JP6928819B2 - A method for manufacturing a molded product using an injection molding die device and an injection molding die device. - Google Patents

A method for manufacturing a molded product using an injection molding die device and an injection molding die device. Download PDF

Info

Publication number
JP6928819B2
JP6928819B2 JP2019569188A JP2019569188A JP6928819B2 JP 6928819 B2 JP6928819 B2 JP 6928819B2 JP 2019569188 A JP2019569188 A JP 2019569188A JP 2019569188 A JP2019569188 A JP 2019569188A JP 6928819 B2 JP6928819 B2 JP 6928819B2
Authority
JP
Japan
Prior art keywords
injection molding
gate
mold
hot
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019569188A
Other languages
Japanese (ja)
Other versions
JPWO2019151343A1 (en
Inventor
雅憲 森本
雅憲 森本
田中 健一
健一 田中
阿部 諭
諭 阿部
内野々 良幸
良幸 内野々
渡辺 真也
真也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019151343A1 publication Critical patent/JPWO2019151343A1/en
Application granted granted Critical
Publication of JP6928819B2 publication Critical patent/JP6928819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、射出成形用金型装置および当該射出成形用金型装置を用いた成形品の製造方法に関する。より具体的には、本発明は、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備える射出成形用金型装置、および当該射出成形用金型装置を用いた射出成形品の製造方法に関する。 The present invention relates to an injection molding die apparatus and a method for manufacturing a molded product using the injection molding die apparatus. More specifically, the present invention comprises an injection molding die apparatus provided with a hot mold raw material resin flow path connected to a mold cavity via a gate, and an injection molded article using the injection molding die apparatus. Regarding the manufacturing method of.

日本の「ものづくり」産業を支えてきた技術の一つに、金型を用いた成形技術がある。かかる成形技術としては、加圧成形法、射出成形法および押出成形法などが挙げられる。これら成形法のうち、射出成形法は、射出成形用金型装置を用いて原料樹脂から成形品を得る方法である。 One of the technologies that has supported Japan's "manufacturing" industry is molding technology using molds. Examples of such molding techniques include a pressure molding method, an injection molding method, and an extrusion molding method. Among these molding methods, the injection molding method is a method of obtaining a molded product from a raw material resin by using an injection molding mold device.

具体的には、当該射出成形法では、大きく分けて以下の工程を経て成形品を製造する。(1)(i)スプル又は(ii)スプルおよびランナーから構成され、ゲートを介して金型キャビティに接続された原料樹脂流路に原料樹脂を供給する工程。
(2)原料樹脂の供給を連続して行い金型キャビティ内に当該原料樹脂を充填/保圧する工程。
(3)金型キャビティ内の原料樹脂の冷却工程。
Specifically, in the injection molding method, a molded product is manufactured through the following steps. (1) A step of supplying a raw material resin to a raw material resin flow path composed of (i) a sprue or (ii) a sprue and a runner and connected to a mold cavity via a gate.
(2) A step of continuously supplying the raw material resin and filling / holding the raw material resin in the mold cavity.
(3) A step of cooling the raw material resin in the mold cavity.

ここで、最終成形品は金型キャビティ内に位置する原料樹脂から得られることが通常である。そのため、(i)スプル又は(ii)スプルおよびランナーから構成される原料樹脂流路内に位置する原料樹脂が冷却して得られる樹脂部は最終成形品の構成要素として直接寄与するものではない。そのため、原料樹脂の効率的使用の観点等から原料樹脂流路内に位置する原料樹脂を冷却させることなく溶融状態を保持するために、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路が用いられる場合がある(特許文献1参照)。特許文献1では、原料樹脂流路の軸周りに沿って温調媒体路が供される旨が示されている。当該温調媒体路の提供により、原料樹脂流路を高温に保持することができ、それによって原料樹脂流路がホット型原料樹脂流路として機能し得る。 Here, the final molded product is usually obtained from the raw material resin located in the mold cavity. Therefore, the resin portion obtained by cooling the raw material resin located in the raw material resin flow path composed of (i) sprue or (ii) sprue and runner does not directly contribute as a component of the final molded product. Therefore, from the viewpoint of efficient use of the raw material resin, the hot mold raw material resin connected to the mold cavity via the gate in order to maintain the molten state without cooling the raw material resin located in the raw material resin flow path. A flow path may be used (see Patent Document 1). Patent Document 1 indicates that a temperature control medium path is provided along the axis of the raw material resin flow path. By providing the temperature control medium path, the raw material resin flow path can be maintained at a high temperature, whereby the raw material resin flow path can function as a hot type raw material resin flow path.

特開2002−210795号公報Japanese Unexamined Patent Publication No. 2002-210795

ここで、本願発明者らは、ホット型原料樹脂流路の軸周りに沿って温調媒体路が供される場合、以下の問題が生じ得ることを新たに見出した。 Here, the inventors of the present application have newly found that the following problems may occur when the temperature control medium path is provided along the axis of the hot-type raw material resin flow path.

具体的には、上述のようにホット型原料樹脂流路は、当該流路内に位置する原料樹脂を冷却させることなく溶融状態を保持し得る。又、ホット型原料樹脂流路は、ゲートを介して金型キャビティに接続されている。そのため、ホット型原料樹脂流路内の原料樹脂の溶融状態が保持されると、溶融原料樹脂の熱が、ホット型原料樹脂流路側から射出成形用金型側、特に射出成形金型のゲート付近側へ伝わる虞がある。そのため、金型キャビティ内の原料樹脂の冷却工程を実施する場合、射出成形用金型のゲート付近側への伝熱に起因して、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂が、金型キャビティ内の他の部分に位置する原料樹脂よりもより高温になる虞がある。その結果、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂は金型キャビティ内の他の部分に位置する原料樹脂と比べて相対的に冷却しにくくなり、それに起因して最終的に全体として高精度な成形品を好適に得ることができない虞がある。 Specifically, as described above, the hot-type raw material resin flow path can maintain the molten state without cooling the raw material resin located in the flow path. Further, the hot mold raw material resin flow path is connected to the mold cavity via a gate. Therefore, when the molten state of the raw material resin in the hot mold raw material resin flow path is maintained, the heat of the molten raw material resin is transferred from the hot mold raw material resin flow path side to the injection molding mold side, especially near the gate of the injection molding mold. There is a risk that it will be transmitted to the side. Therefore, when the process of cooling the raw material resin in the mold cavity is carried out, the raw material resin located in a local portion in the mold cavity near the gate due to heat transfer to the vicinity side of the gate of the injection molding mold. However, there is a risk that the temperature will be higher than that of the raw material resin located in other parts of the mold cavity. As a result, the raw material resin located in the local portion in the mold cavity near the gate is relatively difficult to cool as compared with the raw material resin located in the other portion in the mold cavity, and as a result, the raw material resin is finally located. As a whole, there is a risk that a high-precision molded product cannot be preferably obtained.

本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、ホット型原料樹脂流路を用いる場合においても、全体として高精度な成形品を好適に得ることが可能な射出成形用金型装置および射出成形用金型装置を用いた成形品の製造方法を提供することである。 The present invention has been made in view of such circumstances. That is, an object of the present invention is to use an injection molding die apparatus and an injection molding die apparatus capable of suitably obtaining a high-precision molded product as a whole even when a hot mold raw material resin flow path is used. It is to provide a method for manufacturing a molded product.

上記目的を達成するために、本発明の一実施形態では、
射出成形用金型装置であって、
ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、
少なくとも前記ゲートの直近領域に熱伝達制御部を有して成る、射出成形用金型装置が提供される。
In order to achieve the above object, in one embodiment of the present invention,
It is a mold device for injection molding.
Equipped with a hot mold resin flow path connected to the mold cavity via a gate
Provided is an injection molding die apparatus having a heat transfer control unit at least in the immediate vicinity of the gate.

上記目的を達成するために、本発明の一実施形態では、
射出成形用金型装置を用いて射出成形品を製造するための方法であって、
前記射出成形用金型装置が、ゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、少なくとも該ゲートの直近領域に熱伝達制御部を有して成り、
前記ホット型原料樹脂流路を通じて前記金型キャビティ内へと溶融原料樹脂を供する、方法が提供される。
In order to achieve the above object, in one embodiment of the present invention,
A method for manufacturing an injection-molded product using an injection-molding die device.
The injection molding die apparatus comprises a hot mold raw material resin flow path connected to a mold cavity via a gate, and has a heat transfer control unit at least in the immediate vicinity of the gate.
A method is provided in which a molten raw material resin is provided into the mold cavity through the hot mold raw material resin flow path.

本発明の一実施形態に従えば、ホット型原料樹脂流路を用いる場合においても、全体として高精度な成形品を好適に得ることが可能である。 According to one embodiment of the present invention, it is possible to preferably obtain a high-precision molded product as a whole even when a hot-type raw material resin flow path is used.

本発明の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to an embodiment of the present invention. 本発明の別の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to another embodiment of the present invention. 本発明の更に別の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to still another embodiment of the present invention. 本発明の更に別の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to still another embodiment of the present invention. 本発明の更に別の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to still another embodiment of the present invention. 本発明の更に別の一実施形態に係る射出成形金型装置を模式的に示した断面図A cross-sectional view schematically showing an injection molding die apparatus according to still another embodiment of the present invention. 粉末焼結積層法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図7(a):粉末層形成時、図7(b):固化層形成時、図7(c):積層途中)A cross-sectional view schematically showing a process mode of stereolithography composite processing in which the powder sintering lamination method is carried out (FIG. 7 (a): at the time of forming a powder layer, FIG. 7 (b): at the time of forming a solidified layer, FIG. 7 ( c): During lamination)

以下では、図面を参照して本発明の一実施形態に係る射出成形用金型装置について説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。 Hereinafter, the injection molding die apparatus according to the embodiment of the present invention will be described with reference to the drawings. The forms and dimensions of the various elements in the drawings are merely examples and do not reflect the actual forms and dimensions.

(本発明の技術的思想)
まず、本発明の一実施形態に係る射出成形用金型装置の説明に先立って、本発明の技術的思想について説明する。
(Technical Idea of the Present Invention)
First, prior to the description of the injection molding die apparatus according to the embodiment of the present invention, the technical idea of the present invention will be described.

本願発明者らは、ホット型原料樹脂流路を用いる場合においても高精度な成形品を好適に得ることを可能とするための技術的措置について鋭意検討した。より具体的には、ホット型原料樹脂流路側から射出成形用金型のゲート付近側への溶融原料樹脂の伝熱に起因した、ゲート近傍の金型キャビティ内の局所部分に位置する原料樹脂が他の部分に位置する原料樹脂よりも相対的に冷却しにくい状態を抑止するための措置が鋭意検討された。 The inventors of the present application have diligently studied technical measures to enable a highly accurate molded product to be suitably obtained even when a hot-type raw material resin flow path is used. More specifically, the raw material resin located in the local portion in the mold cavity near the gate due to the heat transfer of the molten raw material resin from the hot mold raw material resin flow path side to the side near the gate of the injection molding mold. Measures to prevent the condition where it is relatively difficult to cool compared to the raw material resin located in other parts were enthusiastically studied.

