JP6925808B2 - Manufacturing method of optical laminate and manufacturing method of image display device - Google Patents

Manufacturing method of optical laminate and manufacturing method of image display device Download PDF

Info

Publication number
JP6925808B2
JP6925808B2 JP2017012094A JP2017012094A JP6925808B2 JP 6925808 B2 JP6925808 B2 JP 6925808B2 JP 2017012094 A JP2017012094 A JP 2017012094A JP 2017012094 A JP2017012094 A JP 2017012094A JP 6925808 B2 JP6925808 B2 JP 6925808B2
Authority
JP
Japan
Prior art keywords
film
peeling
optical laminate
polarizing plate
release film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012094A
Other languages
Japanese (ja)
Other versions
JP2018120120A (en
JP2018120120A5 (en
Inventor
有 森本
有 森本
雄祐 外山
雄祐 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2017012094A priority Critical patent/JP6925808B2/en
Priority to TW106144982A priority patent/TWI760404B/en
Priority to KR1020180002279A priority patent/KR102371779B1/en
Priority to CN201810014447.2A priority patent/CN108363134B/en
Publication of JP2018120120A publication Critical patent/JP2018120120A/en
Publication of JP2018120120A5 publication Critical patent/JP2018120120A5/ja
Application granted granted Critical
Publication of JP6925808B2 publication Critical patent/JP6925808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、光学積層体の製造方法および画像表示装置の製造方法に関する。 The present invention relates to a method for manufacturing an optical laminate and a method for manufacturing an image display device.

偏光板は、液晶セル等の光学部材に貼り合され、液晶表示装置等の画像表示装置に広く用いられている。偏光板を光学部材に貼り合せる工程では、例えば、表面保護フィルムと偏光板と剥離フィルムとをこの順に有する光学積層体から剥離フィルムを剥離し、粘着剤層を介して偏光板を光学部材に貼り合せる。このような光学積層体として、特許文献1には、表面保護フィルムと薄型の偏光板と剥離フィルムとをこの順に有する表面保護フィルム付き偏光板が記載されている。 The polarizing plate is bonded to an optical member such as a liquid crystal cell, and is widely used in an image display device such as a liquid crystal display device. In the step of attaching the polarizing plate to the optical member, for example, the release film is peeled from the optical laminate having the surface protective film, the polarizing plate, and the release film in this order, and the polarizing plate is attached to the optical member via the pressure-sensitive adhesive layer. I can match. As such an optical laminate, Patent Document 1 describes a polarizing plate with a surface protective film having a surface protective film, a thin polarizing plate, and a release film in this order.

特開2016−118771号公報Japanese Unexamined Patent Publication No. 2016-118771

光学積層体の製造工程においては、剥離フィルムと偏光板との十分な密着性が要求される。一方で、光学積層体を用いて偏光板を他の光学部材に貼り合せる工程においては、剥離フィルムの剥離容易性(剥離性)が求められる。特許文献1の表面保護フィルム付き偏光板は、他の光学部材への貼合工程において、剥離フィルムの剥離性が低く、また、剥離フィルムを剥離する際に偏光板が表面保護フィルムから剥離してしまう場合がある。 In the manufacturing process of the optical laminate, sufficient adhesion between the release film and the polarizing plate is required. On the other hand, in the step of attaching the polarizing plate to another optical member using the optical laminate, the release film is required to be easily peeled (peeled). The polarizing plate with a surface protective film of Patent Document 1 has low peelability of the release film in the step of bonding to another optical member, and the polarizing plate is peeled off from the surface protective film when the release film is peeled off. It may end up.

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、剥離フィルムを剥離する際に偏光板が表面保護フィルムから剥離されることが抑制された光学積層体の製造方法および画像表示装置の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to manufacture an optical laminate in which the polarizing plate is suppressed from being peeled from the surface protective film when the release film is peeled off. It is an object of the present invention to provide a method and a method for manufacturing an image display device.

