JP6928287B2 - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
JP6928287B2
JP6928287B2 JP2020075217A JP2020075217A JP6928287B2 JP 6928287 B2 JP6928287 B2 JP 6928287B2 JP 2020075217 A JP2020075217 A JP 2020075217A JP 2020075217 A JP2020075217 A JP 2020075217A JP 6928287 B2 JP6928287 B2 JP 6928287B2
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
emitting device
aluminum oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020075217A
Other languages
Japanese (ja)
Other versions
JP2020127036A (en
Inventor
恒人 新見
恒人 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016051388A external-priority patent/JP6759639B2/en
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2020075217A priority Critical patent/JP6928287B2/en
Publication of JP2020127036A publication Critical patent/JP2020127036A/en
Application granted granted Critical
Publication of JP6928287B2 publication Critical patent/JP6928287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光装置の製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device.

発光ダイオード(Light emitting diode:LED)チップ等の光源と、緑色の蛍光を発する蛍光体と、赤色の蛍光を発する蛍光体と、を組み合わせて演色性の高い白色に発光する発光装置が種々開発されている。緑色(G)を発光する蛍光体としては、例えばSrGa:Euの組成で示される硫化物蛍光体が知られており、赤色(R)を発光する蛍光体としては、例えばKSiF:Mnの組成で示されるフッ化物蛍光体が知られている。 Various light emitting devices that emit white light with high color rendering properties have been developed by combining a light source such as a light emitting diode (LED) chip, a phosphor that emits green fluorescence, and a phosphor that emits red fluorescence. ing. As a phosphor that emits green (G), for example , a sulfide phosphor represented by the composition of SrGa 2 S 4 : Eu is known, and as a phosphor that emits red (R), for example, K 2 SiF 6 : A fluoride phosphor represented by the composition of Mn is known.

硫化物蛍光体は、高温高湿下では発光強度の低下や色度ずれを生じることが知られている。これは、硫化物蛍光体中に含まれる硫黄が大気中の水分と反応しやすく、この硫黄と水分との加水分解反応によって、金属水酸化物や硫化水素が生成され、蛍光体が劣化するためと考えられる。 Sulfide phosphors are known to cause a decrease in emission intensity and a chromaticity shift under high temperature and high humidity. This is because the sulfur contained in the sulfide phosphor easily reacts with the moisture in the atmosphere, and the hydrolysis reaction between the sulfur and the moisture produces metal hydroxides and hydrogen sulfide, which deteriorates the phosphor. it is conceivable that.

硫化物蛍光体の劣化を抑制するために、特許文献1には、硫化物系蛍光体粒子の表面を酸化物により被覆した酸化物被覆蛍光体粒子を含むガラスシートを用いた発光装置が提案されている。硫化物系蛍光体粒子に酸化物を形成する方法として、特許文献1には、溶液法、CVD法等が挙げられているものの、具体的には、溶液法により二酸化ケイ素を被覆した硫化物蛍光体粒子を用いた例が開示されている。 In order to suppress deterioration of the sulfide phosphor, Patent Document 1 proposes a light emitting device using a glass sheet containing oxide-coated phosphor particles in which the surface of the sulfide-based phosphor particles is coated with an oxide. ing. Although Patent Document 1 includes a solution method, a CVD method, and the like as a method for forming an oxide on sulfide-based phosphor particles, specifically, sulfide fluorescence coated with silicon dioxide by a solution method. An example using body particles is disclosed.

特開2008−115223号公報Japanese Unexamined Patent Publication No. 2008-115223

しかしながら、従来技術による硫化物蛍光体を用いた場合であっても、発光装置の耐湿性が充分に改善されず、硫化物蛍光体の劣化により、色度ずれが生じたり、発光装置の発光出力の低下が抑制されていない。
また、硫化物蛍光体とともに、フッ化物蛍光体を発光装置に用いた場合、硫化物蛍光体のみならず、フッ化物蛍光体も大気中の水分と反応しやすく、フッ化物蛍光体中のフッ素と大気中の水分との反応によりフッ化水素が生成され、水分だけでなくこのフッ化水素によって硫化物蛍光体が劣化し、色度ずれが生じたり、発光装置の発光出力の低下を抑制できないという問題もある。フッ化物蛍光体を酸化膜等で被覆することにより水分との反応を抑制することも考えられるが、フッ化物蛍光体は熱に弱いことから、酸化物の付着物や膜を形成することは困難である。
本発明は、耐湿性及び耐フッ化水素性を改善したチオガレート蛍光体を含む第一蛍光体と、フッ化物蛍光体である第二蛍光体とを用いて、高温高湿下においても発光出力の低下を抑制し、色度ずれを抑制し得る発光装置の製造方法を提供することを目的とする。
However, even when a sulfide phosphor according to the prior art is used, the moisture resistance of the light emitting device is not sufficiently improved, and deterioration of the sulfide phosphor causes chromaticity shift or light emission output of the light emitting device. The decrease is not suppressed.
Further, when a fluoride phosphor is used in a light emitting device together with a sulfide phosphor, not only the sulfide phosphor but also the fluoride phosphor easily reacts with moisture in the atmosphere, and the fluorine in the fluoride phosphor Hydrogen fluoride is generated by the reaction with water in the atmosphere, and not only the water but also this hydrogen fluoride deteriorates the sulfide phosphor, causing chromaticity shift and the decrease in the light emission output of the light emitting device cannot be suppressed. There is also a problem. It is conceivable to suppress the reaction with water by coating the fluoride phosphor with an oxide film or the like, but since the fluoride phosphor is sensitive to heat, it is difficult to form an oxide deposit or a film. Is.
The present invention uses a first phosphor containing a thiogallate phosphor having improved moisture resistance and hydrogen fluoride resistance, and a second phosphor which is a fluoride phosphor, and emits light even under high temperature and high humidity. It is an object of the present invention to provide a method for manufacturing a light emitting device capable of suppressing a decrease and suppressing a chromaticity deviation.

前記課題を解決するための具体的手段は以下の通りであり、本発明は以下の態様を包含する。
本発明の態様は、チオガレート蛍光体からなる粒子(以下、「チオガレート蛍光体粒子」ともいう。)にCVD法により酸化アルミニウムを含む膜を形成して、緑色から黄緑色の範囲の蛍光を発する第一蛍光体を得る工程と、420〜480nmの範囲に発光ピーク波長を有する光を発する光源と、前記第一蛍光体と、黄赤色から赤色の範囲の蛍光を発するマンガンが賦活されたフッ化物蛍光体である第二蛍光体とを用いて発光装置を得る工程とを含む、発光装置の製造方法である。
Specific means for solving the above problems are as follows, and the present invention includes the following aspects.
In the embodiment of the present invention, a film containing aluminum oxide is formed on particles made of thiogallate phosphor (hereinafter, also referred to as “thiogallate phosphor particles”) by a CVD method to emit fluorescence in the range of green to yellowish green. A step of obtaining a single phosphor, a light source that emits light having an emission peak wavelength in the range of 420 to 480 nm, the first phosphor, and fluoride fluorescence activated by manganese that emits fluorescence in the yellow-red to red range. It is a method of manufacturing a light emitting device, which includes a step of obtaining a light emitting device using a second phosphor which is a body.

本発明によれば、チオガレート蛍光体粒子の耐湿性及び耐フッ化水素性を改善し、チオガレート蛍光体粒子を含む第一蛍光体とフッ化物蛍光体である第二蛍光体とを用いて、高温高湿下においても発光出力の低下を抑制し、色度ずれを抑制し得る発光装置の製造方法を提供することができる。 According to the present invention, the moisture resistance and hydrogen fluoride resistance of the thiogallate phosphor particles are improved, and the first phosphor containing the thiogallate phosphor particles and the second phosphor which is a fluoride phosphor are used at a high temperature. It is possible to provide a method for manufacturing a light emitting device capable of suppressing a decrease in light emitting output and suppressing a color shift even under high humidity.

一実施形態に係る発光装置を示す概略断面図である。It is a schematic cross-sectional view which shows the light emitting device which concerns on one Embodiment. 参考例3に用いた第一蛍光体のSEM画像である。It is an SEM image of the first phosphor used in Reference Example 3. 参考例3に用いた第一蛍光体の断面のSEM画像である。It is an SEM image of the cross section of the first phosphor used in Reference Example 3. 比較例2に用いた第一蛍光体のSEM画像である。It is an SEM image of the first phosphor used in Comparative Example 2. 比較例2に用いた第一蛍光体の断面のSEM画像である。6 is an SEM image of a cross section of the first phosphor used in Comparative Example 2. 図3に示す参考例3に用いた第一蛍光体のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。The results of elemental analysis (horizontal axis: energy (keV), vertical axis: count number) of the region marked with x in the SEM image of the first phosphor used in Reference Example 3 shown in FIG. 3 by the SEM-EDX method are shown. It is a figure which shows. 図5に示す比較例2に用いた蛍光体のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。The figure which shows the result (horizontal axis: energy (keV), vertical axis: count number) of the elemental analysis by the SEM-EDX method of the region marked with x in the SEM image of the phosphor used in the comparative example 2 shown in FIG. Is. 実施例10に用いた第一蛍光体のSEM画像である。6 is an SEM image of the first phosphor used in Example 10. 実施例10に用いた第一蛍光体の断面のSEM画像である。6 is an SEM image of a cross section of the first phosphor used in Example 10. 図9に示す実施例10に用いた第一蛍光体のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。The results of elemental analysis (horizontal axis: energy (keV), vertical axis: count number) of the region marked with x in the SEM image of the first phosphor used in Example 10 shown in FIG. 9 by the SEM-EDX method are shown. It is a figure which shows.

以下、本発明に係る発光装置の製造方法について、実施の形態及び実施例を用いて説明する。ただし、以下に示す発光装置の製造方法は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定するものではない。
なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。
Hereinafter, a method for manufacturing a light emitting device according to the present invention will be described with reference to embodiments and examples. However, the method for manufacturing the light emitting device shown below is for embodying the technical idea of the present invention, and does not specify the present invention as the following.
The relationship between the color name and the chromaticity coordinate, the relationship between the wavelength range of light and the color name of monochromatic light, and the like are in accordance with JIS Z8110.

本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書において、「工程」の語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The numerical range indicated by using "~" in the present specification indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. In the present specification, the term "process" is included in this term as long as the intended purpose of the process is achieved, not only in an independent process but also in the case where it cannot be clearly distinguished from other processes. Is done. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.

(請求項1に対応)
本発明の一態様は、チオガレート蛍光体粒子にCVD法により酸化アルミニウムを含む膜を形成して、緑色から黄緑色の範囲の蛍光を発する第一蛍光体を得る工程と、420〜480nmの範囲に発光ピーク波長を有する光を発する光源と、前記第一蛍光体と、黄赤色から赤色の範囲の蛍光を発するマンガンが賦活されたフッ化物蛍光体である第二蛍光体とを用いて発光装置を得る工程とを含む、発光装置の製造方法である。
(Corresponding to claim 1)
One aspect of the present invention is a step of forming a film containing aluminum oxide on thiogallate phosphor particles by a CVD method to obtain a first phosphor that fluoresces in the range of green to yellowish green, and in the range of 420 to 480 nm. A light emitting device is provided by using a light source that emits light having an emission peak wavelength, the first phosphor, and a second phosphor that is a fluoride phosphor activated with manganese that emits fluorescence in the yellow-red to red range. It is a method of manufacturing a light emitting device including a step of obtaining.

このようにして得られる発光装置の一例を、発光装置100として図1に示す。 An example of the light emitting device thus obtained is shown in FIG. 1 as a light emitting device 100.

