JP6927469B1 - How to manufacture ring gears and pinion gears - Google Patents

How to manufacture ring gears and pinion gears Download PDF

Info

Publication number
JP6927469B1
JP6927469B1 JP2020201038A JP2020201038A JP6927469B1 JP 6927469 B1 JP6927469 B1 JP 6927469B1 JP 2020201038 A JP2020201038 A JP 2020201038A JP 2020201038 A JP2020201038 A JP 2020201038A JP 6927469 B1 JP6927469 B1 JP 6927469B1
Authority
JP
Japan
Prior art keywords
shaped portion
shaft
disk
gear
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020201038A
Other languages
Japanese (ja)
Other versions
JP2022088905A (en
Inventor
浩之 毛利
浩之 毛利
Original Assignee
株式会社コタニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コタニ filed Critical 株式会社コタニ
Priority to JP2020201038A priority Critical patent/JP6927469B1/en
Application granted granted Critical
Publication of JP6927469B1 publication Critical patent/JP6927469B1/en
Priority to CN202111431095.9A priority patent/CN114589287B/en
Publication of JP2022088905A publication Critical patent/JP2022088905A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/30Making machine elements wheels; discs with gear-teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

【課題】従来のリングギヤの製造方法でスクラップとして廃棄していた中央部分を活用して別部品を製造することで廃材を出さないようにする。【解決手段】本発明に係るリングギヤとピニオンギヤの製造方法は、円柱状の素材100を熱間据込鍛造することにより、リングギヤ142の荒地としての円盤状部分130bと、当該円盤状部分の中心部から軸線方向片側方向に延びたピニオンギヤ147の荒地としての軸状部分130aとを有する中間材130を成形する第1工程と、円盤状部分と軸状部分の周方向境界断面(切り離し線140c)を上下型でプレスして薄肉化する第2工程と、軸状部分を軸線方向片側方向に押圧することにより、当該軸状部分を円盤状部分から切り離す第3工程と、を有することを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To prevent waste material from being generated by manufacturing another part by utilizing a central portion which has been discarded as scrap in a conventional ring gear manufacturing method. SOLUTION: In the method for manufacturing a ring gear and a pinion gear according to the present invention, a cylindrical material 100 is hot-installed and forged to form a disk-shaped portion 130b as a rough ground of the ring gear 142 and a central portion of the disk-shaped portion. The first step of forming an intermediate material 130 having a shaft-shaped portion 130a as a rough ground of a pinion gear 147 extending in one side in the axial direction from the above, and a circumferential boundary cross section (separation line 140c) between the disk-shaped portion and the shaft-shaped portion. It is characterized by having a second step of pressing with a vertical die to thin the wall, and a third step of separating the shaft-shaped portion from the disk-shaped portion by pressing the shaft-shaped portion in one side in the axial direction. .. [Selection diagram] Fig. 1

Description

本発明は、鍛造により1つの素材からリングギヤとピニオンギヤを同時に製造する製造方法に関するものである。 The present invention relates to a manufacturing method for simultaneously manufacturing a ring gear and a pinion gear from one material by forging.

従来、自動車のデファレンシャルなどに使用されるリングギヤは、鍛造により製造されている。図4は従来の鍛造による製造方法の概略を示したもので、(a)は鍛造により成形したリングギヤの第1中間材(荒地)240である。この第1中間材240は、外周部のリング状部分240aと中心部の円盤状部分240bとを有する。 Conventionally, ring gears used for automobile differentials and the like are manufactured by forging. FIG. 4 shows an outline of a conventional manufacturing method by forging, in which (a) is a first intermediate material (rough ground) 240 of a ring gear formed by forging. The first intermediate member 240 has a ring-shaped portion 240a at the outer peripheral portion and a disk-shaped portion 240b at the central portion.

円盤状部分240bは周方向に延びる破線部240cで切り離して図4(d)のようにスクラップ246として廃棄していた。円盤状部分240bを切り離したリング状部分240aを第2中間材241として、図4(c)のようにローリング(圧延)により仕上加工してギヤ粗材242にしていた。 The disk-shaped portion 240b was separated by a broken line portion 240c extending in the circumferential direction and discarded as scrap 246 as shown in FIG. 4 (d). The ring-shaped portion 240a from which the disk-shaped portion 240b was separated was used as the second intermediate material 241 and finished by rolling as shown in FIG. 4 (c) to obtain a gear rough material 242.

ギヤ粗材242の外周面は、ホブ切りによりはすば歯車が切削加工された後、表面硬化処理工程で浸炭焼入れを施される。これで目的とするディファレンシャル用リングギヤが製造される。なお、以下の特許文献1〜3には1つの素材から2部品(軸受内外輪)を同時に製造する製造方法が記載されている。 The outer peripheral surface of the gear rough material 242 is carburized and hardened in a surface hardening treatment step after the helical gear is cut by hobbing. This manufactures the desired differential ring gear. The following Patent Documents 1 to 3 describe a manufacturing method for simultaneously manufacturing two parts (bearing inner and outer rings) from one material.