そこで、かかる抑止措置実現のために、本願発明者らは、『少なくともゲートGの直近領域100Aに当該ゲートGの直近領域100A以外の他の領域100Bと比べて熱伝達制御可能な熱伝達制御部20を供する』という技術的思想を新たに見出した(図1参照)。 Therefore, in order to realize such a deterrent measure, the inventors of the present application stated that "at least the heat transfer control unit capable of controlling heat transfer to the nearest region 100A of the gate G as compared with other regions 100B other than the nearest region 100A of the gate G". We have newly found the technical idea of "providing 20" (see Fig. 1).

なお、本明細書でいう「ゲートGの直近領域100A」とは、金型キャビティ30とホット型原料樹脂流路10との境界部分に位置するゲートGに最隣接する射出成形用金型の所定領域を指す。本明細書でいう「ホット型原料樹脂流路10」とは、広義には加熱保持された原料樹脂流路を指し、狭義には加熱保持されたスプルのみ又は加熱保持されたスプルおよびランナーを指す。本明細書でいう「熱伝達制御部20」とは、射出成形用金型にて伝熱制御可能な領域を指す。 The "closest region 100A of the gate G" referred to in the present specification is a predetermined injection molding mold closest to the gate G located at the boundary between the mold cavity 30 and the hot mold raw material resin flow path 10. Refers to an area. The “hot-type raw material resin flow path 10” as used herein refers to a heat-held raw material resin flow path in a broad sense, and refers only to a heat-held sprue or a heat-held sprue and a runner in a narrow sense. .. The “heat transfer control unit 20” as used herein refers to a region in which heat transfer can be controlled by an injection molding die.

かかる技術的思想に従えば、ゲート直近領域100Aにおける熱伝達制御部20の存在により、ゲートGを介して金型キャビティ30に接続されたホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域100A側へのホット型原料樹脂流路10内の溶融原料樹脂R(特にゲートG近傍に位置するホット型原料樹脂流路10内の溶融原料樹脂R)の伝熱を制御することが可能となる。熱伝達制御部20による伝熱制御により、ホット型原料樹脂流路10のゲートG近傍内の溶融原料樹脂Rの溶融熱に起因する射出成形用金型100のゲートG直近領域100Aへの熱残存を好適に抑止制御することが可能となる。これにより、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。According to this technical idea, due to the presence of the heat transfer control unit 20 in the region 100A near the gate, the injection molding mold 100 is connected to the mold cavity 30 via the gate G from the hot mold raw material resin flow path 10 side. Controls heat transfer of the molten raw material resin R in the hot-type raw material resin flow path 10 (particularly, the molten raw material resin R 1 in the hot-type raw material resin flow path 10 located near the gate G) toward the gate G nearest region 100A. It becomes possible to do. The heat transfer control of the heat transfer control unit 20, the heat of the gate G immediate vicinity region 100A of the injection mold 100 due to the melting heat of the molten starting resin R 1 in the vicinity of the gate G of the hot feedstock resin passage 10 It is possible to suitably suppress and control the residual. Thus, it is possible to suppress the heat transfer from the gate G immediate vicinity region 100A of the injection mold 100 into the molten material resin R 3 is located in the mold cavity 30 located in the vicinity the gate G.

又、金型キャビティ30内のゲートG近傍の領域に位置する溶融原料樹脂Rは、ホット型原料樹脂流路10の近位配置に起因して金型キャビティ30内の他の領域に位置する溶融原料樹脂Rよりもより高温となり易い。そのため、金型キャビティ内への溶融原料樹脂の充填保圧工程等にて、金型キャビティ30内のゲートG近傍の局所部分31に位置するより高温状態の溶融原料樹脂Rの熱が残存し得る。この点につき、ゲート直近領域100Aに熱伝達制御部20が存在すると、熱伝達部制御部20による熱伝達制御により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの高温状態の熱エネルギーがゲートG直近領域100A側に伝わることを好適に抑止制御することが可能となる。又、ゲート直近領域100Aに熱伝達制御部20が存在すると、熱伝達部制御部20による熱伝達制御により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの高温状態の熱残存が抑止され得る。以上により、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの高温状態の熱残存が継続することを抑止することが可能となる。Further, the molten raw material resin R 3 located in the region near the gate G in the mold cavity 30 is located in another region in the mold cavity 30 due to the proximal arrangement of the hot mold raw material resin flow path 10. likely to become hotter than the molten starting resin R 4. Therefore, in the filling and holding step of the molten raw material resin in the mold cavity, the heat of the molten raw material resin R 3 in a higher temperature state located in the local portion 31 near the gate G in the mold cavity 30 remains. obtain. Regarding this point, when the heat transfer control unit 20 is present in the region 100A near the gate, the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 is controlled by the heat transfer control unit 20. It is possible to preferably suppress and control the transfer of the thermal energy in the high temperature state of No. 3 to the region 100A in the immediate vicinity of the gate G. Further, when the gate immediate vicinity region 100A heat transfer control unit 20 in the presence, by heat transfer control of the heat transfer unit controller 20, the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 Heat residue in high temperature conditions can be suppressed. Thus, the thermal residual high temperature of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 it is possible to suppress to continue.

以上の事から、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rが金型キャビティ30内の他の部分に位置する溶融原料樹脂Rよりもより高温になることを抑止することが可能となる。 From the above, the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 becomes hotter than the molten raw material resin R 4 located in the other portion in the mold cavity 30. It becomes possible to deter that.

これにより、金型キャビティ30内の溶融原料樹脂の冷却工程において、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rと、金型キャビティ30内の他の部分に位置する溶融原料樹脂Rの冷却とを略同一の冷却速度で実施することが可能となる。つまり、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、金型キャビティ30内のゲートG近傍に位置する溶融原料樹脂Rが金型キャビティ30内の他の部分に位置する溶融原料樹脂Rよりも冷却しにくくなることを好適に抑止することが可能となる。それ故、最終的に全体として高精度な成形品を好適に得ることが可能となる。As a result, in the cooling step of the molten raw material resin in the mold cavity 30, the molten raw material resin R 3 located in the local portion 31 near the gate G in the mold cavity 30 and the other portion in the mold cavity 30 It becomes possible to carry out cooling of the molten raw material resin R 4 located at substantially the same cooling rate. That is, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 located near the gate G in the mold cavity 30 is located in another portion in the mold cavity 30. it is possible to suitably suppress the than R 4 hardly cooled. Therefore, it is finally possible to preferably obtain a high-precision molded product as a whole.

(射出成形用金型装置の構成)
以下、本発明の一実施形態に係る射出成形用金型装置200の構成について説明する(図1参照)。
(Structure of mold device for injection molding)
Hereinafter, the configuration of the injection molding die device 200 according to the embodiment of the present invention will be described (see FIG. 1).

本発明の一実施形態に係る射出成形用金型装置200は、射出成形用金型100(コア側およびキャビティ側から成るもの)と、射出成形用金型100内に溶融原料樹脂を供するためのホット型原料樹脂流路10(スプルに対応)を内部に備えたホット型スプル部材50とを含むものを指す。一実施形態では、ホット型スプル部材50は、ホット型原料樹脂流路10がゲートGに直接接続されるように射出成形用金型100と接する構成を採っている。当該ホット型スプル部材50は、通常その先端50Aの径が漸次小さくなる形状を有している。つまり、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分は傾斜面(図1参照)、より具体的には段差面を有し得る。なお、ホット型スプル部材50の構成は、ホット型原料樹脂流路10がゲートGに直接接続されるように射出成形用金型100と接する構成に限定されない。例えば、一実施形態では、ホット型スプル部材50は、ランナーを通じて射出成形用金型100と接続する構成を採り得る。この場合、ホット型原料樹脂流路10は、ホット型スプル部材50の内部に供されたスプルと射出成形用金型の内部に供されたランナーとから構成されることを確認的に述べておく。なお、本明細書でいう「ホット型スプル部材50の先端50A」とは、ホット型スプル部材50の底部(又は下部又は頂部)に供された開口部分より溶融原料樹脂が(金型キャビティ30側又はランナー側)へと流れ出る箇所を指すのではない。本明細書でいう「ホット型スプル部材50の先端50A」とは、ホット型スプル部材50の底部に最近接し、かつ射出成形用金型100の内表面と接触し得るホット型スプル部材50の外側面部分、すなわち“先端側外側面”を指す。又、本明細書でいう「金型キャビティ30内のゲートG近傍の局所部分31」とは、広義には金型キャビティのうち「溶融原料樹脂が供給される入口部分」と当該入口部分に連続する金型キャビティ30の形成面とに沿った部分を指す(図1参照)。 The injection molding die device 200 according to an embodiment of the present invention is for providing a molten raw material resin in an injection molding die 100 (consisting of a core side and a cavity side) and an injection molding die 100. It refers to a material including a hot-type sprue member 50 having a hot-type raw material resin flow path 10 (corresponding to sprue) inside. In one embodiment, the hot mold sprue member 50 is in contact with the injection molding mold 100 so that the hot mold raw material resin flow path 10 is directly connected to the gate G. The hot type sprue member 50 usually has a shape in which the diameter of the tip 50A gradually decreases. That is, the contact portion between the tip 50A of the hot die sprue member 50 and the injection molding die 100 may have an inclined surface (see FIG. 1), more specifically, a stepped surface. The configuration of the hot mold sprue member 50 is not limited to the configuration in which the hot mold raw material resin flow path 10 is in contact with the injection molding mold 100 so as to be directly connected to the gate G. For example, in one embodiment, the hot sprue member 50 may be connected to the injection molding die 100 through a runner. In this case, it should be confirmed that the hot mold raw material resin flow path 10 is composed of a sprue provided inside the hot mold sprue member 50 and a runner provided inside the injection molding die. .. The "tip 50A of the hot sprue member 50" as used herein refers to the molten raw material resin (mold cavity 30 side) from the opening provided at the bottom (or bottom or top) of the hot sprue member 50. Or it does not mean the part that flows out to the runner side). The "tip 50A of the hot type sprue member 50" as used herein refers to the outside of the hot type sprue member 50 which is in close contact with the bottom of the hot type sprue member 50 and can be in contact with the inner surface of the injection molding die 100. Refers to the side surface, that is, the "tip side outer surface". Further, the "local portion 31 in the vicinity of the gate G in the mold cavity 30" referred to in the present specification is, in a broad sense, continuous with the "inlet portion to which the molten raw material resin is supplied" and the inlet portion of the mold cavity. Refers to a portion along the forming surface of the mold cavity 30 to be formed (see FIG. 1).

以下では、ホット型スプル部材50内のホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合に基づき説明する。この場合、ホット型スプル部材50の先端50AはゲートGにて射出成形用金型100と直接接することとなる。この事は、ゲートGを挟んでホット型スプル部材50の先端近傍に金型キャビティ30が存在することを意味する。ホット型スプル部材50の先端近傍に金型キャビティ30が存在すると、金型キャビティ30内に充填された溶融原料樹脂の冷却工程において、以下の技術的問題が生じ得る。具体的には、まず、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60を介して射出成形用金型100のゲートG直近領域100Aに伝わり得る。次いで、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が、射出成形用金型100のゲートG付近の局所部分を介してホット型スプル部材50の先端近傍に位置する金型キャビティ30へと伝わり得る。 Hereinafter, the case where the hot type raw material resin flow path 10 (corresponding to the sprue) in the hot type sprue member 50 is directly connected to the gate G will be described. In this case, the tip 50A of the hot die sprue member 50 comes into direct contact with the injection molding die 100 at the gate G. This means that the mold cavity 30 exists in the vicinity of the tip of the hot type sprue member 50 with the gate G in between. When the mold cavity 30 is present near the tip of the hot mold sprue member 50, the following technical problems may occur in the cooling step of the molten raw material resin filled in the mold cavity 30. Specifically, first, the heat of the molten raw material resin flowing through the hot mold raw material resin flow path 10 (corresponding to the sprue) passes through the contact portion 60 between the tip 50A of the hot mold sprue member 50 and the injection molding die 100. It can be transmitted to the region 100A closest to the gate G of the injection molding die 100. Next, the heat of the molten raw material resin flowing through the hot mold raw material resin flow path 10 (corresponding to the sprue) is located near the tip of the hot mold sprue member 50 via the local portion near the gate G of the injection molding die 100. It can be transmitted to the mold cavity 30.

