JP6932964B2 - DC power supply circuit disconnection discriminator and wiring discriminator - Google Patents

DC power supply circuit disconnection discriminator and wiring discriminator Download PDF

Info

Publication number
JP6932964B2
JP6932964B2 JP2017060238A JP2017060238A JP6932964B2 JP 6932964 B2 JP6932964 B2 JP 6932964B2 JP 2017060238 A JP2017060238 A JP 2017060238A JP 2017060238 A JP2017060238 A JP 2017060238A JP 6932964 B2 JP6932964 B2 JP 6932964B2
Authority
JP
Japan
Prior art keywords
power supply
current
circuit
unit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060238A
Other languages
Japanese (ja)
Other versions
JP2018164358A (en
Inventor
明久 武井
明久 武井
誠志 大島
誠志 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2017060238A priority Critical patent/JP6932964B2/en
Publication of JP2018164358A publication Critical patent/JP2018164358A/en
Application granted granted Critical
Publication of JP6932964B2 publication Critical patent/JP6932964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、電気所の電気機器を操作するための制御回路に直流電源を供給する直流電源供給回路の断線及び配線を判別する直流電源供給回路の断線判別装置及び配線判別装置に関する。 The present invention relates to a disconnection discriminating device and a wiring discriminating device for a DC power supply circuit that discriminates a disconnection and wiring of a DC power supply circuit that supplies DC power to a control circuit for operating an electric device of an electric place.

発変電所や開閉所等の電気所では、遮断器や断路器等の電気機器を操作するための制御回路に直流電源を供給する直流電源供給回路が設けられている。この直流電源供給回路は、直流電源装置が接続された直流母線から複数引き出され、さらに、直流電源供給回路から分岐して多数の直流負荷である制御回路に直流電源を供給する。 Electric stations such as substations and switchyards are provided with a DC power supply circuit that supplies DC power to a control circuit for operating electric devices such as circuit breakers and disconnectors. A plurality of DC power supply circuits are drawn from the DC bus to which the DC power supply device is connected, and further branch off from the DC power supply circuit to supply DC power to a control circuit which is a large number of DC loads.

このような直流電源供給回路においては、直流電源供給回路の地絡故障を検出するための直流地絡継電器(64D)が設置されている。直流地絡継電器は、直流電源供給回路の直流母線の正極と負極とを抵抗分圧した分圧回路に設けられ、分圧回路の分圧中点は抵抗を介して接地されている。直流地絡継電器は分圧回路の電圧のバランスが崩れたときに動作する。 In such a DC power supply circuit, a DC ground relay (64D) for detecting a ground fault in the DC power supply circuit is installed. The DC ground relay is provided in a voltage dividing circuit in which the positive and negative electrodes of the DC bus of the DC power supply circuit are divided by resistance, and the middle point of the voltage dividing circuit is grounded via a resistor. The DC ground relay operates when the voltage of the voltage divider circuit is out of balance.

直流地絡継電器により直流電源供給回路の地絡事故は検出できるが、直流地絡継電器では直流電源供給回路の断線を検出することができない。例えば、保護継電器の出力接点の下流の直流電源供給回路に断線が発生していると、保護継電器が動作しても遮断器のトリップコイルや投入コイルを動作させることができないので、保護継電器の出力接点の下流の直流電源供給回路の断線の有無を判別することが要請されている。 A DC ground relay can detect a ground fault in the DC power supply circuit, but a DC ground relay cannot detect a disconnection in the DC power supply circuit. For example, if the DC power supply circuit downstream of the output contact of the protective relay is disconnected, the trip coil and closing coil of the circuit breaker cannot be operated even if the protective relay operates, so the output of the protective relay It is required to determine whether or not the DC power supply circuit downstream of the contact is broken.

また、直流電源供給回路は電気所の工事等で配線変更が行われることがあり、その場合、万一、直流電源供給回路の接続ミスがあると直流電源の供給に支障を生じたり、設備事故あるいは配線損傷など重大な事態に至るおそれがある。そのため、配線変更した電線の接続が正しく配線されているか否かの点検を行う必要がある。電線接続の点検は、電気所の電気機器(主回路)及び制御回路を停止(停電)した状態で、電線の絶縁抵抗測定、導通抵抗測定、低電圧印加測定もしくは操作試験等を行い電線の接続が正しく配線されているか否かの点検を行っている。また、運転を継続した状態(活線状態)で電線の電圧測定を行うことも考えられる。 In addition, the wiring of the DC power supply circuit may be changed due to construction work at an electric station, etc. In that case, if there is a connection error in the DC power supply circuit, the DC power supply may be hindered or a facility accident may occur. Alternatively, it may lead to a serious situation such as wiring damage. Therefore, it is necessary to check whether or not the connection of the wire whose wiring has been changed is correctly wired. To check the wire connection, perform wire insulation resistance measurement, conduction resistance measurement, low voltage application measurement, operation test, etc. with the electrical equipment (main circuit) and control circuit of the electric station stopped (power failure). Is inspected to see if it is wired correctly. It is also conceivable to measure the voltage of the electric wire while the operation is continued (live line state).

ここで、直流地絡継電器により直流電源供給回路の地絡事故が検出されたときに、運転を継続した状態(活線状態)で、フリッカー継電器にてリレー接点を開閉させることにより地絡故障電流を矩形波脈流に変換して出力し、その矩形波脈流を検出器で検出することで、直流接地点の探索の検出精度を向上させたものがある(例えば、特許文献1参照)。 Here, when a DC ground fault relay detects a ground fault in the DC power supply circuit, the ground fault current is generated by opening and closing the relay contact with the flicker relay while the operation is continued (live line state). Is converted into a rectangular wave pulsating current and output, and the rectangular wave pulsating current is detected by a detector to improve the detection accuracy of the search for a DC grounding point (see, for example, Patent Document 1).

特公平5−35384号公報Special Fair 5-35384 Gazette

しかし、保護継電器の出力接点の下流の直流電源供給回路の断線の有無を判別するには、電気所の主回路及び制御回路を停止した状態で、保護継電器を動作させ遮断器のトリップコイルや投入コイルが動作するか否かを判別することになるので、主回路に停電が発生し需要家への電力供給に支障を来す。また、配線変更した電線の接続が正しく配線されているか否かの点検を行う場合にも、電気所の主回路及び制御回路を停止することになるので、主回路に停電が発生する。そこで、主回路の運転を継続した状態(活線状態)で、直流電源供給回路の断線の有無の判別や配線の接続の良否を判別することが要請されている。 However, in order to determine whether or not the DC power supply circuit downstream of the output contact of the protection relay is broken, the protection relay is operated with the main circuit and control circuit of the electric station stopped, and the trip coil of the circuit breaker is turned on. Since it is determined whether or not the coil operates, a power failure occurs in the main circuit, which hinders the power supply to the consumer. Further, when checking whether or not the connection of the changed electric wire is correctly wired, the main circuit and the control circuit of the electric station are stopped, so that a power failure occurs in the main circuit. Therefore, it is required to determine whether or not the DC power supply circuit is broken and whether or not the wiring is connected in a state where the main circuit is continuously operated (live line state).

活線状態で、直流電源供給回路の断線の有無の判別や配線の接続の良否を判別するには、電線の両端部の電圧測定や電気機器を動作させない程度の探査電流を流し込みその探査電流の検出で判別することが考えられる。電気機器を動作させない程度の探査電流とするのは電気機器の不要動作を防止するためである。 In order to determine whether the DC power supply circuit is broken or not and whether the wiring is connected or not in the live state, measure the voltage at both ends of the electric wire or apply an exploration current that does not operate the electrical equipment. It is conceivable to discriminate by detection. The exploration current is set so that the electrical equipment does not operate in order to prevent unnecessary operation of the electrical equipment.

特許文献1のものでは、運転を継続した状態(活線状態)で、フリッカー継電器にてリレー接点を開閉させることにより地絡故障電流を矩形波脈流に変換して出力し、その矩形波脈流を検出器で検出することで、直流接地点の探索の検出精度を向上させているが、地絡故障電流を矩形波脈流に変換して出力し直流接地点の探索をするものであるので、地絡電流が発生しない限りは動作しない。従って、活線状態で、直流電源供給回路の断線の有無の判別や配線の接続の良否を判別するものにそのままでは適用できない。 In Patent Document 1, the ground fault current is converted into a rectangular pulsating current by opening and closing the relay contact with a flicker relay in a state where the operation is continued (live wire state), and the rectangular pulsating current is output. By detecting the flow with a detector, the detection accuracy of the DC grounding point search is improved, but the ground fault current is converted into a rectangular wave pulsating current and output to search for the DC grounding point. Therefore, it does not operate unless a ground fault current is generated. Therefore, it cannot be applied as it is to the one for determining the presence or absence of disconnection of the DC power supply circuit and the quality of wiring connection in the live wire state.

また、配線の良否の判別について、制御回路の分岐や制御回路中の補助リレーコイルなどを介して回り込み電圧が発生することがあるので、電線の両端部の電圧測定だけでは配線の良否の判別ができない場合がある。誤配線されている場合であっても電線の両端部の他方端に他の配線を介して回り込み電圧が発生している場合があるからである。 In addition, regarding the judgment of the quality of wiring, a wraparound voltage may be generated via a branch of the control circuit or an auxiliary relay coil in the control circuit, so it is possible to judge the quality of wiring only by measuring the voltage at both ends of the wire. It may not be possible. This is because even if the wiring is erroneously wired, a wraparound voltage may be generated at the other end of both ends of the electric wire via the other wiring.

本発明の目的は、活線状態で直流電源供給回路の断線の有無の判別及び配線の接続の良否を判別できる直流電源供給回路の断線判別装置及び配線判別装置を提供することである。 An object of the present invention is to provide a DC power supply circuit disconnection discrimination device and a wiring discrimination device capable of discriminating the presence or absence of a disconnection of a DC power supply circuit and determining the quality of wiring connection in a live wire state.

請求項1の発明に係る直流電源供給回路の断線判別装置は、電気所の電気機器を操作するための制御回路に直流電源装置から直流電源を供給する直流電源供給回路の直流母線の正極と負極との間に分圧中点を抵抗接地した分圧回路を設け、前記分圧回路の電圧のバランスが崩れたときに動作し前記直流電源供給回路の地絡故障を検出する直流地絡継電器を有した直流電源供給回路の断線の有無を点検する直流電源供給回路の断線判別装置であり;点検の際に前記直流電源供給回路のうちの断線の有無を点検する点検対象回路の前記直流電源装置側に位置する電線に接続するための接続端子と;前記接続端子の接続箇所を大地に接地するための接地装置と;点検の際に前記接続端子の接続箇所を前記接地装置に強制的に接地する接地ユニットとを備え;前記接地ユニットは、前記接続端子に接続され点検の際に前記接続端子を前記接地装置に強制的に接地して前記直流電源装置から直流の探査電流を前記接続端子の接続箇所から前記点検対象回路に供給するための強制接地スイッチと、前記強制接地スイッチに直列接続され前記探査電流を限流する限流抵抗と、前記接続端子の接続箇所の対地電圧を検出する電圧検出部と、前記接続端子の接続箇所を流れる探査電流を検出する電流検出部と、前記電圧検出部及び前記電流検出部で検出された電圧値及び電流値の良否判定を行う電圧電流判定部を有し;前記接地ユニットの前記電圧電流判定部の判定結果に基づいて直流電源供給回路の断線の有無を点検することを特徴とする。 The disconnection discriminating device for the DC power supply circuit according to the invention of claim 1 is the positive and negative sides of the DC bus of the DC power supply circuit that supplies DC power from the DC power supply device to the control circuit for operating the electric equipment of the electric station. A DC ground fault relay that operates when the voltage balance of the voltage splitting circuit is lost and detects a ground fault failure of the DC power supply circuit is provided between the voltage dividing circuit and the voltage dividing circuit. It is a disconnection discriminating device for the DC power supply circuit that inspects the presence or absence of disconnection of the DC power supply circuit that it has; A connection terminal for connecting to an electric wire located on the side; a grounding device for grounding the connection point of the connection terminal to the ground; forcibly grounding the connection point of the connection terminal to the grounding device at the time of inspection. The grounding unit is connected to the connection terminal, and the connection terminal is forcibly grounded to the grounding device at the time of inspection, and a DC exploration current from the DC power supply device is applied to the connection terminal. A forced ground switch for supplying from the connection point to the circuit to be inspected, a current limiting resistor connected in series to the forced ground switch to limit the exploration current, and a voltage for detecting the ground voltage at the connection point of the connection terminal. The detection unit, the current detection unit that detects the exploration current flowing through the connection point of the connection terminal, and the voltage / current determination unit that determines the quality of the voltage value and the current value detected by the voltage detection unit and the current detection unit. It is characterized in that it checks for disconnection of the DC power supply circuit based on the determination result of the voltage / current determination unit of the grounding unit.

請求項2の発明に係る直流電源供給回路の断線判別装置は、請求項1の発明において、前記接地ユニットは、前記限流抵抗と直列に接続され前記探査電流の大きさが予め定めた一定値になるように調整する電流制限回路を備えたことを特徴とする。 In the invention of claim 1, the grounding unit is connected in series with the current limiting resistor, and the magnitude of the exploration current is a predetermined constant value. It is characterized by having a current limiting circuit that adjusts to.

請求項3の発明に係る直流電源供給回路の断線判別装置は、請求項1の発明または請求項2の発明において、前記接地ユニットは、前記電圧検出部で検出された電圧値、前記電流検出部で検出された電流値、前記電圧電流判定部の判定結果をメッセージ出力するメッセージ出力部を備えたことを特徴とする。 In the invention of claim 1 or the invention of claim 2, the grounding unit is the voltage value detected by the voltage detection unit and the current detection unit. It is characterized by including a message output unit that outputs a message of the current value detected in the above and the determination result of the voltage / current determination unit.

請求項4の発明に係る直流電源供給回路の断線判別装置は、請求項1乃至請求項3のいずれか1項の発明において、前記接地ユニットは、前記電圧電流判定部の判定結果を表示するランプ表示部を備えたことを特徴とする。 In the invention of any one of claims 1 to 3, the grounding unit is a lamp that displays the determination result of the voltage / current determination unit. It is characterized by having a display unit.