特開昭59−183948号公報JP-A-59-183948 特開平11−244985号公報Japanese Unexamined Patent Publication No. 11-244985 特開2013−240819号公報Japanese Unexamined Patent Publication No. 2013-240819

従来のリングギヤの製造方法は、中央の円盤状部分240bをスクラップ246として廃棄するので材料が無駄になる。そこで本発明の目的は、従来のリングギヤの製造方法でスクラップとして廃棄していた中央部分を活用して別部品を製造することで、廃材を出さないようにすることにある。 In the conventional ring gear manufacturing method, the central disk-shaped portion 240b is discarded as scrap 246, so that the material is wasted. Therefore, an object of the present invention is to manufacture another part by utilizing the central portion that has been discarded as scrap in the conventional ring gear manufacturing method, so that no waste material is generated.

前記課題を解決するため、本発明のリングギヤとピニオンギヤの製造方法は、円柱状の素材を熱間据込鍛造することにより、リングギヤの荒地としての円盤状部分と、当該円盤状部分の中心部から軸線方向片側方向に延びたピニオンギヤの荒地としての軸状部分とを有する中間材を成形する第1工程と、前記円盤状部分と前記軸状部分の周方向境界断面を上下型でプレスして薄肉化する第2工程と、前記軸状部分を軸線方向片側方向に押圧することにより、当該軸状部分を前記円盤状部分から切り離す第3工程と、を有することを特徴とする。 In order to solve the above problems, in the method for manufacturing a ring gear and a pinion gear of the present invention, a columnar material is hot-installed and forged from a disk-shaped portion as a rough ground of the ring gear and a central portion of the disk-shaped portion. The first step of forming an intermediate material having a shaft-shaped portion as a rough ground of a pinion gear extending in one side in the axial direction, and a thin wall by pressing the circumferential boundary cross section of the disk-shaped portion and the shaft-shaped portion with an upper and lower mold. It is characterized by having a second step of forging and a third step of separating the shaft-shaped portion from the disk-shaped portion by pressing the shaft-shaped portion in one side in the axial direction.

本発明は、従来のリングギヤの製造方法でスクラップとして廃棄していた中央部分を活用してピニオンギヤを製造することで、廃材を出さないようにすることができる。 According to the present invention, the pinion gear can be manufactured by utilizing the central portion that has been discarded as scrap in the conventional ring gear manufacturing method, so that no waste material is generated.

リングギヤとピニオンギヤの製造方法の概略を示すもので、(a)リングギヤとピニオンギヤの中間材の断面図、(b)リングギヤ荒地の断面図、(c)リングギヤの製品断面図、(d)ピニオンギヤ荒地の断面図、(e)ピニオンギヤの製品断面図である。The outline of the manufacturing method of the ring gear and the pinion gear is shown. Cross-sectional view, (e) is a product cross-sectional view of a pinion gear. 素材の変形を工程順に示す断面図である。It is sectional drawing which shows the deformation of a material in the order of a process. リングギヤとピニオンギヤの製造に使用する上型と下型を工程順に示す断面図である。It is sectional drawing which shows the upper die and the lower die used for manufacturing a ring gear and a pinion gear in the order of a process. 円盤状部分と軸状部分の軸方向連続位置の違いによる切り離し性への影響を示す図である。It is a figure which shows the influence on the separability by the difference in the axial continuous position of a disk-shaped part and a shaft-shaped part. 従来のリングギヤの製造方法の概略を示すもので、(a)リングギヤの第1中間材の断面図、(b)リングギヤの第2中間材の断面図、(c)リングギヤの製品断面図、(d)スクラップの断面図である。The outline of the conventional method for manufacturing a ring gear is shown. ) It is a cross-sectional view of scrap.

以下、本発明に係るリングギヤとピニオンギヤの製造方法の一実施形態を図面に基づいて説明する。図1は、本発明に係る製造方法の概略を示すもので、(a)はリングギヤの荒地としての円盤状部分140bと、ピニオンギヤの荒地としての軸状部分140aを含む第1中間材140の断面図である。この第1中間材140から、図1(c)のリングギヤ142と(e)のピニオンギヤ147をそれぞれ製作することができる。 Hereinafter, an embodiment of a method for manufacturing a ring gear and a pinion gear according to the present invention will be described with reference to the drawings. FIG. 1 shows an outline of the manufacturing method according to the present invention, in which (a) is a cross section of a first intermediate material 140 including a disk-shaped portion 140b as a rough ground of a ring gear and a shaft-shaped portion 140a as a rough ground of a pinion gear. It is a figure. From this first intermediate material 140, the ring gear 142 of FIG. 1 (c) and the pinion gear 147 of (e) can be manufactured, respectively.

すなわち、第1中間材140を図1(b)と(d)のように切り離して、第2中間材141、146を得る。これら第2中間材141、146をローリング(圧延)やホブ切りなどの機械加工をすることにより、リングギヤ142とピニオンギヤ147を製作することができる。 That is, the first intermediate material 140 is separated as shown in FIGS. 1 (b) and 1 (d) to obtain the second intermediate materials 141 and 146. The ring gear 142 and the pinion gear 147 can be manufactured by machining the second intermediate materials 141 and 146 such as rolling and hobbing.