そこで、ホット型スプル部材50内のホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合において、熱伝達制御部20は、「ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60」と「金型キャビティ30」との間に位置付けられる」射出成形用金型100のゲートG直近領域100Aに位置付けられ得る。当該直近領域100Aに熱伝達制御部20が存在すると、ホット型原料樹脂流路10(スプルに対応)を流れる溶融原料樹脂の熱が当該接触部分60を介してゲートGの直近領域100Aに伝わることを抑止制御することが可能となる。より具体的には、ゲートG近傍に位置するホット型原料樹脂流路10内の溶融原料樹脂Rの熱がゲートG直近領域100Aに伝わることを抑止することが可能となる。又、ゲートG直近領域100Aに熱伝達制御部20が存在すると、金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの熱がゲートG直近領域100A(図1内の点線囲み部分)に伝わることを抑止制御することが可能となる。なお、上述のように、例えばホット型スプル部材50の先端50Aの径が漸次小さくなる形状を有する場合、ホット型スプル部材の先端50Aと射出成形用金型100との接触部分60は傾斜面を有することとなる(図1参照)。この場合において、「ゲートGの直近領域100A」とは、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域(図1内の点線囲み部分に相当)を指す。Therefore, when the hot-type raw material resin flow path 10 (corresponding to the sprue) in the hot-type sprue member 50 is directly connected to the gate G, the heat transfer control unit 20 “injects the tip 50A of the hot-type sprue member 50”. It can be positioned in the region 100A closest to the gate G of the injection molding die 100, which is positioned between the "contact portion 60 with the molding die 100" and the "mold cavity 30". When the heat transfer control unit 20 is present in the nearest region 100A, the heat of the molten raw material resin flowing through the hot-type raw material resin flow path 10 (corresponding to the sprue) is transferred to the nearest region 100A of the gate G via the contact portion 60. Can be suppressed and controlled. More specifically, it is possible to heat the molten raw material resin R 1 hot feedstock resin flow passage 10 positioned near the gate G is suppressed from being transmitted to the gate G immediate vicinity region 100A. Further, when the heat transfer control unit 20 to the gate G immediate vicinity region 100A exist, molten material resin R 3 thermal gate G immediate vicinity region 100A located in a local portion 31 of the gate G near the mold cavity 30 (in FIG. 1 It is possible to suppress and control the transmission to the part surrounded by the dotted line. As described above, for example, when the diameter of the tip 50A of the hot sprue member 50 is gradually reduced, the contact portion 60 between the tip 50A of the hot sprue member and the injection molding die 100 has an inclined surface. Will have (see FIG. 1). In this case, the "closest region 100A of the gate G" is a region formed between the contact portion 60 having an inclined surface and the forming surface of the mold cavity 30 facing the contact portion 60 (dotted line in FIG. 1). Corresponds to the enclosed part).

熱伝達制御部20による伝熱制御により、ホット型原料樹脂流路10(スプルに対応)内のゲートG近傍に位置する溶融原料樹脂Rの溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの溶融熱に起因して当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aへの熱残存を好適に抑止制御することが可能となる。かかる熱残存抑止により、当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aからホット型スプル部材50の先端近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。これにより、金型キャビティ30内に充填された溶融原料樹脂の冷却工程において、当該接触部分60と金型キャビティ30との間のゲートG直近領域100Aを介してホット型スプル部材50の先端近傍に位置する金型キャビティ30へ上記溶融熱が伝わることを好適に抑止することが可能となる。これにより、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ホット型スプル部材50の先端近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂Rが金型キャビティ30内の他の部分32の溶融原料樹脂Rよりも冷却しにくくなることを好適に抑止することが可能となる。The heat transfer control of the heat transfer control section 20, the vicinity of the gate G in the melting heat / mold cavity 30 of a molten raw material resin R 1 is located in the vicinity of the gate G in the hot feedstock resin flow path 10 (corresponding to the sprue) can be favorably suppressed control the heat remaining in the gate G immediate vicinity region 100A between the contact portion 60 and the mold cavity 30 due to the melting heat of the molten material resin R 3 is located in the local part 31 Become. Due to such heat residual suppression, the molten raw material located in the local portion 31 in the mold cavity 30 located near the tip of the hot mold sprue member 50 from the region 100A closest to the gate G between the contact portion 60 and the mold cavity 30. it is possible to suppress heat transfer to the resin R 3. As a result, in the cooling step of the molten raw material resin filled in the mold cavity 30, the hot mold sprue member 50 is placed near the tip of the hot mold sprue member 50 via the gate G immediate region 100A between the contact portion 60 and the mold cavity 30. It is possible to preferably suppress the transfer of the heat of fusion to the located mold cavity 30. As a result, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 in the local portion 31 in the mold cavity 30 located near the tip of the hot mold sprue member 50 is in the mold cavity 30. it is possible to suitably suppress also difficult to cool than the melting material resin R 4 other portion 32 of the.

なお、本発明で用いられる「熱伝達制御部20」は、下記態様により実現されることが好ましい。具体的には、「熱伝達制御部20」は、(i)射出成形用金型100内のゲート直近領域100Aへの冷却媒体路の提供、(ii)射出成形用金型100内のゲート直近領域100Aへの局所低密度部の提供、および/または(iii)ゲート直近領域100Aにおける射出成形用金型100の表面への低熱伝達膜の提供により実現され得る。 The "heat transfer control unit 20" used in the present invention is preferably realized by the following aspects. Specifically, the "heat transfer control unit 20" includes (i) providing a cooling medium path to the area 100A in the vicinity of the gate in the injection molding die 100, and (ii) the vicinity of the gate in the injection molding die 100. This can be achieved by providing a local low density portion to the region 100A and / or providing a low heat transfer film to the surface of the injection molding die 100 in the region 100A near the (iii) gate.

(i)熱伝達制御部20:冷却媒体路
一態様では、「熱伝達制御部20」は射出成形用金型100内のゲート直近領域100Aに少なくとも供される冷却媒体路20Aであることが好ましい(図2参照)。
(I) Heat transfer control unit 20: Cooling medium path In one aspect, the “heat transfer control unit 20” is preferably a cooling medium path 20A provided at least in the region 100A in the vicinity of the gate in the injection molding die 100. (See FIG. 2).

本明細書でいう「冷却媒体路」とは、冷却媒体を流すための中空流路であって、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱が射出成形用金型100のゲートG直近領域に伝わることを抑止し、かつゲートG付近の金型キャビティ内の原料樹脂の熱エネルギーを減じるための流路を示す。「冷却媒体」とは、冷却媒体路に流す媒体を指しており、例えば冷却液体(水、油)、冷却ガス(エアー、不活性ガス)、冷却固体物、冷却ガス−冷却液体混相体、又は冷却固体物−冷却液体混相体等を指す。 The "cooling medium path" referred to in the present specification is a hollow flow path for flowing a cooling medium, and the heat of fusion of the molten raw material resin flowing through the hot type raw material resin flow path 10 is the gate of the injection molding die 100. A flow path for suppressing transmission to the region closest to G and reducing the thermal energy of the raw material resin in the mold cavity near the gate G is shown. "Cooling medium" refers to a medium that flows through the cooling medium path, such as cooling liquid (water, oil), cooling gas (air, inert gas), cooling solids, cooling gas-cooling liquid mixture, or Refers to a cooled solid-cooled liquid mixture, etc.

この場合、「熱伝達制御部20」としての冷却媒体路20Aが、ゲートGの直近領域に位置付けられ得る。かかる冷却媒体路20Aの存在により、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーが、ゲートGの直近領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。又、かかる冷却媒体路20Aの存在により、ゲートGの近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂Rの熱エネルギーが射出成形用金型のゲートGの直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。なお、「熱伝達制御部20」としての冷却媒体路20AはゲートGの直近領域にて二重構造を採ってもよい。この場合、通常の一重構造を採る場合と比べて、ゲートGの直近領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーを相対的により大きくすることが可能となる。そのため、かかる二重構造を採っていることに起因して、「ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギー」と「ゲートGの近傍に位置する金型キャビティ30内の局所部分の溶融原料樹脂の熱エネルギー」とがより好適かつ効果的に減じられ得る。又、例えばホット型スプル部材50の先端50Aの径が漸次小さくなる形状を有する場合、ホット型スプル部材の先端50Aと射出成形用金型100との接触部分60は傾斜面を有することとなる(図2参照)。この場合において、「熱伝達制御部20」としての冷却媒体路20Aの少なくとも一部が、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域に形成されることとなる。この場合、冷却媒体路20Aの存在により、ホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーが、傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成される領域に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられることとなる。又、冷却媒体路20Aの存在により、ゲートGの近傍に位置する金型キャビティ30内の局所部分31の溶融原料樹脂Rの熱エネルギーが傾斜面を有する接触部分60と当該接触部分60に向かい合う金型キャビティ30の形成面との間に形成されるゲートG直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられることとなる。In this case, the cooling medium path 20A as the "heat transfer control unit 20" can be positioned in the immediate vicinity of the gate G. Due to the presence of the cooling medium passage 20A, the melting heat energy of the molten raw material resin flowing through the hot type raw material resin flow path 10 is reduced by the cooling heat energy of the cooling medium flowing through the cooling medium passage 20A located in the immediate region of the gate G. .. Moreover, the presence of such a coolant passage 20A, the immediate vicinity region 100A of the molten material resin R 3 of thermal energy injection mold gate G of the localized portion 31 of the mold cavity 30 located in the vicinity of the gate G It is reduced by the cooling heat energy of the cooling medium flowing through the located cooling medium passage 20A. The cooling medium path 20A as the "heat transfer control unit 20" may have a double structure in the immediate region of the gate G. In this case, it is possible to relatively increase the cooling heat energy of the cooling medium flowing through the cooling medium passage 20A located in the immediate region of the gate G, as compared with the case of adopting a normal single structure. Therefore, due to the fact that such a double structure is adopted, "the heat energy of melting of the molten raw material resin flowing through the hot type raw material resin flow path 10" and "locality in the mold cavity 30 located in the vicinity of the gate G". The "heat energy of the molten raw material resin of the portion" can be more preferably and effectively reduced. Further, for example, when the diameter of the tip 50A of the hot type sprue member 50 gradually decreases, the contact portion 60 between the tip 50A of the hot type sprue member and the injection molding die 100 has an inclined surface (for example, the contact portion 60 of the hot type sprue member 50 has an inclined surface. (See FIG. 2). In this case, at least a part of the cooling medium path 20A as the "heat transfer control unit 20" is formed between the contact portion 60 having an inclined surface and the forming surface of the mold cavity 30 facing the contact portion 60. It will be formed in the area. In this case, due to the presence of the cooling medium passage 20A, the molten heat energy of the molten raw material resin flowing through the hot type raw material resin flow path 10 is the forming surface of the contact portion 60 having an inclined surface and the mold cavity 30 facing the contact portion 60. It will be reduced by the cooling heat energy of the cooling medium flowing through the cooling medium passage 20A located in the region formed between the two. Moreover, the presence of the cooling medium passage 20A, facing the contact portion 60 and the contact portion 60 of the thermal energy of the molten material resin R 3 of localized portion 31 of the mold cavity 30 located in the vicinity of the gate G has an inclined surface It is reduced by the cooling heat energy of the cooling medium flowing through the cooling medium passage 20A located in the region 100A in the immediate vicinity of the gate G formed between the forming surface of the mold cavity 30.

