JP6926803B2 - Hydraulic oil supply device with flow control valve and flow control valve - Google Patents

Hydraulic oil supply device with flow control valve and flow control valve Download PDF

Info

Publication number
JP6926803B2
JP6926803B2 JP2017153494A JP2017153494A JP6926803B2 JP 6926803 B2 JP6926803 B2 JP 6926803B2 JP 2017153494 A JP2017153494 A JP 2017153494A JP 2017153494 A JP2017153494 A JP 2017153494A JP 6926803 B2 JP6926803 B2 JP 6926803B2
Authority
JP
Japan
Prior art keywords
control valve
linear motion
hole
hole portion
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153494A
Other languages
Japanese (ja)
Other versions
JP2019007611A (en
Inventor
壽 小野
壽 小野
俊哉 小木曽
俊哉 小木曽
健太 井手
健太 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Publication of JP2019007611A publication Critical patent/JP2019007611A/en
Application granted granted Critical
Publication of JP6926803B2 publication Critical patent/JP6926803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体圧により開度を変更して流量を制御する流量制御弁および流量制御弁を備えた作動油供給装置に関する。 The present invention relates to a hydraulic oil supply device including a flow rate control valve and a flow rate control valve that control the flow rate by changing the opening degree according to the fluid pressure.

従来、底部に受圧面を有し、側壁の外周面に環状凹部が形成された有底筒状の弁体と、弁体を収容するハウジングとを備えた流量制御弁が知られている(例えば、特許文献1〜2参照)。この流量制御弁は、内燃機関の回転数に応じて駆動する機械式オイルポンプから吐出された作動油の流量(油圧)を制御するために用いられている。具体的には、機械式オイルポンプから吐出された作動油が、弁開閉時期制御装置やピストンジェット等に連通する第1油路と、メインギャラリに連通する第2油路とに分配され、流量制御弁が、これら第1油路と第2油路とに流通する作動油の流量(油圧)を制御する。 Conventionally, a flow control valve having a bottomed tubular valve body having a pressure receiving surface at the bottom and an annular recess formed on the outer peripheral surface of the side wall and a housing for accommodating the valve body is known (for example). , Patent Documents 1 and 2). This flow rate control valve is used to control the flow rate (flood control) of the hydraulic oil discharged from the mechanical oil pump that is driven according to the rotation speed of the internal combustion engine. Specifically, the hydraulic oil discharged from the mechanical oil pump is distributed to the first oil passage that communicates with the valve opening / closing timing control device, the piston jet, etc., and the second oil passage that communicates with the main gallery, and the flow rate. The control valve controls the flow rate (hydraulic pressure) of the hydraulic oil flowing through the first oil passage and the second oil passage.

特許文献1〜2に記載の流量制御弁は、ハウジングの一部に弁体の受圧面に連通する連通路を形成しており、第1油路又は第2油路を流通する作動油を連通路を介して受圧面に作用させることで、作動油の流通方向に直交する方向に弁体が移動するように構成されている。 The flow control valve described in Patent Documents 1 and 2 forms a communication passage communicating with the pressure receiving surface of the valve body in a part of the housing, and connects the hydraulic oil flowing through the first oil passage or the second oil passage. By acting on the pressure receiving surface through the passage, the valve body is configured to move in the direction orthogonal to the flow direction of the hydraulic oil.

特許文献1に記載の流量制御弁は、第2油路の経路上に配置されており、弁体(文献ではスプール)の側壁に油路断面積の異なる2つの環状凹部(文献では第一連通路,第二連通路)を設け、内燃機関の回転数に応じてメインギャラリに供給される第2油路の油圧を段階的に変化させている。これにより、内燃機関の回転数に応じて必要な油圧を設定することが可能となるので、ポンプの無駄な仕事量を減少させて燃費の向上を図ることができると記載されている。 The flow control valve described in Patent Document 1 is arranged on the path of the second oil passage, and two annular recesses (the first series in the document) having different oil passage cross-sectional areas on the side wall of the valve body (spool in the document). A passage (passage, second passage) is provided, and the oil pressure of the second oil passage supplied to the main gallery is changed stepwise according to the rotation speed of the internal combustion engine. As a result, it is possible to set the required flood control according to the rotation speed of the internal combustion engine, so that it is possible to reduce the wasteful work amount of the pump and improve the fuel efficiency.

特許文献2に記載の流量制御弁は、第1油路と第2油路との経路上に夫々流入口および流出口を有するハウジングと、第1油路の流入口および流出口に連通する第1環状凹部(文献では第1凹部)と第2油路の流入口および流出口に連通する第2環状凹部(文献では第2凹部)とを有する弁体とを備えている。内燃機関の回転数が上がり始める初期段階では第1油路に連通する第1環状凹部の油路断面積を第2油路に連通する第2環状凹部の油路断面積より大きく設定している。そして、回転数が上がり始めて弁体が移動するに従って、第1環状凹部の油路断面積が次第に小さくなり、第2環状凹部の油路断面積が次第に大きくなるように構成することで、第2油路の油圧上昇勾配を第1油路の油圧上昇勾配よりも小さくしている。これにより、オイルポンプの駆動損失を低減して、燃費の悪化を抑制することができると記載されている。 The flow rate control valve described in Patent Document 2 communicates with a housing having an inflow port and an outflow port on the path between the first oil passage and the second oil passage, respectively, and the inflow port and the outflow port of the first oil passage. It includes a valve body having one annular recess (first recess in the literature) and a second annular recess (second recess in the literature) communicating with the inlet and outlet of the second oil passage. At the initial stage when the rotation speed of the internal combustion engine starts to increase, the oil passage cross-sectional area of the first annular recess communicating with the first oil passage is set to be larger than the oil passage cross-sectional area of the second annular recess communicating with the second oil passage. .. Then, as the rotation speed starts to increase and the valve body moves, the oil passage cross-sectional area of the first annular recess gradually decreases, and the oil passage cross-sectional area of the second annular recess gradually increases. The oil pressure rise slope of the oil passage is made smaller than the oil pressure rise slope of the first oil passage. It is stated that this can reduce the drive loss of the oil pump and suppress the deterioration of fuel efficiency.

特開2013−092088号公報Japanese Unexamined Patent Publication No. 2013-092088 特開2014−101809号公報Japanese Unexamined Patent Publication No. 2014-101809

従来の流量制御弁は、メインギャラリに連通する第2油路を流通する作動油の流量を最適なものにして燃費の悪化を抑制することができるが、弁体の移動方向が作動油の流通方向(油路)に直交しているため、油路の周囲に流量制御弁用の設置スペースを設ける必要がある。このため、油路に直交する方向に流量制御弁用の大きな穴加工が別途必要となり、加工コストが上昇すると共に、様々な機器が密集する内燃機関にあっては流量制御弁の設置スペースが限定されるので、設計自由度が低下してしまう。 The conventional flow rate control valve can optimize the flow rate of the hydraulic oil flowing through the second oil passage communicating with the main gallery and suppress the deterioration of fuel efficiency, but the movement direction of the valve body is the flow of the hydraulic oil. Since it is orthogonal to the direction (oil passage), it is necessary to provide an installation space for the flow control valve around the oil passage. For this reason, it is necessary to separately drill a large hole for the flow control valve in the direction orthogonal to the oil passage, which increases the machining cost and limits the installation space of the flow control valve in an internal combustion engine in which various devices are densely packed. Therefore, the degree of freedom in design is reduced.

また、ハウジングの一部に形成された連通路を介して弁体の受圧面に油圧を作用させる構成であるため、連通路の油路断面積の設定が適正でない場合は応答性の低下を招くおそれがある。 Further, since the structure is such that the hydraulic pressure is applied to the pressure receiving surface of the valve body through the communication passage formed in a part of the housing, the responsiveness is deteriorated if the oil passage cross-sectional area of the communication passage is not set appropriately. There is a risk.

そこで、簡便な構成で応答性を確保すると共に設計自由度の高い安価な流量制御弁およびこの流量制御弁を備えた作動油供給装置が望まれている。 Therefore, an inexpensive flow rate control valve having a simple configuration and ensuring responsiveness and a high degree of freedom in design, and a hydraulic oil supply device equipped with this flow rate control valve are desired.

流量制御弁の特徴構成は、流体の圧力が作用する受圧面を有し、当該受圧面に前記圧力が作用することにより前記流体の流通方向に沿って移動可能な直動部材と、前記圧力に対抗して前記直動部材を付勢する付勢部材と、第一孔部と第二孔部とを含む第一底部を有し、前記直動部材の移動を案内する有底筒状の案内部材と、第三孔部と第四孔部とを含む第二底部を有し、前記直動部材の移動に連動して前記案内部材に対して相対回転する有底筒状の回動部材と、を備え、前記第一孔部と前記第三孔部とが常時連通した状態で前記第一底部と前記第二底部とが当接しており、前記第二孔部と前記第四孔部とは、前記回動部材の前記案内部材に対する相対回転により連通面積が変更可能に構成されている点にある。 The characteristic configuration of the flow control valve is that it has a pressure receiving surface on which the pressure of the fluid acts, and the linear motion member that can move along the flow direction of the fluid by the pressure acting on the pressure receiving surface and the pressure. A bottomed tubular guide having a urging member for urging the linear motion member and a first bottom portion including a first hole portion and a second hole portion to guide the movement of the linear motion member. A bottomed tubular rotating member having a member and a second bottom portion including a third hole portion and a fourth hole portion and rotating relative to the guide member in conjunction with the movement of the linear motion member. , And the first bottom portion and the second bottom portion are in contact with each other in a state where the first hole portion and the third hole portion are always in communication with each other. The point is that the communication area can be changed by the relative rotation of the rotating member with respect to the guide member.

本構成の流量制御弁は、付勢部材の付勢力を上回る流体圧が受圧面に作用することにより流体の流通方向に沿って移動する直動部材と、直動部材を案内する有底筒状の案内部材と、直動部材の移動に連動して案内部材に対して相対回転する有底筒状の回動部材とを備えている。つまり、直動部材が流路方向に沿って移動し、この直動部材の移動に連動して回動部材を回転させているので、流路に直交する方向に移動する弁体を設けていない。このため、流路と同軸方向に流量制御弁を配置することが可能となり、流路に直交する方向に大きな穴加工を行う必要がない。その結果、流路の穴を拡大するだけで流量制御弁用の設置スペースを確保することができる。よって、加工コストが低減されると共に、流路の周囲に大きなスペースを必要とせずに設計自由度を高めることができる。 The flow control valve of this configuration has a linear motion member that moves along the flow direction of the fluid by acting on the pressure receiving surface with a fluid pressure that exceeds the urging force of the urging member, and a bottomed tubular shape that guides the linear motion member. The guide member is provided with a bottomed tubular rotating member that rotates relative to the guide member in conjunction with the movement of the linear motion member. That is, since the linear motion member moves along the flow path direction and the rotating member is rotated in conjunction with the movement of the linear motion member, the valve body that moves in the direction orthogonal to the flow path is not provided. .. Therefore, the flow control valve can be arranged coaxially with the flow path, and it is not necessary to make a large hole in the direction orthogonal to the flow path. As a result, the installation space for the flow control valve can be secured only by enlarging the hole in the flow path. Therefore, the processing cost can be reduced, and the degree of freedom in design can be increased without requiring a large space around the flow path.

また、本構成では、案内部材の第一孔部と回動部材の第三孔部とを常時連通させ、案内部材の第二孔部と回動部材の第四孔部とが、回動部材の相対回転によって連通面積が変更可能に構成されている。これにより、第一孔部と第三孔部とが連通するのみの小流量モードと、第二孔部と第四孔部との連通面積を次第に増加させることで流体圧の上昇勾配を緩やかにする流量漸増モードと、全ての孔部が連通する大流量モードとの設定が可能となる。これらのモード設定は、流体の流通方向に沿って移動する直動部材の受圧面に流体圧を作用させることで行われるので、流体の圧損を小さくして直動部材の応答性を高めることができる。 Further, in this configuration, the first hole portion of the guide member and the third hole portion of the rotating member are always communicated with each other, and the second hole portion of the guide member and the fourth hole portion of the rotating member are connected to each other. The communication area can be changed by the relative rotation of. As a result, the small flow rate mode in which the first hole and the third hole only communicate with each other and the communication area between the second hole and the fourth hole are gradually increased to gently increase the gradient of the fluid pressure. It is possible to set a flow rate gradual increase mode and a large flow rate mode in which all the holes communicate with each other. Since these modes are set by applying fluid pressure to the pressure receiving surface of the linear motion member that moves along the flow direction of the fluid, it is possible to reduce the pressure loss of the fluid and improve the responsiveness of the linear motion member. can.

このように、簡便な構成で応答性を確保すると共に設計自由度の高い安価な流量制御弁を提供できた。 In this way, it was possible to provide an inexpensive flow control valve with a high degree of freedom in design while ensuring responsiveness with a simple configuration.