第一蛍光体41を得る工程は、チオガレート蛍光体粒子に、CVD法により酸化アルミニウムを含む膜を形成する工程を含む。第一蛍光体41は、CVD法によりチオガレート蛍光体粒子の全面に比較的均一に酸化アルミニウムを含む膜が形成されることにより、チオガレート蛍光体粒子に含まれる硫黄と大気中の水分との反応が抑制されるだけでなく、フッ化物蛍光体から発生するフッ化水素との反応が抑制される。これら第一蛍光体を用いた発光装置は、高温高湿下におかれた場合であっても、経時劣化による光束の低下や色度ずれを抑制することができる。 The step of obtaining the first phosphor 41 includes a step of forming a film containing aluminum oxide on the thiogallate phosphor particles by a CVD method. In the first phosphor 41, a film containing aluminum oxide is relatively uniformly formed on the entire surface of the thiogallate phosphor particles by the CVD method, so that the reaction between the sulfur contained in the thiogallate phosphor particles and the moisture in the atmosphere occurs. Not only is it suppressed, but the reaction with hydrogen fluoride generated from the fluoride phosphor is suppressed. A light emitting device using these first phosphors can suppress a decrease in luminous flux and a chromaticity shift due to deterioration over time even when the light emitting device is placed under high temperature and high humidity.

(第一蛍光体41を得る工程)
第一蛍光体41は、チオガレート蛍光体粒子を含んでおり、下記一般式(I)で示される化学組成を有する蛍光体粒子であることが好ましい。
(M11−xM2)Ga2−y4−z (I)
(式(I)中、M1は、Sr、Be、Mg、Ca、Ba及びZnからなる群より選択される少なくとも1種の元素であり、M2は、Eu及びCeからなる群より選択される少なくとも1種の元素であり、x、y、zは、0.03≦x≦0.25、−0.2≦y≦0.2、及び−0.2≦z≦0.2を満たす。)
(Step of obtaining the first phosphor 41)
The first phosphor 41 contains thiogallate phosphor particles, and is preferably phosphor particles having a chemical composition represented by the following general formula (I).
(M1 1-x M2 x ) Ga 2-y S 4-z (I)
In formula (I), M1 is at least one element selected from the group consisting of Sr, Be, Mg, Ca, Ba and Zn, and M2 is at least selected from the group consisting of Eu and Ce. It is one kind of element, and x, y, and z satisfy 0.03 ≦ x ≦ 0.25, −0.2 ≦ y ≦ 0.2, and −0.2 ≦ z ≦ 0.2).

第一蛍光体41を得る工程において、流動層CVD法により酸化アルミニウムを含む膜を形成することが好ましい。流動層CVD法により、チオガレート蛍光体粒子の全面により均一に酸化アルミニウムを含む膜を形成することができる。 In the step of obtaining the first phosphor 41, it is preferable to form a film containing aluminum oxide by a fluidized bed CVD method. By the fluidized bed CVD method, a film containing aluminum oxide can be more uniformly formed on the entire surface of the thiogallate phosphor particles.

流動層CVD法により、チオガレート蛍光体粒子に酸化アルミニウムを含む膜を形成する場合、粉体用流動層CVD装置を用いることができる。例えば、粉体用流動層CVD装置の反応管内にチオガレート蛍光体粒子又は付着物等が形成されたチオガレート蛍光体粒子を投入し、原料としてトリメチルアルミニウム(TMA)等を不活性ガス中に気化させて反応管に所定流量で導入し、同時に酸素を反応管内に所定流量で導入して、チオガレート蛍光体粒子を反応管内で流動させることで、チオガレート蛍光体粒子に酸化アルミニウムを含むCVD膜(以下、「化学蒸着膜」ともいう。)を形成することができる。
不活性ガスは、アルゴン、ヘリウム、窒素等を主成分とするガスであり、アルゴン、ヘリウム、窒素の少なくとも1種の含有量が85体積%以上のガスをいう。
反応温度は、原料となるトリメチルアルミニウム等の沸点以上の温度であれば特に限定されないが、好ましくは125℃〜450℃、より好ましくは150℃〜400℃である。
When a film containing aluminum oxide is formed on the thiogallate phosphor particles by the fluidized bed CVD method, a fluidized bed CVD apparatus for powder can be used. For example, thiogallate phosphor particles having thiogallate phosphor particles or deposits formed therein are put into a reaction tube of a fluidized layer CVD apparatus for powder, and trimethylaluminum (TMA) or the like is vaporized in an inert gas as a raw material. A CVD film containing aluminum oxide in the thiogallate phosphor particles (hereinafter, "" Also referred to as "chemical vapor deposition film").
The inert gas is a gas containing argon, helium, nitrogen or the like as a main component, and means a gas containing at least one of argon, helium and nitrogen in an amount of 85% by volume or more.
The reaction temperature is not particularly limited as long as it is a temperature equal to or higher than the boiling point of trimethylaluminum or the like as a raw material, but is preferably 125 ° C. to 450 ° C., more preferably 150 ° C. to 400 ° C.

第一蛍光体41を得る工程において、酸化アルミニウムを含む膜をチオガレート蛍光体粒子表面に形成された付着物又は膜の表面に接して形成しても良いが、チオガレート蛍光体粒子の表面に接して形成することが好ましい。チオガレート蛍光体表面は、付着物表面や膜表面と比べて平滑なため、CVD法により、チオガレート蛍光体粒子の表面の全面を、比較的均一な酸化アルミニウムを含む膜で被覆することができる。これにより、大気中の水分やフッ化水素との反応が抑制されるので、第一蛍光体41の耐湿性及び耐フッ化水素性がより改善される。 In the step of obtaining the first phosphor 41, the film containing aluminum oxide may be formed in contact with the deposits formed on the surface of the thiogallate phosphor particles or the surface of the film, but may be formed in contact with the surface of the thiogallate phosphor particles. It is preferable to form. Since the surface of the thiogallate phosphor is smoother than the surface of the deposit or the surface of the film, the entire surface of the thiogallate phosphor particles can be coated with a relatively uniform film containing aluminum oxide by the CVD method. As a result, the reaction with moisture and hydrogen fluoride in the atmosphere is suppressed, so that the moisture resistance and hydrogen fluoride resistance of the first phosphor 41 are further improved.

第一蛍光体41を得る工程において、酸化アルミニウムを含む膜の表面に、二酸化ケイ素を含む付着物を形成することが好ましい。これにより、第一蛍光体41の耐湿性がより改善される。 In the step of obtaining the first phosphor 41, it is preferable to form an deposit containing silicon dioxide on the surface of the film containing aluminum oxide. As a result, the moisture resistance of the first phosphor 41 is further improved.

二酸化ケイ素を含む付着物は、ゾルゲル法により形成されることが好ましい。これにより、耐湿性の改善に十分な量の二酸化ケイ素を含む付着物を、酸化アルミニウムを含む膜の表面に形成することができる。ゾルゲル法以外の方法、例えばCVD法によって二酸化ケイ素を含む膜を形成する場合は、原料として四塩化ケイ素(SiCl)やオルトケイ酸テトラメチル(TMOS:Si(OCH)等を使用する必要がある。しかし、原料として四塩化ケイ素を用いる場合には、反応により発生する塩酸により装置が損傷する場合があり、オルトケイ酸テトラメチルを用いる場合には、蒸気圧が低く、膜を形成するために時間を費やすため好ましくない。 The deposit containing silicon dioxide is preferably formed by the sol-gel method. Thereby, a deposit containing an amount of silicon dioxide sufficient for improving the moisture resistance can be formed on the surface of the film containing aluminum oxide. When forming a film containing silicon dioxide by a method other than the sol-gel method, for example, the CVD method, it is necessary to use silicon tetrachloride (SiCl 4 ), tetramethyl orthosilicate (TMS: Si (OCH 3 ) 4), etc. as raw materials. There is. However, when silicon tetrachloride is used as the raw material, the equipment may be damaged by the hydrochloric acid generated by the reaction, and when tetramethyl orthosilicate is used, the vapor pressure is low and it takes time to form a film. Not preferable because it is spent.

ゾルゲル法により二酸化ケイ素を含む付着物を形成する場合、酸化アルミニウムを含む膜を形成したチオガレート蛍光体粒子をエタノール中に分散し、チオガレート蛍光体粒子を混合したアルコール中にケイ素アルコキシドを加え、酸性又は塩基性条件で、加水分解させて、アルコールを脱離することによって、二酸化ケイ素を含む付着物を形成することができる。ケイ素アルコキシドとしては、例えばオルトケイ酸テトラエチル(TEOS:Si(OC)等が挙げられる。 When the deposit containing silicon dioxide is formed by the sol-gel method, the thiogallate phosphor particles having formed the film containing aluminum oxide are dispersed in ethanol, and the silicon alkoxide is added to the alcohol mixed with the thiogallate phosphor particles to make it acidic or acidic. Adhesions containing silicon dioxide can be formed by hydrolyzing under basic conditions to desorb alcohol. Examples of the silicon alkoxide include tetraethyl orthosilicate (TEOS: Si (OC 2 H 5 ) 4 ) and the like.

第一蛍光体41を得る工程において、酸化アルミニウムを含む膜に含有されるアルミニウム元素の含有量は、第一蛍光体41中に0.2質量%以上10質量%以下であることが好ましく、より好ましくは0.3質量%以上8.0質量%以下であり、さらに好ましくは0.4質量%以上5.0質量%以下である。アルミニウム元素の含有量が、所定値以上の場合、耐湿性及び耐フッ化水素性がより向上する傾向があり、所定値以下の場合、膜にクラックが発生することによる耐湿性及び耐フッ化水素性の低下を抑制することができる。 In the step of obtaining the first phosphor 41, the content of the aluminum element contained in the film containing aluminum oxide is preferably 0.2% by mass or more and 10% by mass or less in the first phosphor 41, more preferably. It is preferably 0.3% by mass or more and 8.0% by mass or less, and more preferably 0.4% by mass or more and 5.0% by mass or less. When the content of the aluminum element is more than a predetermined value, the moisture resistance and hydrogen fluoride resistance tend to be further improved, and when the content is less than the predetermined value, the moisture resistance and hydrogen fluoride resistance due to cracks in the film are generated. It is possible to suppress the decrease in sex.

第一蛍光体41を得る工程において、二酸化ケイ素を含む付着物に含有されるケイ素元素の含有量は、第一蛍光体41中に0.5質量%以上10質量%以下であることが好ましく、より好ましくは0.6質量%以上9.0質量%以下であり、さらに好ましくは0.8質量%以上8.0質量%以下である。ケイ素元素の含有量が、所定値以上の場合、耐湿性及び耐フッ化水素性がより向上する傾向があり、所定値以下の場合、膜にクラックが発生することによる耐湿性及び耐フッ化水素性の低下を抑制することができる。 In the step of obtaining the first phosphor 41, the content of the silicon element contained in the deposit containing silicon dioxide is preferably 0.5% by mass or more and 10% by mass or less in the first phosphor 41. It is more preferably 0.6% by mass or more and 9.0% by mass or less, and further preferably 0.8% by mass or more and 8.0% by mass or less. When the content of silicon element is more than a predetermined value, moisture resistance and hydrogen fluoride resistance tend to be further improved, and when it is less than a predetermined value, moisture resistance and hydrogen fluoride resistance due to cracks in the film are generated. It is possible to suppress the decrease in sex.