以上により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱エネルギー/金型キャビティ30内のゲートG近傍の領域に位置する溶融原料樹脂の溶融熱エネルギーが、ゲートGの直近領域100Aに位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーにより減じられる。そのため、射出成形用金型100のゲートG直近領域への熱残存を好適に抑止することが可能となる。かかる熱残存抑止により、射出成形用金型100のゲートG付近から当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rが、金型キャビティ30内の他の部分32に位置する溶融原料樹脂Rよりもより高温になることを抑止することが可能となる。その結果、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ゲートG近傍の金型キャビティ30内の局所部分に位置する溶融原料樹脂が金型キャビティ30内の他の部分に位置する溶融原料樹脂よりも冷却しにくくなることを好適に抑止することが可能となる。As described above, the thermal energy of the molten raw material in the hot mold raw material resin flow path 10 / the thermal energy of the molten raw resin located in the region near the gate G in the mold cavity 30 becomes the nearest region 100A of the gate G. It is reduced by the cooling heat energy of the cooling medium flowing through the located cooling medium passage 20A. Therefore, it is possible to suitably suppress heat remaining in the region of the injection molding die 100 in the immediate vicinity of the gate G. Such thermal residual suppression, is possible to prevent the heat transfer from the vicinity of the gate G of the injection mold 100 into the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located in the vicinity the gate G It will be possible. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes hotter than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed. As a result, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin located in the local portion in the mold cavity 30 near the gate G is melted in another portion in the mold cavity 30. It is possible to preferably suppress the difficulty in cooling as compared with the raw material resin.

なお、一態様では、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、冷却媒体路20Aの断面形状の一部はホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60の断面形状および金型キャビティ30の形成面の断面形状の少なくとも一方に沿っていることが好ましい(図3)。In one aspect, when the hot-type raw material resin flow path 10 (corresponding to the sprue) is directly connected to the gate G, a part of the cross-sectional shape of the cooling medium path 20A 1 is injected with the tip 50A of the hot-type sprue member 50. It is preferable that the contact portion 60 with the molding die 100 follows at least one of the cross-sectional shape of the contact portion 60 and the cross-sectional shape of the forming surface of the mold cavity 30 (FIG. 3).

冷却媒体路20Aの断面形状の一部がホット型スプル部材50の先端50Aと射出成形用金型100との接触部分60の断面形状に沿っていると、沿っていない場合と比べて当該接触部分60と冷却媒体路20Aの一部との間の離隔距離を相対的に小さくすることが可能となる。これにより、接触部分60を介して当該接触部分60と金型キャビティ30との間の部分へと供され得るホット型原料樹脂流路10を流れる溶融原料樹脂の溶融熱エネルギーを、当該接触部分60と金型キャビティ30との間の部分に位置する冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーによって効果的に減じることが可能となる。When a part of the cross-sectional shape of the cooling medium path 20A 1 follows the cross-sectional shape of the contact portion 60 between the tip 50A of the hot mold sprue member 50 and the injection molding die 100, the contact is as compared with the case where the contact portion 60 is not. It is possible to make the separation distance between the portion 60 and a part of the cooling medium passage 20A 1 relatively small. As a result, the thermal energy of the molten raw material flowing through the hot mold raw material resin flow path 10 that can be provided to the portion between the contact portion 60 and the mold cavity 30 via the contact portion 60 is transferred to the contact portion 60. It can be effectively reduced by the cooling heat energy of the cooling medium flowing through the cooling medium passage 20A located in the portion between the mold cavity 30 and the mold cavity 30.

なお、冷却媒体路20Aの断面形状の一部は上記接触部分60の断面形状と略同一であることがより好ましい。かかる態様を採る場合、当該接触部分60と冷却媒体路20Aの一部との間のいずれの箇所においても離隔距離が略均一となり得る。そのため、略均一な離隔距離に起因して上記冷却媒体路20A内の冷却媒体の冷却熱エネルギーを、当該接触部分60のいずれの箇所に対して均一に供することが可能となる。これにより、当該接触部分60から供されるホット型原料樹脂流路10内の溶融原料樹脂の溶融熱エネルギーをより効果的に減じることが可能となる。It is more preferable that a part of the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the contact portion 60. When such an embodiment is adopted, the separation distance can be substantially uniform at any location between the contact portion 60 and a part of the cooling medium passage 20A 1. Therefore, it is possible to uniformly apply the cooling heat energy of the cooling medium in the cooling medium passage 20A 1 to any part of the contact portion 60 due to the substantially uniform separation distance. This makes it possible to more effectively reduce the molten heat energy of the molten raw material resin in the hot-type raw material resin flow path 10 provided from the contact portion 60.

又、冷却媒体路20Aの断面形状の一部がホット型スプル部材50の先端50Aの近傍に位置する金型キャビティ30の形成面の断面形状に沿っていると、沿っていない場合と比べて当該金型キャビティ30の形成面と冷却媒体路20Aの一部との間の離隔距離を相対的に小さくすることが可能となる。これにより、金型キャビティ30内の局所部分31から当該接触部分60と金型キャビティ30との間の部分へと供され得る溶融原料樹脂の溶融熱エネルギーを、冷却媒体路20Aに流す冷却媒体の冷却熱エネルギーによって効果的に減じることが可能となる。Further, when a part of the cross-sectional shape of the cooling medium path 20A 1 follows the cross-sectional shape of the forming surface of the mold cavity 30 located near the tip 50A of the hot type sprue member 50, it is compared with the case where it does not follow. It is possible to make the separation distance between the forming surface of the mold cavity 30 and a part of the cooling medium path 20A 1 relatively small. As a result, the cooling medium that allows the molten thermal energy of the molten raw material resin that can be supplied from the local portion 31 in the mold cavity 30 to the portion between the contact portion 60 and the mold cavity 30 to flow through the cooling medium passage 20A 1. It can be effectively reduced by the cooling heat energy of.

なお、冷却媒体路20Aの断面形状の一部は上記金型キャビティ30の形成面の断面形状と略同一であることがより好ましい。かかる態様を採る場合、当該金型キャビティ30の形成面と冷却媒体路20Aの一部との間のいずれの箇所においても離隔距離が略均一となり得る。そのため、略均一な離隔距離に起因して上記冷却媒体路20A内の冷却媒体の冷却熱エネルギーを、ホット型スプル部材50の先端50Aの近傍に位置する金型キャビティ30の形成面のいずれの箇所に対して均一に供することが可能となる。これにより、金型キャビティ30内の局所部分31から当該接触部分60と金型キャビティ30との間の部分へと供され得る溶融原料樹脂の溶融熱エネルギーを更により効果的に減じることが可能となる。It is more preferable that a part of the cross-sectional shape of the cooling medium passage 20A 1 is substantially the same as the cross-sectional shape of the forming surface of the mold cavity 30. When such an embodiment is adopted, the separation distance can be substantially uniform at any position between the forming surface of the mold cavity 30 and a part of the cooling medium path 20A 1. Therefore, due to the substantially uniform separation distance, the cooling heat energy of the cooling medium in the cooling medium passage 20A 1 is applied to any of the forming surfaces of the mold cavity 30 located in the vicinity of the tip 50A of the hot sprue member 50. It is possible to apply evenly to the location. Thereby, it is possible to more effectively reduce the melting heat energy of the molten raw material resin that can be provided from the local portion 31 in the mold cavity 30 to the portion between the contact portion 60 and the mold cavity 30. Become.

特に、当該接触部分60と金型キャビティ30との間の局所領域(すなわち、ゲート直近領域)に供される冷却媒体路20Aの断面形状の一部が上記接触部分60の断面形状および金型キャビティ30の形成面の断面形状の両方に沿う場合、冷却媒体路20Aは扁平断面形状(又は楕円断面形状)を有し得る。かかる形状を有すると、真円断面形状と比べて当該接触部分60と金型キャビティ30との間の狭い局所領域(すなわち、ゲート直近領域)に冷却媒体路20Aを広範囲にわたり効果的に供することが可能となる。そのため、冷却媒体路20A内の冷却媒体の冷却熱エネルギーを(1)接触部分60および(2)金型キャビティ30の形成面に対して効果的に供することが可能となる。 In particular, a part of the cross-sectional shape of the cooling medium path 20A 1 provided in the local region (that is, the region near the gate) between the contact portion 60 and the mold cavity 30 is the cross-sectional shape of the contact portion 60 and the mold. The cooling medium passage 20A 1 may have a flat cross-sectional shape (or an elliptical cross-sectional shape) when it follows both the cross-sectional shapes of the forming surfaces of the cavities 30. Having such a shape effectively provides the cooling medium passage 20A 1 over a wide area in a narrow local region (that is, a region in the immediate vicinity of the gate) between the contact portion 60 and the mold cavity 30 as compared with the perfect circular cross-sectional shape. Is possible. Therefore, it is possible to effectively apply the cooling heat energy of the cooling medium in the cooling medium passage 20A 1 to the forming surfaces of (1) the contact portion 60 and (2) the mold cavity 30.

一態様では、熱伝達制御部20としての冷却媒体路20Aは内部に支持部材70を有して成ることが好ましい(図4参照)。 In one aspect, the cooling medium path 20A as the heat transfer control unit 20 preferably has a support member 70 inside (see FIG. 4).

上述のように、冷却媒体路20Aは冷却媒体を流すための中空流路である。そのため、当該中空流路の断面寸法および長手寸法が相対的に大きい場合に、成形時における外部圧力に対して十分な強度を有することができない虞がある。そこで、当該外部圧力に対する強度を十分に確保する観点から、冷却媒体路20Aの内部を支持するための支持部材70を供することが好ましい。当該支持部材70は、外部圧力に対する強度を十分に確保する観点から供されるため“梁部材”として機能し得る。なお、特に限定されるものではないが、当該支持部材70は射出成形用金型100の構成材料(例えばFe等)と同じ材料から成ってよい(図4の下方図参照)。図4では冷却媒体路20Aの断面に複数の支持部材70が供されている態様が示されている。しかしながら、これに限定されることなく、複数の支持部材70が冷却媒体路20Aの長手方向に沿って所定間隔毎に供されることが好ましい。これにより、冷却媒体路20Aの長手方向および短手方向のいずれの方向にも複数の支持部材70が所定間隔毎に供されることとなる。それ故、冷却媒体路20Aは全体として外部圧力に対する強度をより向上させることが可能となる。 As described above, the cooling medium passage 20A is a hollow flow path for flowing the cooling medium. Therefore, when the cross-sectional dimension and the longitudinal dimension of the hollow flow path are relatively large, there is a possibility that the hollow flow path cannot have sufficient strength against external pressure during molding. Therefore, from the viewpoint of sufficiently ensuring the strength against the external pressure, it is preferable to provide the support member 70 for supporting the inside of the cooling medium path 20A. The support member 70 can function as a "beam member" because it is provided from the viewpoint of ensuring sufficient strength against external pressure. Although not particularly limited, the support member 70 may be made of the same material as the constituent material (for example, Fe) of the injection molding die 100 (see the lower view of FIG. 4). FIG. 4 shows a mode in which a plurality of support members 70 are provided in a cross section of the cooling medium path 20A. However, without being limited to this, it is preferable that a plurality of support members 70 are provided at predetermined intervals along the longitudinal direction of the cooling medium path 20A. As a result, the plurality of support members 70 are provided at predetermined intervals in both the longitudinal direction and the lateral direction of the cooling medium path 20A. Therefore, the cooling medium path 20A as a whole can further improve the strength against external pressure.