(工程の流れ)
図2Aは製造方法の工程の流れに沿って素材の変形を工程順に示す断面図である。0工程は加工前の円柱状の素材100である。ここでは外径が80mm、軸長が160mmの素材100を使用する。なお、本願発明の説明上使用する寸法(mm)や比率(%)等はすべて例示であって、それらの寸法や比率等に限定する趣旨ではないことをここで明確にしておく。
(Process flow)
FIG. 2A is a cross-sectional view showing the deformation of the material in the order of the steps along the flow of the steps of the manufacturing method. Step 0 is the columnar material 100 before processing. Here, a material 100 having an outer diameter of 80 mm and a shaft length of 160 mm is used. It should be clarified here that the dimensions (mm), ratio (%), etc. used in the description of the present invention are all examples and are not intended to be limited to those dimensions, ratios, etc.

この素材100を最初の1工程の熱間据込み鍛造で上下方向に圧縮し、外径115mm、軸長105mmの鍛造品110を成形する。この場合、軸長と外径の比(軸長/外径)は91%である。この比率は、鍛造品110の大きさによって例えば80〜120%の範囲内で変更することができる。 This material 100 is compressed in the vertical direction by hot stationary forging in the first step to form a forged product 110 having an outer diameter of 115 mm and a shaft length of 105 mm. In this case, the ratio of the shaft length to the outer diameter (shaft length / outer diameter) is 91%. This ratio can be changed, for example, in the range of 80 to 120% depending on the size of the forged product 110.

次に、この鍛造品110を(c)の2工程で下向きに押出し成形して軸状部分120aを有する第1荒地120を成形する。続いて、(d)の3工程で軸状部分130aの基端側を上下方向にプレスして拡径することにより、円盤状部分130bを有する第2荒地130を成形する。この3工程において、(c)の軸状部分120aを(d)の軸状部分130aのように製品形状に近付ける。 Next, the forged product 110 is extruded downward in the two steps (c) to form a first wasteland 120 having a shaft-shaped portion 120a. Subsequently, in the three steps (d), the base end side of the shaft-shaped portion 130a is pressed in the vertical direction to increase the diameter, thereby forming the second wasteland 130 having the disc-shaped portion 130b. In these three steps, the shaft-shaped portion 120a of (c) is brought closer to the product shape like the shaft-shaped portion 130a of (d).

ここで、軸状部分120aを成形した後に円盤状部分130bを成形する理由は、逆に成形すると軸心部分の材料ボリュームが不足するためである。軸心部分の材料ボリュームが不足すると、軸状部分120aの先端部まで材料が充足されない可能性がある。 Here, the reason for molding the disc-shaped portion 130b after molding the shaft-shaped portion 120a is that the material volume of the shaft-shaped portion is insufficient when the shaft-shaped portion 120a is molded in reverse. If the material volume of the axial portion is insufficient, the material may not be filled up to the tip of the axial portion 120a.

但し、第2荒地130の円盤状部分130bの外径が比較的小さく、これに対して軸状部分120aの軸長が比較的短い場合は、円盤状部分130bを成形した後に軸状部分120a、130aを成形することも可能である。このように成形順を逆にしても、軸心部分の材料ボリュームが不足せず、したがって軸状部分120aの先端部まで材料を充足することができるからである。 However, when the outer diameter of the disk-shaped portion 130b of the second wasteland 130 is relatively small and the shaft length of the shaft-shaped portion 120a is relatively short, the shaft-shaped portion 120a, after molding the disk-shaped portion 130b, It is also possible to mold 130a. This is because even if the molding order is reversed in this way, the material volume of the axial center portion is not insufficient, and therefore the material can be filled up to the tip end portion of the axial portion 120a.

(e)の4工程は、(d)の第2荒地130の軸状部分130aと円盤状部分130bをさらに製品形状に近付けると共に、軸状部分130aと円盤状部分130bの周方向境界断面を薄肉化するものである。すなわち、(d)の第2荒地130の形状では、軸状部分130aと円盤状部分130bの周方向境界断面が厚すぎるため、1つの切り離し工程で両者を分離するのが困難である。 In the four steps (e), the shaft-shaped portion 130a and the disc-shaped portion 130b of the second wasteland 130 of (d) are further brought closer to the product shape, and the circumferential boundary cross section of the shaft-shaped portion 130a and the disc-shaped portion 130b is thinned. It is something that becomes. That is, in the shape of the second wasteland 130 in (d), since the circumferential boundary cross section of the shaft-shaped portion 130a and the disk-shaped portion 130b is too thick, it is difficult to separate the two in one separation step.

そこで本発明の製造方法では、(d)の第2荒地130の軸状部分130aと円盤状部分130bの周方向境界断面を(e)の4工程で薄肉化してから両者を切り離すことにした。詳しくは、(d)の円盤状部分130bの上面に高さが異なる同心状の環状段差面140d、140eを形成する。 Therefore, in the manufacturing method of the present invention, the circumferential boundary cross section of the axial portion 130a and the disc-shaped portion 130b of the second wasteland 130 (d) is thinned in the four steps of (e), and then the two are separated from each other. Specifically, concentric annular stepped surfaces 140d and 140e having different heights are formed on the upper surface of the disk-shaped portion 130b of (d).