第一蛍光体41を得る工程において、第一蛍光体41の粒径に対する酸化アルミニウムを含む膜の厚みの比率の平均値は、好ましくは0.5%以上10%以下であり、より好ましくは0.7%以上9.0%以下であり、更に好ましくは0.8%以上8.0%以下である。酸化アルミニウムを含む膜の厚みの比率の平均値が、所定値以上の場合、耐湿性及び耐フッ化水素性がより向上する傾向があり、所定値以下の場合、膜にクラックが発生することによる耐湿性及び耐フッ化水素性の低下を抑制することができる。 In the step of obtaining the first phosphor 41, the average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor 41 is preferably 0.5% or more and 10% or less, more preferably 0. It is 7.7% or more and 9.0% or less, and more preferably 0.8% or more and 8.0% or less. When the average value of the thickness ratio of the film containing aluminum oxide is more than a predetermined value, the moisture resistance and hydrogen fluoride resistance tend to be further improved, and when it is less than the predetermined value, cracks occur in the film. It is possible to suppress a decrease in moisture resistance and hydrogen fluoride resistance.

第一蛍光体41を得る工程において、第一蛍光体41の粒径に対する二酸化ケイ素を含む付着物の厚みの比率の平均値は、好ましくは0.5%以上10%以下であり、より好ましくは0.6%以上8.0%以下である。二酸化ケイ素を含む付着物の厚みの比率の平均値が、所定値以上の場合、耐湿性及び耐フッ化水素性がより向上する傾向があり、所定値以下の場合、膜にクラックが発生することによる耐湿性及び耐フッ化水素性の低下を抑制することができる。 In the step of obtaining the first phosphor 41, the average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the first phosphor 41 is preferably 0.5% or more and 10% or less, more preferably. It is 0.6% or more and 8.0% or less. When the average value of the thickness ratio of the deposit containing silicon dioxide is more than a predetermined value, the moisture resistance and hydrogen fluoride resistance tend to be further improved, and when it is less than the predetermined value, cracks occur in the film. It is possible to suppress a decrease in moisture resistance and hydrogen fluoride resistance due to the above.

第一蛍光体41は、平均粒径が3.0μm以上20μm以下であることが好ましく、より好ましくは4.0μm以上15μm以下であり、さらに好ましくは5.0μm以上12μm以下であり、よりさらに好ましくは5.0μm以上10μm以下である。本明細書において、第一蛍光体41の平均粒径は、例えばFisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて、フィッシャー・サブシーブ・サイザー(F.S.S.S)法により、フィッシャー・サブシーブ・サイザーズ・ナンバー(F.S.S.S.N.)として測定した平均粒径の値をいう。
平均粒径が、所定値以下の場合、耐湿性及び耐フッ化水素性が低下する傾向があり、所定値以上の場合、製造が困難である。
The average particle size of the first phosphor 41 is preferably 3.0 μm or more and 20 μm or less, more preferably 4.0 μm or more and 15 μm or less, still more preferably 5.0 μm or more and 12 μm or less, and even more preferably. Is 5.0 μm or more and 10 μm or less. In the present specification, the average particle size of the first phosphor 41 is determined by the Fisher Sub-Sieve Sizer (FSSS) method using, for example, Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific). , The value of the average particle size measured as the Fisher Subsieving Sizar's Number (FSSSN).
When the average particle size is equal to or less than a predetermined value, the moisture resistance and hydrogen fluoride resistance tend to decrease, and when the average particle size is equal to or more than a predetermined value, production is difficult.

(発光装置を得る工程)
光源10として発光ピーク波長が455nmである窒化物半導体からなるLEDチップをパッケージ20の凹部の底面に配置し、光源10と第一リード21及び第二リード22を、それぞれワイヤ30で接続する。発光装置が発する混色光のCIE色度座標x、yが所定の値となるように、第一蛍光体を得る工程にて得られた第一蛍光体41と、予め作製したKSiF:Mnである第二蛍光体42とを、樹脂に添加し、混合分散して蛍光体含有樹脂組成物を得る。この蛍光体含有樹脂組成物を、パッケージ20の凹部に適量注入し、蛍光用組成物中の樹脂を硬化させて蛍光部材40を形成する。これにより、図1に示す発光装置100を得ることができる。
(Process to obtain light emitting device)
An LED chip made of a nitride semiconductor having an emission peak wavelength of 455 nm is arranged as the light source 10 on the bottom surface of the recess of the package 20, and the light source 10 and the first lead 21 and the second lead 22 are connected by wires 30, respectively. The first phosphor 41 obtained in the step of obtaining the first phosphor and the K 2 SiF 6 : prepared in advance so that the CIE chromaticity coordinates x and y of the mixed color light emitted by the light emitting device have predetermined values. The second phosphor 42, which is Mn, is added to the resin and mixed and dispersed to obtain a phosphor-containing resin composition. An appropriate amount of this phosphor-containing resin composition is injected into the recess of the package 20 and the resin in the fluorescent composition is cured to form the fluorescent member 40. As a result, the light emitting device 100 shown in FIG. 1 can be obtained.

(発光装置)
発光装置100は、凹部を形成するパッケージ20、凹部底面に配置された光源10と、を有する。パッケージ20は、第一リード21と第二リード22と成形体23を有しており、パッケージ20の凹部の底面に、第一リード21の表面の一部及び第二リード22の表面の一部が凹部の底部において成形体23から露出している。光源10は、第一リード21に配置されている。光源10は一対の正負の電極を有しており、その一対の正負の電極は第一リード21及び第二リード22とそれぞれワイヤ30を介して電気的に接続されている。光源10は蛍光部材40により被覆されている。蛍光部材40は、光源10からの光を波長変換する第一蛍光体41と第二蛍光体42を含有している。
(Light emitting device)
The light emitting device 100 includes a package 20 that forms a recess, and a light source 10 that is arranged on the bottom surface of the recess. The package 20 has a first lead 21, a second lead 22, and a molded body 23, and a part of the surface of the first lead 21 and a part of the surface of the second lead 22 are formed on the bottom surface of the recess of the package 20. Is exposed from the molded body 23 at the bottom of the recess. The light source 10 is arranged on the first lead 21. The light source 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 21 and the second lead 22 via a wire 30, respectively. The light source 10 is covered with a fluorescent member 40. The fluorescent member 40 contains a first phosphor 41 and a second phosphor 42 that wavelength-convert the light from the light source 10.

以下、発光装置100を構成する各要素について説明する。 Hereinafter, each element constituting the light emitting device 100 will be described.

[光源10]
光源10の発光ピーク波長は、420〜480nmの範囲にある。この範囲に発光ピーク波長を有する光源10を蛍光体の励起光源として用いることにより、光源10からの光と蛍光体からの蛍光との混色光を発する発光装置100を構成することができる。光源10としては、例えば、窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)からなるLEDチップを用いることができる。
[Light source 10]
The emission peak wavelength of the light source 10 is in the range of 420 to 480 nm. By using the light source 10 having the emission peak wavelength in this range as the excitation light source of the phosphor, it is possible to configure the light emitting device 100 that emits the mixed color light of the light from the light source 10 and the fluorescence from the phosphor. As the light source 10, for example, an LED chip made of a nitride semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) can be used.

[パッケージ20]
パッケージ20は、第一リード21と、第二リード22と、成形体23と、が一体的に形成されてなる。本実施形態では、パッケージ20は凹部を有しており、その底部に光源10が配置されている。
[Package 20]
The package 20 is formed by integrally forming the first lead 21, the second lead 22, and the molded body 23. In the present embodiment, the package 20 has a recess, and the light source 10 is arranged at the bottom thereof.

[第一リード21及び第二リード22]
第一リード21及び第二リード22は、導電性を備えており、光源10と外部とを電気的に接続するためのものである。第一リード21及び第二リード22は、例えば、銅を含む母材と、その表面に形成された銀を含む反射膜と、を有する。
[First lead 21 and second lead 22]
The first lead 21 and the second lead 22 have conductivity and are for electrically connecting the light source 10 and the outside. The first lead 21 and the second lead 22 have, for example, a base material containing copper and a reflective film containing silver formed on the surface thereof.

[成形体23]
成形体23には、耐光性、耐熱性に優れた電気絶縁性のものが用いられる。その材料としては、樹脂、セラミックス等を用いることができる
[Molded product 23]
As the molded body 23, an electrically insulating one having excellent light resistance and heat resistance is used. As the material, resin, ceramics, etc. can be used.

[ワイヤ30]
ワイヤ30は、光源10の正電極及び負電極のそれぞれと、第一リード21又は第二リード22とを電気的に接続するものであり、通常、金、銅、白金、アルミニウム等の金属又はそれらの合金を用いたワイヤ30が用いることができる。特に、ワイヤ30は、熱抵抗等に優れた金を用いることが好ましい。
[Wire 30]
The wire 30 electrically connects the positive electrode and the negative electrode of the light source 10 to the first lead 21 or the second lead 22, and is usually a metal such as gold, copper, platinum, or aluminum, or a metal thereof. The wire 30 using the alloy of the above can be used. In particular, it is preferable to use gold having excellent thermal resistance and the like for the wire 30.

[蛍光部材40]
蛍光部材40は、光源10を覆うものであり、第一蛍光体41及び第二蛍光体42を含む。ここでは、光源10からの光、第一蛍光体41からの光、及び第二蛍光体42からの光を通す透光性の樹脂に、第一蛍光体41及び第二蛍光体42を混ぜ合わせたものを蛍光部材40として用いている。樹脂としては、シリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物等を用いることもできる。また、蛍光部材40には、拡散材等その他の材料を添加することもできる。
[Fluorescent member 40]
The fluorescent member 40 covers the light source 10 and includes a first phosphor 41 and a second phosphor 42. Here, the first phosphor 41 and the second phosphor 42 are mixed with a translucent resin that allows light from the light source 10, light from the first phosphor 41, and light from the second phosphor 42 to pass through. Is used as the fluorescent member 40. As the resin, it is preferable to use a silicone resin composition, but an epoxy resin composition or the like can also be used. Further, other materials such as a diffusing material can be added to the fluorescent member 40.

[第一蛍光体41]
第一蛍光体41は、下記一般式(II)で示される組成を有するチオガレート蛍光体粒子と酸化アルミニウムを含む化学蒸着膜を備え、緑色から黄緑色の範囲の蛍光を発する。これにより、SGS蛍光体粒子に含まれる硫黄と大気中の水分やフッ化水素との反応が抑制され、耐湿性及び耐フッ化水素性が改善され、高温高湿下におかれた場合であっても、蛍光体の劣化を抑制することができる。
(M11−xM2)Ga2−y4−z (II)
(式(II)中、M1は、Sr、Be、Mg、Ca、Ba及びZnからなる群より選択される少なくとも1種の元素であり、M2は、Eu及びCeからなる群より選択される少なくとも1種の元素であり、x、y、zは、0.03≦x≦0.25、−0.2≦y≦0.2、及び−0.2≦z≦0.2を満たす。)
[First Fluorescent Agent 41]
The first phosphor 41 includes a chemical vapor deposition film containing thiogallate phosphor particles having a composition represented by the following general formula (II) and aluminum oxide, and emits fluorescence in the range of green to yellowish green. As a result, the reaction between the sulfur contained in the SGS phosphor particles and the moisture and hydrogen fluoride in the atmosphere is suppressed, the moisture resistance and hydrogen fluoride resistance are improved, and the case is placed under high temperature and high humidity. However, the deterioration of the phosphor can be suppressed.
(M1 1-x M2 x ) Ga 2-y S 4-z (II)
(In formula (II), M1 is at least one element selected from the group consisting of Sr, Be, Mg, Ca, Ba and Zn, and M2 is at least selected from the group consisting of Eu and Ce. It is one kind of element, and x, y, and z satisfy 0.03 ≦ x ≦ 0.25, −0.2 ≦ y ≦ 0.2, and −0.2 ≦ z ≦ 0.2).