請求項5の発明に係る直流電源供給回路の配線判別装置は、電気所の電気機器を操作するための制御回路に直流電源装置から直流電源を供給する直流電源供給回路の直流母線の正極と負極との間に分圧中点を抵抗接地した分圧回路を設け、前記分圧回路の電圧のバランスが崩れたときに動作し前記直流電源供給回路の地絡故障を検出する直流地絡継電器を有した直流電源供給回路の配線の良否を点検する直流電源供給回路の配線判別装置であり;点検の際に前記直流電源供給回路のうちの配線の良否を点検する点検対象回路の一方端部に接続される第1ユニットと;点検の際に前記点検対象回路の他方端部に接続される第2ユニットとを備え;前記第1ユニットは、前記点検対象回路の一方端部として前記直流電源装置の反対側の端部の外側に位置する電線に接続するための接続端子と、前記接続端子の接続箇所を大地に接地するための接地装置と;点検の際に前記接続端子の接続箇所を前記接地装置に強制的に接地する請求項2乃至請求項4のいずれかの接地ユニットとを備え;前記第2ユニットは、前記点検対象回路の他方端部として前記直流電源装置側の端部の外側に位置する電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を検出する高感度直流電流クランプメータと、前記高感度直流電流クランプメータにより検出された探査電流の電流値の良否判定を行う電流判定部を有した中間ユニットとを有し;前記接地ユニットの前記電圧電流判定部及び前記中間ユニットの前記電流判定部の判定結果に基づいて直流電源供給回路の配線の接続の良否を点検することを特徴とする。 The wiring discriminating device for the DC power supply circuit according to the invention of claim 5 is a positive and negative electrode of the DC bus of the DC power supply circuit that supplies DC power from the DC power supply device to the control circuit for operating the electric equipment of the electric station. A DC ground fault relay that operates when the voltage balance of the voltage splitting circuit is lost and detects a ground fault failure of the DC power supply circuit is provided between the voltage dividing circuit and the voltage dividing circuit. It is a wiring discriminator for the DC power supply circuit that checks the quality of the wiring of the DC power supply circuit that it has; at one end of the circuit to be inspected that checks the quality of the wiring of the DC power supply circuit at the time of inspection. A first unit to be connected; a second unit connected to the other end of the inspection target circuit at the time of inspection; the first unit is the DC power supply device as one end of the inspection target circuit. A connection terminal for connecting to an electric current located outside the end on the opposite side of the device, and a grounding device for grounding the connection point of the connection terminal to the ground; A grounding unit according to any one of claims 2 to 4 for forcibly grounding the grounding device; the second unit is outside the end on the DC power supply side as the other end of the circuit to be inspected. A high-sensitivity DC current clamp meter that detects the DC exploration current supplied from the DC power supply device after being clamped to the electric wire located in the above and adjusting the zero point, and the exploration current detected by the high-sensitivity DC current clamp meter. It has an intermediate unit having a current determination unit for determining the quality of the current value of the DC power supply circuit; based on the determination results of the voltage / current determination unit of the ground unit and the current determination unit of the intermediate unit. It is characterized by checking the quality of wiring connections.

請求項6の発明に係る直流電源供給回路の配線判別装置は、請求項5の発明において、前記中間ユニットは、前記高感度直流電流クランプメータで検出された電流値、前記電流判定部の判定結果をメッセージ出力するメッセージ出力部を備えたことを特徴とする。
The wiring discriminating device for the DC power supply circuit according to the invention of claim 6 is the invention of claim 5, wherein the intermediate unit is a current value detected by the high-sensitivity DC current clamp meter , and a determination result of the current determination unit. It is characterized by having a message output unit for outputting a message.

請求項7の発明に係る直流電源供給回路の配線判別装置は、請求項5または請求項6の発明において、前記中間ユニットは、前記電流判定部の判定結果を表示するランプ表示部とを備えたことを特徴とする。 In the invention of claim 5 or 6, the intermediate unit includes a lamp display unit for displaying the determination result of the current determination unit. It is characterized by that.

請求項1の発明によれば、断線の有無の点検の際に接続端子を点検対象回路の直流電源装置側に位置する電線に接続し、接地ユニットの強制接地スイッチをオンして接続端子の接続箇所を接地装置を介して大地に接地し、直流電源装置から限流抵抗で限流した直流の探査電流を点検対象回路に供給し、接地ユニットの電圧電流判定部は、電圧検出部で検出された接続箇所の対地電圧及び電流検出部で検出された接続箇所を流れる探査電流の良否判定を行い、電圧電流判定部の判定結果に基づいて直流電源供給回路の断線を判別するので、活線状態であっても直流電源供給回路の断線を判別できる。 According to the invention of claim 1, when inspecting for disconnection, the connection terminal is connected to an electric current located on the DC power supply side of the circuit to be inspected, and the forced grounding switch of the grounding unit is turned on to connect the connection terminals. The location is grounded to the ground via a grounding device, the DC exploration current limited by the current limiting resistance is supplied from the DC power supply device to the circuit to be inspected, and the voltage / current determination unit of the grounding unit is detected by the voltage detection unit. The quality of the exploration current flowing through the connection point detected by the ground voltage and current detection unit of the connection point is judged, and the disconnection of the DC power supply circuit is determined based on the judgment result of the voltage / current judgment unit. Even if it is, the disconnection of the DC power supply circuit can be determined.

請求項2の発明によれば、請求項1の発明の効果に加え、限流抵抗で限流した直流の探査電流の大きさが予め定めた一定値になるように調整する電流制限回路を備えたので、探査電流が一定値となる。従って、電流検出部で検出される電流を安定して検出できる。 According to the invention of claim 2, in addition to the effect of the invention of claim 1, a current limiting circuit for adjusting the magnitude of the DC exploration current limited by the current limiting resistor so as to be a predetermined constant value is provided. Therefore, the exploration current becomes a constant value. Therefore, the current detected by the current detection unit can be stably detected.

請求項3の発明によれば、請求項1の発明または請求項2の発明の効果に加え、メッセージ出力部は、点検対象回路の接続端子の接続箇所の電圧値、点検対象回路の接続端子の接続箇所を流れる探査電流の電流値、電圧電流判定部の判定結果をメッセージ出力するので、点検対象回路の接続端子の接続箇所の電圧値や電流値の良否結果を容易に把握できる。 According to the invention of claim 3, in addition to the effect of the invention of claim 1 or the invention of claim 2, the message output unit includes the voltage value of the connection portion of the connection terminal of the inspection target circuit and the connection terminal of the inspection target circuit. Since the current value of the exploration current flowing through the connection point and the judgment result of the voltage / current determination unit are output as a message, the quality result of the voltage value and the current value of the connection point of the connection terminal of the circuit to be inspected can be easily grasped.

請求項4の発明によれば、請求項1乃至請求項3のいずれか1項の発明の効果に加え、電圧電流判定部の判定結果をランプ表示部に表示するので、点検対象回路の接続端子の接続箇所の電圧値や電流値の良否結果を視覚的に把握できる。 According to the invention of claim 4, in addition to the effect of the invention of any one of claims 1 to 3, the determination result of the voltage / current determination unit is displayed on the lamp display unit, so that the connection terminal of the circuit to be inspected is displayed. It is possible to visually grasp the quality result of the voltage value and the current value of the connection point of.

請求項5の発明によれば、配線の接続の良否の点検の際に点検対象回路の直流電源装置の反対側の外側に位置する電線に接地ユニットを接続し、直流電源装置から限流抵抗で限流した直流の探査電流を点検対象回路に供給し、接地ユニットの電圧電流判定部は、接続箇所の対地電圧及び接続箇所を流れる探査電流の良否判定を行い、一方、高感度直流電流クランプメータを直流電源供給回路の点検対象回路の直流電源装置側の外側に位置する電線にクランプし、中間ユニットの電流判定部は高感度直流電流クランプメータにより検出された探査電流の電流値の良否判定を行い、接地ユニットの電圧電流判定部及び中間ユニットの電流判定部の判定結果に基づいて直流電源供給回路の配線の接続の良否を判別するので、活線状態であっても直流電源供給回路の配線の接続の良否を判別できる。 According to the invention of claim 5, when checking the quality of the wiring connection, the grounding unit is connected to the electric wire located on the outside opposite side of the DC power supply device of the circuit to be inspected, and the current limiting resistance is applied from the DC power supply device. The limited current DC exploration current is supplied to the circuit to be inspected, and the voltage / current determination unit of the grounding unit determines the quality of the ground voltage at the connection point and the exploration current flowing through the connection point, while the high-sensitivity DC current clamp meter. Is clamped to the electric wire located outside the DC power supply side of the inspection target circuit of the DC power supply circuit, and the current judgment part of the intermediate unit judges the quality of the current value of the probe current detected by the high-sensitivity DC current clamp meter. Then, based on the judgment results of the voltage / current judgment unit of the grounding unit and the current judgment unit of the intermediate unit, the quality of the connection of the wiring of the DC power supply circuit is determined. The quality of the connection can be determined.

請求項6の発明によれば、請求項5の発明の効果に加え、中間ユニットのメッセージ出力部は、点検対象回路の直流電源装置側の電流値、電流判定部の判定結果をメッセージ出力するので、点検対象回路の直流電源装置側の電流値の良否結果を容易に把握できる。 According to the invention of claim 6, in addition to the effect of the invention of claim 5, the message output unit of the intermediate unit outputs a message of the current value on the DC power supply side of the circuit to be inspected and the determination result of the current determination unit. , The quality result of the current value on the DC power supply side of the circuit to be inspected can be easily grasped.

請求項7の発明に係る直流電源供給回路の配線判別装置は、請求項5または請求項6の発明の効果に加え、中間ユニットのランプ表示部は、点検対象回路の直流電源装置側の電流値の判定結果を表示するので、点検対象回路の直流電源装置側の電流値の良否結果を視覚的に把握できる。 The DC power supply circuit wiring discriminating device according to the invention of claim 7 has the effect of the invention of claim 5 or 6, and the lamp display unit of the intermediate unit has a current value on the DC power supply side of the circuit to be inspected. Since the judgment result of is displayed, it is possible to visually grasp the quality result of the current value on the DC power supply side of the circuit to be inspected.

本発明の第1実施形態に係る直流電源供給回路の断線判別装置の一例を示す構成図。The block diagram which shows an example of the disconnection discriminating apparatus of the DC power supply circuit which concerns on 1st Embodiment of this invention. 図1に示した本発明の第1実施形態に係る直流電源供給回路の断線判別装置の接地ユニットの強制接地スイッチをオンした場合に流れる探査電流経路の説明図。FIG. 5 is an explanatory diagram of an exploration current path that flows when the forced grounding switch of the grounding unit of the disconnection discriminating device of the DC power supply circuit according to the first embodiment of the present invention shown in FIG. 1 is turned on. 本発明の第1実施形態に係る直流電源供給回路の断線判別装置の接地ユニットの他の一例を示す構成図である。It is a block diagram which shows another example of the grounding unit of the disconnection determination device of the DC power supply circuit which concerns on 1st Embodiment of this invention. 図3に示した接地ユニットの電流制限回路の電圧電流特性を示すグラフ。The graph which shows the voltage-current characteristic of the current limiting circuit of the grounding unit shown in FIG. 本発明の第2実施形態に係る直流電源供給回路の配線判別装置の一例を示す構成図。The block diagram which shows an example of the wiring discriminating device of the DC power supply circuit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る直流電源供給回路の配線判別装置の第2ユニットの一例を示す構成図。The block diagram which shows an example of the 2nd unit of the wiring discriminating device of the DC power supply circuit which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態において点検対象回路の配線が正常である場合に接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の説明図。The explanatory view of the exploration current path which flows when the forced grounding switch of a grounding unit is turned on when the wiring of the circuit to be inspected is normal in the 2nd Embodiment of this invention. 本発明の第2実施形態において誤配線である場合に点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図。FIG. 5 is an explanatory diagram of an example of an exploration current path that flows when a wiring discriminating device is connected to a circuit to be inspected and the forced grounding switch of the grounding unit is turned on when the wiring is incorrect in the second embodiment of the present invention. 図8に示した誤配線である場合に別の点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図。FIG. 8 is an explanatory diagram of an example of an exploration current path that flows when a wiring discriminating device is connected to another circuit to be inspected and the forced grounding switch of the grounding unit is turned on in the case of incorrect wiring shown in FIG. 本発明の第2実施形態において別の誤配線である場合に点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図。FIG. 5 is an explanatory diagram of an example of an exploration current path that flows when a wiring discriminating device is connected to a circuit to be inspected and the forced grounding switch of the grounding unit is turned on when another miswiring is performed in the second embodiment of the present invention. 図10に示した誤配線である場合に別の点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図。FIG. 10 is an explanatory diagram of an example of an exploration current path that flows when a wiring discriminating device is connected to another circuit to be inspected and the forced grounding switch of the grounding unit is turned on when the wiring is incorrect as shown in FIG. 本発明の第2実施形態において負極性の点検対象回路の配線が正常である場合に接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の説明図。The explanatory view of the exploration current path which flows when the forced grounding switch of a grounding unit is turned on when the wiring of the circuit to be inspected of a negative electrode property is normal in 2nd Embodiment of this invention.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係る直流電源供給回路の断線判別装置の一例を示す構成図であり、保護継電器の出力接点の下流の直流電源供給回路の断線の有無を判別する場合を示している。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a configuration diagram showing an example of a disconnection determination device for a DC power supply circuit according to the first embodiment of the present invention, and shows a case where the presence or absence of disconnection of the DC power supply circuit downstream of the output contact of the protective relay is determined. Shown.

電気所の直流回路は、直流電源装置11が接続された直流母線12から開閉器34及び配電盤13を経由して直流電源供給回路14を介して制御回路15に直流電源が供給される。直流回路の直流母線12は正極母線12Pと負極母線12Nとからなり、正極母線12Pは開閉器34P及び配電盤13を経由して正極性の直流電源供給回路14Pに接続され、負極母線12Nは開閉器34N及び配電盤13を経由して負極性の直流電源供給回路14Nに接続される。 In the DC circuit of an electric station, DC power is supplied from the DC bus 12 to which the DC power supply device 11 is connected to the control circuit 15 via the switch 34 and the switchboard 13 via the DC power supply circuit 14. The DC bus 12 of the DC circuit is composed of a positive electrode bus 12P and a negative electrode bus 12N, the positive electrode bus 12P is connected to the positive DC power supply circuit 14P via the switch 34P and the switchboard 13, and the negative electrode bus 12N is the switch. It is connected to the negative electrode DC power supply circuit 14N via 34N and the switchboard 13.

直流母線12の正極母線12Pと負極母線12Nとの間(正極と負極との間)には、正極と負極とを抵抗分圧し分圧中点を抵抗接地した分圧回路16が設置され、この分圧回路16は直流回路の地絡故障を検出する直流地絡継電器17の要素を構成し、この直流地絡継電器17は分圧回路16の電圧のバランスが崩れたときに動作する。 Between the positive electrode bus 12P of the DC bus 12 and the negative electrode bus 12N (between the positive electrode and the negative electrode), a voltage dividing circuit 16 is installed in which the positive electrode and the negative electrode are subjected to resistance voltage division and the voltage dividing middle point is resistance grounded. The voltage dividing circuit 16 constitutes an element of the DC ground fault relay 17 for detecting the ground fault of the DC circuit, and the DC ground fault relay 17 operates when the voltage of the voltage dividing circuit 16 is out of balance.

配電盤13には制御回路15を監視制御する監視制御機器が収納され、制御回路15には電気所の各種電気機器を操作するための操作装置が収納されている。図1では、配電盤13には保護継電器18及びその出力接点19が設置され、制御回路15には保護継電器18の出力接点19で操作される遮断器操作装置20が収納されている場合を示している。遮断器操作装置20には遮断器主接点を開くトリップコイルや遮断器主接点を閉じる投入コイル等があるが、図1ではトリップコイル21のみを示している。 The switchboard 13 houses a monitoring control device that monitors and controls the control circuit 15, and the control circuit 15 houses an operating device for operating various electric devices in an electric place. FIG. 1 shows a case where a protective relay 18 and its output contact 19 are installed on the switchboard 13, and a circuit breaker operating device 20 operated by the output contact 19 of the protective relay 18 is housed in the control circuit 15. There is. The circuit breaker operating device 20 includes a trip coil that opens the circuit breaker main contact, a closing coil that closes the circuit breaker main contact, and the like, but only the trip coil 21 is shown in FIG.