高い方の段差面140dから低い方の段差面140eにかけて下り傾斜となる。一方、円盤状部分140bのほぼ水平な下面140fは軸状部分140aの外径面に対してほぼ直角で接続している。 A downward slope is formed from the higher step surface 140d to the lower step surface 140e. On the other hand, the substantially horizontal lower surface 140f of the disk-shaped portion 140b is connected to the outer diameter surface of the shaft-shaped portion 140a at a substantially right angle.

そこで、軸状部分140aを軸線方向下方にプレスすることで、前記下り傾斜の下端部を起点とし、軸状部分140aの外径面に延びる切り離し線140cに沿って、軸状部分140aを円盤状部分140bから切り離すことにした。なお、高い方の段差面140dと反対側の下面140fは後工程の熱間ローリングで必要となる段差でもある。 Therefore, by pressing the shaft-shaped portion 140a downward in the axial direction, the shaft-shaped portion 140a is formed into a disk shape along the cutting line 140c extending from the lower end portion of the downward inclination to the outer diameter surface of the shaft-shaped portion 140a. I decided to separate it from the part 140b. The lower surface 140f on the opposite side of the higher step surface 140d is also a step required for hot rolling in the subsequent process.

切り離した後の軸状部分140aと円盤状部分140bが図2A(f)に示される。円盤状部分140bはリングギヤの最終の荒地(第2中間材141)である。この荒地141の外径は158mm、軸長(高さH)は44mmである。 The shaft-shaped portion 140a and the disc-shaped portion 140b after being separated are shown in FIG. 2A (f). The disk-shaped portion 140b is the final wasteland (second intermediate material 141) of the ring gear. The wasteland 141 has an outer diameter of 158 mm and a shaft length (height H) of 44 mm.

また軸状部分140aはピニオンギヤの最終の荒地(第2中間材146)である。この荒地146の外径は67mm、軸長(高さH)は121mmである。 Further, the shaft-shaped portion 140a is the final wasteland (second intermediate material 146) of the pinion gear. The outer diameter of the wasteland 146 is 67 mm, and the shaft length (height H) is 121 mm.

最後に、荒地141と146をそれぞれ別工程で機械加工することで(g)と(h)の製品を得る。すなわち、荒地141をローリング(圧延)して外周面142aとフランジ142bを有する形状にした後、第1のギヤ加工部としての外周面142aをホブ切りすることで(g)のリングギヤ142を得る。 Finally, the products (g) and (h) are obtained by machining the wasteland 141 and 146 in separate steps, respectively. That is, after rolling (rolling) the wasteland 141 into a shape having an outer peripheral surface 142a and a flange 142b, the outer peripheral surface 142a as the first gear processing portion is hobbed to obtain the ring gear 142 of (g).

また、荒地146の第2のギヤ加工部としての外周面をホブ切りすることで(h)のピニオンギヤ147を得る。リングギヤ142の外径は、ローリング(圧延)の程度によりある程度増減可能なので、所要の外径を有するピニオンギヤ147を第2荒地130から無駄なく成形することができる。 Further, the pinion gear 147 of (h) is obtained by hobbing the outer peripheral surface of the wasteland 146 as the second gear processing portion. Since the outer diameter of the ring gear 142 can be increased or decreased to some extent depending on the degree of rolling, the pinion gear 147 having the required outer diameter can be formed from the second wasteland 130 without waste.

このように、本発明の製造方法によれば、従来の製造方法のように廃材(スクラップ246)を出さないで済むので、リングギヤ142やピニオンギヤ147の原価低減に有効である。また、リングギヤ142やピニオンギヤ147をセット鍛造することにより、材料費だけでなく製造コストも抑えることができる。 As described above, according to the manufacturing method of the present invention, it is not necessary to generate waste material (scrap 246) as in the conventional manufacturing method, which is effective in reducing the cost of the ring gear 142 and the pinion gear 147. Further, by forging the ring gear 142 and the pinion gear 147 as a set, not only the material cost but also the manufacturing cost can be suppressed.

(金型設備)
図2Bの(a)〜(f)は、前述した熱間鍛造成形に使用する金型設備の概略を示している。この金型設備は、基本的に上型と下型で構成される(金型総数は25種類)。上型と下型は、それぞれ1又は複数の型で構成される。複数の上型と複数の下型は、それぞれ同心状に配設される。
(Mold equipment)
(A) to (f) of FIGS. 2B show an outline of the mold equipment used for the above-mentioned hot forging molding. This mold equipment is basically composed of an upper mold and a lower mold (the total number of molds is 25 types). The upper mold and the lower mold are composed of one or more molds, respectively. The plurality of upper molds and the plurality of lower molds are arranged concentrically with each other.

上型を可動型、下型を固定型とした場合、上型を例えば2500〜3500tプレスで駆動する。また熱間の加熱温度は例えば900〜1260℃である。 When the upper mold is a movable type and the lower mold is a fixed type, the upper mold is driven by, for example, a 2500 to 3500 t press. The heating temperature between heats is, for example, 900 to 1260 ° C.