一般式(II)で示される組成を有するチオガレート蛍光体粒子は、緑色から黄緑色の範囲の蛍光を発するものであれば、一般式(II)で示される組成中、Gaの一部がAl及びInからなる群より選択される少なくとも1種の元素で置換されていてもよく、Sの一部がSe及びTeからなる群より選択される少なくとも1種の元素で置換されていてもよい。また、一般式(II)で示される組成を有するチオガレート蛍光体粒子は、式(II)中、M1がSrであって、M2がEuであることが好ましく、緑色から黄緑色の範囲の蛍光を発するものであれば、Srの一部がBe、Mg、Ca、Ba及びZnからなる群より選択される少なくとも1種の元素でEuがCeで置換されていてもよい。 If the thiogallate phosphor particles having the composition represented by the general formula (II) emit fluorescence in the range of green to yellowish green, a part of Ga in the composition represented by the general formula (II) is Al and It may be substituted with at least one element selected from the group consisting of In, and a part of S may be substituted with at least one element selected from the group consisting of Se and Te. Further, in the thiogallate phosphor particles having the composition represented by the general formula (II), it is preferable that M1 is Sr and M2 is Eu in the formula (II), and the fluorescence in the range of green to yellowish green is exhibited. Eu may be replaced with Ce by at least one element selected from the group consisting of Be, Mg, Ca, Ba and Zn as long as it is emitted.

[第二蛍光体42]
第二蛍光体42は、黄赤色から赤色の範囲の蛍光を発するマンガンが賦活されたフッ化物蛍光体を用いる。マンガンが賦活されたフッ化物蛍光体は、下記一般式(III)で示される組成を有するものを用いることが好ましい。下記一般式(III)で示される組成を有するフッ化物蛍光体は、前記光源からの光で励起されることにより、630nm付近に主発光ピーク波長を有する蛍光を発する。
[M31−uMn4+ ] (III)
(式中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選ばれる少なくとも1種をさらに含んでもよいカチオンであり、M3は第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、uは、0<u<0.2を満たす数を示す)
一般式(III)で示される蛍光体は、主発光ピークの半値幅が狭いため他の赤色蛍光体と比べて色再現範囲が広くなる。
[Second phosphor 42]
As the second phosphor 42, a fluoride phosphor activated with manganese that emits fluorescence in the range of yellow-red to red is used. As the manganese-activated fluoride phosphor, it is preferable to use one having a composition represented by the following general formula (III). A fluoride phosphor having a composition represented by the following general formula (III) emits fluorescence having a main emission peak wavelength in the vicinity of 630 nm when excited by light from the light source.
A 2 [M3 1-u Mn 4 + u F 6 ] (III)
(In the formula, A, K +, Li +, Na +, Rb +, a further include optionally cations of at least one selected from Cs + and the group consisting of NH 4 +, M3 is a Group 4 element and It is at least one element selected from the group consisting of Group 14 elements, and u indicates a number satisfying 0 <u <0.2).
Since the phosphor represented by the general formula (III) has a narrow half-value width of the main emission peak, the color reproduction range is wider than that of other red phosphors.

(製造例1:チオガレート蛍光体粒子の準備)
Sr0.88Eu0.12Gaで示される組成となるように、Sr源としてSrCO(堺工業株式会社製)、Eu源としてEu(信越化学工業株式会社製)、Ga源としてGa(株式会社ニューマテリアル製)をそれぞれ秤量し、スーパーミキサー(株式会社カワタ製)を用いて混合し、原料混合物を得た。得られた原料混合物を、石英製ルツボに充填し、硫化水素(HS)雰囲気下にて960℃で2時間焼成して、Sr0.88Eu0.12Gaで示される組成を有するチオガレート蛍光体粒子を得た。このチオガレート蛍光体粒子の発光ピーク波長は537nmであった。得られたチオガレート蛍光体粒子は、Fisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて、フィッシャー・サブシーブ・サイザー(F.S.S.S)法により、フィッシャー・サブシーブ・サイザーズ・ナンバー(F.S.S.S.N.)として測定した平均粒径が6.0μmであった。
(Production Example 1: Preparation of thiogallate phosphor particles)
SrCO 3 (manufactured by Sakai Kogyo Co., Ltd.) as the Sr source, Eu 2 O 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) as the Eu source, so as to have the composition shown by Sr 0.88 Eu 0.12 Ga 2 S 4. Ga 2 O 3 (manufactured by New Material Co., Ltd.) was weighed as a Ga source and mixed using a super mixer (manufactured by Kawata Co., Ltd.) to obtain a raw material mixture. The obtained raw material mixture was filled in a quartz crucible, and fired for two hours at 960 ° C. under hydrogen sulfide (H 2 S) atmosphere, composition represented by Sr 0.88 Eu 0.12 Ga 2 S 4 The thiogallate phosphor particles having the above were obtained. The emission peak wavelength of the thiogallate phosphor particles was 537 nm. The obtained thiogallate phosphor particles were obtained by the Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific) by the Fisher Sub-Sieve Sizer (FSS) method. The average particle size measured as (FSSSN) was 6.0 μm.

参考例1)
(第一蛍光体41を得る工程)
粉体用流動層CVD装置の反応管内に、製造例1で得られたチオガレート蛍光体粒子50gを投入した。窒素ガスを0.05L/分の流量にてトリメチルアルミニウム(TMA)中にバブリングし、得られたTMAを含有した窒素ガスを反応管下部よりそのまま流入した。反応管上部より、酸素(O)を0.15L/分の流量で反応管内に流入した。TMA/N及びOの流量は、いずれも25℃における流量である。反応管内温度380℃にて、15分反応させ、トリメチルアルミニウムによる酸化処理を行い、酸化アルミニウムを含むCVD膜を被覆した第一蛍光体41を得た。
( Reference example 1)
(Step of obtaining the first phosphor 41)
50 g of the thiogallate phosphor particles obtained in Production Example 1 was put into the reaction tube of the fluidized bed CVD apparatus for powder. Nitrogen gas was bubbled into trimethylaluminum (TMA) at a flow rate of 0.05 L / min, and the obtained nitrogen gas containing TMA flowed in as it was from the lower part of the reaction tube. Oxygen (O 2 ) flowed into the reaction tube from the upper part of the reaction tube at a flow rate of 0.15 L / min. The flow rates of TMA / N 2 and O 2 are both flow rates at 25 ° C. The reaction was carried out at a reaction tube temperature of 380 ° C. for 15 minutes, and oxidation treatment with trimethylaluminum was carried out to obtain a first phosphor 41 coated with a CVD film containing aluminum oxide.

(発光装置を得る工程)
発光装置を得る工程を図1に基づき説明する。
光源10として発光ピーク波長が455nmである窒化物半導体からなるLEDチップをパッケージ20の凹部の底面に配置し、光源10と第一リード21及び第二リード22を、それぞれワイヤ30で接続した。発光装置が発する混色光のCIE色度座標xが0.280付近、yが0.270付近となるように、前述の作製した第一蛍光体41と、予め作製したKSiF:Mnである第二蛍光体42とを、シリコーン樹脂に添加し、混合分散して蛍光体含有樹脂組成物を得た。この蛍光体含有樹脂組成物を、パッケージ20の凹部に適量注入し、蛍光用組成物中の樹脂を硬化させて蛍光部材40を形成し、発光装置100を得た。
(Process to obtain light emitting device)
The process of obtaining the light emitting device will be described with reference to FIG.
An LED chip made of a nitride semiconductor having an emission peak wavelength of 455 nm was arranged as the light source 10 on the bottom surface of the recess of the package 20, and the light source 10 and the first lead 21 and the second lead 22 were connected by wires 30, respectively. With the first phosphor 41 prepared above and K 2 SiF 6 : Mn prepared in advance so that the CIE chromaticity coordinates x of the mixed color light emitted by the light emitting device are around 0.280 and y is around 0.270. A certain second phosphor 42 was added to the silicone resin and mixed and dispersed to obtain a phosphor-containing resin composition. An appropriate amount of this phosphor-containing resin composition was injected into the recess of the package 20, and the resin in the fluorescent composition was cured to form a fluorescent member 40 to obtain a light emitting device 100.

(比較例1)
第一蛍光体41の代わりに製造例1で得られたチオガレート蛍光体粒子を用いたこと以外は、参考例1と同様にして発光装置を得た。
(Comparative Example 1)
A light emitting device was obtained in the same manner as in Reference Example 1 except that the thiogallate phosphor particles obtained in Production Example 1 were used instead of the first phosphor 41.

(比較例2)
製造例1で得られたチオガレート蛍光体粒子に、ゾルゲル法により酸化アルミニウムを含む付着物を付着させた。具体的には、製造例1で得られたチオガレート蛍光体粒子50gをエタノール200mL中に添加して、懸濁させ、これに純水10.0g、アルミニウムイソプロポキシド(Al(OCH(CH)5.0gを加えて、さらに触媒としてアンモニア水(濃度18質量%)12.2gを添加して、アルミニウムアルコキシドを加水分解させ、酸化アルミニウムを含む付着物を付着させた蛍光体を得た。この蛍光体を第一蛍光体41の代わりに用いたこと以外は、参考例1と同様にして発光装置を得た。
(Comparative Example 2)
Adhesions containing aluminum oxide were attached to the thiogallate phosphor particles obtained in Production Example 1 by the sol-gel method. Specifically, 50 g of the thiogallate phosphor particles obtained in Production Example 1 was added to 200 mL of ethanol and suspended, and 10.0 g of pure water and aluminum isopropoxide (Al (OCH (CH 3 )) were added thereto. 2 ) 3 ) 5.0 g was added, and 12.2 g of aqueous ammonia (concentration 18% by mass) was further added as a catalyst to hydrolyze the aluminum alkoxide, and a phosphor to which the deposit containing aluminum oxide was attached was obtained. Obtained. A light emitting device was obtained in the same manner as in Reference Example 1 except that this phosphor was used in place of the first phosphor 41.

(比較例3)
製造例1で得られたチオガレート蛍光体粒子に、ゾルゲル法により二酸化ケイ素を含む付着物を付着させた。具体的には、製造例1で得られたチオガレート蛍光体粒子50gをエタノール200mL中に添加して、懸濁させ、これに純水17.9g、オルトケイ酸テトラエチル(TEOS:Si(OC)17.9gを加え、さらに触媒としてアンモニア水(濃度18質量%)21.4gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させた蛍光体を得た。この蛍光体を第一蛍光体41の代わりに用いたこと以外は、参考例1と同様にして発光装置を得た。
(Comparative Example 3)
Adhesions containing silicon dioxide were attached to the thiogallate phosphor particles obtained in Production Example 1 by the sol-gel method. Specifically, 50 g of the thiogallate phosphor particles obtained in Production Example 1 was added to 200 mL of ethanol and suspended, and 17.9 g of pure water and tetraethyl orthosilicate (TEOS: Si (OC 2 H 5)) were added thereto. 4 ) 17.9 g was added, and 21.4 g of aqueous ammonia (concentration 18% by mass) was further added as a catalyst to hydrolyze the silicon alkoxide to obtain a phosphor to which deposits containing silicon dioxide were attached. .. A light emitting device was obtained in the same manner as in Reference Example 1 except that this phosphor was used in place of the first phosphor 41.

参考例2)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で33分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 2)
In the step of obtaining the first fluorescent material 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 33 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that 41 was used.

参考例3)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で1時間41分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 3)
In the step of obtaining the first fluorescent material 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 1 hour and 41 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that the phosphor 41 was used.

参考例4)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で3時間6分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 4)
In the step of obtaining the first fluorescent material 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 3 hours and 6 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that the phosphor 41 was used.

参考例5)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で3時間56分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 5)
In the step of obtaining the first phosphor 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 3 hours and 56 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that the phosphor 41 was used.

参考例6)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で4時間16分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 6)
In the step of obtaining the first fluorescent material 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 4 hours and 16 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that the phosphor 41 was used.