ここで、保護継電器18の出力接点19の下流の直流電源供給回路14の断線の有無を判別するにあたり、本発明の第1実施形態に係る直流電源供給回路の断線判別装置が直流電源供給回路14に接続される。断線判別装置は、接続端子22と接地ユニット23と接地装置24とから構成される。 Here, in determining whether or not the DC power supply circuit 14 downstream of the output contact 19 of the protective relay 18 is disconnected, the disconnection determination device of the DC power supply circuit according to the first embodiment of the present invention is the DC power supply circuit 14. Connected to. The disconnection determination device includes a connection terminal 22, a grounding unit 23, and a grounding device 24.

接続端子22は、直流電源供給回路のうちの断線の有無を点検する点検対象回路の直流電源装置11側に位置する電線に接続される端子である。図1では、保護継電器18の出力接点19の下流の直流電源供給回路14が点検対象回路となるので、接続端子22は保護継電器18の出力接点19の下流の電線のうち直流電源装置11側、つまり、出力接点19の直近下流に接続される。 The connection terminal 22 is a terminal connected to an electric wire located on the DC power supply device 11 side of the circuit to be inspected for checking for disconnection in the DC power supply circuit. In FIG. 1, since the DC power supply circuit 14 downstream of the output contact 19 of the protective relay 18 is the circuit to be inspected, the connection terminal 22 is the DC power supply 11 side of the electric wires downstream of the output contact 19 of the protective relay 18. That is, it is connected to the immediate downstream of the output contact 19.

接地ユニット23は、強制接地スイッチ25、限流抵抗26、電圧検出部27、電流検出部28、電圧電流判定部29、出力部30を有し、接続端子22の接続箇所における電圧値及び電流値の良否判定を行い出力部30に出力するものである。 The grounding unit 23 includes a forced grounding switch 25, a current limiting resistor 26, a voltage detection unit 27, a current detection unit 28, a voltage / current determination unit 29, and an output unit 30, and has a voltage value and a current value at the connection point of the connection terminal 22. The quality of the above is determined and output to the output unit 30.

接地ユニット23の強制接地スイッチ25及び限流抵抗26は接続端子22に直列に接続され、強制接地スイッチ25がオンしたときは接地装置24を介して接続端子22を大地に接地する。図1では強制接地スイッチ25はオフである場合を示している。 The forced grounding switch 25 and the current limiting resistor 26 of the grounding unit 23 are connected in series with the connection terminal 22, and when the forced grounding switch 25 is turned on, the connection terminal 22 is grounded to the ground via the grounding device 24. FIG. 1 shows a case where the forced grounding switch 25 is off.

限流抵抗26は探査電流を限流するものであり、遮断器操作装置20のトリップコイルが動作しない程度の電流に探査電流を限流する。これにより、断線の有無の判別の際に探査電流によりトリップコイルが不要動作することを防止する。 The current limiting resistor 26 limits the exploration current, and limits the exploration current to a current such that the trip coil of the circuit breaker operating device 20 does not operate. This prevents the trip coil from operating unnecessarily due to the exploration current when determining the presence or absence of disconnection.

電圧検出部27は接続端子22の接続箇所の対地電圧を検出するものであり、強制接地スイッチ25及び限流抵抗26の直列回路に内部で並列に接続された電圧検出抵抗の対地電圧を入力し電圧電流判定部29で処理できる信号に変換し電圧電流判定部29に出力する。この電圧検出抵抗の一方端は接地装置24に接地されることから、強制接地スイッチ25のオンオフに関係なく、この電圧検出抵抗の電圧が接続端子22の接続箇所の対地電圧として検出される。 The voltage detection unit 27 detects the voltage to ground at the connection point of the connection terminal 22, and inputs the voltage to ground of the voltage detection resistor internally connected in parallel to the series circuit of the forced ground switch 25 and the current limiting resistor 26. It is converted into a signal that can be processed by the voltage / current determination unit 29 and output to the voltage / current determination unit 29. Since one end of the voltage detection resistor is grounded to the grounding device 24, the voltage of this voltage detection resistor is detected as the ground voltage at the connection point of the connection terminal 22 regardless of whether the forced grounding switch 25 is turned on or off.

一方、電流検出部28は接続端子22の接続箇所を流れる探査電流を検出するものであり、限流抵抗の一部の抵抗を電流検出抵抗とし、その電流検出抵抗の対地電圧を測定することにより限流抵抗26に流れる電流を探査電流として入力し電圧電流判定部29で処理できる信号に変換し電圧電流判定部29に出力する。なお、強制接地スイッチ25がオフである場合には、限流抵抗26に流れる探査電流はゼロである。 On the other hand, the current detection unit 28 detects the exploration current flowing through the connection point of the connection terminal 22, and a part of the current limiting resistance is used as the current detection resistance, and the voltage to ground of the current detection resistance is measured. The current flowing through the current limiting resistor 26 is input as a search current, converted into a signal that can be processed by the voltage / current determination unit 29, and output to the voltage / current determination unit 29. When the forced ground switch 25 is off, the exploration current flowing through the current limiting resistor 26 is zero.

電圧電流判定部29は、電圧検出部27及び電流検出部28で検出された電圧値及び電流値の良否判定を行うものであり、接続端子22の接続箇所の対地電圧、接続端子22の接続箇所を流れる探査電流の良否を判定する。接続端子22の接続箇所の対地電圧は、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2の前後の値ならば良とする。良否判定の電圧基準値を直流電源電圧Eの1/2前後の値とするのは、強制接地スイッチ25をオンしたときは、分圧回路16の分圧中点が接地されていることから、接続端子22の接続箇所の対地電圧は、直流電源装置11の正極または負極と分圧回路16の分圧中点(接地点)との間の電圧となるからである。 The voltage / current determination unit 29 determines the quality of the voltage value and the current value detected by the voltage detection unit 27 and the current detection unit 28. Judge the quality of the exploration current flowing through. The voltage to ground at the connection point of the connection terminal 22 should be a value around 1/2 of the DC power supply voltage E (voltage E between the positive electrode and the negative electrode) of the DC power supply device 11. The voltage reference value for pass / fail judgment is set to a value of about 1/2 of the DC power supply voltage E because the voltage dividing midpoint of the voltage dividing circuit 16 is grounded when the forced grounding switch 25 is turned on. This is because the voltage to ground at the connection point of the connection terminal 22 is the voltage between the positive or negative voltage of the DC power supply device 11 and the voltage dividing midpoint (grounding point) of the voltage dividing circuit 16.

また、接続端子22の接続箇所を流れる探査電流は、接続端子22の接続箇所の対地電圧及び限流抵抗26の大きさで決まるので、予め限流抵抗26で限流される電流基準値を求めておき、接続端子22の接続箇所を流れる探査電流が電流基準値の大きさであれば良とする。接続端子22の接続箇所の対地電圧、接続端子22の接続箇所を流れる探査電流の良否判定は、電圧基準値や電流基準値に対し所定の誤差範囲を考慮して幅を持たせて判断する。 Further, since the exploration current flowing through the connection point of the connection terminal 22 is determined by the ground voltage of the connection point of the connection terminal 22 and the size of the current limiting resistor 26, the current reference value limited by the current limiting resistor 26 is obtained in advance. It is acceptable if the exploration current flowing through the connection point of the connection terminal 22 has a magnitude of the current reference value. The quality of the voltage to ground at the connection point of the connection terminal 22 and the exploration current flowing through the connection point of the connection terminal 22 is determined by giving a range to the voltage reference value and the current reference value in consideration of a predetermined error range.

電圧電流判定部29の良否判定結果は出力部30に出力される。出力部30はメッセージ出力部31及びランプ表示部32を有している。メッセージ出力部31は、電圧電流判定部29の良否判定結果に加え、点検対象回路の接続端子22の接続箇所の電圧値、その接続端子22の接続箇所を流れる探査電流の電流値も表示出力する。例えば、判定結果が良のときは良あるいはOKと文字表示し、否のときは否あるいはNOと文字表示する。電圧値や電流値は数字で表示する。これにより、点検対象回路の接続端子の接続箇所の電圧値や電流値の良否結果を容易に把握できる。また、ランプ表示部32は電圧電流判定部29の判定結果をランプ表示する。例えば、判定結果が良のときは緑色で表示し、否のときは赤色で表示する。これにより、点検対象回路の接続端子の接続箇所の電圧値や電流値の良否結果を視覚的に把握できる。 The quality determination result of the voltage / current determination unit 29 is output to the output unit 30. The output unit 30 has a message output unit 31 and a lamp display unit 32. In addition to the quality determination result of the voltage / current determination unit 29, the message output unit 31 also displays and outputs the voltage value of the connection portion of the connection terminal 22 of the circuit to be inspected and the current value of the exploration current flowing through the connection portion of the connection terminal 22. .. For example, when the determination result is good, the characters are displayed as good or OK, and when the judgment result is bad, the characters are displayed as no or NO. The voltage value and current value are displayed numerically. As a result, it is possible to easily grasp the quality result of the voltage value and the current value at the connection point of the connection terminal of the circuit to be inspected. Further, the lamp display unit 32 displays the determination result of the voltage / current determination unit 29 as a lamp. For example, when the judgment result is good, it is displayed in green, and when it is not, it is displayed in red. As a result, it is possible to visually grasp the quality result of the voltage value and the current value at the connection point of the connection terminal of the circuit to be inspected.

図2は、図1に示した本発明の第1実施形態に係る直流電源供給回路の断線判別装置の接地ユニットの強制接地スイッチをオンした場合に流れる探査電流の経路の説明図である。図2に示すように、接地ユニット23の強制接地スイッチ25がオンしたときは強制接地スイッチ25は接続端子22に接続されていることから、接続端子22は強制接地スイッチ25及び限流抵抗26の直列回路を介して接地装置24に接続され大地に接地される。これにより、直流電源装置11の正極、分圧回路16の分圧中点、大地、限流抵抗26、強制接地スイッチ25、接続端子22、点検対象回路、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極、の閉回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。点検対象回路に供給される探査電流は探査電流回路に流れる電流であり、この探査電流が点検対象回路の遮断器操作装置20のトリップコイル21に供給される。 FIG. 2 is an explanatory diagram of the path of the exploration current that flows when the forced grounding switch of the grounding unit of the disconnection determining device of the DC power supply circuit according to the first embodiment of the present invention shown in FIG. 1 is turned on. As shown in FIG. 2, when the forced grounding switch 25 of the grounding unit 23 is turned on, the forced grounding switch 25 is connected to the connection terminal 22, so that the connection terminal 22 is the forced grounding switch 25 and the current limiting resistor 26. It is connected to the grounding device 24 via a series circuit and grounded to the ground. As a result, the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, the ground, the current limiting resistance 26, the forced ground switch 25, the connection terminal 22, the circuit to be inspected, and the negative electrode of the DC power supply device 11 are closed. (Exploration current circuit) is formed. Further, a closed circuit (voltage dividing midpoint diversion circuit) of the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows. The exploration current supplied to the inspection target circuit is a current flowing through the exploration current circuit, and this exploration current is supplied to the trip coil 21 of the circuit breaker operating device 20 of the inspection target circuit.

探査電流回路に流れる探査電流は、接地ユニット23の電流検出器28で検出される。電流検出器28で検出された探査電流は、電圧電流判定部29に入力され、電圧電流判定部29で予め定めた電流基準値と比較判定されて電流値の良否が判定される。そして、その判定結果はメッセージ出力部31及びランプ表示装置32に出力される。電流検出器28で検出された探査電流の電流値が電流基準値の範囲であるときは断線は発生していないと判断する。探査電流がゼロであるときは断線が発生していると判定される。また、ゼロではないが電流基準値以下であるときは断線以外の障害が発生していると判定される。なお、接続端子22の接続箇所の対地電圧は、前述したように、強制接地スイッチ25のオンオフに関係なく、強制接地スイッチ25及び限流抵抗26の直列回路に内部で並列に接続された電圧検出抵抗の電圧を電圧検出器27で検出され、電圧電流判定部29で予め定めた電圧基準値と比較判定され電圧値の良否が判定される。 The exploration current flowing through the exploration current circuit is detected by the current detector 28 of the grounding unit 23. The exploration current detected by the current detector 28 is input to the voltage-current determination unit 29, and is compared and determined by the voltage-current determination unit 29 with a predetermined current reference value to determine whether the current value is good or bad. Then, the determination result is output to the message output unit 31 and the lamp display device 32. When the current value of the exploration current detected by the current detector 28 is within the range of the current reference value, it is determined that no disconnection has occurred. When the exploration current is zero, it is determined that a disconnection has occurred. If it is not zero but is less than or equal to the current reference value, it is determined that a failure other than disconnection has occurred. As described above, the voltage to ground at the connection point of the connection terminal 22 is a voltage detection internally connected in parallel to the series circuit of the forced ground switch 25 and the current limiting resistor 26 regardless of whether the forced ground switch 25 is turned on or off. The voltage of the resistor is detected by the voltage detector 27, and the voltage / current determination unit 29 compares and determines the voltage with a predetermined voltage reference value to determine whether the voltage value is good or bad.

次に、接地ユニット23の他の一例を説明する。図3は接地ユニット23の他の一例を示す構成図である。図1に示した接地ユニット23に対し、強制接地スイッチ25及び限流抵抗26の直列回路に電流制限回路33を追加して設けたものである。電流制限回路33は、探査電流の大きさが予め定めた一定値になるように調整する回路であり、定電流ダイオードCRDとダイオードDとの直列回路を逆並列に接続して構成されている。 Next, another example of the grounding unit 23 will be described. FIG. 3 is a configuration diagram showing another example of the grounding unit 23. The grounding unit 23 shown in FIG. 1 is provided with a current limiting circuit 33 added to the series circuit of the forced grounding switch 25 and the current limiting resistor 26. The current limiting circuit 33 is a circuit that adjusts the magnitude of the exploration current so that it becomes a predetermined constant value, and is configured by connecting a series circuit of the constant current diode CRD and the diode D in antiparallel.

定電流ダイオードCRDは、0[V]〜Vk[V]の領域では印加電圧に比例して電流値が増減するが、Vk[V]を超えると一定の電流(ピンチオフ電流)を流し、逆方向特性はダイオードDの順方向特性に類似した定電圧特性を示す素子である。従って、電流制限回路33は双方向特性を持たせるために、定電流ダイオードCRDとダイオードDとの直列回路を逆並列に接続して構成される。図3では定電流ダイオードCRDを用いて構成した電流制限回路33を示しているが、電流制限回路33はトランジスタを用いて一定の電流を流す回路を構成するようにしてもよい。 In the constant current diode CRD, the current value increases or decreases in proportion to the applied voltage in the range of 0 [V] to Vk [V], but when it exceeds Vk [V], a constant current (pinch-off current) flows and the direction is opposite. The characteristic is an element that exhibits a constant voltage characteristic similar to the forward characteristic of the diode D. Therefore, the current limiting circuit 33 is configured by connecting a series circuit of the constant current diode CRD and the diode D in antiparallel in order to have bidirectional characteristics. Although FIG. 3 shows a current limiting circuit 33 configured by using a constant current diode CRD, the current limiting circuit 33 may be configured to flow a constant current by using a transistor.