一態様では、熱伝達制御部20としての冷却媒体路20Aがホット型スプル部材50の軸方向に沿ってゲートGの直近領域100A以外の他の領域100Bにも供され、冷却媒体路20Aが全体として螺旋構造を成していることが好ましい(図2〜4参照)。 In one aspect, the cooling medium path 20A as the heat transfer control unit 20 is also provided to a region 100B other than the nearest region 100A of the gate G along the axial direction of the hot spiral member 50, and the cooling medium passage 20A as a whole is provided. It is preferable that the structure is spiral (see FIGS. 2 to 4).

ホット型原料樹脂流路10は、溶融状態を全体的に連続保持する観点から当該ホット型原料樹脂流路10の軸方向(断面視)に沿って加熱源80が複数供され得る。この場合、ゲートG付近に位置するホット型原料樹脂流路10(すなわちホット型原料樹脂流路10の下流側)のみならず、ホット型原料樹脂流路10の上流側から下流側にわたる部分からホット型原料樹脂流路10の周囲に位置する射出成形用金型100へとホット型原料樹脂流路10内の溶融樹脂原料の溶融熱が伝わり得る。具体的には、射出成形用金型100のゲート直近領域100A以外の他の領域100Bからゲート直近領域100Aへと、ホット型原料樹脂流路10内の溶融樹脂原料の溶融熱が伝わる虞がある。そのため、当該溶融熱のエネルギーを減じる観点から射出成形用金型100のゲート直近領域100Aのみならず他の領域100Bにも冷却媒体路20Aが供されることが好ましい。特に、冷却媒体路20Aは全体として螺旋構造を成していることが好ましい。かかる構造を採ることで、冷却媒体路20Aは、ホット型原料樹脂流路10の軸方向に沿ってホット型原料樹脂流路10を取り囲む形態を採る。かかる冷却媒体路20Aの取り囲み形態に起因して、ホット型原料樹脂流路10の上流側から下流側にわたる部分からホット型原料樹脂流路10の周囲に位置する射出成形用金型100へと供され得る溶融熱のエネルギーを全体として効果的に減じることが可能となる。これに加えて、かかる冷却媒体路20Aの取り囲み形態に起因して、ホット型原料樹脂流路10の軸方向(断面視)に沿って複数供される加熱源80から射出成形用金型100へと伝わる加熱源80の熱エネルギーを全体として効果的に減じることが可能となる。 The hot-type raw material resin flow path 10 may be provided with a plurality of heating sources 80 along the axial direction (cross-sectional view) of the hot-type raw material resin flow path 10 from the viewpoint of continuously holding the molten state as a whole. In this case, not only the hot-type raw material resin flow path 10 located near the gate G (that is, the downstream side of the hot-type raw material resin flow path 10) but also the portion extending from the upstream side to the downstream side of the hot-type raw material resin flow path 10 is hot. The heat of melting of the molten resin raw material in the hot mold raw material resin flow path 10 can be transferred to the injection molding mold 100 located around the mold raw material resin flow path 10. Specifically, there is a possibility that the heat of fusion of the molten resin raw material in the hot mold raw material resin flow path 10 is transferred from the region 100B other than the gate immediate region 100A of the injection molding die 100 to the gate immediate region 100A. .. Therefore, from the viewpoint of reducing the energy of the heat of fusion, it is preferable that the cooling medium path 20A is provided not only in the region 100A near the gate of the injection molding die 100 but also in the other region 100B. In particular, it is preferable that the cooling medium path 20A has a spiral structure as a whole. By adopting such a structure, the cooling medium passage 20A adopts a form surrounding the hot-type raw material resin flow path 10 along the axial direction of the hot-type raw material resin flow path 10. Due to the surrounding form of the cooling medium passage 20A, the portion extending from the upstream side to the downstream side of the hot mold raw material resin flow path 10 is provided to the injection molding mold 100 located around the hot mold raw material resin flow path 10. It is possible to effectively reduce the energy of the heat of fusion that can be obtained as a whole. In addition to this, due to the surrounding form of the cooling medium path 20A, a plurality of heat sources 80 provided along the axial direction (cross-sectional view) of the hot mold raw material resin flow path 10 are transferred to the injection molding die 100. It is possible to effectively reduce the heat energy of the heating source 80 that is transmitted as a whole.

一態様では、ゲートGの直近領域100Aに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離が、他の領域100Bに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離よりも小さいことが好ましい(図2〜図4参照)。 In one aspect, the separation distance between the cooling medium passage 20A provided in the nearest region 100A of the gate G and the hot type sprue member 50 is such that the cooling medium passage 20A provided in the other region 100B and the hot type sprue member 50 are separated from each other. It is preferably smaller than the separation distance from and to (see FIGS. 2 to 4).

上述のように、本発明は、「少なくともゲートGの直近領域100Aに当該ゲートGの直近領域100A以外の他の領域100Bと比べて熱伝達制御が可能な熱伝達制御部20(例えば冷却媒体路20A)を供する」という技術的思想を有する。かかる技術的思想に従えば、ゲートG近傍に位置する金型キャビティ30側へホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達を可能な限り減じる観点から、ゲートG側へ可能な限り熱伝達制御部20(例えば冷却媒体路20A)を近付けることが好ましい。その一方で、ゲートGの直近領域100A以外の他の領域100BはゲートGの直近領域100Aと比べて金型キャビティ30から相対的に離れている。そのため、他の領域100BはゲートGの直近領域100Aと比べて金型キャビティ30側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達性は小さいと考えられる。かかる点を考慮し、ゲートGの直近領域100Aに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離Sが、他の領域100Bに供される冷却媒体路20Aとホット型スプル部材50との間の離隔距離Sよりも小さいことが好ましい。特に限定されるものではないが、離隔距離Sは1mm〜10mm、例えば3mmであってよい。一方、離隔距離Sは10mm(10mm除く)〜50mm、例えば25mmであってよい。As described above, the present invention states that "a heat transfer control unit 20 (for example, a cooling medium path) capable of heat transfer control in at least the nearest region 100A of the gate G as compared with other regions 100B other than the nearest region 100A of the gate G. It has the technical idea of "providing 20A)." According to such a technical idea, it is possible to move to the gate G side from the viewpoint of reducing the transfer of heat of fusion of the raw material resin in the hot type raw material resin flow path 10 to the mold cavity 30 side located near the gate G as much as possible. It is preferable that the heat transfer control unit 20 (for example, the cooling medium path 20A) is brought as close as possible. On the other hand, the other regions 100B other than the immediate region 100A of the gate G are relatively far from the mold cavity 30 as compared with the immediate region 100A of the gate G. Therefore, it is considered that the other region 100B has a smaller transfer of heat of fusion of the raw material resin in the hot mold raw material resin flow path 10 to the mold cavity 30 side than the nearest region 100A of the gate G. Considering these points, distance S 1 between the cooling medium passage 20A 1 and the hot-type sprue member 50 to be subjected to the immediate vicinity region 100A of the gate G, the cooling medium passage 20A 2 to be subjected to other regions 100B and is preferably smaller than the distance S 2 between the hot mold sprue member 50. Although not particularly limited, the separation distance S 1 may be 1 mm to 10 mm, for example, 3 mm. On the other hand, the separation distance S 2 may be 10 mm (excluding 10 mm) to 50 mm, for example, 25 mm.

なお、上述のように、金型キャビティ30に対して近位側に位置するゲートGの直近領域100Aには金型キャビティ30への熱伝達率が相対的に高いため、冷却媒体路20Aを広範囲にわたり効果的に供する観点から、冷却媒体路20Aは扁平断面形状(又は楕円断面形状)を有し得る。その一方で、金型キャビティ30に対して遠位側に位置するゲートGの直近領域以外の他の領域100Bには金型キャビティ30への熱伝達率が相対的に低いため、冷却媒体路20Aを広範囲に供する意味合いは高くない。そのため、冷却媒体路20Aは真円断面形状又は略真円断面形状を有していてよい。As described above, since the heat transfer coefficient to the mold cavity 30 is relatively high in the immediate region 100A of the gate G located on the proximal side with respect to the mold cavity 30, the cooling medium path 20A 1 is provided. The cooling medium passage 20A 1 may have a flat cross-sectional shape (or an elliptical cross-sectional shape) from the viewpoint of effective use over a wide range. On the other hand, since the heat transfer coefficient to the mold cavity 30 is relatively low in the region 100B other than the region closest to the gate G located on the distal side of the mold cavity 30, the cooling medium path 20A The meaning of providing 2 in a wide range is not high. Therefore, the cooling medium path 20A 2 may have a perfect circular cross-sectional shape or a substantially perfect circular cross-sectional shape.

(ii)熱伝達制御部20:射出成形用金型100内の局所低密度部
一態様では、「熱伝達制御部20」は、ゲートGの直近領域100Aに少なくとも供された射出成形用金型100の局所低密度部20Bであることが好ましい(図5参照)。
(Ii) Heat Transfer Control Unit 20: Local Low Density Unit in Injection Molding Die 100 In one aspect, the "heat transfer control unit 20" is an injection molding die provided at least in the nearest region 100A of the gate G. It is preferably the local low density portion 20B of 100 (see FIG. 5).

熱伝達制御部20の具体的態様としては、上記の冷却媒体路20Aに限定されない。例えば、熱伝達制御部20として、射出成形用金型100の局所低密度部20Bが用いられ得る。本明細書でいう「局所低密度部20B」とは、広義には射出成形用金型100の構成要素であって他の部分よりも密度が相対的に低いものを指す。本明細書でいう「局所低密度部20B」とは、狭義には粉末床溶融結合法で射出成形用金型100を製造する場合において、射出成形用金型100の構成要素であって他の部分よりも固化密度が相対的に低いもの(例えば固化密度が40〜95%(95%を含まず)であるもの)を指す。 The specific embodiment of the heat transfer control unit 20 is not limited to the cooling medium passage 20A described above. For example, as the heat transfer control unit 20, the local low density unit 20B of the injection molding die 100 can be used. In a broad sense, the "local low-density portion 20B" as used herein refers to a component of the injection molding die 100 having a relatively lower density than other portions. The "local low-density portion 20B" referred to in the present specification is, in a narrow sense, a component of the injection molding die 100 when the injection molding die 100 is manufactured by the powder bed melt bonding method, and is another component. It refers to a material having a relatively lower solidification density than the portion (for example, a material having a solidification density of 40 to 95% (excluding 95%)).