参考例7)
第一蛍光体41を得る工程において、粉体用流動層CVD装置の反応管内で5時間10分反応させた以外は、参考例1と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 7)
In the step of obtaining the first fluorescent material 41, the first fluorescent material 41 was obtained in the same manner as in Reference Example 1 except that the reaction was carried out in the reaction tube of the fluidized bed CVD apparatus for powder for 5 hours and 10 minutes. A light emitting device was obtained in the same manner as in Reference Example 1 except that the phosphor 41 was used.

参考例8)
参考例4において得られたチオガレート蛍光体粒子の表面にCVD法により酸化アルミニウムを含む膜が形成された蛍光体を用いて、この酸化アルミニウムを含む膜の上に、ゾルゲル法により二酸化ケイ素を含む付着物を付着させた。具体的には、参考例4において得られた蛍光体50gをエタノール200mL中に添加して、懸濁させ、これに純水5.2g、オルトケイ酸テトラエチル(TEOS:Si(OC)5.2gを加え、さらに触媒としてアンモニア水(濃度18質量%)6.2gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させた第一蛍光体41を得た。この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 8)
Using a phosphor in which a film containing aluminum oxide is formed on the surface of the thiogallate phosphor particles obtained in Reference Example 4 by the CVD method, silicon dioxide is contained on the film containing aluminum oxide by the sol-gel method. The kimono was attached. Specifically, by adding a phosphor 50g obtained in Reference Example 4 in ethanol 200 mL, it was suspended, to which purified water 5.2 g, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5) 4 ) 5.2 g was added, and 6.2 g of aqueous ammonia (concentration 18% by mass) was further added as a catalyst to hydrolyze the silicon alkoxide to obtain the first phosphor 41 to which the deposit containing silicon dioxide was attached. rice field. A light emitting device was obtained in the same manner as in Reference Example 1 except that the first phosphor 41 was used.

(実施例9)
純水12.3g、オルトケイ酸テトラエチル(TEOS:Si(OC)12.3gを加え、さらに触媒としてアンモニア水(濃度18質量%)14.6gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させたこと以外は、参考例8と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
(Example 9)
Pure water 12.3 g, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5) 4) 12.3g was added further aqueous ammonia as a catalyst (concentration 18 mass%) 14.6 g was added to hydrolyze the silicon alkoxide A first phosphor 41 was obtained in the same manner as in Reference Example 8 except that it was decomposed and an deposit containing silicon dioxide was attached, and the same as Reference Example 1 except that the first phosphor 41 was used. A light emitting device was obtained in the same manner.

(実施例10)
純水17.9g、オルトケイ酸テトラエチル(TEOS:Si(OC)17.9gを加え、さらに触媒としてアンモニア水(濃度18質量%)21.4gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させたこと以外は、参考例8と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
(Example 10)
Pure water 17.9 g, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5) 4) 17.9g was added further aqueous ammonia as a catalyst (concentration 18 mass%) 21.4 g was added to hydrolyze the silicon alkoxide A first phosphor 41 was obtained in the same manner as in Reference Example 8 except that it was decomposed and an deposit containing silicon dioxide was attached, and the same as Reference Example 1 except that the first phosphor 41 was used. A light emitting device was obtained in the same manner.

(実施例11)
純水35.7g、オルトケイ酸テトラエチル(TEOS:Si(OC)35.7gを加え、さらに触媒としてアンモニア水(濃度18質量%)42.9gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させたこと以外は、参考例8と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
(Example 11)
Pure water 35.7 g, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5) 4) 35.7g was added further aqueous ammonia as a catalyst (concentration 18 mass%) 42.9 g was added to hydrolyze the silicon alkoxide A first phosphor 41 was obtained in the same manner as in Reference Example 8 except that it was decomposed and an deposit containing silicon dioxide was attached, and the same as Reference Example 1 except that the first phosphor 41 was used. A light emitting device was obtained in the same manner.

参考例12)
純水65.0g、オルトケイ酸テトラエチル(TEOS:Si(OC)65.0gを加え、さらに触媒としてアンモニア水(濃度18質量%)78.0gを添加して、ケイ素アルコキシドを加水分解させ、二酸化ケイ素を含む付着物を付着させたこと以外は、参考例8と同様にして第一蛍光体41を得て、この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 12)
Pure water 65.0 g, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5) 4) 65.0g was added further aqueous ammonia as a catalyst (concentration 18 mass%) 78.0 g was added to hydrolyze the silicon alkoxide A first phosphor 41 was obtained in the same manner as in Reference Example 8 except that it was decomposed and an deposit containing silicon dioxide was attached, and the same as Reference Example 1 except that the first phosphor 41 was used. A light emitting device was obtained in the same manner.

参考例13)
比較例3で得られた蛍光体粒子50gを、粉体用流動層CVD装置の反応管内に投入し、2時間36分反応させた以外は、実施例1と同様にして、チオガレート蛍光体粒子に二酸化ケイ素を含む付着物を付着させ、二酸化ケイ素を含む付着物の表面にCVD法により酸化アルミニウムを含む膜を形成した第一蛍光体41を得た。この第一蛍光体41を用いたこと以外は、参考例1と同様にして発光装置を得た。
( Reference example 13)
50 g of the phosphor particles obtained in Comparative Example 3 was charged into the reaction tube of the fluidized layer CVD apparatus for powder and reacted for 2 hours and 36 minutes, and the thiogallate phosphor particles were formed in the same manner as in Example 1. A first phosphor 41 in which a deposit containing silicon dioxide was attached and a film containing aluminum oxide was formed on the surface of the deposit containing silicon dioxide was obtained by a CVD method. A light emitting device was obtained in the same manner as in Reference Example 1 except that the first phosphor 41 was used.

〔第一蛍光体41の評価〕
参考例1〜7、8、12、13、実施例9〜11で得られた第一蛍光体41及び比較例1〜3の第一蛍光体41に代わる蛍光体について、下記の方法で、平均粒径、アルミニウム元素の含有量及びケイ素元素の含有量を測定した。
[Evaluation of the first phosphor 41]
The first fluorescent material 41 obtained in Reference Examples 1 to 7 , 8, 12, and 13 and Examples 9 to 11 and the fluorescent material replacing the first fluorescent material 41 of Comparative Examples 1 to 3 were averaged by the following method. The particle size, the content of the aluminum element and the content of the silicon element were measured.

(平均粒径)
蛍光体の平均粒径は、Fisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて、フィッシャー・サブシーブ・サイザー(F.S.S.S)法により、フィッシャー・サブシーブ・サイザーズ・ナンバー(F.S.S.S.N.)として平均粒径を測定した。
(Average particle size)
The average particle size of the phosphor is determined by the Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific) by the Fisher Sub-Sieve Sizer (FSSS) method. The average particle size was measured as FSSSSN).

(アルミニウム元素の含有量)
参考例1〜7、8、12、13、実施例9〜11で得られた第一蛍光体41及び比較例2の蛍光体中に含まれるアルミニウム元素の質量を、ICP分析装置(日立ハイテクサイエンス社製、SPS3500)を用いて測定し、下記式によりアルミニウム元素の含有量を算出した。
蛍光体中のアルミニウム元素の含有量(質量%)=アルミニウム元素の質量(g)÷蛍光体の総質量(g)×100
(Aluminum element content)
The masses of the aluminum elements contained in the first phosphors 41 and the phosphors of Comparative Examples 2 obtained in Reference Examples 1 to 7 , 8, 12, and 13 and Examples 9 to 11 were measured by an ICP analyzer (Hitachi High-Tech Science). The content of the aluminum element was calculated by the following formula by measuring using SPS3500) manufactured by the company.
Content of aluminum element in phosphor (mass%) = mass of aluminum element (g) ÷ total mass of phosphor (g) x 100

(ケイ素元素の含有量)
実施例9〜11参考例8、12、13で得られた第一蛍光体41及び比較例3の蛍光体中に含まれるケイ素元素の質量を、ICP分析装置(日立ハイテクサイエンス社製、SPS3500)を用いて測定し、下記式によりケイ素元素の含有量を算出した。
蛍光体中のケイ素元素の含有量(質量%)=ケイ素元素の質量(g)÷蛍光体の総質量(g)×100
(Content of silicon element)
The mass of the silicon element contained in the first phosphor 41 and the phosphor of Comparative Example 3 obtained in Examples 9 to 11 , Reference Examples 8, 12, and 13 was measured by an ICP analyzer (manufactured by Hitachi High-Tech Science Co., Ltd., SPS3500). ), And the content of silicon element was calculated by the following formula.
Content of silicon element in phosphor (mass%) = mass of silicon element (g) ÷ total mass of phosphor (g) × 100

(SEM画像)
走査型電子顕微鏡(SEM)を用いて、参考例3及び実施例10で得られた第一蛍光体41及び比較例2の蛍光体のSEM画像、及び断面のSEM画像を得た。図2は、参考例3の第一蛍光体41のSEM画像であり、図3は、参考例3の第一蛍光体41の断面のSEM画像である。図4は、比較例2の蛍光体のSEM画像であり、図5は、比較例2の蛍光体の断面のSEM画像である。図8は、実施例10の第一蛍光体41のSEM画像であり、図9は、実施例10の第一蛍光体41の断面のSEM画像である。
(SEM image)
Using a scanning electron microscope (SEM), SEM images of the first phosphor 41 and the phosphor of Comparative Example 2 obtained in Reference Example 3 and Example 10 and an SEM image of a cross section were obtained. Figure 2 is an SEM image of a first fluorescent material 41 of Reference Example 3, FIG. 3 is a cross-sectional SEM image of the first phosphor 41 of Example 3. FIG. 4 is an SEM image of the phosphor of Comparative Example 2, and FIG. 5 is an SEM image of a cross section of the phosphor of Comparative Example 2. FIG. 8 is an SEM image of the first phosphor 41 of Example 10, and FIG. 9 is an SEM image of a cross section of the first phosphor 41 of Example 10.

(第一蛍光体の粒径に対する酸化アルミニウムを含む膜の厚みの比率の平均値)
参考例1〜7における第一蛍光体41の粒径に対する酸化アルミニウムを含む膜の厚みの比率の平均値は、得られた第一蛍光体41の断面を走査型電子顕微鏡(SEM)によって撮影し、コアとなるチオガレート蛍光体粒子の粒径(長径)と酸化アルミニウムを含む膜の厚みの和を測定し、この測定値から下記式(1)により算出した。
粒径に対する膜の厚みの比率(%)
=膜の厚みの和÷(コア粒子の長径+膜の厚みの和)×100 (1)
粒径に対する膜の厚みの比率を3個の蛍光体粒子について求め、その算術平均として膜の厚みの比率の平均値を算出した。酸化アルミニウムを含む膜の厚みの和は、SEM画像におけるコアとなるチオガレート蛍光体粒子と、酸化アルミニウムを含む膜とのコントラストの差から測定した。
(Average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor)
The average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor 41 in Reference Examples 1 to 7 was obtained by photographing the cross section of the obtained first phosphor 41 with a scanning electron microscope (SEM). , The sum of the particle size (major axis) of the core thiogallate phosphor particles and the thickness of the film containing aluminum oxide was measured, and it was calculated from this measured value by the following formula (1).
Ratio of film thickness to particle size (%)
= Sum of film thickness ÷ (sum of core particle major axis + film thickness) x 100 (1)
The ratio of the film thickness to the particle size was determined for the three phosphor particles, and the average value of the film thickness ratio was calculated as the arithmetic mean. The sum of the thicknesses of the films containing aluminum oxide was measured from the difference in contrast between the core thiogallate phosphor particles in the SEM image and the film containing aluminum oxide.