電流制限回路33を追加して設けることにより探査電流が一定値となるので、図2に示した分圧中点分流回路に流れる電流が変動しても、探査電流回路に流れる探査電流を一定値に保つことができる。また、探査電流回路は、直流電源装置11の正極、分圧回路16の分圧中点、大地、限流抵抗26、強制接地スイッチ25、接続端子22、点検対象回路、直流電源装置11の負極、の閉回路で形成されるので、点検対象回路によって抵抗値が変動することがあり探査電流も変動することがある。そのような場合であっても、電流制限回路33により探査電流を一定値に保つことができるので、探査電流回路が形成されている限りは、電流検出器28で検出される電流を安定して検出できる。 Since the exploration current becomes a constant value by additionally providing the current limiting circuit 33, the exploration current flowing through the exploration current circuit has a constant value even if the current flowing through the voltage dividing midpoint diversion circuit shown in FIG. 2 fluctuates. Can be kept in. Further, the exploration current circuit includes the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, the ground, the current limiting resistance 26, the forced grounding switch 25, the connection terminal 22, the circuit to be inspected, and the negative electrode of the DC power supply device 11. Since it is formed by a closed circuit of, the resistance value may fluctuate depending on the circuit to be inspected, and the exploration current may also fluctuate. Even in such a case, the exploration current can be kept constant by the current limiting circuit 33, so that the current detected by the current detector 28 can be stably maintained as long as the exploration current circuit is formed. Can be detected.

図4は電流制限回路33の電圧電流特性の一例を示すグラフである。図4では、正電圧を対象とした電圧電流特性の一例を示している。すなわち、0[V]〜35[V]の領域では印加電圧に比例して電流値が増加し、35[V]を超えると一定の電流(ピンチオフ電流)が1.0[mA]となる電圧電流特性を示している。前述したように、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)は通常110[V]であるので、分圧回路16の分圧中点を接地している場合、分圧中点と正極母線12Pとの間の電圧は55[V]となるので電圧基準値は55[V]となる。 FIG. 4 is a graph showing an example of the voltage-current characteristics of the current limiting circuit 33. FIG. 4 shows an example of voltage-current characteristics for a positive voltage. That is, in the region of 0 [V] to 35 [V], the current value increases in proportion to the applied voltage, and when it exceeds 35 [V], the constant current (pinch-off current) becomes 1.0 [mA]. It shows the current characteristics. As described above, the DC power supply voltage E (voltage E between the positive and negative sides) of the DC power supply device 11 is usually 110 [V], so that when the voltage dividing midpoint of the voltage dividing circuit 16 is grounded. Since the voltage between the voltage dividing midpoint and the positive voltage bus 12P is 55 [V], the voltage reference value is 55 [V].

ここで、探査電流として1.0[mA]を選定したのは、制御回路の誤動作を防止するためトリップコイル21あるいは制御回路に使用される電磁接触器等の動作電流よりも十分小さな値とすること、後述の第2実施形態の高感度直流電流クランプメータで測定可能な範囲の値とすることの条件を満たすようにするためである。 Here, 1.0 [mA] was selected as the exploration current so that it is sufficiently smaller than the operating current of the trip coil 21 or the electromagnetic contactor used in the control circuit in order to prevent malfunction of the control circuit. This is to satisfy the condition that the value is within the measurable range of the high-sensitivity DC current clamp meter of the second embodiment described later.

接地ユニット23を強制接地スイッチ25で強制接地すると分圧回路16の分圧中点が接地されていることから、接地ユニット23が分圧回路16に並列接続されることになり、前述の分圧中点分流回路が形成される。従って、分圧中点と正極母線12Pとの間の抵抗値が下がるため分圧中点と正極母線12Pとの間の電圧は低下する。 When the grounding unit 23 is forcibly grounded by the forced grounding switch 25, the voltage dividing midpoint of the voltage dividing circuit 16 is grounded, so that the grounding unit 23 is connected in parallel to the voltage dividing circuit 16 and the above-mentioned voltage dividing circuit 16 is connected. A midpoint voltage divider circuit is formed. Therefore, since the resistance value between the voltage dividing midpoint and the positive electrode bus 12P decreases, the voltage between the voltage dividing midpoint and the positive electrode bus 12P decreases.

そのため、接続端子22の接続箇所において電圧低下を0〜―20%、測定誤差を±10%を見込むと許容範囲として−30%〜+10%が見込まれる。よって、圧検出器27で検出される電圧の良否判定は、電圧基準値範囲Vrとして38.5[V]〜60.5[V]にあるときに良と判定する。そこで、電流制限回路33として、少なくとも接続端子22の接続箇所の電圧が電圧基準値範囲Vrである38.5[V]〜60.5[V]で変動しても探査電流を一定値に保つことができる電圧電流特性を採用する。以上の説明では、正電圧について説明したが、負電圧の場合は極性が反転するだけで正電圧の場合と同様である。電圧基準値範囲Vrは−38.5[V]〜−60.5[V]となる。 Therefore, if a voltage drop of 0 to -20% and a measurement error of ± 10% are expected at the connection point of the connection terminal 22, an allowable range of -30% to + 10% is expected. Therefore, the quality judgment of the voltage detected by the pressure detector 27 is judged to be good when the voltage reference value range Vr is in the range of 38.5 [V] to 60.5 [V]. Therefore, the current limiting circuit 33 keeps the exploration current constant even if the voltage at the connection point of the connection terminal 22 fluctuates within the voltage reference value range Vr of 38.5 [V] to 60.5 [V]. Adopt the voltage-current characteristics that can be achieved. In the above description, the positive voltage has been described, but in the case of the negative voltage, only the polarity is reversed, which is the same as in the case of the positive voltage. The voltage reference value range Vr is -38.5 [V] to -60.5 [V].

ここで、検出される電圧について電圧低下として0〜―20%見込んだがこれに限らない。例えば、トリップコイル21が持つ抵抗が無視でききない程度の値であった場合、このトリップコイル21での電圧低下を加味して、電圧区順値範囲Vrを設定し良否判定をしてもよい。 Here, the detected voltage is expected to decrease by 0 to -20% as a voltage drop, but the voltage is not limited to this. For example, when the resistance of the trip coil 21 is a value that cannot be ignored, the voltage drop in the trip coil 21 may be taken into consideration to set the voltage section forward value range Vr and determine the quality. ..

本発明の第1実施形態によれば、接地ユニット23を点検対象回路の直流電源装置11側に位置する接続端子22接続し、接地ユニット23の電圧電流判定部29は、電圧検出部27で検出された接続箇所の対地電圧が電圧基準値範囲Vrにあるか否かでの良否判定を行うので、分圧中点分流回路が形成されることによって分圧中点と正極母線12Pとの間の電圧が変動したとしても接続端子の接続箇所の対地電圧の良否判定を精度よく判定できる。なお、強制接地による電圧範囲判定に先立ち、接続箇所に電源電圧が正常に加わっているかを強制接地前に判定してもよい。例えば、強制接地前に、強制接地スイッチ25を所望の接続箇所に接続した後、強制接地前の電圧を測定することで健全性を判定することができる。 According to the first embodiment of the present invention, the grounding unit 23 is connected to the connection terminal 22 located on the DC power supply device 11 side of the circuit to be inspected, and the voltage / current determination unit 29 of the grounding unit 23 is detected by the voltage detection unit 27. Since the quality judgment is made based on whether or not the voltage to ground at the connected connection point is within the voltage reference value range Vr, the voltage division midpoint diversion circuit is formed to form a voltage division midpoint between the positive voltage bus 12P. Even if the voltage fluctuates, it is possible to accurately judge whether the voltage to ground at the connection point of the connection terminal is good or bad. Prior to the determination of the voltage range by forced grounding, it may be determined whether or not the power supply voltage is normally applied to the connection point before forced grounding. For example, soundness can be determined by connecting the forced grounding switch 25 to a desired connection location before forced grounding and then measuring the voltage before forced grounding.

また、接地ユニット23の強制接地スイッチ25をオンして接続端子22の接続箇所を接地装置24を介して大地に接地し、直流電源装置11から限流抵抗26で限流した直流の探査電流を点検対象回路に供給し、接地ユニット23の電圧電流判定部29は、電流検出部28で検出された接続箇所を流れる探査電流の良否判定を行い、電圧電流判定部29の判定結果に基づいて直流電源供給回路14の断線を判別するので、活線状態であっても直流電源供給回路14の断線を判別できる。さらに、電流制限回路33を設けた場合には、直流の探査電流の大きさが予め定めた一定値になるので、分圧中点分流回路に流れる電流の影響を受けることなく探査電流の良否の判定を行うことができ、直流電源供給回路14の断線の有無を精度よく判別できる。 Further, the forced grounding switch 25 of the grounding unit 23 is turned on, the connection point of the connection terminal 22 is grounded to the ground via the grounding device 24, and the DC exploration current limited by the current limiting resistor 26 is applied from the DC power supply device 11. The voltage / current determination unit 29 of the grounding unit 23 supplies to the circuit to be inspected, determines the quality of the exploration current flowing through the connection point detected by the current detection unit 28, and direct current based on the determination result of the voltage / current determination unit 29. Since the disconnection of the power supply circuit 14 is determined, the disconnection of the DC power supply circuit 14 can be determined even in the live wire state. Further, when the current limiting circuit 33 is provided, the magnitude of the DC exploration current becomes a predetermined constant value, so that the quality of the exploration current is not affected by the current flowing through the voltage dividing midpoint diversion circuit. The determination can be made, and the presence or absence of disconnection of the DC power supply circuit 14 can be accurately determined.

次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態に係る直流電源供給回路の配線判別装置の一例を示す構成図であり、直流電源供給回路の配線の接続の良否を判別する場合を示している。 Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram showing an example of a wiring discriminating device for a DC power supply circuit according to a second embodiment of the present invention, and shows a case where the quality of the wiring connection of the DC power supply circuit is discriminated.

電気所の直流回路は、直流電源装置11が接続された直流母線12から開閉器34及び配電盤13を経由して直流電源供給回路14を介して制御回路15に直流電源が供給される。配電盤13には、図示省略の制御回路15を監視制御する監視制御機器が収納され、制御回路15には、図示省略の電気所の各種電気機器を操作するための操作装置が収納されている。また、直流母線12の正極母線12Pと負極母線12Nとの間(正極と負極との間)には、正極と負極とを抵抗分圧し分圧中点を抵抗接地した分圧回路16が設置され、この分圧回路16は直流回路の地絡故障を検出する直流地絡継電器17の要素を構成し、この直流地絡継電器17は分圧回路16の電圧のバランスが崩れたときに動作する。 In the DC circuit of an electric station, DC power is supplied from the DC bus 12 to which the DC power supply device 11 is connected to the control circuit 15 via the switch 34 and the switchboard 13 via the DC power supply circuit 14. The switchboard 13 houses a monitoring control device that monitors and controls a control circuit 15 (not shown), and the control circuit 15 houses an operating device for operating various electric devices of an electric facility (not shown). Further, a voltage dividing circuit 16 is installed between the positive electrode bus 12P of the DC bus 12 and the negative electrode bus 12N (between the positive electrode and the negative electrode) by dividing the positive electrode and the negative electrode by resistance and grounding the middle point of the voltage dividing by resistance. The voltage dividing circuit 16 constitutes an element of the DC ground fault relay 17 for detecting the ground fault of the DC circuit, and the DC ground fault relay 17 operates when the voltage of the voltage dividing circuit 16 is out of balance.

図5では、複数の制御回路15a〜15nである場合を示しており、これら複数の制御回路15a〜15nに対し、正極母線12Pには、開閉器34aP〜34nP及び配電盤13を経由して正極性の直流電源供給回路14aP〜14nPが接続され、同様に、負極母線12Nには開閉器34aN〜34nN及び配電盤13を経由して負極性の直流電源供給回路14aN〜14nNが接続されている。また、図5では、制御回路15nについては、正極母線12Pに繋がる正極性の直流電源供給回路14nPが複数の電線(k本)からなる直流電源供給回路14n1P〜14nkPである場合を示しており、負極母線12Nに繋がる負極性の直流電源供給回路14nNは1本である場合を示している。なお、負極母線12Nに繋がる負極性の直流電源供給回路14nNは1本に纏めずに正極母線12Pに繋がる直流電源供給回路14nPごとに設けるようにしてもよい。 FIG. 5 shows a case where a plurality of control circuits 15a to 15n are used. In contrast to the plurality of control circuits 15a to 15n, the positive electrode bus 12P has a positive electrode property via a switch 34aP to 34nP and a switchboard 13. DC power supply circuits 14aP to 14nP are connected to the above, and similarly, negative electrode DC power supply circuits 14aN to 14nN are connected to the negative electrode bus 12N via switches 34aN to 34nN and the switchboard 13. Further, FIG. 5 shows a case where the positive electrode DC power supply circuit 14nP connected to the positive electrode bus 12P is a DC power supply circuit 14n1P to 14nkP composed of a plurality of electric wires (k lines) for the control circuit 15n. The case where the negative electrode DC power supply circuit 14nN connected to the negative electrode bus 12N is one is shown. The negative electrode power supply circuit 14nN connected to the negative electrode bus 12N may not be combined into one, but may be provided for each DC power supply circuit 14nP connected to the positive electrode bus 12P.

ここで、直流電源供給回路14の配線の接続の良否を点検するにあたり、本発明の第2実施形態に係る直流電源供給回路の配線判別装置が直流電源供給回路14に接続される。図5では、配線判別装置を点検対象回路である直流電源供給回路14n1Pに接続した場合を示している。 Here, in checking the quality of the connection of the wiring of the DC power supply circuit 14, the wiring discriminating device of the DC power supply circuit according to the second embodiment of the present invention is connected to the DC power supply circuit 14. FIG. 5 shows a case where the wiring discriminating device is connected to the DC power supply circuit 14n1P which is the inspection target circuit.

配線判別装置は、第1ユニット35と第2ユニット36とから構成される。第1ユニット35は、直流電源供給回路14の配線の良否を点検する点検対象回路(直流電源供給回路14n1P)の一方端部(直流電源装置11の反対側の端部)の電圧及び電流の良否判定を行い、第2ユニット36は直流電源供給回路14の配線の良否を点検する点検対象回路(直流電源供給回路14n1P)の他方端部(直流電源装置11側の端部)の電流の良否判定を行い、第1ユニット35及び第2ユニット36の双方の判定結果が良であるときに配線は正しく接続されていると判定する。 The wiring discriminating device includes a first unit 35 and a second unit 36. The first unit 35 has the quality of the voltage and current of one end (the end opposite to the DC power supply device 11) of the inspection target circuit (DC power supply circuit 14n1P) for checking the quality of the wiring of the DC power supply circuit 14. The second unit 36 makes a determination and checks the quality of the wiring of the DC power supply circuit 14. The quality of the current at the other end (the end on the DC power supply 11 side) of the inspection target circuit (DC power supply circuit 14n1P) is determined. When the determination results of both the first unit 35 and the second unit 36 are good, it is determined that the wiring is correctly connected.