他の特徴構成は、前記直動部材は、前記受圧面を含む円環状の鍔状部と、前記鍔状部から延出した延出部とを有し、当該延出部には貫通孔部が形成されており、前記案内部材における前記第一底部から延出した第一側壁部には、前記流通方向に沿う第一長孔が形成されており、前記回動部材における前記第二底部から延出した第二側壁部には、前記第一長孔に対して傾斜した第二長孔が形成されており、前記貫通孔部と前記第一長孔と前記第二長孔とに亘って配置され、前記貫通孔部に支持されたピン状部材を備え、前記直動部材の移動により、前記ピン状部材が前記第二長孔の縁部に当接しながら移動して前記回動部材が前記案内部材に対して相対回転する点にある。 Another characteristic configuration is that the linear motion member has an annular flange-shaped portion including the pressure receiving surface and an extending portion extending from the flange-shaped portion, and the extending portion has a through hole portion. Is formed, and a first elongated hole along the flow direction is formed in the first side wall portion extending from the first bottom portion of the guide member, and from the second bottom portion of the rotating member. A second elongated hole inclined with respect to the first elongated hole is formed in the extended second side wall portion, and extends over the through hole portion, the first elongated hole, and the second elongated hole. A pin-shaped member arranged and supported by the through hole portion is provided, and by moving the linear motion member, the pin-shaped member moves while abutting on the edge portion of the second elongated hole, and the rotating member moves. It is at a point where it rotates relative to the guide member.

本構成では、ピン状部材が支持された貫通孔部を有する直動部材が案内部材に対して相対回転することなく流体の流通方向に沿って移動することで、案内部材の第一長孔に沿ってピン状部材が移動し、この第一長孔に対して傾斜した回動部材の第二長孔にピン状部材が当接して、回動部材の案内部材に対する相対回転が実現する。このように、回動部材の案内部材に対する相対回転は、各部材に孔を加工してピン状部材を挿入するだけで実現されるので、製造が極めて容易である。 In this configuration, the linear motion member having the through hole portion in which the pin-shaped member is supported moves along the flow direction of the fluid without rotating relative to the guide member, thereby forming the first elongated hole of the guide member. The pin-shaped member moves along the pin-shaped member, and the pin-shaped member abuts on the second elongated hole of the rotating member that is inclined with respect to the first elongated hole, and the relative rotation of the rotating member with respect to the guide member is realized. As described above, the relative rotation of the rotating member with respect to the guide member is realized only by processing a hole in each member and inserting the pin-shaped member, so that the manufacturing is extremely easy.

他の特徴構成は、前記直動部材、前記案内部材および前記回動部材は、何れも円筒形状であって同じ軸芯上に配置されると共に、前記受圧面が前記案内部材および前記回動部材の端部と隣り合う状態で前記案内部材および前記回動部材よりも径方向外側に配置されており、前記案内部材の前記端部には、前記受圧面への前記流体の流通を許容する連通路が形成されている点にある。 Another characteristic configuration is that the linear motion member, the guide member, and the rotating member are all cylindrical and arranged on the same axis, and the pressure receiving surface is the guide member and the rotating member. The guide member and the rotating member are arranged radially outside the guide member so as to be adjacent to the end portion of the guide member, and the end portion of the guide member allows the flow of the fluid to the pressure receiving surface. It is at the point where the passage is formed.

本構成では、直動部材、案内部材および回動部材は何れも円筒形状であって同じ軸芯上に配置されているため、回動部材の端部の径方向内側に流路が形成される。このとき、案内部材および回動部材の端部に隣り合った径方向外側に直動部材の受圧面を形成し、案内部材の端部に連通路を形成しているので、流体が円滑に受圧面の方向に流動し、直動部材の応答性を高めることができる。 In this configuration, since the linear motion member, the guide member, and the rotating member are all cylindrical and arranged on the same axis, a flow path is formed inside the end of the rotating member in the radial direction. .. At this time, since the pressure receiving surface of the linear motion member is formed on the radial outer side adjacent to the end portions of the guide member and the rotating member and the continuous passage is formed at the end portion of the guide member, the fluid smoothly receives the pressure. It flows in the direction of the surface, and the responsiveness of the linear motion member can be enhanced.

他の特徴構成は、前記直動部材、前記案内部材および前記回動部材は、装着部位となるハウジングと当該ハウジングに装着されるカバーとの合わせ面に形成された凹部に収容されている点にある。 Another characteristic configuration is that the linear motion member, the guide member, and the rotating member are housed in a recess formed on a mating surface between a housing to be mounted and a cover to be mounted on the housing. be.

本構成では合わせ面に凹部を形成しているので、流路の加工に合わせて、流量制御弁用に流路の周囲を拡げる加工が極めて容易である。 In this configuration, since the concave portion is formed on the mating surface, it is extremely easy to expand the circumference of the flow path for the flow control valve in accordance with the processing of the flow path.

第一の流量制御弁としての特徴構成は、前記受圧面が前記流通方向の上流側に配置されていると共に、前記第一底部および前記第二底部が前記流通方向の下流側に配置されており、前記直動部材が移動する前の初期状態では、前記第一孔部および前記第三孔部のみが連通しており、前記直動部材の移動に伴って、前記第二孔部および前記第四孔部の連通を開始し、前記直動部材の移動が完了した移動完了状態では、前記第二孔部および前記第四孔部が完全に連通する点にある。 The characteristic configuration of the first flow control valve is that the pressure receiving surface is arranged on the upstream side in the flow direction, and the first bottom portion and the second bottom portion are arranged on the downstream side in the flow direction. In the initial state before the linear motion member moves, only the first hole portion and the third hole portion communicate with each other, and as the linear motion member moves, the second hole portion and the first hole portion and the first hole portion communicate with each other. In the movement completed state in which the communication of the four holes is started and the movement of the linear motion member is completed, the second hole and the fourth hole are completely communicated with each other.

この第一の流量制御弁は、エンジンの回転数に応じて駆動するオイルポンプと、前記オイルポンプからの作動油が供給される共通油路と、前記共通油路から分岐して弁開閉時期制御装置、ターボチャージャおよびピストンジェットの少なくとも1つに連通する第1油路と、前記共通油路から分岐してメインギャラリに連通する第2油路と、を備えた作動油供給装置の前記第2油路に設けられていると好適である。 The first flow control valve has an oil pump driven according to the rotation speed of the engine, a common oil passage to which hydraulic oil is supplied from the oil pump, and a valve opening / closing timing control by branching from the common oil passage. The second oil supply device comprising a first oil passage communicating with at least one of a device, a turbocharger and a piston jet, and a second oil passage branching from the common oil passage and communicating with the main gallery. It is preferable that it is provided in the oil passage.

本構成の第一の流量制御弁は、初期状態において第一孔部および第三孔部のみが連通した小流量モードに設定され、エンジン回転数が上昇するに連れてオイルポンプから受圧面に作用する吐出圧が高まって直動部材が移動することにより、第二孔部および前記第四孔部の連通を開始し、直動部材の移動完了状態において全ての孔部が連通する大流量モードに設定される。この第一の流量制御弁をメインギャラリに連通する第2油路に設けることで、エンジン始動時など低回転域ではメインギャラリが小流量モードとなるので、メインギャラリに比べて比較的油圧が必要とされる弁開閉時期制御装置等に対して優先的に油圧を作用させることが可能となる。その結果、弁開閉時期制御装置の場合、最適な位相制御が迅速に実行され、燃費を向上させることができる。また、エンジン回転数が上昇するに連れてメインギャラリが大流量モードに移行するので、メインギャラリで必要となる油圧も確保することができる。 The first flow rate control valve of this configuration is set to a small flow rate mode in which only the first hole and the third hole communicate with each other in the initial state, and acts on the pressure receiving surface from the oil pump as the engine speed increases. When the discharge pressure is increased and the linear motion member moves, communication between the second hole portion and the fourth hole portion is started, and when the movement of the linear motion member is completed, all the holes are communicated in a large flow rate mode. Set. By providing this first flow control valve in the second oil passage that communicates with the main gallery, the main gallery is in a small flow mode in the low speed range such as when the engine is started, so relatively hydraulic pressure is required compared to the main gallery. It is possible to preferentially apply the oil pressure to the valve opening / closing timing control device or the like. As a result, in the case of the valve opening / closing timing control device, the optimum phase control is quickly executed, and the fuel consumption can be improved. Further, as the engine speed increases, the main gallery shifts to the large flow rate mode, so that the oil pressure required for the main gallery can be secured.

第二の流量制御弁としての特徴構成は、前記受圧面が前記流通方向の下流側に配置されていると共に、前記第一底部および前記第二底部が前記流通方向の上流側に配置されており、前記直動部材が移動する前の初期状態では、前記第二孔部および前記第四孔部が完全に連通しており、前記直動部材の移動に伴って、前記第二孔部および前記第四孔部の連通面積が次第に減少し、前記直動部材の移動が完了した移動完了状態では、前記第一孔部および前記第三孔部のみが連通する点にある。 The characteristic configuration of the second flow control valve is that the pressure receiving surface is arranged on the downstream side in the flow direction, and the first bottom portion and the second bottom portion are arranged on the upstream side in the flow direction. In the initial state before the linear motion member moves, the second hole portion and the fourth hole portion are completely in communication with each other, and as the linear motion member moves, the second hole portion and the fourth hole portion and the said The communication area of the fourth hole portion gradually decreases, and in the movement completed state in which the movement of the linear motion member is completed, only the first hole portion and the third hole portion communicate with each other.

この第二の流量制御弁は、上記作動油供給装置の前記第1油路に設けられていると好適である。 It is preferable that the second flow rate control valve is provided in the first oil passage of the hydraulic oil supply device.

本構成の第二の流量制御弁は、初期状態において全ての孔部が連通した大流量モードに設定され、エンジン回転数が上昇するに連れてオイルポンプから受圧面に作用する吐出圧が高まって直動部材が移動することにより、第二孔部および前記第四孔部の連通面積が減少し、直動部材の移動完了状態において第一孔部および第三孔部のみが連通する小流量モードに設定される。この第二の流量制御弁を弁開閉時期制御装置等に連通する第1油路に設けることで、エンジン始動時など低回転域では弁開閉時期制御装置等が大流量モードとなるので、弁開閉時期制御装置等に対して油圧を確実に作用させることが可能となる。また、エンジン回転数が上昇するに連れて弁開閉時期制御装置等が小流量モードに移行するので、弁開閉時期制御装置等に必要となる油圧を確保しつつ、メインギャラリで必要となる油圧を優先的に確保することができる。 The second flow rate control valve of this configuration is set to a large flow rate mode in which all the holes communicate with each other in the initial state, and the discharge pressure acting on the pressure receiving surface from the oil pump increases as the engine speed increases. The movement of the linear motion member reduces the communication area between the second hole and the fourth hole, and the small flow mode in which only the first hole and the third hole communicate with each other when the linear motion member is completely moved. Is set to. By providing this second flow rate control valve in the first oil passage that communicates with the valve opening / closing timing control device, etc., the valve opening / closing timing control device, etc. is in the large flow rate mode in the low speed range such as when the engine is started, so that the valve opening / closing time control valve is opened / closed. It is possible to reliably apply the oil pressure to the timing control device and the like. In addition, as the engine speed increases, the valve opening / closing timing control device, etc. shifts to the small flow rate mode, so while ensuring the flood control required for the valve opening / closing timing control device, etc., the oil pressure required for the main gallery can be obtained. It can be secured with priority.

また、上記作動油供給装置の他の特徴構成として、前記第一の流量制御弁は、前記第2油路に設けられており、前記第二の流量制御弁は、前記第1油路に設けられていると好適である。 Further, as another characteristic configuration of the hydraulic oil supply device, the first flow rate control valve is provided in the second oil passage, and the second flow control valve is provided in the first oil passage. It is preferable that the oil is used.

本構成では、上記第一の流量制御弁をメインギャラリに連通する第2油路に設け、上記第二の流量制御弁を弁開閉時期制御装置等に連通する第1油路に設けている。エンジン始動時など低回転域ではメインギャラリが小流量モードとなると共に弁開閉時期制御装置等が大流量モードとなるので、メインギャラリに比べて比較的油圧が必要とされる弁開閉時期制御装置等に対して優先的に油圧を作用させることが可能となる。その結果、弁開閉時期制御装置の場合、最適な位相制御が迅速に実行され、燃費を向上させることができる。また、エンジン回転数が上昇するに連れて弁開閉時期制御装置等が小流量モードに移行しつつメインギャラリが大流量モードに移行するので、弁開閉時期制御装置等に必要となる油圧を確保しつつ、メインギャラリで必要となる油圧を優先的に確保することができる。 In this configuration, the first flow rate control valve is provided in the second oil passage communicating with the main gallery, and the second flow rate control valve is provided in the first oil passage communicating with the valve opening / closing timing control device and the like. In the low speed range such as when the engine is started, the main gallery is in the small flow mode and the valve opening / closing timing control device is in the large flow mode. It is possible to preferentially act on the oil pressure. As a result, in the case of the valve opening / closing timing control device, the optimum phase control is quickly executed, and the fuel consumption can be improved. In addition, as the engine speed increases, the valve opening / closing timing control device, etc. shifts to the small flow rate mode, while the main gallery shifts to the large flow rate mode. At the same time, it is possible to preferentially secure the flood control required in the main gallery.