例えば、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、当該局所低密度部20BはゲートGの直近領域100Aに位置する接触部分60近傍に少なくとも供されてよい。又、図示していないが、当該局所低密度部20BはゲートGの直近領域100Aに位置する金型キャビティ30の形成面近傍にも供されてよい。これに限定されることなく、当該局所低密度部20BはゲートGの直近領域100A以外の他の領域100Bとホット型原料樹脂流路10との界面領域近傍にも供されてよい。なお、構造単純化の観点から、図5に示すように射出成形用金型100の内表面100Cの領域に沿って局所低密度部20Bが供されることが好ましい。 For example, when the hot-type raw material resin flow path 10 (corresponding to the sprue) is directly connected to the gate G, the local low-density portion 20B may be provided at least in the vicinity of the contact portion 60 located in the immediate region 100A of the gate G. .. Further, although not shown, the local low density portion 20B may be provided near the forming surface of the mold cavity 30 located in the immediate region 100A of the gate G. Without being limited to this, the local low density portion 20B may be provided in the vicinity of the interface region between the hot type raw material resin flow path 10 and the region 100B other than the immediate region 100A of the gate G. From the viewpoint of structural simplification, it is preferable that the local low density portion 20B is provided along the region of the inner surface 100C of the injection molding die 100 as shown in FIG.

この場合、当該局所低密度部20Bは密度が相対的に低いことに起因して微視的には微細な空隙を有し得る。かかる局所低密度部20Bの微細な空隙の存在により、空隙が存在しない場合比べてホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の局所的な断熱が可能となる。又、かかる局所低密度部20Bの微細な空隙の存在により、金型キャビティ内への溶融原料樹脂の充填/保圧時に射出成形用金型100のゲートG直近領域100Aへの金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂の溶融熱の局所的な断熱が可能となる。 In this case, the local low density portion 20B may have microscopically fine voids due to the relatively low density. Due to the presence of fine voids in the local low density portion 20B, the hot mold raw material resin flow path from the hot mold raw material resin flow path 10 side to the gate G immediate region side of the injection molding mold 100 as compared with the case where the voids do not exist. Local heat insulation of the heat of fusion of the raw material resin in No. 10 becomes possible. Further, due to the presence of fine voids in the local low density portion 20B, the inside of the mold cavity 30 into the gate G nearest region 100A of the injection molding mold 100 when the molten raw material resin is filled / held in the mold cavity. It is possible to locally insulate the heat of melting of the molten raw material resin located in the local portion 31 near the gate G of the above.

以上により、射出成形用金型100の局所低密度部20Bの存在により、ホット型原料樹脂流路10内の溶融原料樹脂Rの溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの溶融熱の射出成形用金型100のゲートG直近領域100Aへの局所的な断熱が可能となる。かかる局所的な断熱により、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rが、金型キャビティ30内の他の部分32に位置する溶融原料樹脂Rよりもより高温になることを抑止することが可能となる。As described above, due to the presence of the local low density portion 20B of the injection molding mold 100, the heat of fusion of the molten raw material resin R in the hot mold raw material resin flow path 10 / the local portion 31 near the gate G in the mold cavity 30 local insulation to the gate G immediate vicinity region 100A of the molten raw material resin R injection mold 100 heat of fusion of 3 to position is possible. Such localized thermal insulation, suppress heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 It becomes possible to do. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes hotter than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.

(iii)熱伝達制御部20:射出成形用金型100の表面に供された低熱伝達膜
一態様では、「熱伝達制御部20」は、射出成形用金型100の表面に供された低熱伝達膜20Cを有して成り、当該低熱伝達膜20CがゲートGの直近領域100Aに少なくとも供されることが好ましい(図6参照)。
(Iii) Heat Transfer Control Unit 20: Low Heat Transfer Film Applied to the Surface of the Injection Molding Mold 100 In one aspect, the “heat transfer control unit 20” is a low heat applied to the surface of the injection molding mold 100. It is preferable that the low heat transfer film 20C is provided with the transfer film 20C, and the low heat transfer film 20C is provided at least in the immediate region 100A of the gate G (see FIG. 6).

熱伝達制御部20の具体的態様としては、上記の冷却媒体路20Aおよび局所低密度部20Bに限定されない。例えば、熱伝達制御部20として、射出成形用金型100の表面に供された低熱伝達膜20Cが用いられ得る。本明細書でいう「低熱伝達膜20C」とは、熱伝達性が相対的に低い膜を指す。低熱伝達膜20Cとしては、特に限定されるものではないが、例えば熱伝達性が相対的に低いめっき膜、セラミック膜等が挙げられる。特に限定されるものではないが、当該膜厚は10μm〜300μm、例えば150μmであってよい。 The specific embodiment of the heat transfer control unit 20 is not limited to the cooling medium passage 20A and the local low density unit 20B described above. For example, as the heat transfer control unit 20, the low heat transfer film 20C provided on the surface of the injection molding die 100 can be used. The “low heat transfer film 20C” as used herein refers to a film having a relatively low heat transfer property. The low heat transfer film 20C is not particularly limited, and examples thereof include a plating film and a ceramic film having relatively low heat transfer properties. Although not particularly limited, the film thickness may be 10 μm to 300 μm, for example, 150 μm.

例えば、ホット型原料樹脂流路10(スプルに対応)がゲートGに直接接続される場合、当該低熱伝達膜20CはゲートGの直近領域100Aに位置する接触部分60近傍に少なくとも供されてよい。又、図示していないが、低熱伝達膜20CはゲートGの直近領域100Aに位置する金型キャビティ30の形成面近傍にも供されてよい。これに限定されることなく、当該低熱伝達膜20CはゲートGの直近領域100A以外の他の領域100Bとホット型原料樹脂流路10との界面領域近傍にも供されてよい。なお、構造単純化の観点から、図6に示すように射出成形用金型100の内表面100Cの領域に沿って低熱伝達膜20Cが供されることが好ましい。又、これに加え又はこれに代えて、ホット型スプル部材50の内部から外部への熱伝導を抑止する観点から、内表面100Cのみならずホット型スプル部材50の外表面50Cにも低熱伝達膜が更に供されてもよい。 For example, when the hot-type raw material resin flow path 10 (corresponding to the sprue) is directly connected to the gate G, the low heat transfer film 20C may be provided at least in the vicinity of the contact portion 60 located in the immediate region 100A of the gate G. Further, although not shown, the low heat transfer film 20C may be provided near the forming surface of the mold cavity 30 located in the immediate region 100A of the gate G. Without being limited to this, the low heat transfer film 20C may be provided in the vicinity of the interface region between the hot type raw material resin flow path 10 and the region 100B other than the immediate region 100A of the gate G. From the viewpoint of structural simplification, it is preferable that the low heat transfer film 20C is provided along the region of the inner surface 100C of the injection molding die 100 as shown in FIG. Further, in addition to or instead of this, from the viewpoint of suppressing heat conduction from the inside to the outside of the hot type sprue member 50, a low heat transfer film is applied not only to the inner surface 100C but also to the outer surface 50C of the hot type sprue member 50. May be further provided.

この場合、当該低熱伝達膜20Cは熱伝達性が相対的に低い膜であることに起因して、当該低熱伝達膜20Cを供しない場合と比べてホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域側へのホット型原料樹脂流路10内の原料樹脂の溶融熱の伝達性を小さくすることが可能となる。又、当該低熱伝達膜20Cは熱伝達性が相対的に低い膜であることに起因して、金型キャビティ内への溶融原料樹脂の充填/保圧時に射出成形用金型100のゲートG直近領域への金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの溶融熱の伝達性を小さくすることが可能となる。In this case, because the low heat transfer film 20C is a film having a relatively low heat transfer property, it is used for injection molding from the hot type raw material resin flow path 10 side as compared with the case where the low heat transfer film 20C is not provided. It is possible to reduce the transferability of the heat of fusion of the raw material resin in the hot mold raw material resin flow path 10 toward the region closest to the gate G of the mold 100. Further, since the low heat transfer film 20C is a film having a relatively low heat transfer property, it is close to the gate G of the injection molding die 100 when the molten raw material resin is filled / held in the mold cavity. it is possible to reduce the transmission of heat of fusion of the molten material resin R 3 is located in the local part 31 of the gate G near the mold cavity 30 to the area.

以上により、低熱伝達膜20Cの存在により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの溶融熱の射出成形用金型100のゲートG直近領域100Aへの熱伝達性を小さくすることが可能となる。かかる熱伝達性の低減化により、射出成形用金型100のゲートG直近領域100Aから当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。そのため、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rが、金型キャビティ30内の他の部分32に位置する溶融原料樹脂Rよりもより高温になることを抑止することが可能となる。Thus, the presence of low heat transfer film 20C, the melting of the molten material resin R 3 is located in the local part 31 of the gate G near the melting heat / mold cavity 30 of a molten raw material resin of the hot feedstock resin flow passage 10 It is possible to reduce the heat transfer of the heat injection molding die 100 to the region 100A in the immediate vicinity of the gate G. The reduction of such heat transfer, heat transfer to the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located from the gate G immediate vicinity region 100A adjacent the gate G of the injection mold 100 Can be suppressed. Therefore, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes hotter than the molten raw material resin R 4 located in the other portion 32 in the mold cavity 30. Can be suppressed.

更に、低熱伝達膜20Cとして用いられ得る上記めっき膜、セラミック膜等は強度が高い材質から成る。そのため、めっき膜、セラミック膜等は、溶融原料樹脂の溶融熱の伝達性を小さくする性質を有するのみでなく、成形時に生じる外部圧力に対しても耐圧特性を有すると共に耐摩耗性も有する点で有利である。 Further, the plating film, the ceramic film and the like that can be used as the low heat transfer film 20C are made of a material having high strength. Therefore, the plating film, the ceramic film, etc. not only have the property of reducing the transferability of the heat of fusion of the molten raw material resin, but also have the pressure resistance property against the external pressure generated during molding and also have the wear resistance. It is advantageous.

一態様では、ホット型スプル部材50の外表面50Cと相互に対向する射出成形用金型100の内表面100Cが、ホット型スプル部材50の外表面50Cよりも外側に位置することが好ましい(図2〜図6参照)。 In one aspect, it is preferable that the inner surface 100C of the injection molding die 100 facing each other with the outer surface 50C of the hot type sprue member 50 is located outside the outer surface 50C of the hot type sprue member 50 (FIG. 2 to FIG. 6).