第1ユニット35及び第2ユニット36は、点検対象回路(直流電源供給回路14n1P)両端部を挟んで接続される。第1ユニット35は点検対象回路の一方端部(直流電源装置11の反対側の端部)に接続され、接続端子22Aと接地ユニット23Aと接地装置24Aとから構成される。第2ユニット36は点検対象回路の他方端部(直流電源装置11側の端部)に接続され、高感度直流電流クランプメータ37と中間ユニット38とから構成される。 The first unit 35 and the second unit 36 are connected so as to sandwich both ends of the circuit to be inspected (DC power supply circuit 14n1P). The first unit 35 is connected to one end of the circuit to be inspected (the end opposite to the DC power supply device 11), and is composed of a connection terminal 22A, a grounding unit 23A, and a grounding device 24A. The second unit 36 is connected to the other end of the circuit to be inspected (the end on the DC power supply 11 side), and is composed of a high-sensitivity DC current clamp meter 37 and an intermediate unit 38.

第1ユニット35は第1実施形態の断線判別装置と同様な構成である。相違点は、第1実施形態の断線判別装置の接続端子22が点検対象回路の直流電源装置11側に位置する電線に接続されるに対し、第1ユニット35の接続端子22Aは、点検対象回路(直流電源供給回路14n1P)の直流電源装置11の反対側の端部(一方端部)の外側に位置する電線に接続される点、及び、第1ユニット35の接地ユニット23Aは、図3に示した電流制限回路33を有した接地ユニット23であり、電流制限回路33を有しない接地ユニット23を含まない点である。 The first unit 35 has the same configuration as the disconnection discriminating device of the first embodiment. The difference is that the connection terminal 22 of the disconnection determination device of the first embodiment is connected to the electric wire located on the DC power supply device 11 side of the circuit to be inspected, whereas the connection terminal 22A of the first unit 35 is the circuit to be inspected. The point connected to the electric current located outside the opposite end (one end) of the DC power supply device 11 of the (DC power supply circuit 14n1P) and the grounding unit 23A of the first unit 35 are shown in FIG. The grounding unit 23 has the current limiting circuit 33 shown, and does not include the grounding unit 23 having no current limiting circuit 33.

接地装置24Aは、第1実施形態の断線判別装置と同様に接地ユニット23Aの強制接地スイッチ25がオンしたときに接続端子22Aの接続箇所を大地に接地するものであり、また、第1ユニット35の接地ユニット23Aは、図3に示した電流制限回路33を有した接地ユニット23と同じ構成であるので、以下、第1実施形態の断線判別装置と同様な構成部分については、重複する説明は省略する。 Similar to the disconnection determination device of the first embodiment, the grounding device 24A grounds the connection portion of the connection terminal 22A to the ground when the forced grounding switch 25 of the grounding unit 23A is turned on, and the first unit 35. Since the grounding unit 23A of the above has the same configuration as the grounding unit 23 having the current limiting circuit 33 shown in FIG. 3, the same components as the disconnection determining device of the first embodiment will be described below in duplicate. Omit.

第1ユニット35の接地ユニット23Aは、点検対象回路である直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)、つまり接続端子22Aの接続箇所の対地電圧の電圧値の良否判定を行うとともに、接続端子22Aの接続箇所を流れる探査電流の電流値の良否判定を行う。 The grounding unit 23A of the first unit 35 is the voltage value of the ground voltage at one end of the DC power supply circuit 14n1P (the end opposite to the DC power supply device 11), which is the circuit to be inspected, that is, the connection point of the connection terminal 22A. In addition to determining the quality of the search current, the quality of the exploration current flowing through the connection point of the connection terminal 22A is determined.

一方、第2ユニット36の高感度直流電流クランプメータ37は、点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置側11の端部)電流を検出し、第2ユニット36の中間ユニット38は、高感度直流電流クランプメータ37により検出された探査電流の電流値の良否判定を行う。 On the other hand, the high-sensitivity DC current clamp meter 37 of the second unit 36 detects the current at the other end (the end of the DC power supply side 11) of the DC power supply circuit 14n1P, which is the circuit to be inspected, and detects the current of the second unit 36. The intermediate unit 38 determines whether the current value of the exploration current detected by the high-sensitivity DC current clamp meter 37 is good or bad.

第2ユニット36の高感度直流電流クランプメータ37は、点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置側11の端部)の外側に位置する電線にクランプされ、ゼロ点調整を行ってから直流電源装置11から供給される直流の探査電流を検出する。高感度直流電流クランプメータ37のゼロ点調整を行うのは、高感度直流電流クランプメータ37は2次側に交流バイアスを流して直流の電流を検出するものであることから、ゼロ点オフセットを補正するために測定の度にゼロ点調整を必要とするからである。高感度直流電流クランプメータとしては、市販のもの(例えば、マルチ計測器株式会社製、高感度DCクランプメーター、M−700、DC 0〜100mA、分解能0.01mA)を採用する。 The high-sensitivity DC current clamp meter 37 of the second unit 36 is clamped to an electric wire located outside the other end (the end of the DC power supply side 11) of the DC power supply circuit 14n1P, which is the circuit to be inspected, and has a zero point. After making the adjustment, the DC exploration current supplied from the DC power supply device 11 is detected. The zero point adjustment of the high-sensitivity DC current clamp meter 37 is performed because the high-sensitivity DC current clamp meter 37 detects the direct current by passing an AC bias to the secondary side, so that the zero point offset is corrected. This is because the zero point adjustment is required for each measurement. As the high-sensitivity DC current clamp meter, a commercially available one (for example, a high-sensitivity DC clamp meter manufactured by Multi-Measuring Instruments Co., Ltd., M-700, DC 0 to 100 mA, resolution 0.01 mA) is adopted.

第2ユニット36の中間ユニット38は、高感度直流電流クランプメータ37により検出された探査電流の電流値が電流基準値の範囲内であれば探査電流の電流値の良であると判定する。電流基準値の範囲は、接地ユニット23Aの電流制限回路33で一定値に保たれた探査電流(1[mA])に対し±25%の幅を持たせたものとする。これは、電流制限回路の個体差及び第2ユニット36は非接触測定であり計測誤差が大きいこと(第1ユニット35は直接測定で計測誤差が小さい)を見込んだものである。 The intermediate unit 38 of the second unit 36 determines that the current value of the exploration current is good if the current value of the exploration current detected by the high-sensitivity DC current clamp meter 37 is within the range of the current reference value. The range of the current reference value shall have a width of ± 25% with respect to the exploration current (1 [mA]) maintained at a constant value by the current limiting circuit 33 of the grounding unit 23A. This is because the individual difference of the current limiting circuit and the second unit 36 are non-contact measurement and the measurement error is large (the first unit 35 is the direct measurement and the measurement error is small).

図6は、第2ユニット36の一例を示す構成図である。高感度直流電流クランプメータ37は、前述したように点検対象回路(直流電源供給回路14n1P)の直流電源装置側11の端部(他方端部)の外側に位置する電線にクランプされ、ゼロ点調整を行ってから直流電源装置11から点検対象回路(直流電源供給回路14n1P)に供給される直流の探査電流を検出する。 FIG. 6 is a configuration diagram showing an example of the second unit 36. As described above, the high-sensitivity DC current clamp meter 37 is clamped to the electric wire located outside the end (the other end) of the DC power supply side 11 of the inspection target circuit (DC power supply circuit 14n1P) to adjust the zero point. Then, the DC exploration current supplied from the DC power supply device 11 to the inspection target circuit (DC power supply circuit 14n1P) is detected.

中間ユニット38の入力処理部39は高感度直流電流クランプメータ37で検出した探査電流を入力し電流判定部40で処理できる信号に変換するものであり、入力処理部39で処理された探査電流は電流判定部40に出力される。中間ユニット38の電流判定部40は高感度直流電流クランプメータにより検出された探査電流の電流値の良否判定を行うものであり、高感度直流電流クランプメータにて検出した探査電流が正でありかつ探査電流が電流基準値の範囲(1[mA])±25%)にあるときは探査電流は良であると判定し、それ以外のときは否と判定する。電流判定部40の良否判定結果は出力部30Aに出力される。なお、高感度直流電流クランプメータは、強制接地をした際に流れる探査電流の方向に極性をあわせて設置しておくものとする。 The input processing unit 39 of the intermediate unit 38 inputs the exploration current detected by the high-sensitivity DC current clamp meter 37 and converts it into a signal that can be processed by the current determination unit 40. It is output to the current determination unit 40. The current determination unit 40 of the intermediate unit 38 determines the quality of the current value of the exploration current detected by the high-sensitivity DC current clamp meter, and the exploration current detected by the high-sensitivity DC current clamp meter is positive. When the exploration current is within the range of the current reference value (1 [mA]) ± 25%), it is determined that the exploration current is good, and in other cases, it is determined to be negative. The quality determination result of the current determination unit 40 is output to the output unit 30A. The high-sensitivity DC current clamp meter shall be installed with the polarity aligned with the direction of the exploration current that flows when forced grounding is performed.

出力装置30Aは、図3に示した接地ユニット23Aの出力部30と同様に、メッセージ出力部31A及びランプ表示部32Aを有している。メッセージ出力部31Aは、電流判定部40の良否判定結果に加え、高感度直流電流クランプメータ37を流れる探査電流の電流値も表示出力する。例えば、判定結果が良のときは良あるいはOKと文字表示し、否のときは否あるいはNOと文字表示する。電流値は数字で表示する。これにより、点検対象回路の高感度直流電流クランプメータ37のクランプ箇所の電流値の良否結果を容易に把握できる。また、ランプ表示部32Aは電流判定部40の判定結果をランプ表示する。例えば、判定結果が良のときは緑色で表示し、否のときは赤色で表示する。これにより、点検対象回路の高感度直流電流クランプメータ37のクランプ箇所の電流値の良否結果を視覚的に把握できる。 The output device 30A has a message output unit 31A and a lamp display unit 32A, similarly to the output unit 30 of the grounding unit 23A shown in FIG. The message output unit 31A displays and outputs the current value of the exploration current flowing through the high-sensitivity DC current clamp meter 37 in addition to the quality determination result of the current determination unit 40. For example, when the determination result is good, the characters are displayed as good or OK, and when the judgment result is bad, the characters are displayed as no or NO. The current value is displayed numerically. As a result, it is possible to easily grasp the quality result of the current value at the clamped portion of the high-sensitivity DC current clamp meter 37 of the circuit to be inspected. Further, the lamp display unit 32A displays the determination result of the current determination unit 40 as a lamp. For example, when the judgment result is good, it is displayed in green, and when it is not, it is displayed in red. As a result, it is possible to visually grasp the quality result of the current value at the clamped portion of the high-sensitivity DC current clamp meter 37 of the circuit to be inspected.

次に、本発明の第2実施形態において点検対象回路の配線が正常である場合に配線判別回路の動作について説明する。図7は、本発明の第2実施形態において点検対象回路の配線が正常である場合に接地ユニット23Aの強制接地スイッチ35をオンしたときに流れる探査電流の経路の説明図である。 Next, the operation of the wiring discrimination circuit will be described when the wiring of the circuit to be inspected is normal in the second embodiment of the present invention. FIG. 7 is an explanatory diagram of the path of the exploration current that flows when the forced grounding switch 35 of the grounding unit 23A is turned on when the wiring of the circuit to be inspected is normal in the second embodiment of the present invention.

図7では、図5に示した本発明の第2実施形態に係る直流電源供給回路の図3に示す接地ユニット23Aの強制接地スイッチ25をオンした場合に流れる探査電流の経路を示しており、点検対象回路が直流電源供給回路14n1Pである場合を示している。点検対象回路が直流電源供給回路14n1Pであることから、第1ユニット35は点検対象回路である直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)に接続されている。 FIG. 7 shows the path of the exploration current that flows when the forced grounding switch 25 of the grounding unit 23A shown in FIG. 3 of the DC power supply circuit according to the second embodiment of the present invention shown in FIG. 5 is turned on. The case where the circuit to be inspected is a DC power supply circuit 14n1P is shown. Since the circuit to be inspected is the DC power supply circuit 14n1P, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14n1P which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14n1P, which is the circuit to be inspected.

第1ユニット35における図3に示す接地ユニット23Aの強制接地スイッチ25がオンしたときは強制接地スイッチ25は接続端子22Aに接続されていることから、接続端子22Aは接地装置24Aに接続され大地に接地される。これにより、図7に示すように、直流電源装置11の正極、配電盤13の直流母線、点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)、接続端子22A、接地ユニット23Aの接地装置24A、大地、分圧回路16の分圧中点、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。 When the forced grounding switch 25 of the grounding unit 23A shown in FIG. 3 in the first unit 35 is turned on, the forced grounding switch 25 is connected to the connection terminal 22A, so that the connection terminal 22A is connected to the grounding device 24A and touches the ground. Be grounded. As a result, as shown in FIG. 7, the positive electrode of the DC power supply device 11, the DC bus line of the power distribution board 13, the other end of the DC power supply circuit 14n1P which is the inspection target circuit (the end on the DC power supply device 11 side), and the DC power supply. One end of the supply circuit 14n1P (the end on the opposite side of the DC power supply 11), the connection terminal 22A, the grounding device 24A of the grounding unit 23A, the ground, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply 11. , A closed circuit (exploration current circuit) is formed. Further, a circuit for the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 (voltage dividing midpoint diversion circuit) is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows.

探査電流回路に流れる電流は、点検対象回路である直流電源供給回路14n1Pに供給される探査電流であり、接地ユニット23Aの電流制限回路33で一定値に維持された1[mA]である。従って、接地ユニット23Aの電流検出器28で検出された探査電流は1[mA]となり、探査電流の電流基準値の範囲内であるので接地ユニット23Aの電圧電流判定部29は電流値は良であると判定する。 The current flowing through the exploration current circuit is the exploration current supplied to the DC power supply circuit 14n1P, which is the circuit to be inspected, and is 1 [mA] maintained at a constant value by the current limiting circuit 33 of the grounding unit 23A. Therefore, the exploration current detected by the current detector 28 of the grounding unit 23A is 1 [mA], which is within the range of the current reference value of the exploration current. Therefore, the voltage / current determination unit 29 of the grounding unit 23A has a good current value. Judge that there is.

また、接続端子22Aの接続箇所の対地電圧は、前述したように、分圧回路16の分圧中点が接地されていることから、強制接地スイッチ25のオンオフに関係なく、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2前後の値となる。従って、接地ユニット23Aの電圧検出器27で検出された接続端子22Aの接続箇所の対地電圧は55[V]前後の値となり、接続端子22Aの接続箇所の対地電圧は電圧基準値の範囲内であるので接地ユニット23Aの電圧電流判定部29は電圧値は良であると判定する。 Further, as for the voltage to ground at the connection point of the connection terminal 22A, since the voltage dividing midpoint of the voltage dividing circuit 16 is grounded as described above, the DC power supply device 11 has a DC power supply device 11 regardless of whether the forced grounding switch 25 is turned on or off. The value is about 1/2 of the DC power supply voltage E (voltage E between the positive and negative electrodes). Therefore, the ground voltage at the connection point of the connection terminal 22A detected by the voltage detector 27 of the grounding unit 23A is a value of around 55 [V], and the ground voltage at the connection point of the connection terminal 22A is within the range of the voltage reference value. Therefore, the voltage / current determination unit 29 of the grounding unit 23A determines that the voltage value is good.