第一実施形態に係る流量制御弁を内燃機関に装着した模式図である。It is a schematic diagram which attached the flow rate control valve which concerns on 1st Embodiment to an internal combustion engine. 直動部材が移動する前の流量制御弁の断面図である。It is sectional drawing of the flow rate control valve before the linear motion member moves. 直動部材が移動する前の直動部材および回動部材の底面図である。It is a bottom view of the linear motion member and the rotary member before the linear motion member moves. 直動部材が移動した後の流量制御弁の断面図である。It is sectional drawing of the flow rate control valve after the linear motion member moved. 直動部材が移動した後の直動部材および回動部材の底面図である。It is a bottom view of the linear motion member and the rotary member after the linear motion member has moved. 流量制御弁の分解斜視図である。It is an exploded perspective view of the flow rate control valve. 第一実施形態に係る回転数と油圧との関係図である。It is a relationship diagram of the rotation speed and the oil pressure which concerns on 1st Embodiment. 第二実施形態に係る流量制御弁を内燃機関に装着した模式図である。It is a schematic diagram which attached the flow rate control valve which concerns on 2nd Embodiment to an internal combustion engine. 第二実施形態に係る回転数と油圧との関係図である。It is a relationship diagram of the rotation speed and the oil pressure which concerns on 2nd Embodiment. 第三実施形態に係る流量制御弁を内燃機関に装着した模式図である。It is a schematic diagram which attached the flow rate control valve which concerns on 3rd Embodiment to an internal combustion engine. 第三実施形態に係る回転数と油圧との関係図である。It is a relationship diagram of the rotation speed and the oil pressure which concerns on 3rd Embodiment. その他の実施形態に係る直動部材および回動部材の底面図である。It is a bottom view of the linear motion member and the rotary member which concerns on other embodiment. その他の実施形態に係る流量制御弁の断面図である。It is sectional drawing of the flow rate control valve which concerns on other embodiment.

以下に、本発明に係る流量制御弁の実施形態について、図面に基づいて説明する。本実施形態では、流量制御弁VをエンジンEに設置される作動油供給装置10に組み込んだ一例を説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。 Hereinafter, embodiments of the flow control valve according to the present invention will be described with reference to the drawings. In this embodiment, an example in which the flow control valve V is incorporated in the hydraulic oil supply device 10 installed in the engine E will be described. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.

図1に、第一実施形態に係る作動油供給装置10および作動油供給装置10による作動油(流体の一例)の供給先の構成を模式的に表すブロック図を示す。図1に示すように、作動油供給装置10は、オイルポンプ11,オイルフィルタ12,リリーフバルブ13,共通油路14,第1油路15,第2油路16,流量制御弁Vを備えている。 FIG. 1 shows a block diagram schematically showing a configuration of a supply destination of hydraulic oil (an example of a fluid) by the hydraulic oil supply device 10 and the hydraulic oil supply device 10 according to the first embodiment. As shown in FIG. 1, the hydraulic oil supply device 10 includes an oil pump 11, an oil filter 12, a relief valve 13, a common oil passage 14, a first oil passage 15, a second oil passage 16, and a flow control valve V. There is.

図1には、作動油供給装置10以外にも、第1油路15を流通した作動油が供給される弁開閉時期制御装置1,ターボチャージャ3,ピストンジェット4と、弁開閉時期制御装置1における作動油の供給先を切り換えるオイルコントロールバルブ5と、オイルコントロールバルブ5の切り換えを制御するECU6(エンジンコントロールユニット)と、作動油を貯留するオイルパン7と、第2油路16を流通した作動油が供給されるメインギャラリ2とが表されており、これらはエンジンEを構成している。 In FIG. 1, in addition to the hydraulic oil supply device 10, the valve opening / closing timing control device 1, the turbocharger 3, and the piston jet 4 to which the hydraulic oil flowing through the first oil passage 15 is supplied, and the valve opening / closing timing control device 1 are shown. The oil control valve 5 that switches the supply destination of the hydraulic oil, the ECU 6 (engine control unit) that controls the switching of the oil control valve 5, the oil pan 7 that stores the hydraulic oil, and the operation that circulates through the second oil passage 16. The main gallery 2 to which the oil is supplied is represented, and these constitute the engine E.

オイルポンプ11は、オイルパン7から作動油を汲み上げて共通油路14に作動油を吐出し、この吐出圧力により作動油は共通油路14を流通する。オイルポンプ11の回転軸は、エンジンEのクランクシャフト(不図示)に連結固定され、クランクシャフトの回転駆動力により機械的に駆動される。共通油路14の途中にはオイルフィルタ12が配設され、オイルストレーナで濾過されなかった作動油中の小さなごみやスラッジが濾過される。リリーフバルブ13は、オイルポンプ11からの作動油の吐出圧力が所定値を超えたときに開弁し、所定圧力値以上の作動油が共通油路14を流通しないようにするために設けられている。 The oil pump 11 pumps hydraulic oil from the oil pan 7 and discharges the hydraulic oil to the common oil passage 14, and the hydraulic oil flows through the common oil passage 14 by this discharge pressure. The rotating shaft of the oil pump 11 is connected and fixed to the crankshaft (not shown) of the engine E, and is mechanically driven by the rotational driving force of the crankshaft. An oil filter 12 is arranged in the middle of the common oil passage 14, and small dust and sludge in the hydraulic oil that have not been filtered by the oil strainer are filtered. The relief valve 13 is provided to open the valve when the discharge pressure of the hydraulic oil from the oil pump 11 exceeds a predetermined value, and to prevent the hydraulic oil having a predetermined pressure value or more from flowing through the common oil passage 14. There is.

共通油路14は分岐点17で分岐し、そこから第1油路15と第2油路16が延在している。第2油路16を流通する作動油は流量制御弁Vに流入する。流量制御弁Vは、共通油路14を流通する作動油の第1油路15と第2油路16への分配比率を、オイルポンプ11の回転数に応じて変化させるために設けられている。流量制御弁Vの詳細については後述する。 The common oil passage 14 branches at a branch point 17, from which the first oil passage 15 and the second oil passage 16 extend. The hydraulic oil flowing through the second oil passage 16 flows into the flow rate control valve V. The flow rate control valve V is provided to change the distribution ratio of the hydraulic oil flowing through the common oil passage 14 to the first oil passage 15 and the second oil passage 16 according to the rotation speed of the oil pump 11. .. The details of the flow rate control valve V will be described later.

共通油路14は、分岐点17よりも上流側で分岐して、ターボチャージャ3,ピストンジェット4の夫々に作動油を供給している。また、共通油路14は、分岐点17で分岐し、第1油路15を経由して弁開閉時期制御装置1に作動油を供給している。弁開閉時期制御装置1,ターボチャージャ3,ピストンジェット4の構造および動作については、公知であるため詳細な説明は省略する。本実施形態では、弁開閉時期制御装置1,ターボチャージャ3,ピストンジェット4を挙げたがこれらに限定されるものではないし、ターボチャージャ3,ピストンジェット4を分岐点17よりも下流側で分岐させても良い。また、1つの車両に弁開閉時期制御装置1,ターボチャージャ3,ピストンジェット4の全てが備えられている必要はなく、上記3つの内、少なくとも1つが備えられている構成であっても良い。 The common oil passage 14 branches on the upstream side of the branch point 17 to supply hydraulic oil to each of the turbocharger 3 and the piston jet 4. Further, the common oil passage 14 branches at the branch point 17 and supplies hydraulic oil to the valve opening / closing timing control device 1 via the first oil passage 15. Since the structures and operations of the valve opening / closing timing control device 1, the turbocharger 3, and the piston jet 4 are known, detailed description thereof will be omitted. In the present embodiment, the valve opening / closing timing control device 1, the turbocharger 3, and the piston jet 4 are mentioned, but the present invention is not limited to these, and the turbocharger 3 and the piston jet 4 are branched on the downstream side of the branch point 17. You may. Further, it is not necessary that one vehicle is provided with all of the valve opening / closing timing control device 1, the turbocharger 3, and the piston jet 4, and at least one of the above three may be provided.

第1油路15の弁開閉時期制御装置1側の端部には、オイルコントロールバルブ5が配設されている。オイルコントロールバルブ5は、電磁制御型であって、弁開閉時期制御装置1の進角油路1aおよび遅角油路1bへの作動油の供給,排出,給排遮断の制御が可能である。オイルコントロールバルブ5は、スプール式に構成され、ECU6による給電量の制御によりソレノイドを駆動し、ソレノイドに連結されたスプールの位置を切り換える。具体的には、スプールの位置を切り換えることにより、進角油路1aへのオイル供給と遅角油路1bからの作動油排出、進角油路1aからの作動油排出と遅角油路1bへの作動油供給、進角油路1aおよび遅角油路1bへの作動油給排遮断、の3種類の動作への切り換えが制御可能である。 An oil control valve 5 is arranged at the end of the first oil passage 15 on the valve opening / closing timing control device 1 side. The oil control valve 5 is an electromagnetic control type, and can control the supply, discharge, and supply / discharge cutoff of hydraulic oil to the advance angle oil passage 1a and the retard angle oil passage 1b of the valve opening / closing timing control device 1. The oil control valve 5 is configured as a spool type, drives a solenoid by controlling the amount of power supplied by the ECU 6, and switches the position of the spool connected to the solenoid. Specifically, by switching the position of the spool, the oil is supplied to the advance angle oil passage 1a and the hydraulic oil is discharged from the retard angle oil passage 1b, and the hydraulic oil is discharged from the advance angle oil passage 1a and the retard angle oil passage 1b. It is possible to control switching to three types of operations: supply of hydraulic oil to the advance oil passage 1a and cutoff of hydraulic oil supply / discharge to the advance angle oil passage 1a and retard angle oil passage 1b.

共通油路14は、分岐点17で分岐し、流量制御弁Vが設けられた第2油路16を経由してメインギャラリ2に作動油を供給している。メインギャラリ2とは、図示しないピストン,シリンダ,クランクシャフトの軸受等の摺動部材全体を含んでいる。これらは、エンジンEの回転が上昇するにつれて高速で作動するので、エンジンEの回転が高回転になるほど、冷却,潤滑のために多量の作動油を必要とする。また、メインギャラリ2には、車両に備えられ、油圧により駆動されるその他の装置も含むものとする。 The common oil passage 14 branches at the branch point 17 and supplies hydraulic oil to the main gallery 2 via the second oil passage 16 provided with the flow rate control valve V. The main gallery 2 includes the entire sliding member such as a piston, a cylinder, and a crankshaft bearing (not shown). Since these operate at high speed as the rotation of the engine E increases, a large amount of hydraulic oil is required for cooling and lubrication as the rotation of the engine E increases. Further, the main gallery 2 shall also include other devices provided in the vehicle and driven by flood control.

〔流量制御弁の構造〕
次に、流量制御弁Vについて図1〜図6を参照して詳細に説明する。
[Structure of flow control valve]
Next, the flow rate control valve V will be described in detail with reference to FIGS. 1 to 6.

図1〜図6に示すように、流量制御弁Vは、装着部位となるエンジンブロックEb(ハウジングの一例)と、エンジンブロックEbに装着されるタイミングチェーンカバーEa(カバーの一例)との合わせ面20に形成された凹部21に収容されている。これにより、流量制御弁V用の凹部21の加工が極めて容易である。本実施形態では、凹部21をエンジンブロックEbに形成しているが、凹部21をタイミングチェーンカバーEaに形成しても良い。また、ハウジングやカバーとして、エンジンブロックEbやタイミングチェーンカバーEaに限定されず、シリンダヘッドカバーやクランクカバー等であっても良い。 As shown in FIGS. 1 to 6, the flow control valve V is a mating surface of the engine block Eb (an example of a housing) to be mounted and the timing chain cover Ea (an example of a cover) mounted on the engine block Eb. It is housed in the recess 21 formed in 20. As a result, it is extremely easy to process the recess 21 for the flow control valve V. In the present embodiment, the recess 21 is formed in the engine block Eb, but the recess 21 may be formed in the timing chain cover Ea. Further, the housing and cover are not limited to the engine block Eb and the timing chain cover Ea, and may be a cylinder head cover, a crank cover, or the like.

流量制御弁Vは、直動部材31と、直動部材31を付勢する圧縮コイルスプリングS(付勢部材の一例)と、直動部材31の移動を案内する案内部材32と、直動部材31の移動と連動して回動する回動部材33と、棒状の案内ピン34(ピン状部材の一例)と、棒状の規制ピン35とを備えている。これら直動部材31,案内部材32および回動部材33は、何れも円筒形状であって同一の軸芯X(作動油の流通方向)を有しており、径方向外側から径方向内側に向かってこの順に配置されている。 The flow control valve V includes a linear motion member 31, a compression coil spring S (an example of an urging member) that urges the linear motion member 31, a guide member 32 that guides the movement of the linear motion member 31, and a linear motion member. It includes a rotating member 33 that rotates in conjunction with the movement of 31, a rod-shaped guide pin 34 (an example of a pin-shaped member), and a rod-shaped regulation pin 35. The linear motion member 31, the guide member 32, and the rotating member 33 are all cylindrical and have the same axis X (flow direction of hydraulic oil), and are directed from the outer side in the radial direction to the inner side in the radial direction. They are arranged in the order of the levers.