本発明の光学積層体の製造方法は、表面保護フィルムと、第1の粘着剤層と、偏光板と、第2の粘着剤層と、剥離フィルムとをこの順に有する光学積層体の製造方法であって、上記第2の粘着剤層から上記剥離フィルムを剥離する剥離工程と、剥離した上記剥離フィルムを上記第2の粘着剤層に再度貼り合せる再貼合工程と、を含み、上記表面保護フィルムのきっかけ剥離力をX(N/50mm)とし、上記剥離工程の前の上記剥離フィルムのきっかけ剥離力をY1(N/50mm)とし、上記再貼合工程の後の上記剥離フィルムのきっかけ剥離力をY2(N/50mm)としたとき、Y2<X≦Y1を満足し、好ましくはX−Y2>0.1を満足する。
1つの実施形態においては、上記剥離工程の後、上記再貼合工程の前に、上記偏光板および上記第2の粘着層のうち少なくとも一方の異物の有無を検査する異物検査工程を含む。
1つの実施形態においては、上記表面保護フィルムの引張弾性率と厚みとの積をAとし、上記偏光板の引張弾性率と厚みとの積をBとし、上記剥離フィルムの引張弾性率と厚みとの積をCとしたとき、A>B+Cを満足する。
1つの実施形態においては、A≦B+C+25550を満足する。
1つの実施形態においては、上記表面保護フィルムの厚みと、上記第1の粘着剤層の厚みとの合計が75μm以上であり、上記剥離フィルムの厚みが38μm以下である。
1つの実施形態においては、上記偏光板が、偏光子と、上記偏光子の上記表面保護フィルム側に積層された保護層とを有し、上記偏光子の厚みが12μm以下である。
本発明の別の局面によれば、画像表示装置の製造方法が提供される。この画像表示装置の製造方法は、上記光学積層体の製造方法により得られた上記光学積層体の上記剥離フィルムを剥離し、上記第2の粘着剤層を介して上記偏光板を光学部材に貼り合せる工程を含む。
The method for producing an optical laminate of the present invention is a method for producing an optical laminate having a surface protective film, a first pressure-sensitive adhesive layer, a polarizing plate, a second pressure-sensitive adhesive layer, and a release film in this order. The surface protection includes a peeling step of peeling the release film from the second pressure-sensitive adhesive layer and a re-bonding step of re-bonding the peeled release film to the second pressure-sensitive adhesive layer. The trigger peeling force of the film is X (N / 50 mm), the trigger peeling force of the peeling film before the peeling step is Y1 (N / 50 mm), and the trigger peeling of the peeling film after the re-bonding step is When the force is Y2 (N / 50 mm), Y2 <X ≦ Y1 is satisfied, and preferably XY2> 0.1 is satisfied.
One embodiment includes a foreign matter inspection step of inspecting the presence or absence of foreign matter in at least one of the polarizing plate and the second adhesive layer after the peeling step and before the reattachment step.
In one embodiment, the product of the tensile elastic modulus and the thickness of the surface protective film is A, the product of the tensile elastic modulus and the thickness of the polarizing plate is B, and the tensile elastic modulus and the thickness of the release film are When the product of is C, A> B + C is satisfied.
In one embodiment, A ≦ B + C + 25550 is satisfied.
In one embodiment, the total thickness of the surface protective film and the thickness of the first pressure-sensitive adhesive layer is 75 μm or more, and the thickness of the release film is 38 μm or less.
In one embodiment, the polarizing plate has a polarizing element and a protective layer laminated on the surface protective film side of the polarizing element, and the thickness of the polarizing element is 12 μm or less.
According to another aspect of the present invention, there is provided a method of manufacturing an image display device. In the manufacturing method of this image display device, the release film of the optical laminate obtained by the manufacturing method of the optical laminate is peeled off, and the polarizing plate is attached to the optical member via the second pressure-sensitive adhesive layer. Including the process of matching.