一方、第2ユニット37の高感度直流電流クランプメータにより検出された探査電流の電流値は、直流電電装置11の正極から点検対象回路(直流電源供給回路14n1P)に供給される電流であり、その電流基準値は電流制限回路の個体差や計測誤差を見込んだ(1[mA])±25%)であるので、図6に示した第2ユニット36の中間ユニット38の電流判定部40は探査電流は良であると判定する。このように、第1ユニット35及び第2ユニット36の双方の判定結果が良であるので、点検対象回路(直流電源供給回路14n1P)の配線は正しく接続されていると判定される。 On the other hand, the current value of the exploration current detected by the high-sensitivity DC current clamp meter of the second unit 37 is the current supplied from the positive electrode of the DC electric power device 11 to the inspection target circuit (DC power supply circuit 14n1P). Since the current reference value is (1 [mA]) ± 25%) in consideration of individual differences and measurement errors of the current limiting circuit, the current determination unit 40 of the intermediate unit 38 of the second unit 36 shown in FIG. 6 is searched. The current is judged to be good. As described above, since the determination results of both the first unit 35 and the second unit 36 are good, it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n1P) is correctly connected.

次に、図8は、本発明の第2実施形態において誤配線である場合に点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図であり、図8では直流電源供給回路14n1P、14n3Pに誤配線があり、点検対象回路として直流電源供給回路14n1Pに配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときを示している。 Next, FIG. 8 shows an example of the exploration current path that flows when the wiring discriminating device is connected to the circuit to be inspected and the forced grounding switch of the grounding unit is turned on when the wiring is incorrect in the second embodiment of the present invention. It is an explanatory diagram, and FIG. 8 shows a case where there is an erroneous wiring in the DC power supply circuits 14n1P and 14n3P, a wiring discrimination device is connected to the DC power supply circuit 14n1P as an inspection target circuit, and the forced grounding switch of the grounding unit is turned on. ing.

図8に示す誤配線は以下の通りである。正しくは、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)とが接続され、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)とが接続されるべきところを、図8では、誤って、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)とが接続され、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)とが接続されている。 The miswiring shown in FIG. 8 is as follows. Correctly, one end of the DC power supply circuit 14n1P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n1P (the end on the DC power supply 11 side) are connected to form a DC. The figure shows where one end of the power supply circuit 14n3P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) should be connected. In 8, one end of the DC power supply circuit 14n1P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) are erroneously connected. Then, one end of the DC power supply circuit 14n3P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n1P (the end on the DC power supply 11 side) are connected.

いま、このような状態の点検対象回路が直流電源供給回路14n1Pに対して、配線判別装置で配線の接続の良否を点検したとする。点検対象回路が直流電源供給回路14n1Pであることから、第1ユニット35は点検対象回路である直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)に接続される。 Now, suppose that the circuit to be inspected in such a state inspects the DC power supply circuit 14n1P with a wiring discriminator for the quality of the wiring connection. Since the circuit to be inspected is the DC power supply circuit 14n1P, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14n1P which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14n1P, which is the circuit to be inspected.

この状態で、第1ユニット35の接地ユニット23Aにより接続端子22Aを接地装置24Aにより大地に強制接地する。すなわち、第1ユニット35における図3に示す接地ユニット23Aの強制接地スイッチ25をオンさせると、強制接地スイッチ25は接続端子22Aに接続されていることから、接続端子22Aは接地装置24Aに接続され大地に接地される。これにより、図8に示すように、直流電源装置11の正極、配電盤13の直流母線、誤配線された直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)、接続端子22A、接地ユニット23Aの接地装置24A、大地、分圧回路16の分圧中点、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。 In this state, the grounding unit 23A of the first unit 35 forcibly grounds the connection terminal 22A to the ground by the grounding device 24A. That is, when the forced grounding switch 25 of the grounding unit 23A shown in FIG. 3 in the first unit 35 is turned on, the forced grounding switch 25 is connected to the connection terminal 22A, so that the connection terminal 22A is connected to the grounding device 24A. Grounded on the ground. As a result, as shown in FIG. 8, the positive electrode of the DC power supply device 11, the DC bus of the power distribution board 13, the other end of the miswired DC power supply circuit 14n3P (the end on the DC power supply 11 side), and the DC power supply. One end of the circuit 14n1P (the end on the opposite side of the DC power supply 11), the connection terminal 22A, the grounding device 24A of the grounding unit 23A, the ground, the voltage dividing midpoint of the voltage dividing circuit 16, the negative electrode of the DC power supply 11. Closed circuit (exploration current circuit) is formed. Further, a circuit for the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 (voltage dividing midpoint diversion circuit) is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows.

図7に示した探査電流回路と比較し、図8に示した探査電流回路は、直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)に代わって、誤配線された直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)を経由する点が異なる。 Compared with the exploration current circuit shown in FIG. 7, the exploration current circuit shown in FIG. 8 replaces the other end of the DC power supply circuit 14n1P (the end on the DC power supply 11 side) and is miswired DC. The difference is that it passes through the other end of the power supply circuit 14n3P (the end on the DC power supply 11 side).

すなわち、誤配線の場合であっても、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)を経由する探査電流回路が形成されるので、接地ユニット23Aの電流検出器28で探査電流が検出されることになり、探査電流は電流基準値の範囲内であるので接地ユニット23Aの電圧電流判定部29は探査電流の電流値は良であると判定する。また、接続端子22Aの接続箇所の対地電圧は、前述したように、分圧回路16の分圧中点が接地されていることから、強制接地スイッチ25のオンオフに関係なく、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2前後の値となるので、接地ユニット23Aの電圧電流判定部29は接続端子22Aの接続箇所の対地電圧の電圧値も良であると判定する。 That is, even in the case of erroneous wiring, since the exploration current circuit is formed via one end of the DC power supply circuit 14n1P (the opposite end of the DC power supply device 11), the current detection of the grounding unit 23A Since the exploration current is detected by the device 28 and the exploration current is within the range of the current reference value, the voltage / current determination unit 29 of the grounding unit 23A determines that the current value of the exploration current is good. Further, as for the voltage to ground at the connection point of the connection terminal 22A, since the voltage dividing midpoint of the voltage dividing circuit 16 is grounded as described above, the DC power supply device 11 is used regardless of whether the forced grounding switch 25 is turned on or off. Since the value is about 1/2 of the DC power supply voltage E (voltage E between the positive and negative sides), the voltage-current determination unit 29 of the grounding unit 23A has a good voltage value to the ground at the connection point of the connection terminal 22A. Is determined to be.

このように、誤配線であっても、接地ユニット23Aの電圧電流判定部29は、接続端子22Aの接続箇所の対地電圧及び探査電流は良であると判定する。これは、誤配線であっても直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)に回り込み電圧が発生するからである。 In this way, even if the wiring is incorrect, the voltage / current determination unit 29 of the grounding unit 23A determines that the ground voltage and the exploration current at the connection point of the connection terminal 22A are good. This is because even if the wiring is erroneous, a wraparound voltage is generated at one end of the DC power supply circuit 14n1P (the opposite end of the DC power supply device 11).

一方、第2ユニット37の高感度直流電流クランプメータがクランプされる直流電源供給回路14n1Pの他端部(直流電源装置11側の端部)は、探査電流回路の経路とならないので、直流電電装置11の正極から電流は供給されない。これにより、第2ユニット37の高感度直流電流クランプメータは電流を検出しない(検出電流はゼロである)ので、図6に示した第2ユニット36の中間ユニット38の電流判定部40は探査電流は否であると判定する。従って、第1ユニット35の判定結果は良であるが、第2ユニット36の判定結果は否であるので、点検対象回路(直流電源供給回路14n1P)の配線は誤配線であると判定される。 On the other hand, the other end of the DC power supply circuit 14n1P (the end on the DC power supply 11 side) on which the high-sensitivity DC current clamp meter of the second unit 37 is clamped does not serve as a path for the exploration current circuit. No current is supplied from the positive pole of 11. As a result, the high-sensitivity DC current clamp meter of the second unit 37 does not detect the current (the detected current is zero), so that the current determination unit 40 of the intermediate unit 38 of the second unit 36 shown in FIG. Is determined to be no. Therefore, the determination result of the first unit 35 is good, but the determination result of the second unit 36 is no, so it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n1P) is erroneous wiring.

次に、図9は、図8に示した誤配線である場合に別の点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図であり、図9では誤配線の直流電源供給回路14n1P、14n3Pのうち、点検対象回路として直流電源供給回路14n3Pに配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときを示している。 Next, FIG. 9 illustrates an example of the exploration current path that flows when the wiring discriminating device is connected to another inspection target circuit and the forced grounding switch of the grounding unit is turned on in the case of the incorrect wiring shown in FIG. FIG. 9 shows a case where a wiring discriminating device is connected to the DC power supply circuit 14n3P as an inspection target circuit and the forced grounding switch of the grounding unit is turned on among the DC power supply circuits 14n1P and 14n3P of erroneous wiring. There is.

点検対象回路が直流電源供給回路14n3Pであることから、第1ユニット35は点検対象回路である直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)に接続される。 Since the circuit to be inspected is the DC power supply circuit 14n3P, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14n3P which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14n3P, which is the circuit to be inspected.

この状態で、第1ユニット35の接地ユニット23Aにより接続端子22Aを接地装置24Aにより大地に強制接地すると、図9に示すように、直流電源装置11の正極、配電盤13の直流母線、誤配線された直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)、接続端子22A、接地ユニット23Aの接地装置24A、大地、分圧回路16の分圧中点、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。 In this state, when the connection terminal 22A is forcibly grounded to the ground by the grounding device 24A by the grounding unit 23A of the first unit 35, as shown in FIG. 9, the positive electrode of the DC power supply device 11, the DC bus of the switchboard 13 are erroneously wired. The other end of the DC power supply circuit 14n1P (the end on the DC power supply 11 side), the one end of the DC power supply circuit 14n3P (the opposite end of the DC power supply 11), the connection terminal 22A, and the grounding unit 23A. A closed circuit (exploration current circuit) of the grounding device 24A, the ground, the middle point of the voltage dividing circuit 16 and the negative electrode of the DC power supply device 11 is formed. Further, a circuit for the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 (voltage dividing midpoint diversion circuit) is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows.

このように、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)を経由する探査電流回路が形成されるので、接地ユニット23Aの電流検出器28で探査電流が検出されることになり、接地ユニット23Aの電圧電流判定部29は探査電流の電流値は良であると判定する。また、接続端子22Aの接続箇所の対地電圧は、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2前後の値となるので、接地ユニット23Aの電圧電流判定部29は接続端子22Aの接続箇所の対地電圧の電圧値も良であると判定する。 In this way, since the exploration current circuit is formed via one end of the DC power supply circuit 14n3P (the opposite end of the DC power supply device 11), the exploration current is detected by the current detector 28 of the grounding unit 23A. Therefore, the voltage / current determination unit 29 of the grounding unit 23A determines that the current value of the exploration current is good. Further, since the voltage to ground at the connection point of the connection terminal 22A is about 1/2 of the DC power supply voltage E (voltage E between the positive and negative sides) of the DC power supply device 11, the voltage and current of the grounding unit 23A The determination unit 29 determines that the voltage value of the ground voltage at the connection point of the connection terminal 22A is also good.

一方、第2ユニット37の高感度直流電流クランプメータがクランプされる直流電源供給回路14n3Pの他端部(直流電源装置11側の端部)は、探査電流回路の経路とならないので、直流電電装置11の正極から電流は供給されない。これにより、第2ユニット37の高感度直流電流クランプメータは電流を検出しない(検出電流はゼロである)ので、第2ユニット36の中間ユニット38の電流判定部40は探査電流は否であると判定する。従って、第1ユニット35の判定結果は良であるが、第2ユニット36の判定結果は否であるので、点検対象回路(直流電源供給回路14n3P)の配線は誤配線であると判定される。 On the other hand, the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) on which the high-sensitivity DC current clamp meter of the second unit 37 is clamped does not serve as a path for the exploration current circuit. No current is supplied from the positive pole of 11. As a result, the high-sensitivity DC current clamp meter of the second unit 37 does not detect the current (the detected current is zero), so that the current determination unit 40 of the intermediate unit 38 of the second unit 36 says that the exploration current is negative. judge. Therefore, the determination result of the first unit 35 is good, but the determination result of the second unit 36 is no, so it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n3P) is erroneous wiring.

図10は、本発明の第2実施形態において別の誤配線である場合に点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図であり、図10は直流電源供給回路14n3Pに誤配線があり、点検対象回路として直流電源供給回路14n1Pに配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときを示している。 FIG. 10 shows an example of a search current path that flows when a wiring discriminating device is connected to the circuit to be inspected and the forced grounding switch of the grounding unit is turned on when another miswiring is performed in the second embodiment of the present invention. FIG. 10 shows a case where the DC power supply circuit 14n3P has an erroneous wiring, a wiring discriminating device is connected to the DC power supply circuit 14n1P as an inspection target circuit, and the forced grounding switch of the grounding unit is turned on.

図10に示す誤配線は以下の通りである。正しくは、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)とが接続されるべきところを、図10では、誤って、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)と直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)とが接続されている。 The miswiring shown in FIG. 10 is as follows. Correctly, one end of the DC power supply circuit 14n3P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) should be connected. However, in FIG. 10, one end of the DC power supply circuit 14n1P (the end opposite to the DC power supply 11) and the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) are mistakenly shown. ) Is connected.

いま、このような状態の点検対象回路が直流電源供給回路14n1Pに対して、配線判別装置で配線の接続の良否を点検したとする。点検対象回路が直流電源供給回路14n1Pであることから、第1ユニット35は点検対象回路である直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)に接続される。そして、第1ユニット35の接地ユニット23Aにより接続端子22Aを接地装置24Aにより大地に強制接地すると、図10に示すように、直流電源装置11の正極、配電盤13の直流母線、直流電源供給回路14n1Pの他方端部(直流電源装置11側の端部)、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)、接続端子22A、接地ユニット23Aの接地装置24A、大地、分圧回路16の分圧中点、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、配電盤13の直流母線から分岐して、誤配線された直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)に回路が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。 Now, suppose that the circuit to be inspected in such a state inspects the DC power supply circuit 14n1P with a wiring discriminator for the quality of the wiring connection. Since the circuit to be inspected is the DC power supply circuit 14n1P, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14n1P which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14n1P, which is the circuit to be inspected. Then, when the connection terminal 22A is forcibly grounded to the ground by the grounding device 24A by the grounding unit 23A of the first unit 35, as shown in FIG. 10, the positive electrode of the DC power supply device 11, the DC bus of the power distribution board 13, and the DC power supply circuit 14n1P The other end (the end on the DC power supply 11 side), one end of the DC power supply circuit 14n1P (the opposite end of the DC power supply 11), the connection terminal 22A, the grounding device 24A of the grounding unit 23A, the ground. , A closed circuit (exploration current circuit) of the voltage dividing midpoint of the voltage dividing circuit 16 and the negative electrode of the DC power supply device 11 is formed. Further, the other end of the DC power supply circuit 14n3P branched from the DC bus of the switchboard 13 and miswired (the end on the DC power supply 11 side) and one end of the DC power supply circuit 14n1P (DC power supply 11). A circuit is formed at the opposite end). Further, a circuit for the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 (voltage dividing midpoint diversion circuit) is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows.