直動部材31は、油圧(流体の圧力)が作用する円環状の受圧面31aを含む鍔状部31Aと、鍔状部31Aの内周側から軸芯X方向に沿って円筒状に延出した筒状部31B(延出部の一例)とを有している(図6参照)。換言すると、受圧面31aは、筒状部31Bの端部を径方向外側に環状に突出させた鍔状部31Aの一方の円環面で構成されている。直動部材31は、受圧面31aに作用した油圧が圧縮コイルスプリングSの付勢力を上回ると作動油の流通方向の下流側に向かって移動する。鍔状部31Aの外周面と凹部21の内壁との隙間は、作動油が漏れ難いような微小のクリアランスに設定されている。筒状部31Bには、互いに対向する一対の貫通孔部31bが円形状に形成されており、一対の貫通孔部31bに単一の案内ピン34の両端が支持されて固定されている(図6参照)。
なお、貫通孔部31bは、案内ピン34の外形に適合する形状に構成している限り、円形状に限定されず、矩形状等に構成しても良い。また、貫通孔部31bに対する案内ピン34の固定方法は、圧入,融着等でも良いし、案内ピン34の端部に抜け止め部材を装着しても良く、特に限定されない。また、案内ピン34を分割して構成し、一対の案内ピン34を一対の貫通孔部31bに固定しても良い。
The linear motion member 31 extends from the flange-shaped portion 31A including the annular pressure receiving surface 31a on which the hydraulic pressure (fluid pressure) acts, and the inner peripheral side of the flange-shaped portion 31A in a cylindrical shape along the axis X direction. It has a cylindrical portion 31B (an example of an extension portion) that has been formed (see FIG. 6). In other words, the pressure receiving surface 31a is composed of one annular surface of the brim-shaped portion 31A in which the end portion of the tubular portion 31B is projected radially outward in an annular shape. When the hydraulic pressure acting on the pressure receiving surface 31a exceeds the urging force of the compression coil spring S, the linear motion member 31 moves toward the downstream side in the flow direction of the hydraulic oil. The gap between the outer peripheral surface of the flange-shaped portion 31A and the inner wall of the recess 21 is set to a minute clearance so that hydraulic oil does not easily leak. A pair of through-holes 31b facing each other are formed in a circular shape in the tubular portion 31B, and both ends of a single guide pin 34 are supported and fixed to the pair of through-holes 31b (FIG. FIG. 6).
The through hole portion 31b is not limited to a circular shape as long as it is configured to have a shape that matches the outer shape of the guide pin 34, and may be configured in a rectangular shape or the like. Further, the method of fixing the guide pin 34 to the through hole portion 31b may be press-fitting, fusion or the like, or a retaining member may be attached to the end of the guide pin 34, and is not particularly limited. Further, the guide pins 34 may be divided and configured, and the pair of guide pins 34 may be fixed to the pair of through-hole portions 31b.

圧縮コイルスプリングSは、受圧面31aに作用する油圧に対抗する方向に直動部材31を付勢している。この圧縮コイルスプリングSは、直動部材31の筒状部31Bの外周に沿って配置されており、直動部材31の鍔状部31Aのうち受圧面31aとは反対側にある他方の円環面に当接している。エンジンブロックEbには外部と連通する貫通孔9が形成されており、この貫通孔9は、圧縮コイルスプリングSの収容空間の空気が排出される背圧抜き孔として機能する。また、この貫通孔9は、鍔状部31Aの外周面と凹部21の内壁との隙間から漏れ出た作動油を排出する機能も有している。なお、圧縮コイルスプリングSは、設計油圧以上になると直動部材31が移動するような付勢力に設定されている。 The compression coil spring S urges the linear motion member 31 in a direction that opposes the flood pressure acting on the pressure receiving surface 31a. The compression coil spring S is arranged along the outer circumference of the tubular portion 31B of the linear motion member 31, and is the other annular ring of the flange-shaped portion 31A of the linear motion member 31 on the side opposite to the pressure receiving surface 31a. It is in contact with the surface. A through hole 9 communicating with the outside is formed in the engine block Eb, and this through hole 9 functions as a back pressure release hole through which air in the accommodation space of the compression coil spring S is discharged. Further, the through hole 9 also has a function of discharging hydraulic oil leaked from a gap between the outer peripheral surface of the flange-shaped portion 31A and the inner wall of the recess 21. The compression coil spring S is set to an urging force that causes the linear motion member 31 to move when the design hydraulic pressure or higher is reached.

案内部材32は、直動部材31よりも径方向内側に配置された有底筒状に構成されており、第一底部32Aと、第一底部32Aから円筒状に延出した第一円筒部32B(第一側壁部の一例)とを有している(図6参照)。第一底部32Aは、中央に位置する第一孔部32aと第一孔部32aの周囲に位置する複数の第二孔部32b(本実施形態では等間隔に4箇所)とを含んでいる(図3参照)。第一孔部32aおよび第二孔部32bは、夫々円形状に構成されており、第一孔部32aの油路断面積が1つの第二孔部32bの油路断面積よりも小さく設定されている。第一孔部32aの中心は、軸芯X上にあり、複数の第二孔部32bの中心は、夫々軸芯Xから等距離に配置されて同一円周上に位置している。
また、本実施形態における夫々の第二孔部32bの孔径は、軸芯Xを通る接線どうしの成す角が45度以上(本実施形態では45度)となるように設定されている。
The guide member 32 has a bottomed tubular shape arranged radially inside the linear motion member 31, and has a first bottom portion 32A and a first cylindrical portion 32B extending cylindrically from the first bottom portion 32A. (Example of the first side wall portion) and (see FIG. 6). The first bottom portion 32A includes a first hole portion 32a located at the center and a plurality of second hole portions 32b (four locations at equal intervals in the present embodiment) located around the first hole portion 32a (4 locations at equal intervals in the present embodiment). (See FIG. 3). The first hole portion 32a and the second hole portion 32b are each formed in a circular shape, and the oil passage cross-sectional area of the first hole portion 32a is set to be smaller than the oil passage cross-sectional area of one second hole portion 32b. ing. The center of the first hole portion 32a is on the shaft core X, and the centers of the plurality of second hole portions 32b are arranged equidistantly from the shaft core X and are located on the same circumference.
Further, the hole diameter of each of the second hole portions 32b in the present embodiment is set so that the angle formed by the tangents passing through the shaft core X is 45 degrees or more (45 degrees in the present embodiment).

第一円筒部32Bには、第一底部32Aとは反対側の端部に互いに対向する一対の丸孔32cと、延出方向の中央付近に互いに対向する一対の第一長孔32dとが形成されている(図6参照)。一対の丸孔32cには、丸孔32cの奥行きよりも長い一対の規制ピン35が、その両端が丸孔32cから突出して夫々固定されており、これら規制ピン35の径方向外側が直動部材31の鍔状部31Aの内周側に当接することにより、圧縮コイルスプリングSの付勢力による直動部材31の移動が規制されている(図2参照)。また、規制ピン35のうち第一円筒部32Bの径方向内側に突出した部分が回動部材33の開口端部に当接することにより、案内部材32の第一底部32Aと回動部材33の第二底部33Aとの当接状態を維持するように、回動部材33の軸芯X方向への移動を規制する。なお、丸孔32cは、規制ピン35の外形に適合する形状に構成している限り、円形状に限定されず、矩形状等に構成しても良いし、個数も限定されない。例えば、一対の規制ピン35に代えて、一対の丸孔32cを貫通する単一の規制ピン35で構成しても良い。また、丸孔32cに対する規制ピン35の固定方法は、圧入,融着等でも良いし、規制ピン35の端部に抜け止め部材を装着しても良く、特に限定されない。 The first cylindrical portion 32B is formed with a pair of round holes 32c facing each other at the end opposite to the first bottom portion 32A and a pair of first elongated holes 32d facing each other near the center in the extending direction. (See FIG. 6). A pair of regulation pins 35 longer than the depth of the round holes 32c are fixed to the pair of round holes 32c so that both ends project from the round holes 32c, respectively, and the radial outer side of these regulation pins 35 is a linear motion member. By abutting on the inner peripheral side of the flange-shaped portion 31A of 31, the movement of the linear motion member 31 due to the urging force of the compression coil spring S is restricted (see FIG. 2). Further, the portion of the regulation pin 35 that protrudes inward in the radial direction of the first cylindrical portion 32B abuts on the open end portion of the rotating member 33, so that the first bottom portion 32A of the guide member 32 and the rotating member 33 become the first. The movement of the rotating member 33 in the axis X direction is restricted so as to maintain the contact state with the bottom portion 33A. The round holes 32c are not limited to a circular shape, may be formed into a rectangular shape, or the like, and the number is not limited as long as the round holes 32c are formed in a shape suitable for the outer shape of the regulation pin 35. For example, instead of the pair of regulation pins 35, a single regulation pin 35 penetrating the pair of round holes 32c may be used. Further, the method of fixing the regulation pin 35 to the round hole 32c may be press-fitting, fusion or the like, or a retaining member may be attached to the end of the regulation pin 35, and is not particularly limited.

第一円筒部32Bに形成された一対の第一長孔32dは、軸芯X方向(作動油の流通方向)に平行に延びている。これら一対の第一長孔32dには、直動部材31の貫通孔部31bに支持される案内ピン34が貫通挿入されている。直動部材31が油圧により移動する前の初期状態では、案内ピン34が一対の第一長孔32dの一端32daに当接しており(図2の状態)、直動部材31が移動した後の移動完了状態では、案内ピン34が一対の第一長孔32dの他端32dbに当接する(図4の状態)。ここで、第一長孔32dの一端32daは、第一底部32Aから遠い側の端部であり、他端32dbは、第一底部32Aから近い側の端部である。図2の初期状態から図4の移動完了状態になるまで、案内ピン34が一対の第一長孔32dの側辺に摺接することにより、直動部材31の移動が案内部材32によって案内されて、直動部材31が案内部材32に対して相対回転することなく、軸芯Xに沿う方向に移動する。 The pair of first elongated holes 32d formed in the first cylindrical portion 32B extend in parallel with the axis X direction (flow direction of hydraulic oil). A guide pin 34 supported by a through hole portion 31b of the linear motion member 31 is inserted through the pair of first elongated holes 32d. In the initial state before the linear motion member 31 is hydraulically moved, the guide pin 34 is in contact with one end 32da of the pair of first elongated holes 32d (state in FIG. 2), and after the linear motion member 31 is moved. In the movement completed state, the guide pin 34 comes into contact with the other end 32db of the pair of first elongated holes 32d (state of FIG. 4). Here, one end 32da of the first elongated hole 32d is an end on the side far from the first bottom 32A, and the other end 32db is an end on the side closer to the first bottom 32A. From the initial state of FIG. 2 to the movement completion state of FIG. 4, the guide pin 34 is slidably contacted with the side sides of the pair of first elongated holes 32d, so that the movement of the linear motion member 31 is guided by the guide member 32. , The linear motion member 31 moves in the direction along the axis X without rotating relative to the guide member 32.

第一円筒部32Bのうち第一底部32Aとは反対側の端部であって丸孔32cよりも第一底部32Aから遠い箇所には、軸芯Xに沿って突出した複数の突起部32e(本実施形態では等間隔に4箇所)が形成されている(図6参照)。これら複数の突起部32eがタイミングチェーンカバーEaに当接し、第一底部32AがエンジンブロックEbの凹部21の底側段部21aと密着することにより、案内部材32の軸芯X方向の移動が規制されている。これら複数の突起部32eの間には、直動部材31の受圧面31aへの作動油の流通を許容する連通路18が形成されている(図1〜図2参照)。 At the end of the first cylindrical portion 32B opposite to the first bottom portion 32A and farther from the first bottom portion 32A than the round hole 32c, a plurality of protruding portions 32e (protruding along the axis X) In this embodiment, four locations are formed at equal intervals (see FIG. 6). The plurality of protrusions 32e come into contact with the timing chain cover Ea, and the first bottom 32A comes into close contact with the bottom step 21a of the recess 21 of the engine block Eb, thereby restricting the movement of the guide member 32 in the axis X direction. Has been done. Between these plurality of protrusions 32e, a communication passage 18 that allows the flow of hydraulic oil to the pressure receiving surface 31a of the linear motion member 31 is formed (see FIGS. 1 to 2).

回動部材33は、案内部材32よりも径方向内側に配置された有底筒状に構成されており、第二底部33Aと、第二底部33Aの外周側から円筒状に延出した第二円筒部33B(第二側壁部の一例)とを有している(図6参照)。これら第二底部33Aと第二円筒部33Bに囲まれた内部空間が第2油路16を構成している。第二底部33Aは、中央に位置する第三孔部33aと第三孔部33aの周囲に位置する複数の第四孔部33b(本実施形態では等間隔に4箇所)とを含んでいる(図3参照)。第三孔部33aの中心は、軸芯X上にあり、複数の第四孔部33bの中心は、夫々軸芯Xから等距離に配置されて同一円周上に位置している。また、本実施形態における夫々の第四孔部33bの孔径は、軸芯Xを通る接線どうしの成す角が45度以上(本実施形態では45度)となるように設定されている。上述したように、規制ピン35の径方向内側に突出した部分が回動部材33の開口端部に当接することにより、案内部材32の第一底部32Aと回動部材33の第二底部33Aとの当接状態が維持されている。また、規制ピン35により回動部材33の開口端部がタイミングチェーンカバーEaから離間しており、この離間した空間によって直動部材31の受圧面31aへの作動油の流通を許容する連通路18が閉塞されない(図2参照)。 The rotating member 33 is configured in a bottomed tubular shape arranged radially inside the guide member 32, and extends cylindrically from the outer peripheral side of the second bottom portion 33A and the second bottom portion 33A. It has a cylindrical portion 33B (an example of a second side wall portion) (see FIG. 6). The internal space surrounded by the second bottom portion 33A and the second cylindrical portion 33B constitutes the second oil passage 16. The second bottom portion 33A includes a third hole portion 33a located at the center and a plurality of fourth hole portions 33b (four locations at equal intervals in the present embodiment) located around the third hole portion 33a (4 locations at equal intervals in the present embodiment). (See FIG. 3). The center of the third hole portion 33a is on the shaft core X, and the centers of the plurality of fourth hole portions 33b are arranged equidistantly from the shaft core X and are located on the same circumference. Further, the hole diameter of each of the fourth hole portions 33b in the present embodiment is set so that the angle formed by the tangents passing through the shaft core X is 45 degrees or more (45 degrees in the present embodiment). As described above, the portion of the regulation pin 35 protruding inward in the radial direction comes into contact with the open end of the rotating member 33, so that the first bottom portion 32A of the guide member 32 and the second bottom portion 33A of the rotating member 33 are brought into contact with each other. The contact state of is maintained. Further, the open end of the rotating member 33 is separated from the timing chain cover Ea by the regulation pin 35, and the communication passage 18 that allows the hydraulic oil to flow to the pressure receiving surface 31a of the linear motion member 31 by the separated space. Is not blocked (see FIG. 2).

