JP6937054B1 - Three-dimensional automated warehouse in logistics - Google Patents

Three-dimensional automated warehouse in logistics Download PDF

Info

Publication number
JP6937054B1
JP6937054B1 JP2020068918A JP2020068918A JP6937054B1 JP 6937054 B1 JP6937054 B1 JP 6937054B1 JP 2020068918 A JP2020068918 A JP 2020068918A JP 2020068918 A JP2020068918 A JP 2020068918A JP 6937054 B1 JP6937054 B1 JP 6937054B1
Authority
JP
Japan
Prior art keywords
delivery
tray
aisle
warehousing
trays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068918A
Other languages
Japanese (ja)
Other versions
JP2021165926A (en
Inventor
嵩登 奥戸
嵩登 奥戸
知樹 奥村
知樹 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datumix
Original Assignee
Datumix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datumix filed Critical Datumix
Priority to JP2020068918A priority Critical patent/JP6937054B1/en
Application granted granted Critical
Publication of JP6937054B1 publication Critical patent/JP6937054B1/en
Publication of JP2021165926A publication Critical patent/JP2021165926A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】出庫処理において、時間を最小限に短縮できるものとし、しかも前記組み合わせ爆発を起こす状況下においても、容易に自動処理する。【解決手段】注文データの受信Aと、出庫トレイと出庫ステーションの決定Bと、全ての荷物を1個の通路に面している棚の仮置きスペースに集めるCことと、ピッキングステーションへ出荷するDことと、作業者が梱包するEことと、及び出荷Fとからなる出庫の流れにおいて、出庫に係る説明変数が人工知能の入力層11に入り、それぞれが隠れ層12にて判断し、出力層13から集約予測時間を出力するディープラーニングと決定木をベースとしたLightGBMによる予測手段によって、前記出庫トレイと出庫ステーションの決定を行わせ、引当てられる出庫トレイを出庫ステーションの1個の通路に面している棚に集約する。【選択図】図1PROBLEM TO BE SOLVED: To minimize a time in a warehousing process, and to easily perform an automatic process even in a situation where the combinatorial explosion occurs. SOLUTION: Order data reception A, delivery tray and delivery station determination B, collecting all luggage in a temporary storage space on a shelf facing one passage, and shipping to a picking station. In the flow of warehousing consisting of D, E to be packed by the worker, and shipping F, the explanatory variables related to the warehousing enter the input layer 11 of the artificial intelligence, and each is judged by the hidden layer 12 and output. The delivery tray and the delivery station are determined by deep learning that outputs the aggregated prediction time from the layer 13 and the prediction means by LightGBM based on the decision tree, and the reserved delivery tray is placed in one passage of the delivery station. Consolidate on the facing shelves. [Selection diagram] Fig. 1

Description

本発明は、出庫・入庫・再入庫の中で特に出庫に係る物流における立体自動倉庫に関する。 The present invention relates to a three-dimensional automated warehouse in physical distribution related to warehousing, among warehousing / warehousing / re-warehousing.

近時、インターネットを利用した通販ビジネス(Eコマース)が隆盛中であるが、このようなビジネスの物流センターの仕組みは、売れ筋商品は高頻度出庫で対応するとともに、めったに注文のこないニッチ商品(低頻度のロングテール品)も数多く取りそろえることにより、顧客の多様な要求に応えてきた。このため、物流センターの敷地は可能な限り広く確保したいところであるが、東京、大阪などの大市場周辺では土地の価格が高く、用地取得がままならない。そこで、売れ筋商品出荷の仕組みは、ロングテール品の保管場所確保のため可能な限り狭い空間で効率的に行うことが求められ、その要求に応えるマテハン機器として、物品を一時的に保管し、高速順立て出庫ができる高能力の立体自動倉庫を、出荷時の荷揃え作業に利用する仕組みが考案された。この立体自動倉庫の装置構成は、複数段の棚からなる保管ラックと、複数の保管ラックの間に設けられた通路と、その通路を利用して各段の物品をピックアップするため各段に設けられる走行台車と、複数段の保管ラックの縦方向の移動をつかさどる昇降装置から構成されるものであり、出庫された物品を早く適正に荷揃えするGoods to Person(GTP)ステーションと組み合わせて運用されるものが多い Recently, the mail-order business (e-commerce) using the Internet is flourishing, but the mechanism of the distribution center of such a business is that the best-selling products are dealt with frequently and the niche products that rarely receive orders (low). We have responded to the diverse demands of our customers by offering a large number of frequent long-tail products. For this reason, we would like to secure the site of the distribution center as large as possible, but the land price is high around large markets such as Tokyo and Osaka, and land acquisition is not possible. Therefore, the mechanism for shipping top-selling products is required to be performed efficiently in the narrowest possible space in order to secure a storage space for long-tail products, and as a material handling device that meets that demand, goods are temporarily stored at high speed. A mechanism was devised to use a high-capacity three-dimensional automated warehouse that can be delivered in order for loading at the time of shipment. The equipment configuration of this three-dimensional automated warehouse is provided in each stage to pick up goods in each stage using a storage rack consisting of multiple stages of shelves, a passage provided between the plurality of storage racks, and the passage. It is composed of a traveling trolley and a lifting device that controls the vertical movement of a multi-stage storage rack, and is operated in combination with a Goods to Person (GTP) station that quickly and appropriately loads the delivered goods. There are many things .