このように、直流電源供給回路14n1Pの一方端部(直流電源装置11の反対側の端部)を経由する探査電流回路が形成されるので、接地ユニット23Aの電流検出器28で探査電流が検出されることになり、接地ユニット23Aの電圧電流判定部29は探査電流の電流値は良であると判定する。また、接続端子22Aの接続箇所の対地電圧は、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2前後の値となるので、接地ユニット23Aの電圧電流判定部29は接続端子22Aの接続箇所の対地電圧の電圧値も良であると判定する。 In this way, since the exploration current circuit is formed via one end of the DC power supply circuit 14n1P (the opposite end of the DC power supply device 11), the exploration current is detected by the current detector 28 of the grounding unit 23A. Therefore, the voltage / current determination unit 29 of the grounding unit 23A determines that the current value of the exploration current is good. Further, since the voltage to ground at the connection point of the connection terminal 22A is about 1/2 of the DC power supply voltage E (voltage E between the positive and negative sides) of the DC power supply device 11, the voltage and current of the grounding unit 23A The determination unit 29 determines that the voltage value of the ground voltage at the connection point of the connection terminal 22A is also good.

一方、第2ユニット37の高感度直流電流クランプメータにより検出された探査電流の電流値は、直流電電装置11の正極から点検対象回路(直流電源供給回路14n1P)に供給される電流であり、その電流基準値は電流制限回路の個体差や計測誤差を見込んだ
1mA±25%であるが、探査電流は14n1P、14n2Pそれぞれに分流し並行して流れるためその探査電流は正しい配線の場合の1/2前後の値となるので、中間ユニット38の電流判定部40は探査電流は否であると判定する。このように、第2ユニット36の判定結果が否であるので、点検対象回路(直流電源供給回路14n1P)の配線は誤って接続されていると判定される。
On the other hand, the current value of the exploration current detected by the high-sensitivity DC current clamp meter of the second unit 37 is the current supplied from the positive electrode of the DC electric power device 11 to the inspection target circuit (DC power supply circuit 14n1P). The current reference value is 1mA ± 25% in consideration of individual differences and measurement errors of the current limiting circuit, but the exploration current is divided into 14n1P and 14n2P and flows in parallel, so the exploration current is 1 / of the case of correct wiring. Since the value is around 2, the current determination unit 40 of the intermediate unit 38 determines that the exploration current is negative. In this way, since the determination result of the second unit 36 is negative, it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n1P) is erroneously connected.

図11は、図10に示した誤配線である場合に別の点検対象回路に配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときに流れる探査電流経路の一例の説明図であり、図11では点検対象回路として誤配線の直流電源供給回路14n3Pに配線判別装置を接続しその接地ユニットの強制接地スイッチをオンしたときを示している。 FIG. 11 is an explanatory diagram of an example of an exploration current path that flows when a wiring discriminating device is connected to another circuit to be inspected and the forced grounding switch of the grounding unit is turned on in the case of incorrect wiring shown in FIG. FIG. 11 shows a case where the wiring discriminating device is connected to the DC power supply circuit 14n3P of erroneous wiring as the circuit to be inspected and the forced grounding switch of the grounding unit is turned on.

点検対象回路が直流電源供給回路14n3Pであることから、第1ユニット35は点検対象回路である直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14n3Pの他方端部(直流電源装置11側の端部)に接続される。 Since the circuit to be inspected is the DC power supply circuit 14n3P, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14n3P which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14n3P, which is the circuit to be inspected.

この状態で、第1ユニット35の接地ユニット23Aにより接続端子22Aを接地装置24Aにより大地に強制接地すると、接地ユニット23Aの接続端子22Aは接地装置24Aにより大地に接地されるが、直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部)は配電盤13の直流母線に繋がっていないので、直流電源装置11に繋がる回路(探査電流回路)が形成されない。なお、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)は形成される。 In this state, when the connection terminal 22A is forcibly grounded to the ground by the grounding unit 23A of the first unit 35, the connection terminal 22A of the grounding unit 23A is grounded to the ground by the grounding device 24A, but the DC power supply circuit Since one end of 14n3P (the end opposite to the DC power supply 11) is not connected to the DC bus of the power distribution board 13, a circuit (exploration current circuit) connected to the DC power supply 11 is not formed. The positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode circuit of the DC power supply device 11 (voltage dividing midpoint diversion circuit) are formed.

このように、探査電流回路が形成されないので、接続端子22Aの接続箇所(直流電源供給回路14n3Pの一方端部(直流電源装置11の反対側の端部))の探査電流はゼロとなり、同様に、接続端子22Aの接続箇所の対地電圧の電圧値もゼロとなる。従って、接地ユニット23Aの電圧電流判定部29は探査電流の電流値は否であると判定し、対地電圧の電圧値も否であると判定する。一方、第2ユニット37の高感度直流電流クランプメータがクランプされる直流電源供給回路14n3Pの他端部(直流電源装置11側の端部)においても、探査電流回路が形成されないので、第2ユニット36の中間ユニット38の電流判定部40は探査電流は否であると判定する。従って、第1ユニット35の判定結果は否であり、第2ユニット36の判定結果も否であるので、点検対象回路(直流電源供給回路14n3P)の配線は誤配線であると判定される。 Since the exploration current circuit is not formed in this way, the exploration current at the connection point of the connection terminal 22A (one end of the DC power supply circuit 14n3P (the opposite end of the DC power supply 11)) becomes zero, and similarly. , The voltage value of the ground voltage at the connection point of the connection terminal 22A also becomes zero. Therefore, the voltage / current determination unit 29 of the grounding unit 23A determines that the current value of the exploration current is negative, and determines that the voltage value of the ground voltage is also negative. On the other hand, since the exploration current circuit is not formed at the other end of the DC power supply circuit 14n3P (the end on the DC power supply 11 side) where the high-sensitivity DC current clamp meter of the second unit 37 is clamped, the second unit The current determination unit 40 of the intermediate unit 38 of 36 determines that the exploration current is negative. Therefore, since the determination result of the first unit 35 is negative and the determination result of the second unit 36 is also negative, it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n3P) is erroneous wiring.

以上述べた図7乃至図11では、正極性の点検対象回路について説明したが、負極性の点検対象回路についても同様に適用できる。図12は、本発明の第2実施形態において負極性の点検対象回路の配線が正常である場合に接地ユニット23Aの強制接地スイッチ35をオンしたときに流れる探査電流の経路の説明図である。図12では、点検対象回路が直流電源供給回路14nNである場合を示している。点検対象回路が直流電源供給回路14nNであることから、第1ユニット35は点検対象回路である直流電源供給回路14nNの一方端部(直流電源装置11の反対側の端部)に接続され、第2ユニット37は点検対象回路である直流電源供給回路14nNの他方端部(直流電源装置11側の端部)に接続されている。 Although the positive electrode inspection target circuit has been described with reference to FIGS. 7 to 11 described above, the same can be applied to the negative electrode property inspection target circuit. FIG. 12 is an explanatory diagram of the path of the exploration current that flows when the forced grounding switch 35 of the grounding unit 23A is turned on when the wiring of the circuit to be inspected of the negative electrode property is normal in the second embodiment of the present invention. FIG. 12 shows a case where the circuit to be inspected is a DC power supply circuit 14nN. Since the circuit to be inspected is the DC power supply circuit 14nN, the first unit 35 is connected to one end (the end opposite to the DC power supply 11) of the DC power supply circuit 14nN which is the inspection target circuit. The 2 unit 37 is connected to the other end (the end on the DC power supply 11 side) of the DC power supply circuit 14nN, which is the circuit to be inspected.

第1ユニット35の接地ユニット23Aにより接続端子22Aが接地装置24Aに接続され大地に接地されると、図12に示すように、直流電源装置11の正極、分圧回路16の分圧中点、大地、接地ユニット23Aの接地装置24A、接続端子22A、直流電源供給回路14nNの一方端部(直流電源装置11の反対側の端部)、点検対象回路である直流電源供給回路14nNの他方端部(直流電源装置11側の端部)、配電盤13の直流母線、直流電源装置11の負極、の閉回路(探査電流回路)が形成される。また、直流電源装置11の正極、分圧回路16の分圧中点、直流電源装置11の負極の回路(分圧中点分流回路)も形成される。従って、直流電源装置11から探査電流回路及びに分圧中点分流回路に直流の電流が点線矢印で示すように流れる。 When the connection terminal 22A is connected to the grounding device 24A by the grounding unit 23A of the first unit 35 and grounded to the ground, as shown in FIG. 12, the positive electrode of the DC power supply device 11 and the voltage dividing midpoint of the voltage dividing circuit 16 Ground, grounding device 24A of grounding unit 23A, connection terminal 22A, one end of DC power supply circuit 14nN (opposite end of DC power supply 11), other end of DC power supply circuit 14nN, which is the circuit to be inspected. A closed circuit (exploration current circuit) is formed of (the end on the DC power supply 11 side), the DC bus of the power distribution board 13, and the negative electrode of the DC power supply 11. Further, a circuit for the positive electrode of the DC power supply device 11, the voltage dividing midpoint of the voltage dividing circuit 16, and the negative electrode of the DC power supply device 11 (voltage dividing midpoint diversion circuit) is also formed. Therefore, a direct current flows from the DC power supply device 11 to the exploration current circuit and the voltage dividing midpoint diversion circuit as indicated by the dotted arrows.

従って、接続端子22Aの接続箇所には探査電流が流れるので、接地ユニット23Aの電圧電流判定部29は電流値は良であると判定する。なお、負極性の点検対象回路(直流電源供給回路14nN)であることから探査電流が流れる方向は図7〜図11に示した正極性の点検対象回路の場合と逆方向になる。また、負極性の点検対象回路(直流電源供給回路14nN)であることから、接続端子22Aの接続箇所の対地電圧は、直流電源装置11の直流電源電圧E(正極と負極との間の電圧E)の1/2(−55V)前後の値であるので、接地ユニット23Aの電圧電流判定部29は電圧値は良であると判定する。 Therefore, since the exploration current flows through the connection portion of the connection terminal 22A, the voltage / current determination unit 29 of the grounding unit 23A determines that the current value is good. Since the circuit is a negative electrode inspection target circuit (DC power supply circuit 14nN), the direction in which the exploration current flows is opposite to that of the positive electrode inspection target circuit shown in FIGS. 7 to 11. Further, since the circuit is the negative side inspection target circuit (DC power supply circuit 14nN), the ground voltage at the connection point of the connection terminal 22A is the DC power supply voltage E (voltage E between the positive side and the negative side) of the DC power supply device 11. ) Is about 1/2 (−55V), so the voltage / current determination unit 29 of the grounding unit 23A determines that the voltage value is good.

一方、第2ユニット37の高感度直流電流クランプメータがクランプされる箇所である直流電源供給回路14nNの他方端部(直流電源装置11側の端部)は、探査電流回路の系路となるので、高感度直流電流クランプメータは電流を検出する。よって、第2ユニット36の中間ユニット38の電流判定部40は探査電流は良であると判定する。このように、第1ユニット35及び第2ユニット36の双方の判定結果が良であるので、点検対象回路(直流電源供給回路14n1P)の配線は正しく接続されていると判定される。 On the other hand, the other end of the DC power supply circuit 14nN (the end on the DC power supply 11 side), which is the place where the high-sensitivity DC current clamp meter of the second unit 37 is clamped, becomes the system path of the exploration current circuit. , High-sensitivity DC current clamp meter detects current. Therefore, the current determination unit 40 of the intermediate unit 38 of the second unit 36 determines that the exploration current is good. As described above, since the determination results of both the first unit 35 and the second unit 36 are good, it is determined that the wiring of the inspection target circuit (DC power supply circuit 14n1P) is correctly connected.

以上述べたように、本発明の第2実施形態の直流電源供給回路の配線判別装置によれば、配線の接続の良否の点検の際に点検対象回路の直流電源装置11の反対側の外側に位置する電線に第1ユニット35の接続端子22Aを接続し、第1ユニット35の接地ユニット23Aにより接続端子22Aを強制接地して直流電源装置11から限流抵抗で限流した直流の探査電流を点検対象回路に供給する。そして、接地ユニット23Aの電圧電流判定部は、接地ユニット23Aの接続箇所の対地電圧及び接続箇所を流れる探査電流の良否判定を行う。接地ユニット23Aの接続箇所の対地電圧が電圧基準値を満たすときは電圧は良であると判定する。また、接地ユニット23Aの接続箇所を流れる探査電流が電流基準値を満たすときは、電流は良であると判定する。 As described above, according to the wiring discriminating device of the DC power supply circuit of the second embodiment of the present invention, when checking the quality of the wiring connection, the outside of the DC power supply device 11 of the circuit to be inspected is on the opposite side. The connection terminal 22A of the first unit 35 is connected to the located electric wire, the connection terminal 22A is forcibly grounded by the grounding unit 23A of the first unit 35, and the DC exploration current limited by the current limiting resistance from the DC power supply device 11 is applied. Supply to the circuit to be inspected. Then, the voltage / current determination unit of the grounding unit 23A determines the quality of the ground voltage at the connection point of the grounding unit 23A and the exploration current flowing through the connection point. When the voltage to ground at the connection point of the grounding unit 23A satisfies the voltage reference value, it is determined that the voltage is good. Further, when the exploration current flowing through the connection point of the grounding unit 23A satisfies the current reference value, it is determined that the current is good.

一方、第2ユニット36の高感度直流電流クランプメータ37を直流電源供給回路14の点検対象回路の直流電源装置11側の外側に位置する電線にクランプし、中間ユニット38の電流判定部は高感度直流電流クランプメータ37により検出された探査電流の電流値の良否判定を行う。高感度直流電流クランプメータ37で検出された探査電流が電流基準値を満たすときは、電流は良であると判定する。 On the other hand, the high-sensitivity DC current clamp meter 37 of the second unit 36 is clamped to the electric wire located outside the DC power supply device 11 side of the inspection target circuit of the DC power supply circuit 14, and the current determination unit of the intermediate unit 38 has high sensitivity. The quality of the current value of the exploration current detected by the DC current clamp meter 37 is determined. When the exploration current detected by the high-sensitivity DC current clamp meter 37 satisfies the current reference value, it is determined that the current is good.

接地ユニット23Aの電圧電流判定部の判定結果が良で、かつ中間ユニット38の電流判定部の判定結果が良であるとき、直流電源供給回路14の配線の接続は良であると判別する。それ以外のときは否と判定する。従って、活線状態であっても直流電源供給回路14の配線の接続の良否を判別できる。 When the determination result of the voltage / current determination unit of the grounding unit 23A is good and the determination result of the current determination unit of the intermediate unit 38 is good, it is determined that the wiring connection of the DC power supply circuit 14 is good. In other cases, it is judged as no. Therefore, even in the live-line state, it is possible to determine whether the wiring of the DC power supply circuit 14 is connected or not.