第三孔部33aおよび第四孔部33bは、夫々円形状に構成されており、第三孔部33aの油路断面積が1つの第四孔部33bの油路断面積よりも小さく設定されている(図3参照)。第三孔部33aは、案内部材32の第一孔部32aと同一の油路断面積および同一の中心位置を有しており、第一孔部32aと第三孔部33aとは常時連通している。また、第四孔部33bは、案内部材32の第二孔部32bと同一の油路断面積を有しており、第四孔部33bの中心は、第二孔部32bの中心に対して同一円周上に位置し、且つ相対位相が45度ずれている。 The third hole portion 33a and the fourth hole portion 33b are each formed in a circular shape, and the oil passage cross-sectional area of the third hole portion 33a is set to be smaller than the oil passage cross-sectional area of one fourth hole portion 33b. (See Fig. 3). The third hole portion 33a has the same oil passage cross-sectional area and the same center position as the first hole portion 32a of the guide member 32, and the first hole portion 32a and the third hole portion 33a are always in communication with each other. ing. Further, the fourth hole portion 33b has the same oil passage cross-sectional area as the second hole portion 32b of the guide member 32, and the center of the fourth hole portion 33b is relative to the center of the second hole portion 32b. They are located on the same circumference and are out of phase by 45 degrees.

第二円筒部33Bには、延出方向の中央付近に軸芯Xに沿う方向に対して傾斜した一対の第二長孔33dが形成されている(図6参照)。つまり、一対の第二長孔33dは、案内部材32の一対の第一長孔32dに対して傾斜している。これら一対の第二長孔33dには、直動部材31の貫通孔部31bに支持される案内ピン34が貫通挿入されている。
つまり、案内ピン34は、案内部材32および回動部材33を径方向に貫通した状態で直動部材31に固定されている。これにより、直動部材31が油圧により第一長孔32dに沿って直線移動すると、案内ピン34も回転することなく直線移動する。このとき、上述したように、第二長孔33dは第一長孔32dに対して傾斜しているので、案内ピン34が一対の第二長孔33dの側辺(縁部)に摺接した状態で一端32daから他端32dbに向かって移動するに連れて、回動部材33が軸芯Xを中心に回動する。直動部材31が移動する前の初期状態では、案内ピン34が一対の第二長孔33dの一端33daに当接しており(図2の状態、図6参照)、直動部材31が移動した後の移動完了状態では、案内ピン34が一対の第二長孔33dの他端33dbに当接する(図4の状態、図6参照)。このとき、案内部材32の第一長孔32dが軸芯X方向(作動油の流通方向)に平行に延び、回動部材33の第二長孔33dが第一長孔32dに対して傾斜しているので、案内部材32は直動部材31に対して相対回転しない一方、回動部材33は案内部材32および直動部材31に対して相対回転することとなる。
In the second cylindrical portion 33B, a pair of second elongated holes 33d inclined with respect to the direction along the axis X are formed near the center in the extending direction (see FIG. 6). That is, the pair of second elongated holes 33d is inclined with respect to the pair of first elongated holes 32d of the guide member 32. A guide pin 34 supported by a through hole portion 31b of the linear motion member 31 is inserted through the pair of second elongated holes 33d.
That is, the guide pin 34 is fixed to the linear motion member 31 in a state of penetrating the guide member 32 and the rotating member 33 in the radial direction. As a result, when the linear motion member 31 moves linearly along the first elongated hole 32d by flood control, the guide pin 34 also moves linearly without rotating. At this time, as described above, since the second elongated hole 33d is inclined with respect to the first elongated hole 32d, the guide pin 34 is in sliding contact with the side side (edge) of the pair of second elongated holes 33d. In this state, the rotating member 33 rotates about the axis X as it moves from one end 32da to the other end 32db. In the initial state before the linear motion member 31 moves, the guide pin 34 is in contact with one end 33da of the pair of second elongated holes 33d (state of FIG. 2, see FIG. 6), and the linear motion member 31 has moved. In the later movement completion state, the guide pin 34 comes into contact with the other end 33db of the pair of second elongated holes 33d (state of FIG. 4, see FIG. 6). At this time, the first elongated hole 32d of the guide member 32 extends in parallel with the shaft core X direction (flow direction of hydraulic oil), and the second elongated hole 33d of the rotating member 33 is inclined with respect to the first elongated hole 32d. Therefore, the guide member 32 does not rotate relative to the linear motion member 31, while the rotating member 33 rotates relative to the guide member 32 and the linear motion member 31.

また、本実施形態では、案内ピン34が第二長孔33dの一端33daから他端33dbまで移動するときに回動部材33が軸芯Xを中心に回転する角度は、隣り合う2つの第四孔部33bの中心が軸芯Xに対して成す角度(本実施形態では90度)の半分、つまり45度となるように設定されている。その結果、案内部材32の第一長孔32dに案内されながら、直動部材31に支持された案内ピン34が第二長孔33dの内部を移動すると、図3の状態から図5の状態となる。つまり、直動部材31が移動する前の初期状態では、図3の示すように第一孔部32aと第三孔部33aのみが常時連通し、第二孔部32bと第四孔部33bが連通しない小流量モードである。これは、第一孔部32aと第三孔部33aとが同一の中心位置(軸芯X)且つ同一の油路断面積を有しているので重なり、夫々の第二孔部32bや夫々の第四孔部33bの孔径は、軸芯Xを通る接線どうしの成す角が45度以上に設定され且つ第二孔部32bの中心と第四孔部33bの中心との相対位相が45度ずれているので、第二孔部32bと第四孔部33bとが重ならないためである。
直動部材31が移動している状態では、図3から図5の状態へと移行するように案内部材32の第二孔部32bと回動部材33の第四孔部33bとの連通面積が次第に大きくなる流量漸増モードとなる。直動部材31が移動した後の移動完了状態(回動部材33が案内部材32に対して45度回転した状態)では、図5に示すように全ての孔部32a,32b,33a,33bが完全に連通した大流量モードとなる。
Further, in the present embodiment, when the guide pin 34 moves from one end 33da of the second elongated hole 33d to the other end 33db, the angle at which the rotating member 33 rotates about the axis X is the two adjacent fourth. The center of the hole 33b is set to be half of the angle (90 degrees in this embodiment) formed with respect to the shaft core X, that is, 45 degrees. As a result, when the guide pin 34 supported by the linear motion member 31 moves inside the second elongated hole 33d while being guided by the first elongated hole 32d of the guide member 32, the state of FIG. 3 changes to the state of FIG. Become. That is, in the initial state before the linear motion member 31 moves, only the first hole portion 32a and the third hole portion 33a always communicate with each other, and the second hole portion 32b and the fourth hole portion 33b communicate with each other. It is a small flow mode that does not communicate. This is because the first hole portion 32a and the third hole portion 33a have the same center position (axis core X) and the same oil passage cross-sectional area, so that they overlap each other. The hole diameter of the fourth hole 33b is set so that the angle formed by the tangents passing through the shaft core X is 45 degrees or more, and the relative phase between the center of the second hole 32b and the center of the fourth hole 33b is displaced by 45 degrees. This is because the second hole portion 32b and the fourth hole portion 33b do not overlap with each other.
In the state where the linear motion member 31 is moving, the communication area between the second hole portion 32b of the guide member 32 and the fourth hole portion 33b of the rotating member 33 is increased so as to shift from the state of FIG. 3 to the state of FIG. It becomes a flow rate gradual increase mode that gradually increases. In the movement completed state after the linear motion member 31 has moved (the state in which the rotating member 33 has rotated 45 degrees with respect to the guide member 32), all the holes 32a, 32b, 33a, 33b have all the holes 32a, 32b, 33a, 33b as shown in FIG. It becomes a large flow rate mode that communicates perfectly.

このように、直動部材31の貫通孔部31bと案内部材32の第一長孔32dと回動部材33の第二長孔33dとに亘って案内ピン34が配置されており、第二長孔33dが第一長孔32dに対して傾斜しているので、直動部材31の移動に伴って回動部材33が案内部材32に対して相対回転し、第二孔部32bと第四孔部33bとの対向する面積が漸増する。その結果、第一孔部32aと第三孔部33aのみが常時連通する小流量モードと、第一孔部32aと第三孔部33aの連通に加えて第二孔部32bと第四孔部33bとの連通面積が次第に増加して第2油路16を流通する作動油の流量が緩やかに増加する流量漸増モードと、全ての孔部32a,32b,33a,33bが完全に連通した大流量モードとの設定が可能になる。これらのモード設定は、作動油の流通方向に沿って移動する直動部材31の受圧面31aに油圧を作用させることで行われるので、作動油の圧損を小さくして直動部材の応答性を高めることができる。しかも、案内部材32の複数の突起部32eの間や回動部材33の開口端部に形成された連通路18に隣り合う状態で、直動部材31の受圧面31aを設けているので、作動油の圧損が極めて小さくなる。 In this way, the guide pin 34 is arranged over the through hole portion 31b of the linear motion member 31, the first elongated hole 32d of the guide member 32, and the second elongated hole 33d of the rotating member 33, and the second length. Since the hole 33d is inclined with respect to the first elongated hole 32d, the rotating member 33 rotates relative to the guide member 32 as the linear motion member 31 moves, and the second hole portion 32b and the fourth hole The area facing the portion 33b gradually increases. As a result, in addition to the small flow mode in which only the first hole portion 32a and the third hole portion 33a always communicate with each other and the communication between the first hole portion 32a and the third hole portion 33a, the second hole portion 32b and the fourth hole portion A flow rate gradual increase mode in which the communication area with 33b gradually increases and the flow rate of the hydraulic oil flowing through the second oil passage 16 gradually increases, and a large flow rate in which all the holes 32a, 32b, 33a, 33b communicate completely. The mode can be set. Since these modes are set by applying a hydraulic pressure to the pressure receiving surface 31a of the linear motion member 31 that moves along the flow direction of the hydraulic oil, the pressure loss of the hydraulic oil is reduced and the responsiveness of the linear motion member is improved. Can be enhanced. Moreover, since the pressure receiving surface 31a of the linear motion member 31 is provided between the plurality of protrusions 32e of the guide member 32 and adjacent to the communication passage 18 formed at the open end of the rotating member 33, the operation is performed. Oil pressure loss is extremely small.

また、本実施形態では、直動部材31,案内部材32および回動部材33を同じ軸芯X上に配置し、直動部材31の移動に連動して回動部材33を案内部材32に対して相対回転させる構成であるため、第2油路16と同軸方向に流量制御弁Vを配置することが可能となる。その結果、第2油路16に直交する方向に大きな穴加工を行う必要がなく、エンジンブロックEbに形成される第2油路16の穴を拡大するだけで流量制御弁V用の設置スペースを確保することができる。よって、加工コストが低減されると共に、第2油路16の周囲に大きなスペースを必要とせずに設計自由度を高めることができる。しかも、回動部材33の案内部材32に対する相対回転は、各部材31,32,33に孔加工して案内ピン34を挿入するだけで実現されるので、製造が極めて容易である。 Further, in the present embodiment, the linear motion member 31, the guide member 32, and the rotary member 33 are arranged on the same axis X, and the rotary member 33 is moved with respect to the guide member 32 in conjunction with the movement of the linear motion member 31. Since it is configured to rotate relative to each other, the flow control valve V can be arranged in the coaxial direction with the second oil passage 16. As a result, it is not necessary to drill a large hole in the direction orthogonal to the second oil passage 16, and the installation space for the flow control valve V can be increased only by enlarging the hole of the second oil passage 16 formed in the engine block Eb. Can be secured. Therefore, the processing cost can be reduced, and the degree of freedom in design can be increased without requiring a large space around the second oil passage 16. Moreover, the relative rotation of the rotating member 33 with respect to the guide member 32 is realized only by drilling holes in the members 31, 32, 33 and inserting the guide pin 34, so that the manufacturing is extremely easy.