このような立体自動倉庫に一時保管された物品を出庫する場合の基本動作は、棚に保管されている物品に対し、倉庫管理システム(Warehouse Management System WMSという)から出庫対象物品に対する出庫命令が発せられ、これを物流センター内の立体自動倉庫、コンベヤ、ソータなどの各種マテハン機器を制御している倉庫制御システム(Warehouse Control System WCSという)に伝わり、立体自動倉庫内に保管されている出庫対象物品(対象物品は立体自動倉庫内のアトランダムな場所に複数保管されている場合もあり得る)のうち、立体自動倉庫から出庫するためのスループットの高い物品をピックアップし、出庫動作を開始する。まず、対象物品の棚と同じ段の走行台車が対象物品をピックアップするため対象物品の棚前まで走行し、走行台車内に設けている伸縮自在の腕部を使って対象物品をピックアップし、走行台車内に移載する。走行台車は当該段に設けられた一時待機用のコンベヤまで走行し、当該物品を一時待機用コンベヤに移載する。一時待機用コンベヤに移載された物品は、その後上下方向に走行可能な昇降装置と昇降装置内に設けられた腕部によりピックアップされ、出庫用搬送ラインが設けられた段まで昇降し、当該段に設けられた一時待機用コンベヤに移載する。移載された物品は、荷揃えをするために設けられたGoods to Person(GTP)ステーションまで出庫用搬送ラインに移載されて届けられる。届けられた物品はGTPステーションで作業者によりピックアップされて出庫作業が完了する。 The basic operation when shipping the goods temporarily stored in such a three-dimensional automatic warehouse is to issue a warehouse management system (called Warehouse Management System WMS) to the goods stored on the shelves to issue a shipping order to the goods to be shipped. This is transmitted to the warehouse control system (called the Warehouse Control System WCS) that controls various matehan equipment such as the three-dimensional automatic warehouse, conveyor, and sorter in the distribution center, and the goods to be shipped stored in the three-dimensional automatic warehouse. (There may be a case where a plurality of target articles are stored in an at random place in the three-dimensional automatic warehouse), the article having a high throughput for unloading from the three-dimensional automatic warehouse is picked up, and the warehousing operation is started. First, a traveling trolley on the same stage as the target article shelf travels to the front of the target article shelf in order to pick up the target article, and the target article is picked up and traveled using the telescopic arm provided in the traveling trolley. Reprinted in the trolley. The traveling carriage travels to the temporary standby conveyor provided on the stage, and transfers the article to the temporary standby conveyor. The article transferred to the temporary standby conveyor is then picked up by an elevating device that can travel in the vertical direction and an arm provided in the elevating device, and elevates to the stage provided with the delivery transport line. Transfer to the temporary standby conveyor provided in. The transferred goods are transferred to the Goods to Person (GTP) station provided for arranging the goods and delivered to the delivery transfer line. The delivered goods are picked up by the worker at the GTP station and the delivery work is completed.

この立体自動倉庫への入庫作業は、各種物品がトラックにより輸送されて物流センターに到着すると開梱作業ののち、物品保管庫に保管される。その後、物流センターの出庫計画に従い、物品保管庫からその日の出庫計画に従って対象物品が順次出庫されて荷揃え作業用立体自動倉庫内に保管される。保管の道程は、WMSから入庫対象物品に対する入庫命令が出され、物品を立体自動倉庫の特定の場所に入庫させるためにその多くは、入庫用搬送ライン、一時待機コンベヤ、昇降装置、一時待機コンベヤ、走行台車の順に物品をリレーしながら目的の保管ラックの棚の間口まで搬送する。間口に到着した物品は走行台車の腕部により棚に保管されて入庫作業が完了する。 In the warehousing work in this three-dimensional automated warehouse, when various goods are transported by truck and arrive at the distribution center, they are unboxed and then stored in the goods storage. After that, according to the delivery plan of the distribution center, the target goods are sequentially delivered from the goods storage according to the sunrise storage plan and stored in the three-dimensional automated warehouse for loading. As for the storage process, WMS issues a warehousing order for the goods to be warehousing, and most of them are warehousing transport lines, temporary standby conveyors, elevating devices, and temporary standby conveyors in order to store the goods in a specific place in the three-dimensional automated warehouse. , Transport the goods to the frontage of the target storage rack shelf while relaying the goods in the order of the traveling trolley. The goods arriving at the frontage are stored on the shelves by the arms of the traveling trolley, and the warehousing work is completed.

次に、立体自動倉庫には、アイル間を跨いで特定のアイルに物品を集約し、出庫することで出庫作業のトータルでの効率化を図る仕組みが存在する。アイル間を跨ぐ仕組みには各アイルの外側に設けられたコンベヤを使用して、跨いで集約する方法と、各アイル間走行台車の腕部を利用し、保管ラック内に保管されている物品をとなりのアイルの走行台車(以後、シャトルと称す)にピックアップさせ、さらに隣のアイルの走行台車にピックアップをさせる・・・という作業を繰り返す、棚間移動を行う仕組みの2通り存在する。 Next, in the three-dimensional automated warehouse, there is a mechanism for collecting goods in a specific aisle across the aisles and issuing the goods to improve the total efficiency of the warehousing work. The mechanism to cross the inter-aisle using a conveyor provided outside the side of the aisle, and a method of crossing by aggregating, using arms of the traveling carriage between each aisle, stored in the storage rack There are two types of mechanisms for moving between shelves, in which goods are picked up by the traveling trolley of the adjacent Isle (hereinafter referred to as the shuttle), and then picked up by the traveling trolley of the adjacent Isle.

上記のように、近時、立体自動倉庫の仕組みは複雑化し、集約作業にコンベヤを利用して立体自動倉庫の外側で行う方法と、棚間移動を行う方法の両方が存在する場合と、で、最終的なスループットはどちらの方法を、どの程度用いる場合が高くなるのか?また繁忙期と閑散期ではどうなのか?など、いろいろ問題が出てきた。特に、立体自動倉庫のアイル数が多くなる場合、出荷ルートの組み合わせは膨大な数となり、これを人間がプログラミングで解決しようとしても最適解を導きだすことは極めて困難になってきた。そこで、このような問題解決のため人工知能を用いることが求められている。 As mentioned above, the mechanism of the 3D automated warehouse has become complicated these days, and there are both a method of using a conveyor for aggregation work outside the 3D automated warehouse and a method of moving between shelves. Which method is used and how much is the final throughput higher? What about the busy and off-seasons? And so on, various problems came up. In particular, when the number of aisles in a three-dimensional automated warehouse increases, the number of combinations of shipping routes becomes enormous, and even if humans try to solve this by programming, it has become extremely difficult to derive the optimum solution. Therefore, it is required to use artificial intelligence to solve such problems.

この立体自動倉庫において、出庫の流れとしては、注文データの受信と、出庫物品が入った通い箱(出庫トレイ)と出庫担当ラックの先に設けられた出庫ステーションの決定と、全ての荷物を1個の通路に面している棚の仮置きスペースに集めることと、GTPステーション(ピッキングステーション)へ出荷することと、作業者が梱包すること、及び出荷とからなる。 In this three-dimensional automated warehouse, the flow of warehousing is the reception of order data, the determination of the warehousing station provided at the end of the returnable box (delivery tray) containing the warehousing goods and the warehousing rack, and 1 for all luggage. It consists of collecting in a temporary storage space on a shelf facing each aisle, shipping to a GTP station (picking station), packing by an operator, and shipping.