図2Bの(a)は、素材100を上下方向で圧縮する上型A1と下型A’2を示している。(b)の横型A’1は下型A’2と一体であって、据込み鍛造時に鍛造品110の外径を規制するものである。(c)は軸状部分120aの押出し成形に使用する上型B1、下型B’2、横型B’1(下型B’2と一体)を示している。 FIG. 2B (a) shows an upper die A1 and a lower die A'2 that compress the material 100 in the vertical direction. The horizontal die A'1 of (b) is integrated with the lower die A'2, and regulates the outer diameter of the forged product 110 at the time of stationary forging. (C) shows the upper mold B1, the lower mold B'2, and the horizontal mold B'1 (integrated with the lower mold B'2) used for extrusion molding of the shaft-shaped portion 120a.

(d)は円盤状部分130bを成形するための上型C1、C2、下型C’2、C’3、横型C’1(下型C’2と一体)を示すものである。横型C’1によって円盤状部分130bの外径が規制される。 (D) shows the upper mold C1, C2, the lower mold C'2, C'3, and the horizontal mold C'1 (integrated with the lower mold C'2) for forming the disk-shaped portion 130b. The outer diameter of the disk-shaped portion 130b is regulated by the horizontal type C'1.

(e)は、前工程(d)の軸状部分130aと円盤状部分130bの周方向境界断面を薄肉化するための、上型D1、D2、D3、下型D’2、D’3、D’4、D’5、横型D’1(下型D’2と一体)を示すものである。横型D’1によって円盤状部分140bの外径が規制される。 In (e), upper molds D1, D2, D3, lower molds D'2, D'3, for thinning the circumferential boundary cross section of the axial portion 130a and the disc-shaped portion 130b in the previous step (d), It shows D'4, D'5, and horizontal type D'1 (integrated with lower type D'2). The outer diameter of the disk-shaped portion 140b is regulated by the horizontal type D'1.

上型D2と下型D’3の間において、軸状部分140aと円盤状部分140bの周方向境界断面が圧縮されて薄肉化される。このように周方向境界断面が薄肉化されることで、(f)の5工程において軸状部分140a(第2中間材146)を容易に切り離すことができる。また、この薄肉化により径方向外側への材料流れが生じ、円盤状部分140bの周縁部が軸線方向(上下方向)に肥厚化する作用が得られる。 Between the upper die D2 and the lower die D'3, the circumferential boundary cross section of the shaft-shaped portion 140a and the disk-shaped portion 140b is compressed and thinned. By thinning the peripheral boundary cross section in this way, the axial portion 140a (second intermediate member 146) can be easily separated in the five steps (f). Further, this thinning causes a material flow outward in the radial direction, and an action of thickening the peripheral edge portion of the disk-shaped portion 140b in the axial direction (vertical direction) can be obtained.

(f)の5工程では、上型E1、E2、E3、下型E’1,E’2が使用される。上型E1と下型E’1,E’2によって円盤状部分140bの外周部が上下方向から挟まれて固定される。 In the five steps of (f), the upper molds E1, E2, E3 and the lower molds E'1 and E'2 are used. The outer peripheral portion of the disk-shaped portion 140b is sandwiched and fixed from the vertical direction by the upper mold E1 and the lower molds E'1 and E'2.

この状態で、上型E2、E3によって軸状部分146を下方にプレスして円盤状部分140bから切り離す。切り離し線140cが薄肉化されているので、切り離し時のプレス圧低減、打ち抜きパンチへの負荷軽減とパンチ寿命の延長を図ることができる。 In this state, the shaft-shaped portion 146 is pressed downward by the upper molds E2 and E3 to separate it from the disk-shaped portion 140b. Since the separation line 140c is thinned, it is possible to reduce the press pressure at the time of separation, reduce the load on the punch, and extend the punch life.

(円盤状部分と軸状部分の軸方向連続位置)
図3は、円盤状部分140b(リングギヤ荒地)と軸状部分140a(ピニオンギヤ荒地)の軸方向連続位置の違いによる、両者の切り離し性への影響を示す図である。なお、図3の金型形状は図2Bを単純化して示している。
(Axial continuous position of disk-shaped part and shaft-shaped part)
FIG. 3 is a diagram showing the influence on the separability of the disc-shaped portion 140b (ring gear rough ground) and the shaft-shaped portion 140a (pinion gear rough ground) due to the difference in the continuous positions in the axial direction. The mold shape shown in FIG. 3 is a simplification of FIG. 2B.

図3で軸状部分140aの外径が少し大きくなっている部分が、ピニオンギヤの第2のギヤ加工部の形成予定位置である。この形成予定位置に円盤状部分140bの内径側が連続している。図3左端列が軸方向連続位置が上側、中央列が軸方向連続位置が中央、右端列が軸方向連続位置が下側の場合である。なお、連続部分の軸方向長さは、図3左端列では薄肉化した寸法Aであるが、他の寸法B、Cは薄肉化を省略している(A<B=C)。 In FIG. 3, the portion where the outer diameter of the shaft-shaped portion 140a is slightly larger is the planned formation position of the second gear processed portion of the pinion gear. The inner diameter side of the disk-shaped portion 140b is continuous at this planned formation position. FIG. 3 is a case where the leftmost row has the axial continuous position on the upper side, the central row has the axial continuous position at the center, and the rightmost row has the axial continuous position on the lower side. The axial length of the continuous portion is the thinned dimension A in the leftmost column of FIG. 3, but the other dimensions B and C omit the thinning (A <B = C).