図7には、図1に示すように第2油路16に流量制御弁Vを設置した場合におけるエンジンEの回転数と第1油路15および第2油路16の油圧との関係図が示されている。つまり、上述したように、流量制御弁Vは、作動油の流通方向の下流側に案内部材32の第一底部32Aおよび回動部材33の第二底部33Aを配置し、作動油の流通方向の上流側に直動部材31の受圧面31aを配置している。 FIG. 7 shows the relationship between the rotation speed of the engine E and the flood pressure of the first oil passage 15 and the second oil passage 16 when the flow control valve V is installed in the second oil passage 16 as shown in FIG. It is shown. That is, as described above, in the flow control valve V, the first bottom portion 32A of the guide member 32 and the second bottom portion 33A of the rotating member 33 are arranged on the downstream side in the hydraulic oil flow direction, and the hydraulic oil flow direction. The pressure receiving surface 31a of the linear motion member 31 is arranged on the upstream side.

エンジンEの低回転領域では、オイルポンプ11から吐出される油圧が十分に高まっておらず、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より小さいため、案内部材32の第一孔部32aと回動部材33の第三孔部33aのみが連通している(図2〜図3参照)。その結果、第1油路15に分配される作動油の流量(油圧)が大きく、第2油路16に分配される作動油の流量(油圧)が小さい小流量モードとなる。これによって、エンジン始動時など低回転域では、メインギャラリ2に比べて比較的油圧が必要とされる弁開閉時期制御装置1に対して優先的に油圧を作用させることができる。その結果、弁開閉時期制御装置1の最適な位相制御が迅速に実行され、燃費を向上させることができる。 In the low rotation region of the engine E, the oil pressure discharged from the oil pump 11 is not sufficiently increased, and the oil pressure acting on the pressure receiving surface 31a of the linear motion member 31 is smaller than the urging force of the compression coil spring S. Only the first hole portion 32a of 32 and the third hole portion 33a of the rotating member 33 communicate with each other (see FIGS. 2 to 3). As a result, the flow rate (hydraulic pressure) of the hydraulic oil distributed to the first oil passage 15 is large, and the flow rate (hydraulic pressure) of the hydraulic oil distributed to the second oil passage 16 is small. As a result, in a low rotation range such as when the engine is started, the oil pressure can be preferentially applied to the valve opening / closing timing control device 1 which requires relatively hydraulic pressure as compared with the main gallery 2. As a result, the optimum phase control of the valve opening / closing timing control device 1 is quickly executed, and the fuel consumption can be improved.

エンジンEの中回転領域では、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より大きくなり、第二孔部32bと第四孔部33bとの連通面積が次第に増加する流量漸増モードとなる(図3から図5の状態に次第に移行する)。これにより、弁開閉時期制御装置1に対して必要とされる油圧を確保しながら、第2油路16に分配される作動油の流量を次第に増加させ、メインギャラリ2で必要とされる油圧を確保することができる。 In the medium rotation region of the engine E, the flood pressure acting on the pressure receiving surface 31a of the linear motion member 31 becomes larger than the urging force of the compression coil spring S, and the communication area between the second hole portion 32b and the fourth hole portion 33b gradually increases. The flow rate is gradually increased (the state gradually shifts from FIG. 3 to FIG. 5). As a result, the flow rate of the hydraulic oil distributed to the second oil passage 16 is gradually increased while ensuring the oil pressure required for the valve opening / closing timing control device 1, and the oil pressure required for the main gallery 2 is increased. Can be secured.

エンジンEの高回転領域では、直動部材31の移動が完了することにより、案内ピン34が案内部材32の第一長孔32dの他端32dbおよび回動部材33の第二長孔33dの他端33dbに当接し、全ての孔部32a,32b,33a,33bが連通した大流量モードとなる(図4〜図5参照)。これにより、エンジンEの回転数が高まるに連れて、弁開閉時期制御装置1に連通する第1油路15やメインギャラリ2に連通する第2油路16に供給される作動油の流量(油圧)が共に増加する。そして、エンジンEの回転数が所定回転数以上となり、オイルポンプ11から吐出される油圧が十分に高まるとリリーフバルブ13が開弁し、それ以上弁開閉時期制御装置1やメインギャラリ2に供給される作動油の油圧は上昇しない。 In the high rotation region of the engine E, when the movement of the linear motion member 31 is completed, the guide pin 34 becomes the other end 32db of the first elongated hole 32d of the guide member 32 and the second elongated hole 33d of the rotating member 33. A large flow rate mode is set in which the ends 33db are in contact with each other and all the holes 32a, 32b, 33a, 33b communicate with each other (see FIGS. 4 to 5). As a result, as the rotation speed of the engine E increases, the flow rate (hydraulic pressure) of the hydraulic oil supplied to the first oil passage 15 communicating with the valve opening / closing timing control device 1 and the second oil passage 16 communicating with the main gallery 2 ) Increases together. Then, when the rotation speed of the engine E becomes equal to or higher than the predetermined rotation speed and the oil pressure discharged from the oil pump 11 is sufficiently increased, the relief valve 13 opens and is further supplied to the valve opening / closing timing control device 1 and the main gallery 2. The hydraulic pressure of the hydraulic fluid does not rise.

図8〜図9には、上述した第一実施形態と基本構成が同一の流量制御弁Vを第1油路15に配置した第二実施形態が示されている。本実施形態では、流量制御弁VがシリンダヘッドカバーEcとタイミングチェーンカバーEaとの合わせ面20に形成された凹部21に収容されている。なお、以下では、弁開閉時期制御装置1に連通する第1油路15に第二実施形態における流量制御弁Vを配置する例を示すが、弁開閉時期制御装置1,ピストンジェット4およびターボチャージャ3の少なくとも1つに連通する油路に第二実施形態における流量制御弁Vを設けても良い。つまり、弁開閉時期制御装置1に連通する第1油路15に加えて、ピストンジェット4に連通する油路に第二実施形態における流量制御弁Vを設けても良く、特に限定されない。 8 to 9 show a second embodiment in which the flow control valve V having the same basic configuration as the first embodiment described above is arranged in the first oil passage 15. In the present embodiment, the flow control valve V is housed in the recess 21 formed in the mating surface 20 of the cylinder head cover Ec and the timing chain cover Ea. In the following, an example in which the flow rate control valve V according to the second embodiment is arranged in the first oil passage 15 communicating with the valve opening / closing timing control device 1, but the valve opening / closing timing control device 1, the piston jet 4 and the turbocharger are shown. The flow rate control valve V according to the second embodiment may be provided in the oil passage communicating with at least one of 3. That is, in addition to the first oil passage 15 communicating with the valve opening / closing timing control device 1, the flow control valve V in the second embodiment may be provided in the oil passage communicating with the piston jet 4, and is not particularly limited.

図8に示すように、第二実施形態では、第一実施形態と比べて、作動油の流通方向の上流側に案内部材32の第一底部32Aおよび回動部材33の第二底部33Aを配置し、作動油の流通方向の下流側に直動部材31の受圧面31aを配置した点が異なる。つまり、受圧面31aには、流量制御弁Vを通過した後の第1油路15の油圧が作用する。また、直動部材31が移動する前の初期状態では、図5および図8に示すように全ての孔部32a,32b,33a,33bが連通した大流量モードとなり、直動部材31が移動した後の移動完了状態では、図3に示すように第一孔部32aおよび第三孔部33aのみ連通した小流量モードとなるように、第二孔部32bの中心と第四孔部33bの中心との相対位相が設定されている点が第一実施形態と異なっている。 As shown in FIG. 8, in the second embodiment, the first bottom portion 32A of the guide member 32 and the second bottom portion 33A of the rotating member 33 are arranged on the upstream side in the flow direction of the hydraulic oil as compared with the first embodiment. However, the difference is that the pressure receiving surface 31a of the linear motion member 31 is arranged on the downstream side in the flow direction of the hydraulic oil. That is, the oil pressure of the first oil passage 15 after passing through the flow rate control valve V acts on the pressure receiving surface 31a. Further, in the initial state before the linear motion member 31 moves, as shown in FIGS. 5 and 8, a large flow rate mode in which all the holes 32a, 32b, 33a, 33b communicate with each other is set, and the linear motion member 31 moves. In the later movement completion state, the center of the second hole portion 32b and the center of the fourth hole portion 33b so as to be in a small flow rate mode in which only the first hole portion 32a and the third hole portion 33a are communicated as shown in FIG. It is different from the first embodiment in that the relative phase with and is set.

本実施形態では、図9に示すように、エンジンEの低回転領域では、オイルポンプ11から吐出される油圧が十分に高まっておらず、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より小さいため、全ての孔部32a,32b,33a,33bが連通した大流量モード(図5参照)となっている。その結果、弁開閉時期制御装置1に連通する第1油路15やメインギャラリ2に連通する第2油路16に供給される作動油の油圧が共に増加する。 In the present embodiment, as shown in FIG. 9, in the low rotation region of the engine E, the flood pressure discharged from the oil pump 11 is not sufficiently increased, and the flood pressure acting on the pressure receiving surface 31a of the linear motion member 31 is compressed. Since it is smaller than the urging force of the coil spring S, it is in a large flow rate mode (see FIG. 5) in which all the holes 32a, 32b, 33a, and 33b communicate with each other. As a result, the oil pressure of the hydraulic oil supplied to the first oil passage 15 communicating with the valve opening / closing timing control device 1 and the second oil passage 16 communicating with the main gallery 2 increases.

エンジンEの中回転領域では、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より大きくなり、第二孔部32bと第四孔部33bとの連通面積が次第に減少して油圧勾配が緩やかになる油圧勾配低下モードとなる(図5から図3の状態に次第に移行する)。これにより、弁開閉時期制御装置1に連通する第1油路15の油圧の上昇勾配を減少させつつ、メインギャラリ2に連通する第2油路16の油圧を大きな上昇勾配で増加させるので、弁開閉時期制御装置1に供給する油圧を確保しつつメインギャラリ2で必要とされる油圧を確保することができる。なお、圧縮コイルスプリングSの付勢力,第二孔部32bと第四孔部33bとの連通面積,作動油の油圧との関係によっては、油圧勾配低下モードで、弁開閉時期制御装置1に連通する第1油路15の油圧が略一定となることも有り得る。 In the medium rotation region of the engine E, the flood pressure acting on the pressure receiving surface 31a of the linear motion member 31 becomes larger than the urging force of the compression coil spring S, and the communication area between the second hole portion 32b and the fourth hole portion 33b gradually decreases. Then, the mode becomes a hydraulic gradient lowering mode in which the hydraulic gradient becomes gentle (the state gradually shifts from FIG. 5 to FIG. 3). As a result, while reducing the ascending gradient of the oil pressure of the first oil passage 15 communicating with the valve opening / closing timing control device 1, the oil pressure of the second oil passage 16 communicating with the main gallery 2 is increased with a large ascending gradient. It is possible to secure the flood control required for the main gallery 2 while securing the flood control to be supplied to the opening / closing timing control device 1. Depending on the urging force of the compression coil spring S, the communication area between the second hole 32b and the fourth hole 33b, and the relationship with the hydraulic pressure of the hydraulic oil, the valve opening / closing timing control device 1 is communicated in the hydraulic gradient lowering mode. It is possible that the flood pressure of the first oil passage 15 is substantially constant.

エンジンEの高回転領域では、直動部材31の移動が完了することにより、案内ピン34が案内部材32の第一長孔32dの他端32dbおよび回動部材33の第二長孔33dの他端33dbに当接し、案内部材32の第一孔部32aと回動部材33の第三孔部33aのみが連通する小流量モードとなる(図3参照)。これにより、弁開閉時期制御装置1に連通する第1油路15の油圧を略一定に維持しつつ、メインギャラリ2に連通する第2油路16の油圧を大きな上昇勾配で増加させるので、メインギャラリ2で必要とされる油圧を確保することができる。そして、エンジン回転数が所定回転数以上となり、オイルポンプ11から吐出される油圧が十分に高まるとリリーフバルブ13が開弁し、それ以上弁開閉時期制御装置1やメインギャラリ2に供給される作動油の油圧は上昇しない。 In the high rotation region of the engine E, when the movement of the linear motion member 31 is completed, the guide pin 34 becomes the other end 32db of the first elongated hole 32d of the guide member 32 and the second elongated hole 33d of the rotating member 33. A small flow rate mode is set in which only the first hole portion 32a of the guide member 32 and the third hole portion 33a of the rotating member 33 communicate with each other by abutting on the end 33db (see FIG. 3). As a result, the oil pressure of the first oil passage 15 communicating with the valve opening / closing timing control device 1 is maintained substantially constant, and the oil pressure of the second oil passage 16 communicating with the main gallery 2 is increased with a large upward gradient. The oil pressure required in the gallery 2 can be secured. Then, when the engine speed becomes equal to or higher than the predetermined speed and the oil pressure discharged from the oil pump 11 is sufficiently increased, the relief valve 13 is opened, and the operation is further supplied to the valve opening / closing timing control device 1 and the main gallery 2. The oil pressure does not rise.