特になしnothing special

しかしながら、従来の出庫トレイと出庫ステーションの決定においては、立体自動倉庫内の出庫トレイの最短移動距離をもとに独自のロジックに基づいて演算処理され、このうちの最短時間が得られる決定を数個の説明変数を用いて人為的に選んでいた。より正確に最短時間を得るためには必要な説明変数の数が数十個必要である。決定において必要な説明変数がN個あった場合、それぞれの説明変数による条件分岐が3つあった場合、説明変数が10個で約60,000個(3のN乗個)、20個で3,000,000,000個であるというように説明変数の数が増えるたびに計算処理量はN(説明変数の数)乗に増えるという組み合わせ爆発を起こすために、前記演算処理の結果から最短時間の決定を人間が行うということは処理能力の面では非常に困難であった。 However, in the conventional determination of the delivery tray and the delivery station, the calculation process is performed based on the shortest moving distance of the delivery tray in the three-dimensional automated warehouse based on the original logic, and the number of decisions that can obtain the shortest time among them is several. It was artificially selected using individual explanatory variables. Dozens of explanatory variables are required to obtain the shortest time more accurately. When there are N necessary explanatory variables in the decision, when there are 3 conditional branches by each explanatory variable, 10 explanatory variables are about 60,000 (3 to the Nth power), and 20 are 3 The shortest time from the result of the arithmetic processing is that the calculation processing amount increases to the N (number of explanatory variables) power each time the number of explanatory variables increases, such as ,000,000,000,000. It was very difficult for humans to make the decision in terms of processing power.

出庫トレイと出庫ステーションの決定では、出庫トレイを出庫ステーションに集約するトレイ集約ステップと、集約済みトレイをピッキングステーションに出庫するというステーション出庫ステップと、を有し、このうちトレイ集約にかかる時間は、出庫処理全体の84.6%を占める。そのため、トレイ集約を短縮することが出庫速度の向上に不可欠である。 In determining the issuing tray and the issuing station, there is a tray aggregation step of aggregating the issuing trays to the issuing station and a station issuing step of aggregating the aggregated trays to the picking station. It accounts for 84.6% of the total shipping process. Therefore, shortening the tray aggregation is indispensable for improving the delivery speed.

そこで、本発明は、叙上のような従来存した諸事情に鑑み案出されたもので、出庫処理において、時間を最小限に短縮できるものとし、しかも前記組み合わせ爆発を起こす状況下においても、容易に自動処理することができる物流における立体自動倉庫を提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned conventional circumstances, and it is possible to shorten the time required for the warehousing process to the minimum, and even under the situation where the combinatorial explosion occurs. An object of the present invention is to provide a three-dimensional automated warehouse in physical distribution that can be easily and automatically processed.

上述した課題を解決するために、本発明にあっては、注文データの受信と、出庫トレイと出庫ステーションの決定と、全ての荷物を1個の通路に面している棚の仮置きスペースに集めることと、ピッキングステーションへ出荷することと、作業者が梱包すること、及び出荷とからなる出庫の流れにおいて、出庫に係る説明変数が人工知能の入力層に入り、それぞれが隠れ層にて重要な説明変数を判断し、出力層から最適な集約予測時間を出力(目的変数)するディープラーニングや決定木をベースとしたLightGBMによる予測手段によって、前記出庫トレイと出庫ステーションの決定を行わせ、現在のオーダーの商品毎に決定されて引当られる出庫トレイを出庫ステーションの1個の通路に面している棚に集約することを特徴とする。 In order to solve the above-mentioned problems, in the present invention, the order data is received, the delivery tray and the delivery station are determined, and all the luggage is stored in the temporary storage space of the shelf facing one passage. In the flow of shipping, which consists of collecting, shipping to the picking station, packing by the worker, and shipping, the explanatory variables related to shipping enter the input layer of artificial intelligence, and each is important in the hidden layer. The delivery tray and delivery station are currently determined by deep learning that determines various explanatory variables and outputs the optimum aggregation prediction time from the output layer (objective variable) and the prediction means by LightGBM based on the decision tree. It is characterized in that the delivery trays determined and allocated for each product of the order are collected on a shelf facing one passage of the delivery station.

本構成によれば、人工知能の採用により、出庫トレイと出庫ステーションをディープラーニングやLightGBMによる学習に応じて自動的に決定するので、立体自動倉庫において出庫処理時間を最小限に短縮することができる。 According to this configuration, by adopting artificial intelligence, the delivery tray and the delivery station are automatically determined according to the learning by deep learning or LightGBM, so that the delivery processing time can be minimized in the three-dimensional automated warehouse. ..

予測推定手段は、ディープラーニングやLightGBMを利用して、走行台車棚間移動と棚外コンベア移動とをそれぞれ分けてモデルを学習し、複数個の説明変数から人工知能を介して目的変数である集約予測時間を出力することで、出庫処理時間の短い、入出庫部と保管ラック間のアイルを走行する走行台車を備えた倉庫を実現可能にした。 The predictive estimation means uses deep learning and LightGBM to learn a model by separating the movement between the trolley shelves and the movement on the off-shelf conveyor, and aggregates the objective variables from a plurality of explanatory variables via artificial intelligence. By outputting the estimated time, it has become possible to realize a warehouse equipped with a traveling trolley that runs on the aisle between the warehousing / delivery section and the storage rack, which has a short warehousing / delivery processing time.

本構成によれば、人工知能はパターン化して学習してくれるので、N個の説明変数から人工知能を介して目的変数である集約予測時間を出力するという処理を迅速に行うことができる。 According to this configuration, since the artificial intelligence learns in a pattern, it is possible to quickly perform the process of outputting the aggregated predicted time, which is the objective variable, from the N explanatory variables via the artificial intelligence.

本発明によれば、出庫処理において、時間を最小限に短縮できるものとし、しかも組み合わせ爆発を起こす状況下においても、容易に自動処理することができる物流における立体自動倉庫を提供することができる。 According to the present invention, it is possible to provide a three-dimensional automated warehouse in physical distribution that can reduce the time required for delivery processing to a minimum and can easily perform automatic processing even in a situation where a combinatorial explosion occurs.