上述のように、本発明では、少なくともゲートGの直近領域100Aに熱伝達制御部20が供される。これにより、ホット型原料樹脂流路10内の溶融樹脂原料の熱が射出成形用金型100側に伝わり得ることを抑止することが可能となる。当該溶融樹脂原料の熱伝達抑止のためには、熱伝達制御部20の提供のみならず射出成形用金型100の表面形状に特性を供することも好ましい。具体的には、射出成形用金型100の内表面100Cがホット型スプル部材50の外表面50Cよりも外側に位置することが好ましい。かかる構成を採ることで、射出成形用金型100の内表面100Cとホット型スプル部材50の外表面50Cとの間に隙間を供することが可能となる。かかる隙間の存在により、ホット型原料樹脂流路10内の溶融樹脂原料の熱が射出成形用金型100側に伝わり得ることを抑止することが可能となる。なお、ホット型スプル部材50は射出成形用金型100への設置のため少なくともその先端50Aが射出成形用金型100と接触する必要があるため、当該接触部分(図2〜図6の符号60に相当)には隙間が供されないことについて確認的に付言しておく。更に、ホット型スプル部材50の先端50Aと射出成形用金型100との接触部分に隙間が供されないことを前提として、本態様では、ホット型スプル部材50のより上流側に位置するホット型スプル部材50の外表面50Cと、これに対向する射出成形用金型100の内表面100Cとの間にも隙間が供されないことが好ましい。これにより、ホット型スプル部材50を全体視した場合に、ホット型スプル部材50の先端側(最下流側)と相対的に上流側とでは、その外表面50Cが対向する射出成形用金型100の内表面100Cに接触することとなる。これにより、ホット型スプル部材50の射出成形用金型100に対する配置安定性をより向上させることが可能となる。 As described above, in the present invention, the heat transfer control unit 20 is provided at least in the nearest region 100A of the gate G. This makes it possible to prevent the heat of the molten resin raw material in the hot mold raw material resin flow path 10 from being transferred to the injection molding die 100 side. In order to suppress heat transfer of the molten resin raw material, it is preferable not only to provide the heat transfer control unit 20 but also to provide characteristics to the surface shape of the injection molding die 100. Specifically, it is preferable that the inner surface 100C of the injection molding die 100 is located outside the outer surface 50C of the hot sprue member 50. By adopting such a configuration, it is possible to provide a gap between the inner surface 100C of the injection molding die 100 and the outer surface 50C of the hot type sprue member 50. The presence of such a gap makes it possible to prevent the heat of the molten resin raw material in the hot mold raw material resin flow path 10 from being transferred to the injection molding die 100 side. Since the hot mold sprue member 50 needs to have at least its tip 50A in contact with the injection molding die 100 in order to be installed in the injection molding die 100, the contact portion (reference numeral 60 in FIGS. 2 to 6). It should be confirmed that there is no gap in (corresponding to). Further, on the premise that no gap is provided in the contact portion between the tip 50A of the hot die sprue member 50 and the injection molding die 100, in this embodiment, the hot sprue located on the upstream side of the hot sprue member 50 It is preferable that no gap is provided between the outer surface 50C of the member 50 and the inner surface 100C of the injection molding die 100 facing the outer surface 50C. As a result, when the hot type sprue member 50 is viewed as a whole, the injection molding die 100 with the outer surface 50C facing the tip side (most downstream side) of the hot type sprue member 50 and the relatively upstream side thereof. Will come into contact with the inner surface 100C of. This makes it possible to further improve the placement stability of the hot die sprue member 50 with respect to the injection molding die 100.

(射出成形用金型装置の製造方法)
以下、本発明の一実施形態に係る射出成形用金型装置200(図1)の製造方法について説明する。本発明の一実施形態に係る射出成形用金型装置200は、射出成形用金型100(コア側およびキャビティ側から成るもの)と、射出成形用金型100内に溶融原料樹脂を供するためのホット型原料樹脂流路10(スプルに対応)を内部に備えたホット型スプル部材50とを含む。射出成形用金型100については、以下の“粉末床溶融結合法”を用いて製造することが可能である。一方、ホット型スプル部材50については市販品を用いることが可能である。
(Manufacturing method of mold equipment for injection molding)
Hereinafter, a method for manufacturing the injection molding die device 200 (FIG. 1) according to the embodiment of the present invention will be described. The injection molding die device 200 according to an embodiment of the present invention is for providing a molten raw material resin in an injection molding die 100 (consisting of a core side and a cavity side) and an injection molding die 100. Includes a hot-type sprue member 50 having a hot-type raw material resin flow path 10 (corresponding to sprue) inside. The injection molding die 100 can be manufactured by using the following "powder bed melt bonding method". On the other hand, as the hot type sprue member 50, a commercially available product can be used.

射出成形用金型100の製造のために用いられる“粉末床溶融結合法”は、光ビームを粉末材料に照射することを通じて三次元形状造形物を製造できる方法である。当該方法では、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
The "powder bed melt bonding method" used for manufacturing the injection molding die 100 is a method capable of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam. In this method, powder layer formation and solidified layer formation are alternately and repeatedly carried out based on the following steps (i) and (ii) to produce a three-dimensional shaped object.
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or melt-solidifying the powder at the predetermined portion to form a solidified layer.
(Ii) A step of forming a new powder layer on the obtained solidified layer and similarly irradiating with a light beam to form a further solidified layer.

このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を射出成形用金型100として用いることができる。ここでいう「金属粉末」は、例えば平均粒径5μm〜100μm程度の鉄系金属粉末であってよい。 According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time. When an inorganic metal powder is used as the powder material, the obtained three-dimensional shaped product can be used as the injection molding die 100. The "metal powder" referred to here may be, for example, an iron-based metal powder having an average particle size of about 5 μm to 100 μm.

粉末材料として金属粉末を用い、それによって製造される三次元形状造形物を射出成形用金型100として用いる場合の粉末床溶融結合法を例にとる。図7に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図7(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図7(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図7(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。 An example is a powder bed melt-bonding method in which a metal powder is used as a powder material and a three-dimensional shaped product produced by the metal powder is used as a mold 100 for injection molding. As shown in FIG. 7, first, the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 7A). Next, a predetermined portion of the powder layer 22 is irradiated with a light beam L to form a solidified layer 24 from the powder layer 22 (see FIG. 7B). Subsequently, a new powder layer is formed on the obtained solidified layer and irradiated with a light beam again to form a new solidified layer. When the powder layer formation and the solidification layer formation are alternately and repeatedly performed in this way, the solidification layer 24 is laminated (see FIG. 7C), and finally, the three-dimensional structure composed of the laminated solidification layer 24 is formed. A shaped object can be obtained.

当該“粉末床溶融結合法”を用いれば、少なくともゲートとなる部分の直近領域に、ゲートとなる部分の直近領域以外の他の領域と比べて熱伝達制御可能な熱伝達制御部を供することが可能となる。“粉末床溶融結合法”を用いる場合、光ビームの照射エネルギー密度を局所的に小さくすることで熱伝達制御部20として上記の冷却媒体路20Aおよび局所低密度部20Bを供することが可能である。なお、熱伝達制御部20として低熱伝達膜20Cを供する場合、低熱伝達膜20Cとして用いるめっき膜を蒸着スパッタにより別途供することが可能である。低熱伝達膜20Cとして用いるセラミック膜を溶射により別途供することが可能である。 By using the "powder bed melt bonding method", it is possible to provide a heat transfer control unit capable of controlling heat transfer as compared with other regions other than the region other than the region near the gate portion, at least in the region closest to the gate portion. It will be possible. When the "powder bed melt bonding method" is used, it is possible to provide the above-mentioned cooling medium passage 20A and the local low density portion 20B as the heat transfer control unit 20 by locally reducing the irradiation energy density of the light beam. .. When the low heat transfer film 20C is provided as the heat transfer control unit 20, the plating film used as the low heat transfer film 20C can be separately provided by thin film deposition sputtering. A ceramic film used as the low heat transfer film 20C can be separately provided by thermal spraying.

上記方法により得られた射出成形用金型装置200を用いると、ゲート直近領域100Aにおける熱伝達制御部20の存在により、ゲートGを介してホット型原料樹脂流路10側から射出成形用金型100のゲートG直近領域100A側へのホット型原料樹脂流路10内の原料樹脂の伝熱を抑止することが可能となる。又、射出成形用金型100のゲートG直近領域へ金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂Rの熱が伝わることを抑止することが可能となる。以上により、熱伝達制御部20の存在により、ホット型原料樹脂流路10内の溶融原料樹脂の溶融熱/金型キャビティ30内のゲートG近傍の局所部分31に位置する溶融原料樹脂の溶融熱に起因して射出成形用金型100のゲートG直近領域100Aへの熱残存を好適に抑止することが可能となる。かかる熱残存抑止により、射出成形用金型100のゲートG直近領域から当該ゲートG近傍に位置する金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rへの伝熱を抑止することが可能となる。これにより、金型キャビティ30内の溶融原料樹脂Rの冷却工程において、ゲートG近傍の金型キャビティ30内の局所部分31に位置する溶融原料樹脂Rが金型キャビティ30内の他の部分32に位置する溶融原料樹脂Rよりも冷却しにくくなることを好適に抑止することが可能となる。それ故、最終的に全体として高精度な成形品を好適に得ることが可能となる。When the injection molding die device 200 obtained by the above method is used, the injection molding die is used from the hot mold raw material resin flow path 10 side via the gate G due to the presence of the heat transfer control unit 20 in the region 100A near the gate. It is possible to suppress heat transfer of the raw material resin in the hot-type raw material resin flow path 10 to the 100A side in the vicinity of the gate G of 100. Further, it is possible to prevent the heat of the molten raw material resin R located in the local portion 31 near the gate G in the mold cavity 30 from being transferred to the region closest to the gate G of the injection molding mold 100. As described above, due to the presence of the heat transfer control unit 20, the heat of fusion of the molten raw material resin in the hot mold raw material resin flow path 10 / the heat of fusion of the molten raw material resin located in the local portion 31 near the gate G in the mold cavity 30. Therefore, it is possible to suitably suppress heat remaining in the region 100A in the vicinity of the gate G of the injection molding mold 100. Such thermal residual deterrent, arresting the heat transfer from the gate G immediate vicinity region of the injection mold 100 into the molten material resin R 3 is located in the local part 31 of the mold cavity 30 located in the vicinity the gate G Is possible. As a result, in the cooling step of the molten raw material resin R in the mold cavity 30, the molten raw material resin R 3 located in the local portion 31 in the mold cavity 30 near the gate G becomes the other portion 32 in the mold cavity 30. it is possible to suitably suppress be difficult to cool than the melting material resin R 4 located. Therefore, it is finally possible to preferably obtain a high-precision molded product as a whole.

以上、本発明の一実施形態に係る射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法について説明してきたが、本発明はこれに限定されることなく、特許請求の範囲に規定される発明の範囲から逸脱することなく種々の変更が当業者によってなされると理解されよう。 The method for manufacturing a molded product using the injection molding die apparatus and the injection molding die apparatus according to the embodiment of the present invention has been described above, but the present invention is not limited thereto. It will be appreciated that various modifications will be made by those skilled in the art without departing from the scope of the invention as defined in the claims.

本発明の一実施形態に係る射出成形用金型装置は射出成形品を得るために用いることができる。 The injection molding die device according to the embodiment of the present invention can be used to obtain an injection molded product.

関連出願の相互参照Cross-reference of related applications

本出願は、日本国特許出願第2018−014898号(出願日:2018年1月31日、発明の名称:「射出成形用金型装置および射出成形用金型装置を用いて成形品を製造するための方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。 This application is a Japanese patent application No. 2018-014898 (Filing date: January 31, 2018, title of invention: "Manufacturing a molded product using an injection molding die device and an injection molding die device". Insist on the priority under the Paris Convention based on "Methods for"). All content disclosed in this application shall be incorporated herein by this reference.