図10〜図11には、上述した第一実施形態および第二実施形態と基本構成が同一の流量制御弁Vを第1油路15および第2油路16に配置した第三実施形態が示されている。
本実施形態は、第一実施形態と第二実施形態とを組み合わせている。以下の説明では、第一実施形態と同様の流量制御弁Vを第一の流量制御弁V1とし、第二実施形態と同様の流量制御弁Vを第二の流量制御弁V2として説明する。なお、以下では、弁開閉時期制御装置1に連通する第1油路15に第二の流量制御弁V2を配置する例を示すが、弁開閉時期制御装置1,ピストンジェット4およびターボチャージャ3の少なくとも1つに連通する油路に第二の流量制御弁V2を設けても良い。つまり、弁開閉時期制御装置1に連通する第1油路15に加えて、ピストンジェット4に連通する油路に第二の流量制御弁V2を設けても良く、特に限定されない。
10 to 11 show a third embodiment in which the flow control valves V having the same basic configuration as those of the first and second embodiments described above are arranged in the first oil passage 15 and the second oil passage 16. Has been done.
This embodiment is a combination of the first embodiment and the second embodiment. In the following description, the flow rate control valve V similar to that of the first embodiment will be referred to as the first flow rate control valve V1, and the flow rate control valve V similar to that of the second embodiment will be referred to as the second flow rate control valve V2. In the following, an example in which the second flow rate control valve V2 is arranged in the first oil passage 15 communicating with the valve opening / closing timing control device 1, but the valve opening / closing timing control device 1, the piston jet 4 and the turbocharger 3 will be described. A second flow control valve V2 may be provided in the oil passage communicating with at least one. That is, in addition to the first oil passage 15 communicating with the valve opening / closing timing control device 1, the second flow control valve V2 may be provided in the oil passage communicating with the piston jet 4, and is not particularly limited.

図11に示すように、エンジンEの低回転領域では、オイルポンプ11から吐出される油圧が十分に高まっておらず、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より小さい。このため、第一の流量制御弁V1では、案内部材32の第一孔部32aと回動部材33の第三孔部33aのみが連通する小流量モードとなっている(図2〜図3参照)。一方、第二の流量制御弁V2では、全ての孔部32a,32b,33a,33bが連通した大流量モード(図5参照)となっている。その結果、第1油路15に分配される油量(油圧)が大きく、第2油路16に分配される油量(油圧)が小さくなる。これによって、エンジン始動時など低回転域では、メインギャラリ2に比べて比較的油圧が必要とされる弁開閉時期制御装置1に対して優先的に油圧を作用させることができる。 As shown in FIG. 11, in the low rotation region of the engine E, the oil pressure discharged from the oil pump 11 is not sufficiently increased, and the oil pressure acting on the pressure receiving surface 31a of the linear motion member 31 is attached to the compression coil spring S. Smaller than the power. Therefore, the first flow rate control valve V1 is in a small flow rate mode in which only the first hole 32a of the guide member 32 and the third hole 33a of the rotating member 33 communicate with each other (see FIGS. 2 to 3). ). On the other hand, the second flow rate control valve V2 has a large flow rate mode (see FIG. 5) in which all the holes 32a, 32b, 33a, 33b communicate with each other. As a result, the amount of oil (hydraulic pressure) distributed to the first oil passage 15 is large, and the amount of oil (hydraulic pressure) distributed to the second oil passage 16 is small. As a result, in a low rotation range such as when the engine is started, the oil pressure can be preferentially applied to the valve opening / closing timing control device 1 which requires relatively hydraulic pressure as compared with the main gallery 2.

エンジンEの中回転領域では、直動部材31の受圧面31aに作用する油圧が圧縮コイルスプリングSの付勢力より大きくなる。このため、第一の流量制御弁V1では、第二孔部32bと第四孔部33bとの連通面積が次第に増加する流量漸増モードとなり、第二の流量制御弁V2では、第二孔部32bと第四孔部33bとの連通面積が次第に減少して油圧勾配が緩やかになる油圧勾配低下モードとなる。これにより、メインギャラリ2に連通する第2油路16の油圧を次第に増加させつつ、弁開閉時期制御装置1に連通する第1油路15の油圧の上昇勾配を減少させ、メインギャラリ2で必要とされる油圧を確保することができる。 In the medium rotation region of the engine E, the flood pressure acting on the pressure receiving surface 31a of the linear motion member 31 becomes larger than the urging force of the compression coil spring S. Therefore, in the first flow rate control valve V1, the flow rate gradual increase mode in which the communication area between the second hole portion 32b and the fourth hole portion 33b gradually increases, and in the second flow rate control valve V2, the second hole portion 32b The hydraulic gradient lowering mode is set in which the communication area between the and the fourth hole 33b is gradually reduced and the hydraulic gradient becomes gentle. As a result, while gradually increasing the oil pressure of the second oil passage 16 communicating with the main gallery 2, the rising gradient of the oil pressure of the first oil passage 15 communicating with the valve opening / closing timing control device 1 is reduced, which is necessary for the main gallery 2. It is possible to secure the required oil pressure.

エンジンEの高回転領域では、直動部材31の移動が完了することにより、案内ピン34が案内部材32の第一長孔32dの他端32dbおよび回動部材33の第二長孔33dの他端33dbに当接する。このため、第一の流量制御弁V1では、全ての孔部32a,32b,33a,33bが連通した大流量モードとなり(図4〜図5参照)、第二の流量制御弁V2では、案内部材32の第一孔部32aと回動部材33の第三孔部33aのみが連通する小流量モードとなる(図3参照)。これにより、弁開閉時期制御装置1に連通する第1油路15の油圧を略一定に維持しつつ、メインギャラリ2に連通する第2油路16の油圧を大きな上昇勾配で増加させるので、メインギャラリ2で必要とされる油圧を確保することができる。そして、エンジン回転数が所定回転数以上となり、オイルポンプ11から吐出される油圧が十分に高まるとリリーフバルブ13が開弁し、それ以上弁開閉時期制御装置1やメインギャラリ2に供給される作動油の油圧は上昇しない。 In the high rotation region of the engine E, when the movement of the linear motion member 31 is completed, the guide pin 34 becomes the other end 32db of the first elongated hole 32d of the guide member 32 and the second elongated hole 33d of the rotating member 33. It abuts on the end 33db. Therefore, the first flow rate control valve V1 has a large flow rate mode in which all the holes 32a, 32b, 33a, 33b communicate with each other (see FIGS. 4 to 5), and the second flow control valve V2 has a guide member. It is a small flow rate mode in which only the first hole portion 32a of 32 and the third hole portion 33a of the rotating member 33 communicate with each other (see FIG. 3). As a result, the oil pressure of the first oil passage 15 communicating with the valve opening / closing timing control device 1 is maintained substantially constant, and the oil pressure of the second oil passage 16 communicating with the main gallery 2 is increased with a large upward gradient. The oil pressure required in the gallery 2 can be secured. Then, when the engine speed becomes equal to or higher than the predetermined speed and the oil pressure discharged from the oil pump 11 is sufficiently increased, the relief valve 13 is opened, and the operation is further supplied to the valve opening / closing timing control device 1 and the main gallery 2. The oil pressure does not rise.

[その他の実施形態]
(1)上述した実施形態では、案内部材32の第一底部32Aおよび回動部材33の第二底部33Aに形成した第二孔部32bおよび第四孔部33bを丸孔で構成したが、図12に示すように、中心側に頂点を有する三角孔で構成しても良い。このとき、各三角孔の中心角を、(360度/第二孔部32bおよび第四孔部33bの合計孔数)以上に設定する。この場合、第一底部32Aおよび第二底部33Aに対する第二孔部32bおよび第四孔部33bの占有面積を有効に確保できるので、流量制御弁Vの小型化が図られる。なお、孔部32a,32b,33a,33bの形状や数量は特に限定されず、必要油圧に応じて適宜設計すれば良い。例えば、第二孔部32bおよび第四孔部33bを三角孔ではなく扇形状の孔に設定すると、第一底部32Aおよび第二底部33Aに対する第二孔部32bおよび第四孔部33bの占有面積をさらに有効に確保することができる。
[Other Embodiments]
(1) In the above-described embodiment, the second hole portion 32b and the fourth hole portion 33b formed in the first bottom portion 32A of the guide member 32 and the second bottom portion 33A of the rotating member 33 are formed of round holes. As shown in 12, it may be composed of a triangular hole having an apex on the center side. At this time, the central angle of each triangular hole is set to (360 degrees / total number of holes of the second hole portion 32b and the fourth hole portion 33b) or more. In this case, since the occupied area of the second hole portion 32b and the fourth hole portion 33b with respect to the first bottom portion 32A and the second bottom portion 33A can be effectively secured, the flow control valve V can be miniaturized. The shape and quantity of the holes 32a, 32b, 33a, 33b are not particularly limited, and may be appropriately designed according to the required flood pressure. For example, if the second hole portion 32b and the fourth hole portion 33b are set to fan-shaped holes instead of triangular holes, the occupied area of the second hole portion 32b and the fourth hole portion 33b with respect to the first bottom portion 32A and the second bottom portion 33A. Can be secured more effectively.

(2)上述した実施形態における直動部材31,案内部材32,回動部材33の配置は、直動部材31の移動により回動部材33が案内部材32に対して相対回転可能に構成されている限り、特に限定されない。例えば、図13に示すように、径方向外側から径方向内側に向かって、案内部材32,直動部材31,回動部材33をこの順で配置しても良い。
この場合、直動部材31の受圧面31aは、筒状部31Bの開口端部に形成された環状端面で構成される。このような配置であれば、案内部材32の外周面をエンジンブロックEbの凹部21の内周面に密着させることが可能となるので、シール性を高めることができる。その他の作用効果は、上述した実施形態と同様であるので詳細な説明を省略する。
(2) In the arrangement of the linear motion member 31, the guide member 32, and the rotary member 33 in the above-described embodiment, the rotary member 33 is configured to be rotatable relative to the guide member 32 by the movement of the linear motion member 31. As long as it is, there is no particular limitation. For example, as shown in FIG. 13, the guide member 32, the linear motion member 31, and the rotating member 33 may be arranged in this order from the outer side in the radial direction to the inner side in the radial direction.
In this case, the pressure receiving surface 31a of the linear motion member 31 is composed of an annular end surface formed at the open end of the tubular portion 31B. With such an arrangement, the outer peripheral surface of the guide member 32 can be brought into close contact with the inner peripheral surface of the recess 21 of the engine block Eb, so that the sealing property can be improved. Since other actions and effects are the same as those in the above-described embodiment, detailed description thereof will be omitted.

(3)案内ピン34が挿入される貫通孔部31b,第一長孔32d,第二長孔33dの個数や配置は特に限定されない。また、第一長孔32dを、軸芯X方向に対し第二長孔33dの傾斜方向と反対方向に傾斜させても良い。この場合、第一長孔32dや第二長孔33dの孔長を短縮することができる。 (3) The number and arrangement of the through hole portion 31b, the first elongated hole 32d, and the second elongated hole 33d into which the guide pin 34 is inserted are not particularly limited. Further, the first elongated hole 32d may be inclined in a direction opposite to the inclined direction of the second elongated hole 33d with respect to the axis X direction. In this case, the hole lengths of the first elongated hole 32d and the second elongated hole 33d can be shortened.

(4)直動部材31,案内部材32および回動部材33の少なくとも何れか1つの軸芯Xをずらして配置しても良い。 (4) At least one of the linear motion member 31, the guide member 32, and the rotating member 33 may be displaced and arranged.

(5)上述した実施形態では第一孔部32aや第三孔部33aを、第一底部32Aや第二底部33Aの中央に配置したが、第一底部32Aや第二底部33Aの外周側に環状に形成しても良い。 (5) In the above-described embodiment, the first hole portion 32a and the third hole portion 33a are arranged in the center of the first bottom portion 32A and the second bottom portion 33A, but on the outer peripheral side of the first bottom portion 32A and the second bottom portion 33A. It may be formed in a ring shape.

(6)上述した実施形態において、小流量モードであるときに第二孔部32bおよび第四孔部33bが僅かに連通するように孔径や相対位相が設定されていても良いし、大流量モードであるときに第二孔部32bおよび第四孔部33bの一部が連通するように孔径や相対位相が設定されていても良い。 (6) In the above-described embodiment, the hole diameter and relative phase may be set so that the second hole portion 32b and the fourth hole portion 33b communicate with each other slightly in the small flow rate mode, or the large flow rate mode. The hole diameter and relative phase may be set so that a part of the second hole portion 32b and the fourth hole portion 33b communicate with each other.

(7)上述した実施形態では、流量制御弁Vを作動油供給装置10に組み込んだ例を示したが、冷却水を循環させる経路に流量制御弁Vを設置しても良い。 (7) In the above-described embodiment, the flow rate control valve V is incorporated in the hydraulic oil supply device 10, but the flow rate control valve V may be installed in the path for circulating the cooling water.

本発明は、流体圧により開度を変更して流量を制御する流量制御弁に利用可能である。 The present invention can be used for a flow rate control valve that controls the flow rate by changing the opening degree according to the fluid pressure.