本発明を実施するための一形態における出庫の流れをフローチャートとともに示す斜視図である。It is a perspective view which shows the flow of delivery in one form for carrying out this invention together with the flowchart. 本発明を実施するための一形態における集約時間予測モデルを示す概略図である。It is a schematic diagram which shows the aggregation time prediction model in one embodiment for carrying out this invention. 本発明を実施するための一形態における走行台車棚間移動時間予測モデルの説明変数を示す図である。It is a figure which shows the explanatory variable of the movement time prediction model between traveling carriage shelves in one embodiment for carrying out this invention. 本発明を実施するための一形態における棚外コンベア移動時間予測モデルの説明変数を示す図である。It is a figure which shows the explanatory variable of the off-shelf conveyor movement time prediction model in one embodiment for carrying out this invention. 本発明を実施するための一形態における走行台車棚間移動モデル目的変数と説明変数の相関関係を示す図である。It is a figure which shows the correlation of the moving model between traveling carriage shelves, and the explanatory variable in one embodiment for carrying out this invention. 本発明を実施するための一形態における棚外コンベア移動モデル目的変数と説明変数の相関関係を示す図である。It is a figure which shows the correlation of the off-shelf conveyor movement model objective variable and explanatory variable in one embodiment for carrying out this invention.

以下、図面を参照して本発明の実施の一形態に係る立体自動倉庫を詳細に説明する。 Hereinafter, the three-dimensional automated warehouse according to the embodiment of the present invention will be described in detail with reference to the drawings.

本実施形態に係る立体自動倉庫のロジックは大きく出庫・入庫・再入庫に分類される。このうち、出庫に限定して説明を行う。まず、図1に示すように、入出庫部と保管ラック間の通路(アイル)を走行する走行台車とを有する立体自動倉庫において、隣り合う保管ラック間に水平方向に走行を行う搬送機構が高さ方向に各段に配置されている。そして、出庫トレイが出庫部に移動する際に、搬送機構は、左右方向に位置する保管ラックの双方に出庫トレイを出し入れ可能なピッキング機構を有している。 The logic of the three-dimensional automated warehouse according to this embodiment is roughly classified into warehousing, warehousing, and re-warehousing. Of these, the explanation will be limited to shipping. First, as shown in FIG. 1, in a three-dimensional automated warehouse having a warehousing unit and a traveling trolley traveling in a passage (isle) between storage racks, a transport mechanism that travels horizontally between adjacent storage racks is high. It is arranged in each stage in the horizontal direction. Then, when the delivery tray moves to the delivery section, the transport mechanism has a picking mechanism that allows the delivery tray to be taken in and out of both storage racks located in the left-right direction.

本実施形態では、全ての荷物を出庫通路の仮置きスペースに集めるための出庫トレイと出庫ステーションの決定の人工知能である特にディープラーニングやLightGBMに係るもので、注文データの受信A、人工知能化された出庫トレイと出庫ステーションの決定B、全ての荷物を1個の通路に面している棚の仮置きスペースに集めるC、ピッキングステーションへ出荷D、作業者が梱包E、出荷Fとで構成される。 In the present embodiment, artificial intelligence for determining the delivery tray and the delivery station for collecting all the luggage in the temporary storage space of the delivery passage, particularly related to deep learning and LightGBM, is related to receiving order data A and artificial intelligence. Determining the delivery tray and delivery station B, collecting all the luggage in the temporary storage space of the shelf facing one passage C, shipping to the picking station D, the worker packing E, shipping F Will be done.

すなわち、入出庫部と保管ラック間の通路を走行する走行台車の制御、隣り合う保管ラック間に水平方向に走行を行う搬送機構の制御、引当てられる出庫トレイが出庫部に移動する際に、搬送機構に設けた、左右方向に位置する保管ラックの双方に出庫トレイを出し入れ可能なピッキング機構の制御、とがすべて人工知能(特にディープラーニングやLightGBM)により決定される。引当られる出庫トレイとは、現在のオーダーの商品毎に決定されたトレイである。 That is, when the traveling trolley that travels in the passage between the warehousing / delivery section and the storage rack is controlled, the transport mechanism that travels horizontally between the adjacent storage racks is controlled, and the reserved warehousing tray moves to the warehousing section. The control of the picking mechanism, which is provided in the transport mechanism and allows the delivery trays to be taken in and out of both storage racks located in the left-right direction, is all determined by artificial intelligence (particularly deep learning and LightGBM). The allocation tray is a tray determined for each item in the current order.

従来では出庫処理は次の2段階で行われる。出庫トレイを出庫ステーションに集約するトレイ集約ステップと、集約済みトレイをピッキングステーションに出庫するステーション出庫ステップとがある。これらのうちのトレイ集約ステップに着目し、本実施形態ではこれを人工知能(AI)を使って、特にディープラーニングやLightGBMによる予測推定手段で行う。これまでは、トレイ集約にかかる時間は、出庫処理全体の84.6%を占めていた。そのため、トレイ集約を短縮することが出庫速度の向上に不可欠であると考えられる。 Conventionally, the shipping process is performed in the following two stages. A tray aggregation step of aggregating the goods issue tray unloading stations, there is a station issuing step of issuing the aggregated tray picking station. Focusing on the tray aggregation step among these, in the present embodiment, this is performed by using artificial intelligence (AI), particularly by deep learning or a predictive estimation means by LightGBM. Until now, the time required for tray aggregation accounted for 84.6% of the total shipping process. Therefore, it is considered indispensable to improve the delivery speed by shortening the tray aggregation.

また、トレイ集約のためのロジックとしては、予め決まったプログラムに基づく出庫ステーションの決定において、まず1個の通路に面している走行台車棚間移動、及び棚外コンベア移動に対するトレイのパスや予測集約時間を算出する。これは、集約可能な条件を満たしたトレイから処理量が閾値以下の棚への集約時間を予想するもので、全てのトレイと全ての棚に対して算出する。なお、ここで考えるトレイは全て集約が可能なトレイである。 In addition, as the logic for tray aggregation, in determining the delivery station based on a predetermined program, first, the tray path and prediction for the movement between the trolley shelves facing one aisle and the movement of the conveyor outside the shelves. Calculate the aggregation time. This predicts the aggregation time from the trays that satisfy the aggregation conditions to the shelves whose processing amount is less than the threshold value, and is calculated for all trays and all shelves. The trays considered here are all trays that can be aggregated.