(蛍光体の粒径に対する二酸化ケイ素を含む付着物の厚みの比率の平均値)
比較例3の蛍光体は、第一蛍光体41の粒径に対する二酸化ケイ素を含む付着物の厚みの比率の平均値は、得られた第一蛍光体41の断面を走査型電子顕微鏡(SEM)によって撮影し、コアとなるチオガレート蛍光体粒子の粒径(長径)と二酸化ケイ素を含む付着物の厚みの和を測定し、この測定値から下記式(2)により算出した。
粒径に対する付着物の厚みの比率(%)
=付着物の厚みの和÷(コア粒子の長径+付着物の厚みの和)×100 (2)
粒径に対する付着物の厚みの比率を3個の蛍光体粒子について求め、その算術平均として付着物の厚みの比率の平均値を算出した。酸化アルミニウムを含む膜の厚みの和は、SEM画像におけるコアとなるチオガレート蛍光体粒子と、二酸化ケイ素を含む付着物とのコントラストの差から測定した。
(Average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the phosphor)
In the phosphor of Comparative Example 3, the average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the first phosphor 41 was obtained by scanning the cross section of the first phosphor 41 with a scanning electron microscope (SEM). The sum of the particle size (major axis) of the core thiogallate phosphor particles and the thickness of the deposit containing silicon dioxide was measured, and calculated from this measured value by the following formula (2).
Ratio of deposit thickness to particle size (%)
= Sum of thickness of deposits ÷ (sum of major axis of core particles + sum of thickness of deposits) x 100 (2)
The ratio of the thickness of the deposit to the particle size was determined for the three phosphor particles, and the average value of the ratio of the thickness of the deposit was calculated as the arithmetic mean. The sum of the thicknesses of the films containing aluminum oxide was measured from the difference in contrast between the core thiogallate phosphor particles in the SEM image and the deposits containing silicon dioxide.

(第一蛍光体の粒径に対する二酸化ケイ素を含む付着物の厚みの比率の平均値)
実施例9〜11、参考例8、12で得られた第一蛍光体41は酸化アルミニウムを含む膜と、二酸化ケイ素を含む付着物とは、SEM画像におけるコントラストの差から両者を判別することはできない。そのため、参考例1〜7同様にチオガレート蛍光体粒子の表面に接して形成された酸化アルミニウムを含む膜の厚みを先に測定し、次に、酸化アルミニウムを含む膜の表面に二酸化ケイ素を含む付着物が形成された後、酸化アルミニウムを含む膜及び二酸化ケイ素を含む付着物の合計の厚みを測定し、この合計の厚みから先に形成された酸化アルミニウムを含む膜の厚みを差し引くことにより、二酸化ケイ素を含む付着物の厚みを算出した。得られた二酸化ケイ素を含む付着物の厚みの算出値を上記式(2)の付着物の厚みの和として粒径に対する付着物の厚みの比率(%)を算出した。
粒径に対する付着物の厚みの比率を3個の蛍光体粒子について求め、その算術平均として付着物の厚みの比率の平均値を算出した。
(Average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the first phosphor)
In the first phosphor 41 obtained in Examples 9 to 11 and Reference Examples 8 and 12, the film containing aluminum oxide and the deposit containing silicon dioxide cannot be distinguished from each other from the difference in contrast in the SEM image. Can not. Therefore, similarly to Reference Examples 1 to 7, the thickness of the film containing aluminum oxide formed in contact with the surface of the thiogallate phosphor particles is measured first, and then the surface of the film containing aluminum oxide contains silicon dioxide. After the kimono is formed, the total thickness of the film containing aluminum oxide and the deposit containing silicon dioxide is measured, and the thickness of the previously formed film containing aluminum oxide is subtracted from this total thickness to obtain carbon dioxide. The thickness of the deposit containing silicon was calculated. The ratio (%) of the thickness of the deposit to the particle size was calculated by using the calculated value of the thickness of the obtained deposit containing silicon dioxide as the sum of the thickness of the deposit of the above formula (2).
The ratio of the thickness of the deposit to the particle size was determined for the three phosphor particles, and the average value of the ratio of the thickness of the deposit was calculated as the arithmetic mean.

参考例13で得られた第一蛍光体41は二酸化ケイ素を含む付着物と、酸化アルミニウムを含む膜とは、SEM画像におけるコントラストの差から両者を判別することはできない。
チオガレート蛍光体粒子の表面に接して二酸化ケイ素を含む付着物が形成される場合には、比較例3と同様にして、チオガレート蛍光体粒子の表面に接して形成された二酸化ケイ素を含む付着物の厚みを先に測定し、その後、二酸化ケイ素を含む付着物の表面に接して酸化アルミニウムを含む膜が形成された後、酸化アルミニウムを含む膜及び二酸化ケイ素を含む付着物の合計の厚みを測定し、この厚みから先に形成された二酸化ケイ素を含む付着物の厚みを差し引くことにより、酸化アルミニウムを含む膜の厚みを算出した。
得られた酸化アルミニウムを含む膜の厚みの算出値を上記式(1)の膜の厚みの和として粒径に対する付着物の厚みの比率(%)を算出した。
粒径に対する膜の厚みの比率を3個の蛍光体粒子について求め、その算術平均として付着物の厚みの比率の平均値を算出した。
In the first phosphor 41 obtained in Reference Example 13, the deposit containing silicon dioxide and the film containing aluminum oxide cannot be distinguished from each other from the difference in contrast in the SEM image.
When a deposit containing silicon dioxide is formed in contact with the surface of the thiogallate phosphor particles, the deposit containing silicon dioxide formed in contact with the surface of the thiogallate phosphor particles is formed in the same manner as in Comparative Example 3. The thickness is measured first, and then the film containing aluminum oxide is formed in contact with the surface of the deposit containing silicon dioxide, and then the total thickness of the film containing aluminum oxide and the deposit containing silicon dioxide is measured. The thickness of the film containing aluminum oxide was calculated by subtracting the thickness of the previously formed deposit containing silicon dioxide from this thickness.
The ratio (%) of the thickness of the deposit to the particle size was calculated by using the calculated value of the thickness of the obtained film containing aluminum oxide as the sum of the thickness of the film of the above formula (1).
The ratio of the thickness of the film to the particle size was determined for the three phosphor particles, and the average value of the ratio of the thickness of the deposits was calculated as the arithmetic mean.

(SEM−EDX法による元素分析)
SEM−EDX(走査型電子顕微鏡/エネルギー分散型X線分光法)を用いて、図3、5、9に示す各蛍光体のSEM画像における×印を付した領域の元素分析を行なった。
図6は、図3に示す参考例3の第一蛍光体41のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。
図7は、図5に示す比較例2に用いた蛍光体のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。
図10は、図9に示す実施例10に用いた第一蛍光体41のSEM画像における×印を付した領域のSEM−EDX法による元素分析の結果(横軸:エネルギー(keV)、縦軸:カウント数)を示す図である。
(Elemental analysis by SEM-EDX method)
Using SEM-EDX (scanning electron microscope / energy dispersive X-ray spectroscopy), elemental analysis of the regions marked with x in the SEM images of each phosphor shown in FIGS. 3, 5 and 9 was performed.
FIG. 6 shows the results of elemental analysis by the SEM-EDX method in the regions marked with x in the SEM image of the first phosphor 41 of Reference Example 3 shown in FIG. 3 (horizontal axis: energy (keV), vertical axis: count). It is a figure which shows the number).
FIG. 7 shows the results of elemental analysis by the SEM-EDX method in the regions marked with x in the SEM image of the phosphor used in Comparative Example 2 shown in FIG. 5 (horizontal axis: energy (keV), vertical axis: count number). ).
FIG. 10 shows the results of elemental analysis by the SEM-EDX method in the regions marked with x in the SEM image of the first phosphor 41 used in Example 10 shown in FIG. 9 (horizontal axis: energy (keV), vertical axis). : Count number).

〔発光装置の評価〕
参考例1〜7、8、12、13、実施例9〜11及び比較例1〜3の発光装置について、初期値の相対光束、及び下記の発光装置の信頼性評価試験を行った。
[Evaluation of light emitting device]
For the light emitting devices of Reference Examples 1 to 7, 8, 12, 13, and Examples 9 to 11 and Comparative Examples 1 to 3, the initial relative luminous flux and the reliability evaluation test of the following light emitting devices were performed.

(初期値の相対光束)
保管前の参考例1〜7、8、12、13、実施例9〜11及び比較例1〜3の発光装置について、積分球を使用した全光束測定装置を用いて、光束を測定した。比較例1の発光装置の光束を基準として初期値の相対光束を算出した。
(Initial value relative luminous flux)
Luminous flux was measured using a total luminous flux measuring device using an integrating sphere for the light emitting devices of Reference Examples 1 to 7, 8, 12, 13 and Examples 9 to 11 and Comparative Examples 1 to 3 before storage. The initial relative luminous flux was calculated with reference to the luminous flux of the light emitting device of Comparative Example 1.

(LED信頼性評価:保管前後のCIE色度座標y値の差分Δy)
発光装置を60℃、相対湿度90%の高温高湿の環境試験機内にて電流20mAで連続点灯又は点灯無しで、1000時間保管した。保管前のCIE色度座標におけるy1値と、保管後のCIE色度座標におけるy2値を、マルチチャンネル分光器(浜松ホトニクス株式会社、製品名:PMA=12)を用いて測定し、y1値とy2値の差分Δyを絶対値として算出した。
(LED reliability evaluation: difference Δy between CIE chromaticity coordinates y values before and after storage)
The light emitting device was stored in a high-temperature and high-humidity environmental tester at 60 ° C. and 90% relative humidity at a current of 20 mA with or without continuous lighting for 1000 hours. The y1 value in the CIE chromaticity coordinates before storage and the y2 value in the CIE chromaticity coordinates after storage were measured using a multi-channel spectroscope (Hamamatsu Photonics Co., Ltd., product name: PMA = 12), and the y1 value was obtained. The difference Δy of the y2 values was calculated as an absolute value.

(LED信頼性評価:保管後の相対光束(Po))
発光装置を60℃、相対湿度90%の高温高湿の環境試験機内にて電流20mAで連続点灯又は点灯無しで、1000時間保管した。積分球を使用した全光束測定装置により、保管前の発光装置の初期値を100とした場合における、保管後の発光装置の光束を相対光束(Po)として求めた。
(LED reliability evaluation: relative luminous flux (Po) after storage)
The light emitting device was stored in a high-temperature and high-humidity environmental tester at 60 ° C. and 90% relative humidity at a current of 20 mA with or without continuous lighting for 1000 hours. With the total luminous flux measuring device using the integrating sphere, the luminous flux of the light emitting device after storage was determined as the relative luminous flux (Po) when the initial value of the light emitting device before storage was set to 100.

表1に、比較例1〜3に用いた蛍光体及び参考例1〜7に用いた第一蛍光体41と、これらの蛍光体を用いた発光装置の評価結果を示す。 Table 1 shows the evaluation results of the phosphors used in Comparative Examples 1 to 3 and the first phosphor 41 used in Reference Examples 1 to 7 and a light emitting device using these phosphors.