本発明によれば、剥離フィルムを剥離する際に偏光板が表面保護フィルムから剥離されることが抑制された光学積層体の製造方法および画像表示装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an optical laminate in which the polarizing plate is suppressed from being peeled from the surface protective film when the release film is peeled off, and a method for manufacturing an image display device.

本発明の1つの実施形態に係る光学積層体の製造方法により得られる光学積層体の概略断面図である。It is schematic cross-sectional view of the optical laminated body obtained by the manufacturing method of the optical laminated body which concerns on one Embodiment of this invention. 本発明の1つの実施形態に係る光学積層体の製造方法を工程順に示す光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body which shows the manufacturing method of the optical laminated body which concerns on one Embodiment of this invention in process order. 光学積層体から剥離フィルムが剥離される様子を示す概略断面図である。It is a schematic cross-sectional view which shows the state that the release film is peeled off from an optical laminate. 光学積層体から表面保護フィルムが剥離される様子を示す概略断面図である。It is a schematic cross-sectional view which shows how the surface protection film is peeled off from an optical laminate. 本発明の別の実施形態に係る製造方法により得られる光学積層体の概略断面図である。It is a schematic cross-sectional view of the optical laminate obtained by the manufacturing method which concerns on another Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

A.光学積層体の製造方法
図1は、本発明の1つの実施形態に係る光学積層体の製造方法により得られる光学積層体の概略断面図である。光学積層体100は、表面保護フィルム10と、第1の粘着剤層20と、偏光板30と、第2の粘着剤層40と、剥離フィルム50とをこの順に有する。1つの実施形態においては、偏光板30は、偏光子31と偏光子31の表面保護フィルム10側に積層された第1の保護層32とを有する。
A. Method for Manufacturing Optical Laminates FIG. 1 is a schematic cross-sectional view of an optical laminate obtained by the method for manufacturing an optical laminate according to one embodiment of the present invention. The optical laminate 100 has a surface protective film 10, a first pressure-sensitive adhesive layer 20, a polarizing plate 30, a second pressure-sensitive adhesive layer 40, and a release film 50 in this order. In one embodiment, the polarizing plate 30 has a polarizer 31 and a first protective layer 32 laminated on the surface protective film 10 side of the polarizer 31.

光学積層体100の製造方法は、第2の粘着剤層40から剥離フィルム50を剥離する剥離工程と、剥離した剥離フィルム50を第2の粘着剤層40に再度貼り合せる再貼合工程とを含む。図2は、1つの実施形態に係る光学積層体の製造方法を工程順に示す光学積層体の概略断面図である。本実施形態の光学積層体の製造方法は、第一に、(a)に示すように偏光板30を作製する。次いで、(b)に示すように、偏光板30の一方の面に第2の粘着剤層40を介して剥離フィルム50を積層する。次いで、(c)に示すように、第2の粘着剤層40から剥離フィルム50を剥離する(剥離工程)。次いで、(d)に示すように、偏光板30および第2の粘着層40のうち少なくとも一方の異物検査をする(異物検査工程)。次いで、(e)に示すように、剥離した剥離フィルム50を第2の粘着剤層40に再度貼り合せる(再貼合工程)。次いで、(f)に示すように、偏光板30の剥離フィルム50とは反対側に第1の粘着剤層20を介して表面保護フィルム10を積層することにより、光学積層体100が得られる。 The method for manufacturing the optical laminate 100 includes a peeling step of peeling the release film 50 from the second pressure-sensitive adhesive layer 40 and a re-bonding step of re-bonding the peeled release film 50 to the second pressure-sensitive adhesive layer 40. include. FIG. 2 is a schematic cross-sectional view of the optical laminate showing the manufacturing method of the optical laminate according to one embodiment in the order of processes. In the method for producing an optical laminate of the present embodiment, first, a polarizing plate 30 is produced as shown in (a). Next, as shown in (b), the release film 50 is laminated on one surface of the polarizing plate 30 via the second pressure-sensitive adhesive layer 40. Next, as shown in (c), the release film 50 is peeled from the second pressure-sensitive adhesive layer 40 (peeling step). Next, as shown in (d), at least one of the polarizing plate 30 and the second adhesive layer 40 is inspected for foreign matter (foreign matter inspection step). Then, as shown in (e), the peeled release film 50 is reattached to the second pressure-sensitive adhesive layer 40 (reattachment step). Next, as shown in (f), the optical laminate 100 is obtained by laminating the surface protective film 10 on the side of the polarizing plate 30 opposite to the release film 50 via the first pressure-sensitive adhesive layer 20.