出庫に関するWCSのプログラムはルールベースといって人間が多数の条件を勘案しながらプログラムを作成するものを基本とし、引当可能な出庫トレイ数の算出、ブロック決定、アイル決定、引当られる出庫トレイの集約決定の順で実行され、出庫トレイの集約決定では、下記の優先順位で現在のオーダーの商品毎にトレイの決定を行う。まず、単一トレイ引当では、商品の要求数以上の在庫を持つトレイを対象として検索を行い、集約対象にする。複数の引当対象の出庫トレイでは、商品の要求数を満たすトレイがない場合、引当数が要求数を満たすまで該当商品を1つ以上持つトレイの検索を行い、集約対象にする。欠品の出庫トレイでは、複数トレイの引当でも商品の要求数を満たさない場合、該当商品を持つ欠品トレイを検索し、集約対象にする。 The WCS program for issuing goods is basically a rule-based program in which human beings create a program while considering a large number of conditions. It is executed in the order of determination, and in the aggregation decision of the delivery tray, the tray is determined for each product of the current order in the following priority order. First, in the single tray allocation, a search is performed for trays having inventory equal to or greater than the required number of products, and the products are aggregated. If there is no tray that meets the required number of products in the delivery trays that are subject to multiple allocations, the trays that have one or more corresponding products are searched until the number of allocations meets the required number, and the trays are aggregated. In the out-of-stock delivery tray, if the required number of products is not satisfied even if multiple trays are allocated, the out-of-stock tray with the corresponding product is searched and aggregated.

1個の通路に面している棚ごとの出庫トレイの決定においては、最もパスや予測集約時間が短くなる出庫トレイを全ての棚、全プロダクトIDに対して求めるが(1個の通路に面している棚、プロダクトID、トレイ)、走行台車棚間移動による出庫トレイと棚外コンベア移動による出庫トレイとでは、決められたルールベースの基ではスループットが極大化してしまう。 In determining the delivery tray for each shelf facing one passage, the delivery tray with the shortest path and predicted aggregation time is required for all shelves and all product IDs (face to one passage). Shelf, product ID, tray), delivery tray by moving between trolley shelves and delivery tray by moving off-shelf conveyor, the throughput is maximized based on the determined rule base.

ここで、出庫AIは集約時間が最も短くなるように集約アイルと出庫トレイを決定する。ここで集約アイルとは、1個の通路(アイル)に面している棚に出庫トレイを集約する際に走行台車が走行するアイルである。この集約時間は直接分からないため、モデルを用いて過去のデータから予測するもので、モデル予測のために様々な情報を考慮する。ルールベースは、最も移動距離が小さくなるように集約アイルと出庫トレイを決定する。集約アイル選択では、引当可能な出庫トレイ数の多さ、処理量(出庫待機数)の少なさ、インデックスの若さを順番に考慮するもので、トレイ選択では集約アイルからの近さを考慮する。 Here, the issue AI determines the aggregation aisle and the issue tray so that the aggregation time is the shortest. Here, the aggregated aisle is an aisle on which a traveling trolley travels when the delivery trays are aggregated on a shelf facing one aisle (isle). Since this aggregation time is not directly known, it is predicted from past data using a model, and various information is considered for model prediction. The rule base determines the aggregate aisle and the shipping tray so that the travel distance is the shortest. In aggregate aisle selection, the number of issue trays that can be allocated is large, the amount of processing (number of items waiting to be issued) is small, and the youth of the index is considered in order. ..

集約時間を短くするためには移動距離を小さくするだけでは不十分である。そこで本実施形態では、次の集約時間予測モデルによる予測推定手段を扱う。これは予測精度の高さ及び分析の容易さを重視し、出庫AIには脳神経に類似したモデルであるディープラーニングか、あるいはLightGBMを利用する。走行台車棚間移動、棚外コンベア移動それぞれ分けてモデルを学習する。すなわち、図2に示すように、説明変数1、説明変数2、説明変数3、・・・説明変数Nが人工知能の入力層11に入り、それぞれがN個の第1隠れ層12a、第2隠れ層12bにて重要な説明変数を判断する。そして、出力層13から目的関数である集約予測時間を出力(目的変数)する。 It is not enough to reduce the travel distance in order to shorten the aggregation time. Therefore, in the present embodiment, the prediction estimation means by the following aggregation time prediction model is handled. This emphasizes high prediction accuracy and ease of analysis, and uses deep learning, which is a model similar to the cranial nerves, or LightGBM for the delivery AI. The model is learned separately for the movement between the trolley shelves and the movement of the conveyor outside the shelves. That is, as shown in FIG. 2, the explanatory variables 1, the explanatory variables 2, the explanatory variables 3, ... The explanatory variables N enter the input layer 11 of the artificial intelligence, and N first hidden layers 12a and second, respectively. The hidden layer 12b determines important explanatory variables. Then, the aggregate prediction time, which is an objective function, is output (objective variable) from the output layer 13.

予測推定手段では、集約アイル候補と引当られる出庫トレイ候補のペアを作成し、ペアそれぞれに対してAIモデルにより集約時間を予測する。このとき、走行台車棚間移動モデルと棚外コンベア移動モデルとに使い分け、集約時間を予測し、最短のペアの集約アイルと出庫トレイを決定する。
In prediction estimating means creates a pair of unloading trays candidate is provision between the current Yakua yl candidate, predicts the aggregation time by AI model for each pair. At this time, the traveling trolley inter-shelf movement model and the off-shelf conveyor movement model are used properly, the aggregation time is predicted, and the shortest pair of aggregation aisle and delivery tray is determined.

次に、以上のように構成された形態についての使用・動作の一例について説明する。 Next, an example of use / operation of the form configured as described above will be described.