本願実施形態では、図3左端列のように、円盤状部分140b(リングギヤ荒地)と軸状部分140a(ピニオンギヤ荒地)の軸方向連続位置を上側にしている。この上側位置は、切り離し工程で軸状部分140aを押圧する方向とは反対側の軸方向端部である。 In the embodiment of the present application, as shown in the leftmost row of FIG. 3, the continuous positions in the axial direction of the disk-shaped portion 140b (ring gear rough ground) and the shaft-shaped portion 140a (pinion gear rough ground) are on the upper side. This upper position is an axial end portion on the side opposite to the direction in which the axial portion 140a is pressed in the cutting step.

この位置で両者を連続させることで、切り離し初期から切り離し中期にかけて、軸状部分140aの外周面(第2のギヤ加工部の形成予定位置)に発生する歪が少なく、切り離し後の機械加工工程数を低減することができる。歪が少ないのは、前述した薄肉化による寸法Aも有利に作用すると推測される。 By making both of them continuous at this position, there is less distortion generated on the outer peripheral surface of the shaft-shaped portion 140a (the position where the second gear processing portion is planned to be formed) from the initial stage of separation to the middle stage of separation, and the number of machining steps after separation is small. Can be reduced. It is presumed that the reason why the distortion is small is that the dimension A due to the thinning described above also has an advantageous effect.

これとは反対に、図3右端列のように軸方向連続位置を下側にした場合、切り離し初期で軸状部分140aの外周面の下側段差部で切り離し抵抗により大きな傾斜NG1が発生する。また、切り離し中期では軸状部分140aの外周面の上側段差部で切り離し抵抗により大きな膨らみNG2が発生する。下側の傾斜NG1は、寸法Cを薄肉化(寸法A)することである程度は低減するが、上側の膨らみNG2は却って大きくなる。切り離し前の連続位置から切り離し完了までの距離が長いことにより、肉移動量が大きくなるからである。 On the contrary, when the continuous position in the axial direction is set to the lower side as shown in the right end row of FIG. 3, a large inclination NG1 is generated due to the disconnection resistance at the lower step portion of the outer peripheral surface of the axial portion 140a at the initial stage of disconnection. Further, in the middle stage of disconnection, a large bulge NG2 is generated due to the disconnection resistance at the upper step portion of the outer peripheral surface of the shaft-shaped portion 140a. The lower inclination NG1 is reduced to some extent by thinning the dimension C (dimension A), but the upper bulge NG2 is rather large. This is because the amount of meat movement increases because the distance from the continuous position before the separation to the completion of the separation is long.

また図3中央列のように軸方向連続位置を中央にした場合、切り離し初期では特に問題は見られない。しかし、切り離し中期で軸状部分140aの外周面の上側段差部で切り離し抵抗により僅かな膨らみNG3が発生する。切り離し前の連続位置から切り離し完了までの距離が本実施形態(左端列)より長くなるので、その分だけ肉移動量が大きくなるからである。 Further, when the continuous position in the axial direction is set to the center as shown in the center row of FIG. 3, no particular problem is observed at the initial stage of disconnection. However, in the middle stage of disconnection, a slight bulge NG3 is generated due to the disconnection resistance at the upper step portion of the outer peripheral surface of the shaft-shaped portion 140a. This is because the distance from the continuous position before the separation to the completion of the separation is longer than that of the present embodiment (leftmost row), so that the amount of meat movement is increased accordingly.

このように、円盤状部分140b(リングギヤ荒地)と軸状部分140a(ピニオンギヤ荒地)の軸方向連続位置を上側にしない場合、傾斜や膨らみの変形部分(NG1〜3)を切り離し後の機械加工で修正する必要があり、その分だけ工程数が増加してコストアップになってしまう。 In this way, when the axial continuous position of the disk-shaped portion 140b (ring gear rough ground) and the shaft-shaped portion 140a (pinion gear rough ground) is not set upward, the deformed portion (NG1 to 3) of inclination or bulge is separated and then machined. It is necessary to correct it, and the number of processes increases by that amount, resulting in an increase in cost.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能である。例えば前記実施形態では0工程(材料)から1〜3工程を経て第2荒地130を成形したが、素材の種類や第2荒地130の形状によっては、0工程(材料)から第2荒地130を直接成形することも可能である。その場合は図2Bの(b)と(c)の工程を省略することができる。
可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be modified in various ways. For example, in the above embodiment, the second wasteland 130 is formed through steps 0 (material) to 1 to 3, but depending on the type of material and the shape of the second wasteland 130, the second wasteland 130 may be formed from step 0 (material). It is also possible to mold directly. In that case, the steps (b) and (c) of FIG. 2B can be omitted.
It is possible.