Figure 0006928287
Figure 0006928287

表1に示すように、参考例1〜7の発光装置は、高温高湿下において、1000時間連続点灯して保管した後においても、比較例1の発光装置と比べて、差分Δyの絶対値が小さく、色度ずれを生じていないことが確認できた。また、表1に示すように、参考例1〜7の発光装置は、高温高湿下において、1000時間連続点灯して保管した後においても、比較例1〜3の発光装置と比べて、相対光束(Po)90以上を維持し、保管前と比べ発光出力を維持しており、発光出力の低下が抑制されていることが確認できた。
参考例1〜7の発光装置に用いた第一蛍光体41は、第一蛍光体41の粒径に対するCVD法により形成された酸化アルミニウムを含む膜の厚みの比率の平均値が0.5%以上10.0%以下であり、この比率の平均値の酸化アルミニウムを含む膜が形成されている第一蛍光体41を用いることにより、耐湿性及び耐フッ化水素性が改善されることが確認できた。
一方、表1に示すように、CVD法による酸化アルミニウムを含む膜を形成していないチオガレート蛍光体粒子を第一蛍光体41の代わりに用いた比較例1、及び、ゾルゲル法により形成した酸化アルミニウムを含む付着物を備えた蛍光体を第一蛍光体41の代わりに用いた比較例2の発光装置は、高温高湿下において、1000時間連続点灯して保管した後は、差分Δyが0.08以上と大きくなり、色度ずれが生じており、相対光束(Po)も85以下と低く、発光出力が低下していた。
比較例2のゾルゲル法により形成した酸化アルミニウムを含む付着物を備えた蛍光体は、チオガレート蛍光体粒子の表面に略均一な厚みで酸化アルミニウムを含む付着物が付着しておらず、表面に凸凹が形成されていた。
比較例3のゾルゲル法により形成した二酸化ケイ素を含む付着物を備えた蛍光体を用いた発光装置は、高温高湿下において、1000時間連続点灯して保管した後、相対光束は90未満と低くなり、発光出力が低下していた。
As shown in Table 1, the light emitting devices of Reference Examples 1 to 7 have an absolute value of difference Δy as compared with the light emitting device of Comparative Example 1 even after being continuously lit for 1000 hours under high temperature and high humidity and stored. Was small, and it was confirmed that there was no chromaticity shift. Further, as shown in Table 1, the light emitting devices of Reference Examples 1 to 7 are relative to the light emitting devices of Comparative Examples 1 to 3 even after being continuously lit for 1000 hours under high temperature and high humidity and stored. It was confirmed that the luminous flux (Po) was maintained at 90 or more, the light emission output was maintained as compared with that before storage, and the decrease in the light emission output was suppressed.
The first phosphor 41 used in the light emitting devices of Reference Examples 1 to 7 has an average value of 0.5% of the ratio of the thickness of the film containing aluminum oxide formed by the CVD method to the particle size of the first phosphor 41. It has been confirmed that the moisture resistance and hydrogen fluoride resistance are improved by using the first phosphor 41 in which a film containing aluminum oxide having an average value of this ratio is formed, which is 10.0% or more or more. did it.
On the other hand, as shown in Table 1, Comparative Example 1 in which thiogallate phosphor particles having not formed a film containing aluminum oxide by the CVD method were used instead of the first phosphor 41, and aluminum oxide formed by the sol-gel method. In the light emitting device of Comparative Example 2 in which a phosphor having a deposit containing the above substance was used instead of the first phosphor 41, the difference Δy was 0. It was as large as 08 or more, a chromaticity shift occurred, the relative light beam (Po) was as low as 85 or less, and the emission output was lowered.
The phosphor provided with the aluminum oxide-containing deposits formed by the sol-gel method of Comparative Example 2 had substantially uniform thickness and no aluminum oxide-containing deposits adhered to the surface of the thiogallate phosphor particles, and the surface was uneven. Was formed.
The light emitting device using the phosphor provided with the deposit containing silicon dioxide formed by the sol-gel method of Comparative Example 3 has a low relative luminous flux of less than 90 after being continuously lit for 1000 hours under high temperature and high humidity. The light emission output was reduced.

図2及び図3に示すように、参考例3に用いた第一蛍光体41は、チオガレート蛍光体粒子の表面の全面にCVD法により滑らかな酸化アルミニウムを含む膜が形成されていた。
一方、図4及び図5に示すように、比較例2の第一蛍光体41の代わりに用いた蛍光体は、チオガレート蛍光体粒子の表面の一部にゾルゲル法による酸化アルミニウムを含む付着物が付着していた。また、それら付着物は、生成した小さな酸化アルミニウムの粒子同士が凝集した状態であった。図4に示すように、比較例2の第一蛍光体41の代わりに用いた蛍光体の表面は、ゾルゲル法による酸化アルミニウムを含む付着物によって、チオガレート蛍光体粒子の表面が滑らにならず凸凹していた。
As shown in FIGS. 2 and 3, in the first phosphor 41 used in Reference Example 3, a smooth film containing aluminum oxide was formed on the entire surface of the thiogallate phosphor particles by the CVD method.
On the other hand, as shown in FIGS. 4 and 5, in the phosphor used in place of the first phosphor 41 of Comparative Example 2, deposits containing aluminum oxide by the sol-gel method were formed on a part of the surface of the thiogallate phosphor particles. It was attached. In addition, these deposits were in a state in which the generated small aluminum oxide particles were agglomerated with each other. As shown in FIG. 4, the surface of the phosphor used in place of the first phosphor 41 of Comparative Example 2 is uneven because the surface of the thiogallate phosphor particles is not slippery due to the deposit containing aluminum oxide by the sol-gel method. Was.

図6に示すように、図3に示す参考例3に用いた第一蛍光体41のSEM画像において、酸化アルミニウムを含む膜の厚み方向の略中心部分の領域を測定したSEM−EDX法による元素分析の結果、試料作製の際に由来する炭素元素(C)およびチオガレート蛍光体粒子を構成する元素であるストロンチウム(Sr)、ガリウム(Ga)、硫黄(S)元素の他に、アルミニウム(Al)と酸素(O)元素のピークが現れており、参考例3に用いた第一蛍光体41は、チオガレート蛍光体粒子の表面に接してCVD法により酸化アルミニウムを含む膜が形成されていることが確認できた。 As shown in FIG. 6, in the SEM image of the first phosphor 41 used in Reference Example 3 shown in FIG. 3, the element by the SEM-EDX method in which the region of the substantially central portion in the thickness direction of the film containing aluminum oxide was measured. As a result of the analysis, in addition to the carbon element (C) derived from the sample preparation and the elements constituting the thiogallate phosphor particles, strontium (Sr), gallium (Ga), and sulfur (S), aluminum (Al) And the peak of the oxygen (O) element appears, and the first phosphor 41 used in Reference Example 3 is in contact with the surface of the thiogallate phosphor particles, and a film containing aluminum oxide is formed by the CVD method. It could be confirmed.

図7に示すように、図5に示す比較例2に用いた蛍光体のSEM画像において、ゾルゲル法で形成した酸化アルミニウムを含む付着物の表面近傍の領域を測定したSEM−EDX法による元素分析の結果、試料作製の際に由来する炭素元素(C)およびチオガレート蛍光体粒子を構成する元素であるストロンチウム(Sr)、ガリウム(Ga)、硫黄(S)元素の他に、ゾルゲル法によって形成された酸化アルミニウムを含む付着物を構成するアルミニウム(Al)と酸素(O)元素のピークが現れていた。 As shown in FIG. 7, in the SEM image of the phosphor used in Comparative Example 2 shown in FIG. 5, elemental analysis by the SEM-EDX method was performed by measuring the region near the surface of the deposit containing aluminum oxide formed by the solgel method. As a result, it is formed by the solgel method in addition to the carbon element (C) derived from the sample preparation and the elements constituting the thiogallate phosphor particles, strontium (Sr), gallium (Ga), and sulfur (S). Peaks of aluminum (Al) and oxygen (O) elements, which constitute deposits containing aluminum oxide, appeared.

表2に、比較例1〜3に用いた蛍光体及び実施例9〜11、参考例8、12、13に用いた第一蛍光体41と、これらの蛍光体を用いた発光装置の評価結果を示す。 Table 2 shows the evaluation results of the fluorescent substances used in Comparative Examples 1 to 3 and the first fluorescent substances 41 used in Examples 9 to 11, Reference Examples 8 , 12 and 13, and the light emitting device using these fluorescent substances. Is shown.

Figure 0006928287
Figure 0006928287

表2に示すように、実施例9〜11、参考例8、12、13の発光装置は、高温高湿下、1000時間連続点灯して保管した後においても、1000時間点灯無しで保管した後においても、比較例1〜3の発光装置と比べて、差分Δyの絶対値が小さく、色度ずれを生じていないことが確認できた。また、表2に示すように、実施例9〜11、参考例8、12、13の発光装置は、高温高湿下において、1000時間連続点灯して保管した後においても、1000時間点灯無しで保管した後においても、相対光束(Po)80以上を維持していた。実施例9〜11、参考例8、12、13の発光装置は、比較例1〜3の発光装置と比べて、高温高湿下で1000時間保管した後も、発光出力を維持し、発光出力の低下が抑制されていることが確認できた。
参考例8に用いた第一蛍光体41のように、二酸化ケイ素を含む付着物の量が少ないと、高温高湿下、1000時間点灯無しで保管した後において、相対光束が他の実施例9〜11、参考例12、13よりも低くなっていた。
また、参考例13に用いた第一蛍光体41のように、チオガレート蛍光体粒子の表面にゾルゲル法により二酸化ケイ素を含む付着物を付着させた後、チオガレート蛍光体粒子と二酸化ケイ素を含む付着物の上からCVD法により酸化アルミニウムを含む膜を形成した場合であっても、高温高湿下、1000時間連続点灯して保管した後においても、1000時間点灯無しで保管した後においても、色度ずれを抑制でき、相対光束を維持でき、発光出力の低下を抑制できることが確認できた。
As shown in Table 2, the light emitting devices of Examples 9 to 11 and Reference Examples 8 , 12, and 13 were stored under high temperature and high humidity under continuous lighting for 1000 hours, but after being stored without lighting for 1000 hours. Also, it was confirmed that the absolute value of the difference Δy was smaller than that of the light emitting devices of Comparative Examples 1 to 3 and that the chromaticity deviation did not occur. Further, as shown in Table 2, the light emitting devices of Examples 9 to 11 and Reference Examples 8 , 12, and 13 were continuously lit for 1000 hours under high temperature and high humidity, and were not lit for 1000 hours even after being stored. Even after storage, the relative luminous flux (Po) was maintained at 80 or more. Compared with the light emitting devices of Comparative Examples 1 to 3, the light emitting devices of Examples 9 to 11 and Reference Examples 8 , 12, and 13 maintained the light emitting output even after being stored under high temperature and high humidity for 1000 hours, and the light emitting output was maintained. It was confirmed that the decrease in the amount was suppressed.
When the amount of deposits containing silicon dioxide is small as in the first phosphor 41 used in Reference Example 8, the relative luminous flux becomes different in Example 9 after storage under high temperature and high humidity for 1000 hours without lighting. ~ 11, It was lower than Reference Examples 12 and 13.
Further, like the first phosphor 41 used in Reference Example 13, after deposits containing silicon dioxide are attached to the surface of the thiogallate phosphor particles by the sol-gel method, deposits containing thiogallate phosphor particles and silicon dioxide are attached. Even when a film containing aluminum oxide is formed from above by the CVD method, the chromaticity is maintained under high temperature and high humidity under continuous lighting for 1000 hours, and after storage without lighting for 1000 hours. It was confirmed that the deviation can be suppressed, the relative light beam can be maintained, and the decrease in the emission output can be suppressed.

図8に示すように、実施例10に用いた第一蛍光体41は、チオガレート蛍光体粒子の表面の全面にCVD法により形成された滑らかな酸化アルミニウムを含む膜が形成され、さらに酸化アルミニウムを含む膜の表面に比較的滑らかに、二酸化ケイ素を含む付着物が付着されていた。図9に示すように、実施例10に用いた第一蛍光体41は、チオガレート蛍光体粒子の表面の全面にCVD法により形成された酸化アルミニウムを含む膜及び二酸化ケイ素を含む付着物が均一に近い厚みで形成されていた。 As shown in FIG. 8, in the first phosphor 41 used in Example 10, a film containing smooth aluminum oxide formed by the CVD method was formed on the entire surface of the thiogallate phosphor particles, and aluminum oxide was further formed. Adhesions containing silicon dioxide were adhered to the surface of the containing film relatively smoothly. As shown in FIG. 9, in the first phosphor 41 used in Example 10, a film containing aluminum oxide and a deposit containing silicon dioxide formed on the entire surface of the thiogallate phosphor particles by the CVD method were uniformly formed. It was formed with a similar thickness.