図3は走行台車棚間移動時間予測モデルの説明変数であり、説明変数名とこれに対応する英語名がある。すなわち、予測推定手段は、次の説明変数が人工知能の入力層11に入り、第1隠れ層12a、第2隠れ層12bにて重要な説明変数を判断したのち、出力層13から集約予測時間を出力(目的変数)し、出庫処理時間の短い立体自動倉庫を実現可能にする。
(1)移動元通路[from_aisle]
(2)移動先通路[to_aisle]
(3)通路間距離[aisle_distance]
(4)移動元通路の昇降装置移動距離[from_floor_distance]
(5)移動先通路の昇降装置移動距離[to_floor_distance]
(6)通路の走行台車の入庫タスク数(移動元、仲介、移動先)[receipt_task_num_k(kは0〜8、0が移動元、8が移動先)]
(7)通路の走行台車の棚間移動タスク数(移動元、仲介、移動先)[inter_aisle_task_num_k(kは0〜8、0が移動元、8が移動先)]
(8)通路の走行台車の出庫タスク数(移動元、仲介、移動先)[retrieval_task_num_k(kは0〜8、0が移動元、8が移動先)]
(9)走行台車の初期位置とトレイの距離[initial_shuttle_dostance]
(10)トレイを取り出すために配替え間口へ移動させる必要があるトレイ数[is_num]
(11)出庫バッファに存在するトレイ数[retrieval_buffer_occupancy]
(12)繁忙時間帯かどうかのフラグ(0:no、1:yes)[busy_time]
(13)曜日[weekday]
(14)日[day]
(15)移動元通路の待機数[from_aisle_waiting_num]
(16)移動先通路の待機数[to_aisle_waiting_num]
(17)出庫待機トレイ数(STへ持っていく仮置きスペースに置かれたトレイ数)[waiting_picking_num]
(18)移動元通路における入庫指示数[from_aisle_storage_command_num]
(19)移動元通路における出庫指示数[from_aisle_retrieval_command_num]
(20)10分以内の立体自動倉庫全体の合計入庫リクエスト数[total_storage_request]
(21)10分以内の立体自動倉庫全体の合計出庫リクエスト数[total_retrieval_request]
(22)移動元通路で引き当てられている入庫トレイ数[from_aisle_storage_request]
(23)移動元通路で引き当てられている出庫トレイ数[from_aisle_retrieval_request]
(24)移動先通路で引き当てられている入庫トレイ数[to_aisle_storage_request]
(25)移動先通路で引き当てられている出庫トレイ数[to_aisle_retrieval_request]
FIG. 3 shows the explanatory variables of the traveling time prediction model between the traveling carriage shelves, and there are explanatory variable names and corresponding English names. That is, the prediction estimation means enters the input layer 11 of the artificial intelligence into the following explanatory variables, determines important explanatory variables in the first hidden layer 12a and the second hidden layer 12b, and then aggregates the predicted time from the output layer 13. Is output (objective variable), making it possible to realize a three-dimensional automated warehouse with a short delivery processing time.
(1) Source passage [from_aisle]
(2) Destination passage [to_aisle]
(3) Distance between passages [aisle_distance]
(4) Elevating device moving distance of the moving source passage [from_floor_distance]
(5) Elevating device moving distance of the destination passage [to_floor_distance]
(6) Number of warehousing tasks for trolleys in the aisle (moving source, mediation, moving destination) [recept_task_num_k (k is 0 to 8, 0 is the moving source, 8 is the moving destination)]
(7) Number of tasks for moving between shelves of traveling carts in the aisle (moving source, mediation, moving destination) [inter_aisure_task_num_k (k is 0 to 8, 0 is the moving source, 8 is the moving destination)]
(8) Number of tasks for leaving the trolley in the aisle (moving source, mediation, moving destination) [retrieval_task_num_k (k is 0 to 8, 0 is the moving source, 8 is the moving destination)]
(9) Distance between the initial position of the traveling carriage and the tray [initial_shottle_dostance]
(10) Number of trays that need to be moved to the rearrangement frontage in order to take out the tray [is_num]
(11) Number of trays existing in the delivery buffer [retrieval_buffer_occupancy]
(12) Flag for busy hours (0: no, 1: yes) [busy_time]
(13) Day of the week [weekday]
(14) Day [day]
(15) Number of waits in the moving source passage [from_aisle_waiting_num]
(16) Number of waits in the destination passage [to_aisle_waiting_num]
(17) Number of trays waiting to be delivered (number of trays placed in the temporary storage space to be brought to ST) [waiting_picking_num]
(18) Number of warehousing instructions in the moving source passage [from_aisle_store_comand_num]
(19) Number of delivery instructions in the moving source passage [from_aisle_retrieval_comand_num]
(20) Total number of warehousing requests for the entire 3D automated warehouse within 10 minutes [total_store_request]
(21) Total number of requests for issue of the entire 3D automated warehouse within 10 minutes [total_retrieval_request]
(22) Number of warehousing trays allocated in the source aisle [from_aisle_store_request]
(23) Number of delivery trays allocated in the source aisle [from_aisle_retrieval_request]
(24) Number of warehousing trays allocated in the destination aisle [to_aisle_store_request]
(25) Number of delivery trays allocated in the destination aisle [to_aisle_retriever_request]

図4は棚外コンベア移動時間予測モデルの説明変数であり、説明変数名とこれに対応する英語名がある。すなわち、予測推定手段は、次の説明変数が人工知能の入力層11に入り、第1隠れ層12a、第2隠れ層12bにて判断したのち、出力層13から集約予測時間を出力(目的変数)し、出庫処理時間の短い立体自動倉庫を実現可能にする。
(1)移動元通路[from_aisle]
(2)移動先通路[to_aisle]
(3)通路間距離[aisle_distance]
(4)棚間移動の開始時点で、通過するすべての走行台車が抱える未処理の入庫タスク数[receipt_task_num]
(5)棚間移動の開始時点で、通過するすべての走行台車が抱える未処理の棚間移動のタスク数[inter_aisle_task_num]
(6)棚間移動の開始時点で、通過するすべての走行台車が抱える未処理の出庫タスク数[retrieval_task_num]
(7)走行台車初期位置(前タスク完了位置)からRack位置までの距離(integer差分の絶対値)[intial_shauttle_distance]
(8)棚間移動のラック(近い方)までの距離(ラック数の差の絶対値)[near_rack_distance]
(9)棚間移動のラック(遠い方)までの距離(ラック数の差の絶対値)[far_rack_distance]
(10)対象トレイを取り出すためにalternative spaceへ移動させる必要があるトレイの数(=邪魔している荷物の数。0,1,2)[is_num]
(11)出庫バッファに存在するトレイ数[retrieval_buffer_occupancy]
(12)曜日[weekday]
(13)日[day]
(14)移動元通路の待機数[from_aisle_waiting_num]
(15)移動先通路の待機数[to_aisle_waiting_num]
(16)出庫待機トレイ数(STへ持っていく仮置きスペースに置かれたトレイ数)[waiting_picking_num]
(17)移動元通路で引き当てられている入庫トレイ数[from_aisle_storage_command_num]
(18)移動元通路で引き当てられている出庫トレイ数[from_aisle_retrieval_command_num]
(19)移動先通路で引き当てられている入庫トレイ数[to_aisle_storage_request]
(20)移動先通路で引き当てられている出庫トレイ数[to_aisle_retrieval_request]
FIG. 4 shows the explanatory variables of the off-shelf conveyor movement time prediction model, and there are explanatory variable names and corresponding English names. That is, the prediction estimation means outputs the aggregated prediction time from the output layer 13 after the following explanatory variables enter the input layer 11 of the artificial intelligence and are judged by the first hidden layer 12a and the second hidden layer 12b (objective variable). ) And make it possible to realize a three-dimensional automated warehouse with a short delivery processing time.
(1) Source passage [from_aisle]
(2) Destination passage [to_aisle]
(3) Distance between passages [aisle_distance]
(4) Number of unprocessed warehousing tasks held by all passing trolleys at the start of inter-shelf movement [recept_task_num]
(5) Number of unprocessed inter-shelf movement tasks held by all passing carriages at the start of inter-shelf movement [inter_aisle_task_num]
(6) Number of unprocessed warehousing tasks held by all passing trolleys at the start of inter-shelf movement [retrieval_task_num]
(7) Distance from the initial position of the traveling bogie (previous task completion position) to the Rack position (absolute value of integer difference) [intial_shuttle_distance]
(8) Distance to the rack (closer) for moving between shelves (absolute value of the difference in the number of racks) [near_rac_distance]
(9) Distance to the rack (farther) for moving between shelves (absolute value of the difference in the number of racks) [far_rac_distance]
(10) Number of trays that need to be moved to the alternative space in order to take out the target tray (= number of obstructing luggage. 0, 1, 2) [is_num]
(11) Number of trays existing in the delivery buffer [retrieval_buffer_occupancy]
(12) Day of the week [weekday]
(13) Day [day]
(14) Number of waits in the moving source passage [from_aisle_waiting_num]
(15) Number of waits in the destination passage [to_aisle_waiting_num]
(16) Number of trays waiting to be delivered (number of trays placed in the temporary storage space to be brought to ST) [waiting_picking_num]
(17) Number of warehousing trays allocated in the source aisle [from_aisle_store_comand_num]
(18) Number of delivery trays allocated in the source aisle [from_aisle_retrieval_comand_num]
(19) Number of warehousing trays allocated in the destination aisle [to_aisle_store_request]
(20) Number of delivery trays allocated in the destination aisle [to_aisle_retriever_request]