200 射出成形用金型装置
100 射出成形用金型
100A ゲートの直近領域
100B ゲートの直近領域以外の他の領域
100C 射出成形用金型の内表面
70 支持部材
60 ホット型スプル部材の先端と射出成形用金型との接触部分
50 ホット型スプル部材
50A ホット型スプル部材の先端
50C ホット型スプル部材の外表面
30 金型キャビティ
20 熱伝達制御部
20A 冷却媒体路
20A 冷却媒体路
20A 冷却媒体路
20B 局所低密度部
20C 低熱伝達膜
10 ホット型原料樹脂流路
G ゲート
R 溶融原料樹脂
ゲートの直近領域に供される冷却媒体路とホット型スプル部材との間の離隔距離
ゲートの直近領域以外の他の領域に供される冷却媒体路とホット型スプル部材との間の離隔距離
200 Injection molding mold device 100 Injection molding mold 100A Near gate area 100B Other areas other than the immediate gate area 100C Inner surface of injection molding mold 70 Support member 60 Hot mold tip of sprue member and injection molding Contact part with the mold 50 Hot type sprue member 50A Tip of hot type sprue member 50C Outer surface of hot type sprue member 30 Mold cavity 20 Heat transfer control unit 20A Cooling medium path 20A 1 Cooling medium path 20A 2 Cooling medium path 20B Local low density part 20C Low heat transfer film 10 Hot type raw material resin flow path G gate R Molten raw material resin S 1 Separation distance between the cooling medium path provided in the immediate region of the gate and the hot type sprue member S 2 Gate Separation distance between the cooling medium path and the hot sprue member provided in the area other than the nearest area.

Claims (14)

射出成形用金型装置であって、
射出成形用金型およびゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、
少なくとも前記ゲートの直近領域に熱伝達制御部を有して成り、
前記ゲートの前記直近領域が、前記金型キャビティと前記ホット型原料樹脂流路との境界部分に位置する前記ゲートに最隣接する前記射出成形用金型の所定領域である、射出成形用金型装置。
It is a mold device for injection molding.
Equipped with a hot mold resin flow path connected to the mold cavity via an injection mold and a gate.
It consists of having a heat transfer control unit at least in the immediate vicinity of the gate.
The injection molding die in which the nearest region of the gate is a predetermined region of the injection molding die closest to the gate located at the boundary portion between the mold cavity and the hot mold raw material resin flow path. Device.
前記ホット型原料樹脂流路を内部に有して成るホット型スプル部材を備え、該ホット型スプル部材は該ホット型原料樹脂流路が前記ゲートに直接接続されるように前記射出成形用金型と接しており、
前記熱伝達制御部が、前記ホット型スプル部材の先端と前記射出成形用金型との接触部分と、前記金型キャビティとの間に位置付けられる、請求項1に記載の射出成形用金型装置。
A hot type sprue member having the hot type raw material resin flow path inside is provided, and the hot type sprue member is the injection molding mold so that the hot type raw material resin flow path is directly connected to the gate. Is in contact with
The injection molding mold apparatus according to claim 1, wherein the heat transfer control unit is positioned between a contact portion between the tip of the hot mold sprue member and the injection molding mold and the mold cavity. ..
前記熱伝達制御部が、前記ゲートの前記直近領域に少なくとも供された冷却媒体路である、請求項1又は2に記載の射出成形用金型装置。 The injection molding die device according to claim 1 or 2, wherein the heat transfer control unit is at least a cooling medium path provided in the nearest region of the gate. 前記ホット型スプル部材の前記先端は、該先端の径が漸次小さくなる形状を有し、
前記熱伝達制御部としての前記冷却媒体路は、該冷却媒体路の断面形状の一部が前記ホット型スプル部材の前記先端と前記射出成形用金型との前記接触部分の断面形状および前記金型キャビティの形成面の断面形状の少なくとも一方に沿うように、該接触部分と該金型キャビティとの間に位置付けられる、請求項2に従属する請求項3に記載の射出成形用金型装置。
The tip of the hot sprue member has a shape in which the diameter of the tip gradually decreases.
In the cooling medium path as the heat transfer control unit, a part of the cross-sectional shape of the cooling medium path is the cross-sectional shape of the contact portion between the tip of the hot mold sprue member and the injection molding die and the gold. The injection molding mold apparatus according to claim 2, which is positioned between the contact portion and the mold cavity so as to follow at least one of the cross-sectional shapes of the forming surface of the mold cavity.
前記熱伝達制御部としての前記冷却媒体路の前記断面形状の前記一部が、前記接触部分の断面形状および前記金型キャビティの形成面の断面形状の少なくとも一方と略同一である、請求項4に記載の射出成形用金型装置。 4. The fourth aspect of the cooling medium path as the heat transfer control unit, wherein the part of the cross-sectional shape is substantially the same as at least one of the cross-sectional shape of the contact portion and the cross-sectional shape of the forming surface of the mold cavity. The injection molding mold apparatus described in 1. 前記熱伝達制御部としての前記冷却媒体路が扁平断面形状を有する、請求項3〜5のいずれかに記載の射出成形用金型装置。 The injection molding die apparatus according to any one of claims 3 to 5, wherein the cooling medium path as the heat transfer control unit has a flat cross-sectional shape. 前記熱伝達制御部としての前記冷却媒体路が内部に支持部材を有して成る、請求項3〜6のいずれかに記載の射出成形用金型装置。 The injection molding mold device according to any one of claims 3 to 6, wherein the cooling medium path as the heat transfer control unit has a support member inside. 前記熱伝達制御部としての前記冷却媒体路が、前記ホット型スプル部材の軸方向に沿って前記ゲートの前記直近領域以外の他の領域にも供され、
前記冷却媒体路が全体として螺旋構造を成している、請求項3〜7のいずれかに記載の射出成形用金型装置。
The cooling medium path as the heat transfer control unit is also provided to a region other than the nearest region of the gate along the axial direction of the hot sprue member.
The injection molding die apparatus according to any one of claims 3 to 7, wherein the cooling medium path has a spiral structure as a whole.
前記ゲートの前記直近領域に供される前記冷却媒体路と前記ホット型スプル部材との間の離隔距離が、前記他の領域に供される前記冷却媒体路と前記ホット型スプル部材との間の離隔距離よりも小さい、請求項8に記載の射出成形用金型装置。 The separation distance between the cooling medium path provided in the nearest region of the gate and the hot sprue member is between the cooling medium path provided in the other region and the hot sprue member. The injection molding die apparatus according to claim 8, which is smaller than the separation distance. 前記熱伝達制御部が、前記ゲートの前記直近領域に少なくとも供された前記射出成形用金型の局所低密度部である、請求項1〜9のいずれかに記載の射出成形用金型装置。 The injection molding die apparatus according to any one of claims 1 to 9, wherein the heat transfer control unit is a local low density portion of the injection molding die provided at least in the nearest region of the gate. 前記ホット型スプル部材の外表面と相互に対向する前記射出成形用金型の内表面が、該ホット型スプル部材の外表面よりも外側に位置する、請求項2に従属する請求項3〜10のいずれかに記載の射出成形用金型装置。 Claims 3 to 10 according to claim 2, wherein the inner surface of the injection molding die facing the outer surface of the hot type sprue member is located outside the outer surface of the hot type sprue member. Mold device for injection molding according to any one of. 前記熱伝達制御部が前記射出成形用金型の表面に供された低熱伝達膜を有して成り、該低熱伝達膜が前記ゲートの前記直近領域に少なくとも供される、請求項1〜11のいずれかに記載の射出成形用金型装置。 Claims 1 to 11, wherein the heat transfer control unit has a low heat transfer film provided on the surface of the injection molding die, and the low heat transfer film is provided at least in the nearest region of the gate. The injection molding mold apparatus according to any one. 前記射出成形用金型が粉末床溶融結合法で供される、請求項1〜12のいずれかに記載の射出成形用金型装置。 The injection molding die apparatus according to any one of claims 1 to 12, wherein the injection molding die is provided by a powder bed melt bonding method. 射出成形用金型装置を用いて射出成形品を製造するための方法であって、
前記射出成形用金型装置が、射出成形用金型およびゲートを介して金型キャビティに接続されたホット型原料樹脂流路を備え、少なくとも該ゲートの直近領域に熱伝達制御部を有して成り、
前記ゲートの前記直近領域が、前記金型キャビティと前記ホット型原料樹脂流路との境界部分に位置する前記ゲートに最隣接する前記射出成形用金型の所定領域であり、
前記ホット型原料樹脂流路を通じて前記金型キャビティ内へと溶融原料樹脂を供する、方法。
A method for manufacturing an injection-molded product using an injection-molding die device.
The injection molding die apparatus includes an injection molding die and a hot mold raw material resin flow path connected to a mold cavity via a gate, and has a heat transfer control unit at least in the immediate vicinity of the gate. It's made up
The nearest region of the gate is a predetermined region of the injection molding mold closest to the gate located at the boundary between the mold cavity and the hot mold raw material resin flow path.
A method of supplying a molten raw material resin into the mold cavity through the hot mold raw material resin flow path.
JP2019569188A 2018-01-31 2019-01-30 A method for manufacturing a molded product using an injection molding die device and an injection molding die device. Active JP6928819B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018014898 2018-01-31
JP2018014898 2018-01-31
PCT/JP2019/003225 WO2019151343A1 (en) 2018-01-31 2019-01-30 Mold device for injection molding and method for producing molded article using mold device for injection molding

Publications (2)

Publication Number Publication Date
JPWO2019151343A1 JPWO2019151343A1 (en) 2020-12-03
JP6928819B2 true JP6928819B2 (en) 2021-09-01

Family

ID=67478364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019569188A Active JP6928819B2 (en) 2018-01-31 2019-01-30 A method for manufacturing a molded product using an injection molding die device and an injection molding die device.

Country Status (2)

Country Link
JP (1) JP6928819B2 (en)
WO (1) WO2019151343A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328537A (en) * 1993-05-20 1994-11-29 Sony Corp Hot runner mold for injection molding
US7104782B2 (en) * 2003-06-05 2006-09-12 Husky Injection Molding Systems Ltd. Gate cooling structure in a molding stack
JP6217993B2 (en) * 2016-03-09 2017-10-25 パナソニックIpマネジメント株式会社 Sprue bush

Also Published As

Publication number Publication date
JPWO2019151343A1 (en) 2020-12-03
WO2019151343A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6928819B2 (en) A method for manufacturing a molded product using an injection molding die device and an injection molding die device.
JP6217993B2 (en) Sprue bush
JP6607557B2 (en) Additive molding mold and injection molding method using the mold
JP2013507255A (en) Control pin and spout system for heating molten metal supply spout structure
JP6964266B2 (en) Spur bush
CN109414857B (en) Sprue bush
JP6245488B1 (en) Sprue bush
CN115156556A (en) 3D printing device based on medium-frequency or high-frequency induction heating technology and using method thereof
JP2012016944A (en) Resin molding method, die device, and resin molded article
JP3951850B2 (en) Metal mold and molding method thereof
Villalon Electron beam fabrication of injection mold tooling with conformal cooling channels
JP6249261B1 (en) Sprue bush and manufacturing method thereof
JP6706803B2 (en) Sprue bush
JP7016785B2 (en) Mold element and manufacturing method of mold element
WO2022009369A1 (en) Moulding tool with heat sink
CN109641379A (en) Cooling block and without runnerless injection forming device
KR20240043603A (en) Mold having a hollow structure for cooling and heating, and method for manufacturing the same
JP2000141419A (en) Mold and method for molding
JPH0122128B2 (en)
JPH11320625A (en) Mold with sprue bush structure and molding method
JP2000317993A (en) Molding die and holding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6928819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151