また、中間ユニット38のメッセージ出力部31Aは、点検対象回路の直流電源装置11側の電流値、電流判定部40の判定結果をメッセージ出力するので、点検対象回路の直流電源装置11側の電流値の良否結果を容易に把握できる。また、中間ユニット38のランプ表示部32Aは、点検対象回路の直流電源装置11側の電流値の判定結果を表示するので、点検対象回路の直流電源装置11側の電流値の良否結果を視覚的に把握できる。 Further, since the message output unit 31A of the intermediate unit 38 outputs a message of the current value on the DC power supply 11 side of the circuit to be inspected and the determination result of the current determination unit 40, the current value on the DC power supply 11 side of the circuit to be inspected. You can easily grasp the good or bad result of. Further, since the lamp display unit 32A of the intermediate unit 38 displays the determination result of the current value on the DC power supply device 11 side of the inspection target circuit, the quality result of the current value on the DC power supply device 11 side of the inspection target circuit is visually displayed. Can be grasped.

11…直流電源装置
12…直流母線
13…配電盤
14…直流電源供給回路
15…制御回路
16…分圧回路
17…直流地絡継電器
18…保護継電器
19…出力接点
20…遮断器操作装置
21…トリップコイル
22…接続端子
23…接地ユニット
24…接地装置
25…強制接地スイッチ
26…限流抵抗
27…電圧検出部
28…電流検出部
29…電圧電流判定部
30…出力部
31…メッセージ出力部
32…ランプ表示部
33…電流制限回路
34…開閉器
35…第1ユニット
36…第2ユニット
37…高感度直流電流クランプメータ
38…中間ユニット
39…入力処理部
40…電流判定部、
11 ... DC power supply 12 ... DC bus 13 ... Distribution board 14 ... DC power supply circuit 15 ... Control circuit 16 ... Pressure dividing circuit 17 ... DC ground fault relay 18 ... Protective relay 19 ... Output contact 20 ... Breaker operating device 21 ... Trip Coil 22 ... Connection terminal 23 ... Grounding unit 24 ... Grounding device 25 ... Forced grounding switch 26 ... Current limiting resistance 27 ... Voltage detection unit 28 ... Current detection unit 29 ... Voltage / current determination unit 30 ... Output unit 31 ... Message output unit 32 ... Lamp display 33 ... Current limiting circuit 34 ... Switch 35 ... First unit 36 ... Second unit 37 ... High-sensitivity DC current clamp meter 38 ... Intermediate unit 39 ... Input processing unit 40 ... Current determination unit,

Claims (7)

電気所の電気機器を操作するための制御回路に直流電源装置から直流電源を供給する直流電源供給回路の直流母線の正極と負極との間に分圧中点を抵抗接地した分圧回路を設け、前記分圧回路の電圧のバランスが崩れたときに動作し前記直流電源供給回路の地絡故障を検出する直流地絡継電器を有した直流電源供給回路の断線の有無を点検する直流電源供給回路の断線判別装置であり;
点検の際に前記直流電源供給回路のうちの断線の有無を点検する点検対象回路の前記直流電源装置側に位置する電線に接続するための接続端子と;
前記接続端子の接続箇所を大地に接地するための接地装置と;
点検の際に前記接続端子の接続箇所を前記接地装置に強制的に接地する接地ユニットとを備え;
前記接地ユニットは、前記接続端子に接続され点検の際に前記接続端子を前記接地装置に強制的に接地して前記直流電源装置から直流の探査電流を前記接続端子の接続箇所から前記点検対象回路に供給するための強制接地スイッチと、前記強制接地スイッチに直列接続され前記探査電流を限流する限流抵抗と、前記接続端子の接続箇所の対地電圧を検出する電圧検出部と、前記接続端子の接続箇所を流れる探査電流を検出する電流検出部と、前記電圧検出部及び前記電流検出部で検出された電圧値及び電流値の良否判定を行う電圧電流判定部を有し;
前記接地ユニットの前記電圧電流判定部の判定結果に基づいて直流電源供給回路の断線の有無を点検することを特徴とする直流電源供給回路の断線判別装置。
A pressure dividing circuit is provided between the positive and negative sides of the DC bus of the DC power supply circuit that supplies DC power from the DC power supply to the control circuit for operating the electrical equipment of the electric station. , A DC power supply circuit that operates when the voltage of the voltage dividing circuit is out of balance and checks for disconnection of the DC power supply circuit having a DC ground fault relay that detects a ground fault of the DC power supply circuit. It is a disconnection discrimination device of
Check for disconnection in the DC power supply circuit during inspection. With a connection terminal for connecting to the electric wire located on the DC power supply side of the circuit to be inspected;
With a grounding device for grounding the connection point of the connection terminal to the ground;
It is equipped with a grounding unit that forcibly grounds the connection point of the connection terminal to the grounding device at the time of inspection;
The grounding unit is connected to the connection terminal, and at the time of inspection, the connection terminal is forcibly grounded to the grounding device, and a DC exploration current is transmitted from the DC power supply device from the connection point of the connection terminal to the inspection target circuit. A forced grounding switch for supplying to the forced grounding switch, a current limiting resistor connected in series to the forced grounding switch to limit the exploration current, a voltage detector for detecting the voltage to ground at the connection point of the connection terminal, and the connection terminal. It has a current detection unit that detects the exploration current flowing through the connection point, and a voltage / current determination unit that determines the quality of the voltage value and the current value detected by the voltage detection unit and the current detection unit;
A DC power supply circuit disconnection determination device, characterized in that the presence or absence of disconnection of the DC power supply circuit is checked based on the determination result of the voltage / current determination unit of the grounding unit.
前記接地ユニットは、前記限流抵抗と直列に接続され前記探査電流の大きさが予め定めた一定値になるように調整する電流制限回路を備えたことを特徴とする請求項1に記載の直流電源供給回路の断線判別装置。 The direct current according to claim 1, wherein the grounding unit includes a current limiting circuit that is connected in series with the current limiting resistor and adjusts the magnitude of the probe current to a predetermined constant value. A device for determining disconnection of the power supply circuit. 前記接地ユニットは、前記電圧検出部で検出された電圧値、前記電流検出部で検出された電流値、前記電圧電流判定部の判定結果をメッセージ出力するメッセージ出力部を備えたことを特徴とする請求項1または請求項2に記載の直流電源供給回路の断線判別装置。 The grounding unit is characterized by including a message output unit that outputs a message of a voltage value detected by the voltage detection unit, a current value detected by the current detection unit, and a determination result of the voltage / current determination unit. The disconnection determining device for a DC power supply circuit according to claim 1 or 2. 前記接地ユニットは、前記電圧電流判定部の判定結果を表示するランプ表示部を備えたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の直流電源供給回路の断線判別装置。 The disconnection determination device for a DC power supply circuit according to any one of claims 1 to 3, wherein the grounding unit includes a lamp display unit that displays a determination result of the voltage / current determination unit. .. 電気所の電気機器を操作するための制御回路に直流電源装置から直流電源を供給する直流電源供給回路の直流母線の正極と負極との間に分圧中点を抵抗接地した分圧回路を設け、前記分圧回路の電圧のバランスが崩れたときに動作し前記直流電源供給回路の地絡故障を検出する直流地絡継電器を有した直流電源供給回路の配線の良否を点検する直流電源供給回路の配線判別装置であり;
点検の際に前記直流電源供給回路のうちの配線の良否を点検する点検対象回路の一方端部に接続される第1ユニットと;
点検の際に前記点検対象回路の他方端部に接続される第2ユニットとを備え;
前記第1ユニットは、前記点検対象回路の一方端部として前記直流電源装置の反対側の端部の外側に位置する電線に接続するための接続端子と、
前記接続端子の接続箇所を大地に接地するための接地装置と;
点検の際に前記接続端子の接続箇所を前記接地装置に強制的に接地する請求項2乃至請求項4のいずれかの接地ユニットとを備え;
前記第2ユニットは、前記点検対象回路の他方端部として前記直流電源装置側の端部の外側に位置する電線にクランプされゼロ点調整を行ってから前記直流電源装置から供給される直流の探査電流を検出する高感度直流電流クランプメータと、前記高感度直流電流クランプメータにより検出された探査電流の電流値の良否判定を行う電流判定部を有した中間ユニットとを有し;
前記接地ユニットの前記電圧電流判定部及び前記中間ユニットの前記電流判定部の判定結果に基づいて直流電源供給回路の配線の接続の良否を点検することを特徴とする直流電源供給回路の配線判別装置。
A pressure dividing circuit is provided between the positive and negative sides of the DC bus of the DC power supply circuit that supplies DC power from the DC power supply to the control circuit for operating the electrical equipment of the electric station. , A DC power supply circuit that operates when the voltage of the voltage dividing circuit is out of balance and checks the quality of the wiring of the DC power supply circuit having a DC ground fault relay that detects a ground fault failure of the DC power supply circuit. It is a wiring discriminator of
With the first unit connected to one end of the circuit to be inspected to check the quality of wiring in the DC power supply circuit at the time of inspection;
It is equipped with a second unit connected to the other end of the circuit to be inspected during inspection;
The first unit has a connection terminal for connecting to an electric wire located outside the opposite end of the DC power supply device as one end of the circuit to be inspected.
With a grounding device for grounding the connection point of the connection terminal to the ground;
A grounding unit according to any one of claims 2 to 4 is provided for forcibly grounding the connection point of the connection terminal to the grounding device at the time of inspection;
The second unit is clamped to an electric current located outside the end on the DC power supply side as the other end of the circuit to be inspected, adjusts to the zero point, and then searches for DC supplied from the DC power supply. It has a high-sensitivity DC current clamp meter that detects current, and an intermediate unit that has a current determination unit that determines the quality of the current value of the probe current detected by the high-sensitivity DC current clamp meter;
A wiring discriminating device for a DC power supply circuit, characterized in that the quality of the wiring connection of the DC power supply circuit is checked based on the determination results of the voltage / current determination unit of the grounding unit and the current determination unit of the intermediate unit. ..
前記中間ユニットは、前記高感度直流電流クランプメータで検出された電流値、前記電流判定部の判定結果をメッセージ出力するメッセージ出力部を備えたことを特徴とする請求項5に記載の直流電源供給回路の配線判別装置。 The DC power supply according to claim 5, wherein the intermediate unit includes a message output unit that outputs a message of a current value detected by the high-sensitivity DC current clamp meter and a determination result of the current determination unit. Circuit wiring discriminator. 前記中間ユニットは、前記電流判定部の判定結果を表示するランプ表示部を備えたことを特徴とする請求項5または請求項6に記載の直流電源供給回路の配線判別装置。 The wiring discriminating device for a DC power supply circuit according to claim 5 or 6, wherein the intermediate unit includes a lamp display unit that displays a determination result of the current determination unit.
JP2017060238A 2017-03-25 2017-03-25 DC power supply circuit disconnection discriminator and wiring discriminator Active JP6932964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060238A JP6932964B2 (en) 2017-03-25 2017-03-25 DC power supply circuit disconnection discriminator and wiring discriminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060238A JP6932964B2 (en) 2017-03-25 2017-03-25 DC power supply circuit disconnection discriminator and wiring discriminator

Publications (2)

Publication Number Publication Date
JP2018164358A JP2018164358A (en) 2018-10-18
JP6932964B2 true JP6932964B2 (en) 2021-09-08

Family

ID=63860410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060238A Active JP6932964B2 (en) 2017-03-25 2017-03-25 DC power supply circuit disconnection discriminator and wiring discriminator

Country Status (1)

Country Link
JP (1) JP6932964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490688B (en) * 2018-11-12 2020-10-02 国网河南省电力公司修武县供电公司 Auxiliary device of direct current system
CN113189519B (en) * 2021-03-29 2023-02-28 深圳市科陆电子科技股份有限公司 Power failure detection method and system for platform area outgoing line and storage medium
CN113702871B (en) * 2021-08-10 2024-02-06 国网河南省电力公司南阳供电公司 Intelligent line hunting device for uninterrupted secondary direct-current power supply of transformer substation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183565A (en) * 1984-03-01 1985-09-19 Kansai Electric Power Co Inc:The Flicker type direct current grounding point searcher
JP2514548B2 (en) * 1992-10-07 1996-07-10 大阪瓦斯株式会社 Electronic earth leakage breaker
US6084755A (en) * 1998-10-08 2000-07-04 Schweitzer Engineering Laboratories, Inc. Protective relay-based monitoring system of DC power within an electric power substation
JP2001083203A (en) * 1999-09-09 2001-03-30 Yazaki Corp Method and apparatus for checking disconnection of hot- line deterioration diagnosing device
CN1332211C (en) * 2004-06-07 2007-08-15 山东大学 DC power supply system grounded fault detecting method and circuit
JP5018418B2 (en) * 2007-11-15 2012-09-05 オムロン株式会社 Leak detector
KR101488104B1 (en) * 2013-10-02 2015-01-29 한국수력원자력 주식회사 System for Detecting Open Phase on a Connection Line of Stand-by Transformer in Nuclear Power Plant by Using Rogowski Coil
JP6470063B2 (en) * 2015-02-10 2019-02-13 株式会社東芝 DC power transmission equipment

Also Published As

Publication number Publication date
JP2018164358A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US11456589B2 (en) Methods and devices for selective insulation monitoring in ungrounded Isolé Terre (IT) power supply systems
US20160103157A1 (en) Ratio metric current measurement
US10126345B2 (en) Device and method for insulation monitoring in a power supply system including a high-resistance grounded neutral point
US8779776B2 (en) Power supply monitoring system
US10396545B2 (en) Insulation monitoring device having voltage monitoring and underlying method
KR101003814B1 (en) Switchgear for diagnosing electrical network disorder and method therefor
CN108693449B (en) System and method for diode-connected redundant DC power supply system insulation fault location
KR101731705B1 (en) Apparatus and method for testing current transformer circuit
US10122162B2 (en) Detection of capacitor bank fuse/switch failure
JP6932964B2 (en) DC power supply circuit disconnection discriminator and wiring discriminator
US11187750B2 (en) Method for detecting the state of an electrical protection appliance in an electrical installation and detection device implementing said method
CN101017188A (en) Detecting method for line breaking and circuit shorting of CT
US6407897B1 (en) Network protector with diagnostics
US9797939B2 (en) Neutral grounding resistor monitor
KR101346159B1 (en) Apparatus and method for wrong wiring detection of mof
JP4712594B2 (en) Method for determining erroneous connection of outlet with ground electrode and tester for determining erroneous connection of outlet with ground electrode
US10247782B2 (en) Method and system for testing a switching installation for power transmission installations
JP7013770B2 (en) Forced grounding device and ground fault search device
US7859809B2 (en) Test plug with overvoltage protection
KR102497264B1 (en) Power circuit abnormal condition monitoring system
JP3622171B2 (en) Earth leakage detection device
MXPA01004199A (en) A protective relay-based monitoring system of dc power within an electric power substation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6932964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150