集約時間予測モデルにおける説明変数と目的変数との間の相関関係について説明する。まず、走行台車棚間移動モデル目的変数と説明変数の相関関係では、Correlationは相関係数を示し、−1〜+1の値を取る。Contribution rateは目的変数の予測のためにその変数がどの程度寄与したかを示すもので、0〜1の値を取り、この値が大きいほど寄与している。図中、Correlationは、「0.69」のアイル間距離[aisle_distance]のパスが最も大きく、Contribution rateは「1」の待機するピッキング数[waiting_picking_num]が最も大きい。 The correlation between the explanatory variable and the objective variable in the aggregation time prediction model will be described. First, in the correlation between the traveling model inter-shelf movement model objective variable and the explanatory variable, Correlation indicates a correlation coefficient and takes a value of -1 to +1. The Connection rate indicates how much the variable contributed to the prediction of the objective variable, and takes a value of 0 to 1, and the larger this value is, the more it contributes. In the figure, Correlation has the largest path with an aisle distance [aisle_distance] of "0.69", and Correlation rate has the largest number of picking [waiting_picking_num] waiting for "1".

次に、棚外コンベア移動モデルの目的変数と説明変数との相関関係では、同様にしてCorrelationは相関係数を示し、−1〜+1の値を取る。Contribution rateは目的変数の予測のためにその変数がどの程度寄与したかを示すもので、0〜1の値を取り、この値が大きいほど寄与している。図中、Correlationは「0.82」のアイル間距離[aisle_distance]のパスが最も大きく、Contribution rateは「1」の待機するピッキング数[waiting_picking_num]が最も大きい。 Next, in the correlation between the objective variable and the explanatory variable of the off-shelf conveyor movement model, Correlation shows the correlation coefficient in the same manner and takes a value of -1 to +1. The Connection rate indicates how much the variable contributed to the prediction of the objective variable, and takes a value of 0 to 1, and the larger this value is, the more it contributes. In the figure, Correlation has the largest path of the distance between aisles [aisle_distance] of "0.82", and Correlation rate has the largest number of picking [waiting_picking_num] waiting for "1".

集約時間予測モデルの性能評価指標と、集約時間予測モデルの予測時間の精度について説明する。まず、AIモデル性能の検証環境としては、走行台車棚間移動による集約時間モデルで、5−fold考査検証法を用い、データを訓練データとテストデータに分けて検証を行う。これの平均予測時間は140.81秒で、平均誤差は36.98秒であり、平均誤差/平均予測時間=22.5%となる。 The performance evaluation index of the aggregation time prediction model and the accuracy of the prediction time of the aggregation time prediction model will be described. First, as a verification environment for AI model performance, a 5-fold examination and verification method is used in an aggregated time model by moving between trolley shelves, and the data is divided into training data and test data for verification. The average prediction time of this is 140.81 seconds, the average error is 36.98 seconds, and the average error / average prediction time = 22.5%.

棚外コンベア移動による集約時間モデルでは、5−fold交差検証法を使い、データを訓練データとテストデータに分けて検証を行う。これの平均予測時間は219.25秒で、平均誤差は27.57秒であり、平均誤差/平均予測時間=11.1%となる。 In the aggregation time model by moving the off-shelf conveyor, the 5-fold cross-validation method is used, and the data is divided into training data and test data for verification. The average prediction time of this is 219.25 seconds, the average error is 27.57 seconds, and the average error / average prediction time = 11.1%.

以上、説明したように、本実施形態では、出庫処理において、時間を最小限に短縮できるものとし、しかも組み合わせ爆発を起こしても、容易に自動処理することができる立体自動倉庫を提供することができる。 As described above, in the present embodiment, it is possible to provide a three-dimensional automated warehouse that can minimize the time required for shipping processing and can easily automatically process even if a combinatorial explosion occurs. can.

