2変数の値を固定して前記度合を極小値にする前記第1変数の値を取得する最適化処理を実行する第1最適化処理実行部と、
    前記解析関数における第1変数の値を固定して前記度合を極小値にする前記第2変数の値を取得する最適化処理を実行する第2最適化処理実行部と、
    所定の終了条件が満たされるまで、前記第1最適化処理実行部と前記第2最適化処理実行部とに交互に最適化処理を実行させる統合制御部と、
    を備え、
    前記第1最適化処理実行部は、前記第2変数の値として前記第2最適化処理実行部が取得した前記第2変数の値を取得し、
    前記第2最適化処理実行部は、前記第1変数の値として前記第1最適化処理実行部が取得した前記第1変数の値を取得し、
    前記第1変数は前記路の一部の区間であって前記路の隣接する分岐点間の区間である分割区間を前記移動体が通過する回数の多さを示す区間通過指標であり、前記第2変数は前記移動体の経路の候補を示す選択経路指標である、
    組合せ最適化問題処理システム。
  2. 前記第2最適化処理実行部は、量子アニーリングによって前記第1変数の値を取得する、
    請求項1に記載の組合せ最適化問題処理システム。
  3. 複数の移動体と各前記移動体が通過する路とを有する解析対象の系における前記移動体の移動の滞りの度合を表す関数であって第1変数と第2変数との2つの変数で表される関数である解析関数における第2変数の値を固定して前記度合を極小値にする前記第1変数の値を取得する最適化処理を実行する第1最適化処理実行ステップと、
    前記解析関数における第1変数の値を固定して前記度合を極小値にする前記第2変数の値を取得する最適化処理を実行する第2最適化処理実行ステップと、
    所定の終了条件が満たされるまで、前記第1最適化処理実行ステップと前記第2最適化処理実行ステップとを交互に実行させる統合制御ステップと、
    を有し、
    前記第1最適化処理実行ステップにおいては、前記第2変数の値として前記第2最適化処理実行ステップにおいて取得された前記第2変数の値が取得され、
    前記第2最適化処理実行ステップにおいては、前記第1変数の値として前記第1最適化処理実行ステップにおいて取得された前記第1変数の値が取得され、
    前記第1変数は前記路の一部の区間であって前記路の隣接する分岐点間の区間である分割区間を前記移動体が通過する回数の多さを示す区間通過指標であり、前記第2変数は前記移動体の経路の候補を示す選択経路指標である、
    組合せ最適化問題処理方法。
  4. 請求項1又は2に記載の組合せ最適化問題処理システムとしてコンピュータを機能させるためのプログラム。
JP2021531781A 2020-03-16 2021-03-09 組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム Active JP6937539B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020045766 2020-03-16
JP2020045766 2020-03-16
PCT/JP2021/009253 WO2021187233A1 (ja) 2020-03-16 2021-03-09 組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP6937539B1 true JP6937539B1 (ja) 2021-09-22
JPWO2021187233A1 JPWO2021187233A1 (ja) 2021-09-23

Family

ID=77771250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021531781A Active JP6937539B1 (ja) 2020-03-16 2021-03-09 組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6937539B1 (ja)
WO (1) WO2021187233A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008777B (zh) * 2022-06-10 2023-06-30 安徽省国盛量子科技有限公司 一种温度传感宽场探头的制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531343A (ja) * 2013-06-28 2016-10-06 ディー−ウェイブ システムズ,インコーポレイテッド データの量子処理のためのシステムおよび方法
US20190164418A1 (en) * 2017-11-30 2019-05-30 Volkswagen Ag System and method for predicting and maximizing traffic flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531343A (ja) * 2013-06-28 2016-10-06 ディー−ウェイブ システムズ,インコーポレイテッド データの量子処理のためのシステムおよび方法
US20190164418A1 (en) * 2017-11-30 2019-05-30 Volkswagen Ag System and method for predicting and maximizing traffic flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大関 真之: "量子アニーリングが加速する最適化技術", 第62回 システム制御情報学会 研究発表講演会講演論文集 [CD-ROM], JPN6021013168, 2018, ISSN: 0004571743 *

Also Published As

Publication number Publication date
WO2021187233A1 (ja) 2021-09-23
JPWO2021187233A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
Cui et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks
CN109213134B (zh) 生成自动驾驶策略的方法和装置
US9449505B2 (en) Traffic congestion prediction method and traffic congestion prediction device
Fielding Simulated annealing with an optimal fixed temperature
KR102511954B1 (ko) 선형 시간 논리를 사용한 자율 주행 차량 동작
EP2645063A1 (en) Path searching method and path search device
CN113033925B (zh) 用于控制自动驾驶车辆行驶、装置、电子设备和介质
JP6439400B2 (ja) 配送計画プログラム、配送計画方法、および配送計画装置
JP6937539B1 (ja) 組合せ最適化問題処理システム、組合せ最適化問題処理方法及びプログラム
EP3859277A1 (en) Method, apparatus, and system for automatic closure verfication using multiple possible vehicle paths
Abdalhaq et al. Using meta heuristic algorithms to improve traffic simulation
JP5378002B2 (ja) 車両動作推定装置、車両動作推定方法および車両動作推定プログラム
Said et al. An intelligent traffic control system using neutrosophic sets, rough sets, graph theory, fuzzy sets and its extended approach: a literature review
Dogramadzi et al. Accelerated map matching for GPS trajectories
Suriyarachchi et al. Gameopt: Optimal real-time multi-agent planning and control for dynamic intersections
US8798910B2 (en) Method, apparatus and computer program for estimating driver's personality of route selection
JP2007033057A (ja) 候補経路作成装置、方法、プログラム、交通シミュレーション装置、方法及びプログラム、経路探索装置、方法、及びプログラム
Ugan et al. Using Connected Vehicle Trajectory Data to Evaluate the Effects of Speeding
Chodur Capacity models and parameters for unsignalized urban intersections in Poland
CN115657684B (zh) 车辆路径信息生成方法、装置、设备和计算机可读介质
Ng et al. Development of Macroscopic Cell‐Based Logistic Lane Change Prediction Model
Wirthmüller et al. The atlas of lane changes: Investigating location-dependent lane change behaviors using measurement data from a customer fleet
KR102419526B1 (ko) 자율 주행 차량에 대한 필드 이론 기반 인지
CN110942178A (zh) 一种基于资源分配指标的链路预测方法的充电桩推荐方法
Sharma et al. Optimizing Autonomous Vehicle Navigation with DQN and PPO: A Reinforcement Learning Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6937539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250