表面保護フィルム10のきっかけ剥離力をX(N/50mm)とし、剥離工程の前の剥離フィルム50のきっかけ剥離力をY1(N/50mm)とし、再貼合工程の後の剥離フィルム50のきっかけ剥離力をY2(N/50mm)としたとき、Y2<X≦Y1を満足し、好ましくはX−Y2>0.1を満足する。一般的に、フィルムを端部から一定の剥離速度で剥離する場合、フィルムの剥離力は、剥離開始直後は剥離長さに応じて増大し、ピークを迎えて減少し、所定時間経過後に一定の値で安定化する。本明細書において、フィルムのきっかけ剥離力とは剥離開始直後における剥離力のピーク値(最大値)を意味し、フィルムの通常剥離力とは剥離開始から所定時間経過後の安定化した剥離力を意味するものとする。光学積層体100は、図3に示すように剥離フィルム50を剥離し、第2の粘着剤層40を介して偏光板30を他の光学部材(例えば、液晶セル)に貼り合せる際に用いられ得る。例えば引張弾性率が高い表面保護フィルムを有する光学積層体、または剥離フィルムのきっかけ剥離力が表面保護フィルムのきっかけ剥離力よりも大きい光学積層体は、剥離フィルム50を端部から剥離しようとした際に、図4に示すように、剥離フィルム50が剥離されることなく表面保護フィルム10および第1の粘着剤層20が偏光板30から剥離されてしまい(剥離フィルム50が偏光板30ごと第1の粘着剤層20から剥離されてしまい)、剥離不良となり得る。これに対して、本発明の光学積層体100の製造方法は、上記のとおり、第2の粘着剤層40から剥離フィルム50を剥離する剥離工程と、剥離した剥離フィルム50を第2の粘着剤層40に再度貼り合せる再貼合工程とを含み、再貼合工程の後の剥離フィルム50のきっかけ剥離力(Y2)は、表面保護フィルム10のきっかけ剥離力(X)より小さい。したがって、図3に示すように、表面保護フィルム10および第1の粘着剤層20が偏光板30から剥離されることなく剥離フィルム50が第2の粘着剤層40から剥離され得る。さらに、本発明の光学積層体100の製造方法では、剥離工程の前の剥離フィルム50のきっかけ剥離力(Y1)は、表面保護フィルム10のきっかけ剥離力(X)以上である。したがって、剥離フィルム50を第2の粘着剤層40を介して偏光板30に積層した後、上記剥離工程までの間、剥離フィルム50と偏光板30との密着性が十分に高い。その結果、搬送しながら各層を積層することにより光学積層体100を製造する場合、搬送による剥離フィルム50の剥がれを抑制し得る。光学積層体100の製造方法は、図2の(d)に示すように、好ましくは、剥離工程の後、再貼合工程の前に異物検査工程を含む。 The trigger peeling force of the surface protective film 10 is X (N / 50 mm), the trigger peeling force of the peeling film 50 before the peeling step is Y1 (N / 50 mm), and the trigger peeling force of the peeling film 50 after the re-bonding step is When the peeling force is Y2 (N / 50 mm), Y2 <X ≦ Y1 is satisfied, and preferably XY2> 0.1 is satisfied. Generally, when the film is peeled from the edge at a constant peeling rate, the peeling force of the film increases according to the peeling length immediately after the start of peeling, reaches a peak and decreases, and becomes constant after a lapse of a predetermined time. Stabilize with value. In the present specification, the trigger peeling force of the film means the peak value (maximum value) of the peeling force immediately after the start of peeling, and the normal peeling force of the film means the stabilized peeling force after a lapse of a predetermined time from the start of peeling. It shall mean. The optical laminate 100 is used when the release film 50 is peeled off as shown in FIG. 3 and the polarizing plate 30 is attached to another optical member (for example, a liquid crystal cell) via the second pressure-sensitive adhesive layer 40. obtain. For example, an optical laminate having a surface protective film having a high tensile elasticity, or an optical laminate in which the trigger peeling force of the release film is larger than the trigger peeling force of the surface protective film, when the release film 50 is attempted to be peeled from the end. As shown in FIG. 4, the surface protective film 10 and the first pressure-sensitive adhesive layer 20 