A…注文データの受信
B…人工知能化された出庫トレイと出庫ステーションの決定
C…全ての荷物を1個の通路に面している棚の仮置きスペースに集める
D…ピッキングステーションへ出荷
E…作業者が梱包
F…出荷
11…入力層
12…隠れ層
13…出力層

A ... Receiving order data B ... Determining the artificially intelligent delivery tray and delivery station C ... Collect all luggage in the temporary storage space on the shelf facing one aisle D ... Ship to the picking station E ... Workers pack F ... Shipment 11 ... Input layer 12 ... Hidden layer 13 ... Output layer

Claims (2)

注文データ受信されると、出庫対象物品が入っている出庫トレイのうち前記注文データに係るどの出庫トレイをどの集約アイルに集約させるかが予測推定手段によって決定され、前記注文データに係る全ての荷物について前記決定された出庫トレイが前記決定された集約アイルに集められ集められた前記出庫トレイがピッキングステーションへ出荷され前記ピッキングステーションに出荷された前記出庫トレイから前記出庫対象物品が取り出され梱包されて前記梱包された前記出庫対象物品が出荷される、立体自動倉庫であって
前記予測推定手段は、走行台車棚間移動モデル及び棚外コンベア移動モデルを有し、前記走行台車棚間移動モデル及び前記棚外コンベア移動モデルにおいて、集約可能な集約アイル候補と引当られる出庫トレイ候補のペアを作成し、出庫に係る説明変数として、移動元通路、移動先通路、通路間距離、通路の走行台車の棚間移動タスク数、出庫バッファに存在するトレイ数、曜日、日、移動元通路の待機数、移動先通路の待機数、出庫待機トレイ数、移動先通路で引き当てられている入庫トレイ数、移動先通路で引き当てられている出庫トレイ数、を少なくとも有する説明変数が人工知能の入力層に入り、それぞれの前記説明変数が隠れ層にて判断され、出力層から集約予測時間を出力するディープラーニング、或いは、決定木をベースとしたLightGBMによって、前記集約予測時間が最短となる前記ペアに係る出庫トレイ及び集約アイルを定することを特徴とする物流における立体自動倉庫。
When the order data is received, the predictive estimation means determines which delivery tray related to the order data is to be aggregated in which aggregation aisle among the delivery trays containing the goods to be delivered, and all the delivery trays related to the order data . goods Issue tray said determined for luggage is collected on the determined aggregation aisle, the unloading tray collected are shipped to picking station, said goods issue object article from the unloading tray that is shipped to the picking station is taken are packaged, the packaged-the goods issue object article is shipped, a three-dimensional automatic warehouse,
The predictive estimation means has a traveling carriage inter-shelf movement model and an off-shelf conveyor moving model, and in the traveling carriage inter-shelf moving model and the off-shelf conveyor moving model, an aggregateable aisle candidate and an allocation tray candidate can be allocated. As explanatory variables related to warehousing, the source passage, the destination passage, the distance between passages, the number of tasks to move between the shelves of the traveling trolley of the passage, the number of trays existing in the warehousing buffer, the day, the day, and the movement source. Artificial intelligence has at least an explanatory variable that has at least the number of waiting passages, the number of waiting passages, the number of waiting trays for leaving, the number of warehousing trays allocated in the destination passage, and the number of shipping trays allocated in the destination passage. enters the input layer is determined by each of the explanatory variables hidden layer, an output layer or al current deep learning output approximately prediction time, or a decision tree to LightGB M that is based Accordingly, said aggregate estimated time solid automatic warehouse in distribution to unloading tray and determine the aggregate aisle Teisu characterized Rukoto according to the pair having the shortest.
出庫部をさらに備えた請求項1記載の物流における立体自動倉庫。
Solid automatic warehouse in further distribution ofMotomeko 1, further comprising an inlet-outlet unit.
JP2020068918A 2020-04-07 2020-04-07 Three-dimensional automated warehouse in logistics Active JP6937054B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068918A JP6937054B1 (en) 2020-04-07 2020-04-07 Three-dimensional automated warehouse in logistics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068918A JP6937054B1 (en) 2020-04-07 2020-04-07 Three-dimensional automated warehouse in logistics

Publications (2)

Publication Number Publication Date
JP6937054B1 true JP6937054B1 (en) 2021-09-22
JP2021165926A JP2021165926A (en) 2021-10-14

Family

ID=78022141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068918A Active JP6937054B1 (en) 2020-04-07 2020-04-07 Three-dimensional automated warehouse in logistics

Country Status (1)

Country Link
JP (1) JP6937054B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168989A (en) * 2007-01-11 2008-07-24 Toyota Industries Corp Work completion time predicting device in automated warehouse
JP6291652B2 (en) * 2013-04-04 2018-03-14 金剛株式会社 Automatic library
US9409711B1 (en) * 2015-05-27 2016-08-09 Amazon Technologies, Inc. Semi-automated inventory transfer station output merge logic
JP6526081B2 (en) * 2017-02-28 2019-06-05 ファナック株式会社 Inventory management system having functions of inventory management and preventive maintenance
WO2019187779A1 (en) * 2018-03-27 2019-10-03 株式会社日立製作所 Warehouse system
JP7247435B2 (en) * 2018-03-29 2023-03-29 トーヨーカネツ株式会社 Logistics system
JP7084257B2 (en) * 2018-08-30 2022-06-14 株式会社日立製作所 Picking support system and support method

Also Published As

Publication number Publication date
JP2021165926A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
Yuan et al. Bot-in-time delivery for robotic mobile fulfillment systems
KR102300277B1 (en) Methods, systems and apparatus for controlling movement of transporting devices
WO2020006010A1 (en) Automated warehouse system and method for optimized batch picking
CN109205160B (en) Three-dimensional commodity storage and allocation system and method
US20220227582A1 (en) Method and control system for preparing orders of goods stored in an automated storage system
CN109110359B (en) Three-dimensional commodity warehousing system and method
JP2019505454A (en) Order procurement by making storage units available from the storage facility in the desired order at the sorting station
Khojasteh et al. A travel time model for order picking systems in automated warehouses
CN113269494A (en) Inventory scheduling method, equipment and system
CN112978165A (en) Intelligent stereoscopic warehouse and warehouse-out control method, device and system thereof
Shah et al. A comprehensive review and proposed framework to design lean storage and handling systems
Hameed et al. The automatic storage and retrieval system: an overview
JP6937054B1 (en) Three-dimensional automated warehouse in logistics
CN110577048B (en) Method and system for warehousing scheduling
AU2021308322B2 (en) A controller and method for transporting devices
Yildirim et al. Mobile Robot Systems and their Evaluation
JP2022099021A (en) Physical distribution system
Soyaslan et al. A new truck based order picking model for automated storage and retrieval system (AS/RS)
Buijs et al. Comparing industry and academic perspectives on cross-docking operations
US20240043215A1 (en) Multi-level tote cache storage and sequencing for improved picker performance
Singgih et al. Remarshaling in A Bin-to-Person-based Smart Automated Warehouse
Jiang Oversized Package Placement Optimization in Warehouses
Ruzayqat Designing a cellular-based fully automated case picking system
CONSTANTE MOYA Innovative automated storage and retrieval systems: literature review and future research agenda
Pazour et al. Prospective on Automation for Omnichannel Services and the Need for New Robotic Solutions for Store Fulfillment Operations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200512

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6937054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150