1 弁開閉時期制御装置
2 メインギャラリ
3 ターボチャージャ
4 ピストンジェット
11 オイルポンプ
14 共通油路
15 第1油路
16 第2油路
18 連通路
20 合わせ面
21 凹部
31 直動部材
31A 鍔状部
31B 筒状部(延出部)
31a 受圧面
31b 貫通孔部
32 案内部材
32A 第一底部
32B 第一円筒部(第一側壁部)
32a 第一孔部
32b 第二孔部
32d 第一長孔
33 回動部材
33A 第二底部
33B 第二円筒部(第二側壁部)
33a 第三孔部
33b 第四孔部
33d 第二長孔
34 案内ピン(ピン状部材)
E エンジン
Ea タイミングチェーンカバー(カバー)
Eb エンジンブロック(ハウジング)
S 圧縮コイルスプリング(付勢部材)
V 流量制御弁
V1 第一の流量制御弁
V2 第二の流量制御弁
X 軸芯
1 Valve opening / closing timing control device 2 Main gallery 3 Turbocharger 4 Piston jet 11 Oil pump 14 Common oil passage 15 First oil passage 16 Second oil passage 18 Continuous passage 20 Joint surface 21 Recession 31 Linear member 31A Collar 31B cylinder Shaped part (extended part)
31a Pressure receiving surface 31b Through hole 32 Guide member 32A First bottom 32B First cylindrical part (first side wall part)
32a First hole portion 32b Second hole portion 32d First elongated hole 33 Rotating member 33A Second bottom portion 33B Second cylindrical portion (second side wall portion)
33a Third hole 33b Fourth hole 33d Second elongated hole 34 Guide pin (pin-shaped member)
E Engine Ea Timing Chain Cover (Cover)
Eb engine block (housing)
S compression coil spring (biasing member)
V Flow control valve V1 First flow control valve V2 Second flow control valve X Shaft core

Claims (9)

流体の圧力が作用する受圧面を有し、当該受圧面に前記圧力が作用することにより前記流体の流通方向に沿って移動可能な直動部材と、
前記圧力に対抗して前記直動部材を付勢する付勢部材と、
第一孔部と第二孔部とを含む第一底部を有し、前記直動部材の移動を案内する有底筒状の案内部材と、
第三孔部と第四孔部とを含む第二底部を有し、前記直動部材の移動に連動して前記案内部材に対して相対回転する有底筒状の回動部材と、を備え、
前記第一孔部と前記第三孔部とが常時連通した状態で前記第一底部と前記第二底部とが当接しており、
前記第二孔部と前記第四孔部とは、前記回動部材の前記案内部材に対する相対回転により連通面積が変更可能に構成されている流量制御弁。
A linear motion member having a pressure receiving surface on which the pressure of the fluid acts and being movable along the flow direction of the fluid by the pressure acting on the pressure receiving surface.
An urging member that urges the linear motion member against the pressure, and
A bottomed tubular guide member having a first bottom portion including a first hole portion and a second hole portion and guiding the movement of the linear motion member,
It has a second bottom portion including a third hole portion and a fourth hole portion, and includes a bottomed tubular rotating member that rotates relative to the guide member in conjunction with the movement of the linear motion member. ,
The first bottom portion and the second bottom portion are in contact with each other in a state where the first hole portion and the third hole portion are always in communication with each other.
The second hole portion and the fourth hole portion are flow control valves configured such that the communication area can be changed by the relative rotation of the rotating member with respect to the guide member.
前記直動部材は、前記受圧面を含む円環状の鍔状部と、前記鍔状部から延出した延出部とを有し、当該延出部には貫通孔部が形成されており、
前記案内部材における前記第一底部から延出した第一側壁部には、前記流通方向に沿う第一長孔が形成されており、
前記回動部材における前記第二底部から延出した第二側壁部には、前記第一長孔に対して傾斜した第二長孔が形成されており、
前記貫通孔部と前記第一長孔と前記第二長孔とに亘って配置され、前記貫通孔部に支持されたピン状部材を備え、
前記直動部材の移動により、前記ピン状部材が前記第二長孔の縁部に当接しながら移動して前記回動部材が前記案内部材に対して相対回転する請求項1に記載の流量制御弁。
The linear motion member has an annular flange-shaped portion including the pressure receiving surface and an extending portion extending from the flange-shaped portion, and a through hole portion is formed in the extending portion.
A first elongated hole along the flow direction is formed in the first side wall portion extending from the first bottom portion of the guide member.
A second elongated hole inclined with respect to the first elongated hole is formed in the second side wall portion extending from the second bottom portion of the rotating member.
A pin-shaped member arranged over the through hole portion, the first elongated hole, and the second elongated hole and supported by the through hole portion is provided.
The flow rate control according to claim 1, wherein the pin-shaped member moves while abutting on the edge of the second elongated hole due to the movement of the linear motion member, and the rotating member rotates relative to the guide member. valve.
前記直動部材、前記案内部材および前記回動部材は、何れも円筒形状であって同じ軸芯上に配置されると共に、前記受圧面が前記案内部材および前記回動部材の端部と隣り合う状態で前記案内部材および前記回動部材よりも径方向外側に配置されており、
前記案内部材の前記端部には、前記受圧面への前記流体の流通を許容する連通路が形成されている請求項1又は2に記載の流量制御弁。
The linear motion member, the guide member, and the rotating member are all cylindrical and arranged on the same axis, and the pressure receiving surface is adjacent to the guide member and the end portion of the rotating member. In the state, it is arranged radially outside the guide member and the rotating member.
The flow rate control valve according to claim 1 or 2, wherein a communication passage that allows the flow of the fluid to the pressure receiving surface is formed at the end of the guide member.
前記直動部材、前記案内部材および前記回動部材は、装着部位となるハウジングと当該ハウジングに装着されるカバーとの合わせ面に形成された凹部に収容されている請求項1から3のいずれか一項に記載の流量制御弁。 Any one of claims 1 to 3, wherein the linear motion member, the guide member, and the rotating member are housed in a recess formed in a mating surface between a housing to be mounted and a cover to be mounted on the housing. The flow control valve according to one item. 前記受圧面が前記流通方向の上流側に配置されていると共に、前記第一底部および前記第二底部が前記流通方向の下流側に配置されており、
前記直動部材が移動する前の初期状態では、前記第一孔部および前記第三孔部のみが連通しており、前記直動部材の移動に伴って、前記第二孔部および前記第四孔部の連通を開始し、前記直動部材の移動が完了した移動完了状態では、前記第二孔部および前記第四孔部が完全に連通する請求項1から4のいずれか一項に記載の流量制御弁。
The pressure receiving surface is arranged on the upstream side in the distribution direction, and the first bottom portion and the second bottom portion are arranged on the downstream side in the distribution direction.
In the initial state before the linear motion member moves, only the first hole portion and the third hole portion communicate with each other, and as the linear motion member moves, the second hole portion and the fourth hole portion are in communication with each other. 6. Flow control valve.
前記受圧面が前記流通方向の下流側に配置されていると共に、前記第一底部および前記第二底部が前記流通方向の上流側に配置されており、
前記直動部材が移動する前の初期状態では、前記第二孔部および前記第四孔部が完全に連通しており、前記直動部材の移動に伴って、前記第二孔部および前記第四孔部の連通面積が次第に減少し、前記直動部材の移動が完了した移動完了状態では、前記第一孔部および前記第三孔部のみが連通する請求項1から4のいずれか一項に記載の流量制御弁。
The pressure receiving surface is arranged on the downstream side in the distribution direction, and the first bottom portion and the second bottom portion are arranged on the upstream side in the distribution direction.
In the initial state before the linear motion member moves, the second hole portion and the fourth hole portion are completely in communication with each other, and as the linear motion member moves, the second hole portion and the fourth hole portion are in perfect communication with each other. Any one of claims 1 to 4 in which the communication area of the four holes gradually decreases and only the first hole and the third hole communicate with each other in the movement completed state in which the linear motion member has been moved. The flow control valve described in.
請求項5に記載の流量制御弁を備えた作動油供給装置であって、
エンジンの回転数に応じて駆動するオイルポンプと、
前記オイルポンプからの作動油が供給される共通油路と、
前記共通油路から分岐して弁開閉時期制御装置、ターボチャージャおよびピストンジェットの少なくとも1つに連通する第1油路と、
前記共通油路から分岐してメインギャラリに連通する第2油路と、を備え、
前記流量制御弁は、前記第2油路に設けられている作動油供給装置。
A hydraulic oil supply device including the flow control valve according to claim 5.
An oil pump that drives according to the engine speed,
A common oil passage to which hydraulic oil is supplied from the oil pump, and
A first oil passage that branches off from the common oil passage and communicates with at least one of a valve opening / closing timing controller, a turbocharger, and a piston jet.
A second oil channel that branches off from the common oil channel and communicates with the main gallery is provided.
The flow rate control valve is a hydraulic oil supply device provided in the second oil passage.
請求項6に記載の流量制御弁を備えた作動油供給装置であって、
エンジンの回転数に応じて駆動するオイルポンプと、
前記オイルポンプからの作動油が供給される共通油路と、
前記共通油路から分岐して弁開閉時期制御装置、ターボチャージャおよびピストンジェットの少なくとも1つに連通する第1油路と、
前記共通油路から分岐してメインギャラリに連通する第2油路と、を備え、
前記流量制御弁は、前記第1油路に設けられている作動油供給装置。
A hydraulic oil supply device including the flow control valve according to claim 6.
An oil pump that drives according to the engine speed,
A common oil passage to which hydraulic oil is supplied from the oil pump, and
A first oil passage that branches off from the common oil passage and communicates with at least one of a valve opening / closing timing controller, a turbocharger, and a piston jet.
A second oil channel that branches off from the common oil channel and communicates with the main gallery is provided.
The flow rate control valve is a hydraulic oil supply device provided in the first oil passage.
請求項5に記載の流量制御弁を第一の流量制御弁とし、請求項6に記載の流量制御弁を第二の流量制御弁とし、前記第一の流量制御弁と前記第二の流量制御弁とを備えた作動油供給装置であって、
エンジンの回転数に応じて駆動するオイルポンプと、
前記オイルポンプからの作動油が供給される共通油路と、
前記共通油路から分岐して弁開閉時期制御装置、ターボチャージャおよびピストンジェットの少なくとも1つに連通する第1油路と、
前記共通油路から分岐してメインギャラリに連通する第2油路と、を備え、
前記第一の流量制御弁は、前記第2油路に設けられており、
前記第二の流量制御弁は、前記第1油路に設けられている作動油供給装置。
The flow rate control valve according to claim 5 is a first flow rate control valve, the flow rate control valve according to claim 6 is a second flow rate control valve, and the first flow rate control valve and the second flow rate control. A hydraulic oil supply device equipped with a valve
An oil pump that drives according to the engine speed,
A common oil passage to which hydraulic oil is supplied from the oil pump, and
A first oil passage that branches off from the common oil passage and communicates with at least one of a valve opening / closing timing controller, a turbocharger, and a piston jet.
A second oil channel that branches off from the common oil channel and communicates with the main gallery is provided.
The first flow control valve is provided in the second oil passage, and is provided.
The second flow rate control valve is a hydraulic oil supply device provided in the first oil passage.
JP2017153494A 2017-06-22 2017-08-08 Hydraulic oil supply device with flow control valve and flow control valve Active JP6926803B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017122144 2017-06-22
JP2017122144 2017-06-22

Publications (2)

Publication Number Publication Date
JP2019007611A JP2019007611A (en) 2019-01-17
JP6926803B2 true JP6926803B2 (en) 2021-08-25

Family

ID=65028617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153494A Active JP6926803B2 (en) 2017-06-22 2017-08-08 Hydraulic oil supply device with flow control valve and flow control valve

Country Status (1)

Country Link
JP (1) JP6926803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856006B (en) * 2021-01-07 2022-03-01 宁波方太厨具有限公司 Flow stabilizing valve and water heater
CN114654288B (en) * 2022-04-19 2022-11-29 广东海思智能装备有限公司 Universal angle milling head component with micro-feeding function for numerical control machine tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050466A1 (en) * 1980-10-22 1982-04-28 The Duriron Company, Inc. Rotary valve actuator
JPS63285378A (en) * 1987-05-15 1988-11-22 Shimadzu Corp Valve
JPH0650449A (en) * 1992-07-31 1994-02-22 Fujikura Ltd Ultrasonic motor valve
JP2001304439A (en) * 2000-02-18 2001-10-31 Saginomiya Seisakusho Inc Passage selector valve and controller for refrigerating cycle

Also Published As

Publication number Publication date
JP2019007611A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US11248502B2 (en) Hydraulic oil control valve and valve timing adjustment device
JP6369966B2 (en) Central valve for oscillating actuator
JP6308251B2 (en) Engine oil supply device
US10273835B2 (en) Valve opening/closing timing control apparatus
JP6410742B2 (en) Valve timing control device
JP2006046315A (en) Valve-timing adjusting device
US20090230337A1 (en) Hydraulic control valve
EP3321478B1 (en) Valve opening/closing timing control apparatus
JP2011169215A (en) Control valve apparatus
US20090078222A1 (en) Valve timing control apparatus
JP6390499B2 (en) Valve timing adjustment device
WO2014080686A1 (en) Hydraulic oil supply device
US11428126B2 (en) Valve timing adjustment device
JP6926803B2 (en) Hydraulic oil supply device with flow control valve and flow control valve
JP6308163B2 (en) Valve timing adjustment device
JP6217240B2 (en) Control valve and control valve mounting structure
JP2009185719A (en) Valve timing regulating device
US20200408115A1 (en) Valve device
US20180135473A1 (en) Valve opening/closing timing control apparatus
JP2021085398A (en) Valve timing adjustment device
JPWO2020071061A1 (en) Oil pump and control valve
JP5105187B2 (en) Valve timing control device
JP6897412B2 (en) Oil pump
JP4463186B2 (en) Valve timing adjustment device
JP5783309B2 (en) Camshaft support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6926803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150