100:素材 110:鍛造品
120:第1荒地 130:第2荒地
120a、130a、140a:軸状部分 130b、140b:円盤状部分
140:第1中間材 140c:切り離し線
140d、140e:段差面 140f:下面
141、146:第2中間材(荒地) 142:リングギヤ
142a:外周面 142b:フランジ
147:ピニオンギヤ 240:第1中間材
240a:リング状部分 240b:円盤状部分
240c:破線部 241:第2中間材
242:ギヤ粗材 246:スクラップ
100: Material 110: Forged product 120: First wasteland 130: Second wasteland
120a, 130a, 140a: Shaft-shaped part 130b, 140b: Disc-shaped part 140: First intermediate material 140c: Dotted line 140d, 140e: Stepped surface 140f: Lower surface 141, 146: Second intermediate material (rough ground) 142: Ring gear 142a : Outer peripheral surface 142b: Flange 147: Pinion gear 240: First intermediate material 240a: Ring-shaped part 240b: Disc-shaped part 240c: Dashed line part 241: Second intermediate material 242: Gear rough material 246: Scrap

Claims (4)

円柱状の素材を熱間据込鍛造することにより、リングギヤの荒地としての円盤状部分と、当該円盤状部分の中心部から軸線方向片側方向に延びたピニオンギヤの荒地としての軸状部分とを有する中間材を成形する第1工程と、
前記円盤状部分と前記軸状部分の周方向境界断面を上下型でプレスして薄肉化する第2工程と、
前記軸状部分を軸線方向片側方向に押圧することにより、当該軸状部分を前記円盤状部分から薄肉化した前記周方向境界断面で切り離す第3工程と、
前記第3工程で前記円盤状部分から前記軸状部分を切り離して得られたリング状部材を、ローリングによって径寸法を拡大すると共に、当該リング状部材の外周面に後工程でギヤを加工するための第1のギヤ加工部を形成する第4工程と、
前記第3工程で切り離した前記軸状部分の外周面に、後工程でギヤを加工するための第2のギヤ加工部を形成する第5工程と、
を有し、
前記第1工程と前記第2工程において、前記円盤状部分と前記軸状部分が連続する連続位置を、前記第2のギヤ加工部の形成予定位置であって、前記第3工程で前記軸状部分を押圧する方向と反対側の軸方向端部に設けることを特徴とするリングギヤとピニオンギヤの製造方法。
By hot-installing and forging a columnar material, it has a disk-shaped portion as a rough ground for the ring gear and a shaft-shaped portion as a rough ground for the pinion gear extending in one axial direction from the center of the disk-shaped portion. The first step of molding the intermediate material and
The second step of pressing the circumferential boundary cross section of the disk-shaped portion and the shaft-shaped portion with an upper and lower mold to make the wall thinner.
A third step of pressing the shaft-shaped portion in one side in the axial direction to separate the shaft-shaped portion from the disk-shaped portion at the circumferential boundary cross section.
In order to expand the diameter dimension of the ring-shaped member obtained by separating the shaft-shaped portion from the disk-shaped portion in the third step by rolling and to process a gear on the outer peripheral surface of the ring-shaped member in a subsequent step. The fourth step of forming the first gear processing portion of
A fifth step of forming a second gear processing portion for processing a gear in a subsequent process on the outer peripheral surface of the shaft-shaped portion separated in the third step.
Have,
In the first step and the second step, the continuous position where the disk-shaped portion and the shaft-shaped portion are continuous is the position where the second gear processing portion is planned to be formed, and the shaft-shaped portion is formed in the third step. A method for manufacturing a ring gear and a pinion gear, which is provided at an axial end portion opposite to the direction in which the portion is pressed.
前記第1工程において、前記素材を軸線方向片側方向に前方押出しすることにより前記軸状部分を成形した後、前記円盤状部分を成形することを特徴とする請求項1の製造方法。 The manufacturing method according to claim 1, wherein in the first step, the shaft-shaped portion is molded by extruding the material forward in one side direction in the axial direction, and then the disk-shaped portion is molded. 前記第1工程において、前記円柱状の素材を第1の上下型でプレスすることにより軸長と外径の比が85%〜95%の鍛造品を成形し、当該鍛造品を第2の上下型でプレスして当該鍛造品を軸線方向片側方向に前方押出しすることにより前記軸状部分を成形した後、前記軸状部分の基端側を第3の上下型でプレスして拡径することにより前記円盤状部分を成形することを特徴とする請求項1の製造方法。 In the first step, the columnar material is pressed with the first upper and lower molds to form a forged product having a shaft length to outer diameter ratio of 85% to 95%, and the forged product is pressed into the second upper and lower parts. After forming the shaft-shaped portion by pressing with a mold and extruding the forged product forward in one side in the axial direction, the base end side of the shaft-shaped portion is pressed with a third vertical mold to expand the diameter. The manufacturing method according to claim 1, wherein the disk-shaped portion is formed by the above method. 前記第2工程において、前記薄肉化による径方向外側への材料流れにより前記円盤状部分の周縁部を肥厚化することを特徴とする請求項1から3のいずれか1項の製造方法。 The production method according to any one of claims 1 to 3, wherein in the second step, the peripheral edge portion of the disk-shaped portion is thickened by the material flow outward in the radial direction due to the thinning.
JP2020201038A 2020-12-03 2020-12-03 How to manufacture ring gears and pinion gears Active JP6927469B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020201038A JP6927469B1 (en) 2020-12-03 2020-12-03 How to manufacture ring gears and pinion gears
CN202111431095.9A CN114589287B (en) 2020-12-03 2021-11-29 Method for manufacturing ring gear and pinion gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201038A JP6927469B1 (en) 2020-12-03 2020-12-03 How to manufacture ring gears and pinion gears