図10に示すように、図9に示す実施例10に用いた第一蛍光体41のSEM画像において、CVD法により形成された酸化アルミニウムを含む膜及び二酸化ケイ素を含む付着物の領域を測定したSEM−EDX法による元素分析の結果、試料作製の際に由来する炭素元素(C)およびチオガレート蛍光体粒子を構成する元素であるストロンチウム(Sr)、ガリウム(Ga)、硫黄(S)元素の他に、酸化アルミニウムを含む膜を構成するアルミニウム(Al)と酸素(O)元素のピークが現れて、さらに、二酸化ケイ素を含む付着物を構成するケイ素(Si)と酸素(O)元素のピークが現れており、実施例10に用いた第一蛍光体41は、チオガレート蛍光体粒子の表面に酸化アルミニウムを含む膜及び二酸化ケイ素を含む付着物が形成されていることが確認できた。 As shown in FIG. 10, in the SEM image of the first phosphor 41 used in Example 10 shown in FIG. 9, the regions of the film containing aluminum oxide and the deposit containing silicon dioxide formed by the CVD method were measured. As a result of elemental analysis by the SEM-EDX method, carbon element (C) derived during sample preparation, strontium (Sr), gallium (Ga), sulfur (S) elements, which are elements constituting thiogallate phosphor particles, and others The peaks of the aluminum (Al) and oxygen (O) elements that make up the film containing aluminum oxide appear, and the peaks of the silicon (Si) and oxygen (O) elements that make up the deposit containing silicon dioxide appear. It was confirmed that the first phosphor 41 used in Example 10 had a film containing aluminum oxide and an deposit containing silicon dioxide formed on the surface of the thiogallate phosphor particles.

本発明に係る発光装置は、白色のLEDディスプレイ光源、バックライト光源、照明用光源等に好適に利用できる。 The light emitting device according to the present invention can be suitably used for a white LED display light source, a backlight light source, a lighting light source, and the like.

10:光源、20:パッケージ、21:第一リード、22:第二リード、23:成形体、30:ワイヤ、40:蛍光部材、41:第一蛍光体、42:第二蛍光体、100:発光装置 10: Light source, 20: Package, 21: First lead, 22: Second lead, 23: Molded product, 30: Wire, 40: Fluorescent member, 41: First fluorescent material, 42: Second fluorescent material, 100: Light source

Claims (9)

チオガレート蛍光体からなる粒子に、前記チオガレート蛍光体の粒子の表面に接して、CVD法により、前記チオガレート蛍光体の粒子の表面の全面を、酸化アルミニウムを含む膜を形成し、前記酸化アルミニウムを含む膜の表面に、二酸化ケイ素を含む付着物を形成して、緑色から黄緑色の範囲の蛍光を発する第一蛍光体を得る工程と、420〜480nmの範囲に発光ピーク波長を有する光を発する光源と、前記第一蛍光体と、黄赤色から赤色の範囲の蛍光を発するマンガンが賦活されたフッ化物蛍光体である第二蛍光体と、を用いて、CIE色度座標xが0.280、yが0.270となる混色光を発する発光装置を得る工程とを含み、
前記第一蛍光体の粒径に対する前記酸化アルミニウムを含む膜の厚みの比率の平均値は0.5%以上10%以下であり、
前記第一蛍光体の粒径に対する前記二酸化ケイ素を含む付着物の厚みの比率の平均値が1.7%から5.1%であり、
前記第一蛍光体中のアルミニウム元素の含有量が0.2質量%以上10質量%以下である、発光装置の製造方法。
The particles made of the thiogallate phosphor are brought into contact with the surface of the particles of the thiogalate phosphor, and a film containing aluminum oxide is formed on the entire surface of the particles of the thiogalate phosphor by a CVD method to contain the aluminum oxide. A step of forming an deposit containing silicon dioxide on the surface of the film to obtain a first phosphor that emits fluorescence in the range of green to yellow-green, and a light source that emits light having an emission peak wavelength in the range of 420 to 480 nm. The CIE chromaticity coordinate x is 0.280, using the first phosphor and the second phosphor which is a fluoride phosphor activated with manganese that emits fluorescence in the yellow-red to red range. Including a step of obtaining a light emitting device that emits mixed color light having y of 0.270.
The average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor is 0.5% or more and 10% or less.
The average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the first phosphor is 1.7% to 5.1%.
A method for manufacturing a light emitting device, wherein the content of the aluminum element in the first phosphor is 0.2% by mass or more and 10% by mass or less.
チオガレート蛍光体からなる粒子に、前記チオガレート蛍光体の粒子の表面に接して、CVD法により、前記チオガレート蛍光体の粒子の表面の全面を、酸化アルミニウムを含む膜を形成し、前記酸化アルミニウムを含む膜の表面に、二酸化ケイ素を含む付着物を形成して、緑色から黄緑色の範囲の蛍光を発する第一蛍光体を得る工程と、420〜480nmの範囲に発光ピーク波長を有する光を発する光源と、前記第一蛍光体と、黄赤色から赤色の範囲の蛍光を発するマンガンが賦活されたフッ化物蛍光体である第二蛍光体と、を用いて、CIE色度座標xが0.280、yが0.270となる混色光を発する発光装置を得る工程とを含み、The particles made of the thiogallate phosphor are brought into contact with the surface of the particles of the thiogalate phosphor, and a film containing aluminum oxide is formed on the entire surface of the particles of the thiogalate phosphor by a CVD method to contain the aluminum oxide. A step of forming an deposit containing silicon dioxide on the surface of the film to obtain a first phosphor that emits fluorescence in the range of green to yellow-green, and a light source that emits light having an emission peak wavelength in the range of 420 to 480 nm. The CIE chromaticity coordinate x is 0.280, using the first phosphor and the second phosphor which is a fluoride phosphor activated with manganese that emits fluorescence in the yellow-red to red range. Including a step of obtaining a light emitting device that emits mixed color light having y of 0.270.
前記第一蛍光体の粒径に対する前記酸化アルミニウムを含む膜の厚みの比率の平均値は0.5%以上10%以下であり、The average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor is 0.5% or more and 10% or less.
前記第一蛍光体の粒径に対する前記二酸化ケイ素を含む付着物の厚みの比率の平均値が1.7%から5.1%であり、The average value of the ratio of the thickness of the deposit containing silicon dioxide to the particle size of the first phosphor is 1.7% to 5.1%.
前記第一蛍光体の平均粒径が3.0μm以上20μm以下である、発光装置の製造方法。A method for manufacturing a light emitting device, wherein the average particle size of the first phosphor is 3.0 μm or more and 20 μm or less.
前記二酸化ケイ素を含む付着物を、ゾルゲル法により形成する請求項1又は2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2 , wherein the deposit containing silicon dioxide is formed by a sol-gel method. 前記第一蛍光体中のアルミニウム元素の含有量が0.2質量%以上10質量%以下である、請求項2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 2, wherein the content of the aluminum element in the first phosphor is 0.2% by mass or more and 10% by mass or less. 前記第一蛍光体中のアルミニウム元素の含有量が0.4質量%以上10質量%以下である、請求項1〜4のいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 4, wherein the content of the aluminum element in the first phosphor is 0.4% by mass or more and 10% by mass or less. 前記第一蛍光体中のケイ素元素の含有量が0.5質量%以上10質量%以下である、請求項1〜5のいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 5, wherein the content of the silicon element in the first phosphor is 0.5% by mass or more and 10% by mass or less. 前記第一蛍光体中のケイ素元素の含有量が1.7質量%以上5.0質量%以下である、請求項1〜6のいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 6, wherein the content of the silicon element in the first phosphor is 1.7% by mass or more and 5.0% by mass or less. 前記第一蛍光体の粒径に対する前記酸化アルミニウムを含む膜の厚みの比率の平均値が0.7%以上8.0%以下である、請求項1〜7のいずれか1項に記載の発光装置の製造方法。 The light emission according to any one of claims 1 to 7, wherein the average value of the ratio of the thickness of the film containing aluminum oxide to the particle size of the first phosphor is 0.7% or more and 8.0% or less. Manufacturing method of the device. 前記第一蛍光体の平均粒径が3.0μm以上20μm以下である、請求項1に発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the average particle size of the first phosphor is 3.0 μm or more and 20 μm or less.
JP2020075217A 2016-03-15 2020-04-21 Manufacturing method of light emitting device Active JP6928287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020075217A JP6928287B2 (en) 2016-03-15 2020-04-21 Manufacturing method of light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051388A JP6759639B2 (en) 2016-03-15 2016-03-15 Manufacturing method of light emitting device
JP2020075217A JP6928287B2 (en) 2016-03-15 2020-04-21 Manufacturing method of light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016051388A Division JP6759639B2 (en) 2016-03-15 2016-03-15 Manufacturing method of light emitting device

Publications (2)

Publication Number Publication Date
JP2020127036A JP2020127036A (en) 2020-08-20
JP6928287B2 true JP6928287B2 (en) 2021-09-01

Family

ID=72084241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020075217A Active JP6928287B2 (en) 2016-03-15 2020-04-21 Manufacturing method of light emitting device

Country Status (1)

Country Link
JP (1) JP6928287B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497973B2 (en) * 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
JP2013108016A (en) * 2011-11-22 2013-06-06 Sekisui Chem Co Ltd Method for producing surface-treated phosphor, surface-treated phosphor, phosphor-containing resin composition and led light-emitting device
JP6155993B2 (en) * 2013-09-05 2017-07-05 日亜化学工業株式会社 Method for selecting combination of color filter and light emitting device, and method for manufacturing image display device

Also Published As

Publication number Publication date
JP2020127036A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
TWI515286B (en) Silicate phosphors and light-emitting devices having high light-emitting characteristics and moisture resistance
TWI651394B (en) Silicate phosphors
JP2020183541A (en) Coated narrow band red phosphor
JP6759639B2 (en) Manufacturing method of light emitting device
TW201608009A (en) Processes for preparing color stable manganese-doped phosphors
TW201538684A (en) Phosphor, manufacturing method therefor, and light-emitting device using said phosphor
JP2011012091A (en) Phosphor and method for producing the same, phosphor-containing composition and light-emitting device using the same, and image display and lighting apparatus using light-emitting device
JP6720944B2 (en) Nitride phosphor manufacturing method, nitride phosphor and light emitting device
JP2008150518A (en) Wavelength converting member and light-emitting device
KR101487592B1 (en) Fluorescent substance, light-emitting device and method for producing fluorescent substance
US9822300B2 (en) Fluoride fluorescent material and method for producing the same as well as light emitting device using the same
JP6515979B2 (en) Phosphor, manufacturing method thereof and light emitting device
CN110062800A (en) Coated narrowband green phosphor
JP4972957B2 (en) Phosphor, light-emitting device using the same, image display device, and lighting device
JP5915801B1 (en) Fluoride phosphor, method for producing the same, and light emitting device
JP6928287B2 (en) Manufacturing method of light emitting device
JP5756540B2 (en) Phosphor and light emitting device
JP6974781B2 (en) Manufacturing method of light emitting device
CN105176527A (en) Fluorophor and light-emitting device
CN103881710B (en) Phosphor and light emitting device
JP6222264B2 (en) Phosphor particles, method for producing the same, and light emitting device
CN104745189B (en) Phosphor and light emitting device
KR20140113344A (en) Fluorescent substance and light-emitting device employing the same
TWI464235B (en) Phosphor composition and light emitting diode device using the same
US20230114859A1 (en) Fluoride phosphor, production method therefor, and light-emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6928287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150