Publications (2)

Publication Number Publication Date
JP6927469B1 true JP6927469B1 (en) 2021-09-01
JP2022088905A JP2022088905A (en) 2022-06-15

Family

ID=77456246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201038A Active JP6927469B1 (en) 2020-12-03 2020-12-03 How to manufacture ring gears and pinion gears

Country Status (2)

Country Link
JP (1) JP6927469B1 (en)
CN (1) CN114589287B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069756A (en) * 1958-07-10 1962-12-25 Clark Equipment Co Method of forming gear blanks
JPS59183948A (en) * 1984-03-15 1984-10-19 Nippon Seiko Kk Production of blank material for inner ring and outer ring of tapered roller bearing
US4590780A (en) * 1982-10-06 1986-05-27 Hatebur Umformmaschinen Ag Process and apparatus for producing at least two forgings on a hot-forming press
JPH11244985A (en) * 1998-03-04 1999-09-14 Ntn Corp Blank for forming bearing preform
JP2010064134A (en) * 2008-09-12 2010-03-25 Aichi Steel Works Ltd Rolling mill apparatus
US7895873B1 (en) * 2008-04-23 2011-03-01 Meadville Forging Co LP Method and system for simultaneously forging two parts
JP2016117079A (en) * 2014-12-19 2016-06-30 Ntn株式会社 Manufacturing method of hub ring and inner member of wheel bearing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263929C (en) * 1998-03-04 2006-10-24 Ntn Corporation Method and device for forming blanks for bearing rings
CN101934340A (en) * 2009-06-30 2011-01-05 株式会社阪村热处理技术 Method and apparatus for manufacturing inner ring and outer ring
JP2013240819A (en) * 2012-05-22 2013-12-05 Kotani:Kk Method and device for manufacturing bearing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069756A (en) * 1958-07-10 1962-12-25 Clark Equipment Co Method of forming gear blanks
US4590780A (en) * 1982-10-06 1986-05-27 Hatebur Umformmaschinen Ag Process and apparatus for producing at least two forgings on a hot-forming press
JPS59183948A (en) * 1984-03-15 1984-10-19 Nippon Seiko Kk Production of blank material for inner ring and outer ring of tapered roller bearing
JPH11244985A (en) * 1998-03-04 1999-09-14 Ntn Corp Blank for forming bearing preform
US7895873B1 (en) * 2008-04-23 2011-03-01 Meadville Forging Co LP Method and system for simultaneously forging two parts
JP2010064134A (en) * 2008-09-12 2010-03-25 Aichi Steel Works Ltd Rolling mill apparatus
JP2016117079A (en) * 2014-12-19 2016-06-30 Ntn株式会社 Manufacturing method of hub ring and inner member of wheel bearing device

Also Published As

Publication number Publication date
JP2022088905A (en) 2022-06-15
CN114589287A (en) 2022-06-07
CN114589287B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP5803127B2 (en) Method of manufacturing a rough profile for a bearing ring of a rolling bearing
EP1574271B1 (en) Method and device for manufacturing a gear
JPH0712509B2 (en) Outside ring manufacturing method
JP5446787B2 (en) Ring material manufacturing method
WO2018016488A1 (en) Method for manufacturing cylindrical ring member, bearing, clutch, vehicle, and machine
JP5966726B2 (en) Method for manufacturing bearing ring member
JP5737371B2 (en) Manufacturing method of outer ring of rolling bearing unit for wheel support
JP6927469B1 (en) How to manufacture ring gears and pinion gears
JP2014024091A5 (en)
EP1138416B1 (en) Gear and shaft and forming method thereof
JP5556297B2 (en) Manufacturing method of bearing ring member of rolling bearing unit for supporting wheel
JP6123917B2 (en) Manufacturing method of annular member
JP5446785B2 (en) Ring material manufacturing method
JP3583614B2 (en) Gear manufacturing method
JP6398659B2 (en) Tooth profile part manufacturing method and tooth profile part manufacturing apparatus
KR20180109301A (en) Method for making raceways for vehicles
JP3770960B2 (en) Manufacturing method of gear by cold forging and die used therefor
WO2016117364A1 (en) Method for producing machine part, and machine part
JP4118528B2 (en) Manufacturing method of outer ring for cross groove joint
KR200458880Y1 (en) Forging shape for the lower part spline of one way clutch inner race in 6-speed automatic transmission
JP2005205457A (en) Method of manufacturing inner/outer rings of double ball bearing
JPH0759341B2 (en) Manufacturing method of integrated synchro clutch gear for synchro mechanism of transmission
KR100612758B1 (en) Method for Fabrication of Spur Gear with High Precise Dimension
JPS588931B2 (en) Cold forming method for spline shaft
JP2011131251A (en) Method of manufacturing base stock for ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6927469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150