are peeled off from the polarizing plate 30 without peeling off the release film 50 (the release film 50 is the first together with the polarizing plate 30). It may be peeled off from the pressure-sensitive adhesive layer 20), resulting in poor peeling. On the other hand, in the method for producing the optical laminate 100 of the present invention, as described above, the peeling step of peeling the release film 50 from the second pressure-sensitive adhesive layer 40 and the peeling film 50 being peeled off as the second pressure-sensitive adhesive. The trigger peeling force (Y2) of the release film 50 after the re-bonding step includes the re-bonding step of re-bonding to the layer 40, and is smaller than the trigger peeling force (X) of the surface protective film 10. Therefore, as shown in FIG. 3, the release film 50 can be peeled from the second pressure-sensitive adhesive layer 40 without the surface protection film 10 and the first pressure-sensitive adhesive layer 20 being peeled off from the polarizing plate 30. Further, in the method for producing the optical laminate 100 of the present invention, the trigger peeling force (Y1) of the peeling film 50 before the peeling step is equal to or higher than the trigger peeling force (X) of the surface protective film 10. Therefore, after the release film 50 is laminated on the polarizing plate 30 via the second pressure-sensitive adhesive layer 40, the adhesion between the release film 50 and the polarizing plate 30 is sufficiently high until the release step. As a result, when the optical laminate 100 is manufactured by laminating each layer while transporting, peeling of the release film 50 due to transport can be suppressed. As shown in FIG. 2D, the method for producing the optical laminate 100 preferably includes a foreign matter inspection step after the peeling step and before the re-bonding step.

図5は、本発明の別の実施形態に係る光学積層体の製造方法により得られる光学積層体の概略断面図である。本実施形態においては、偏光板30が、偏光子31と偏光子31の表面保護フィルム10側に積層された第1の保護層32と偏光子31の剥離フィルム50側に積層された第2の保護層33とを有する。本実施形態の光学積層体101のように、偏光板30は、偏光子31の両側に保護層を有していてもよい。 FIG. 5 is a schematic cross-sectional view of an optical laminate obtained by the method for manufacturing an optical laminate according to another embodiment of the present invention. In the present embodiment, the polarizing plate 30 is laminated on the surface protective film 10 side of the polarizer 31 and the polarizer 31 and the second protective layer 32 laminated on the release film 50 side of the polarizer 31. It has a protective layer 33. Like the optical laminate 101 of the present embodiment, the polarizing plate 30 may have protective layers on both sides of the polarizer 31.

光学積層体100および光学積層体101は、枚葉状であってもよく、長尺状であってもよい。偏光子31の厚みは、代表的には12μm以下である。表面保護フィルム10の厚みと第1の粘着剤層20の厚みとの合計は、好ましくは75μm以上であり、剥離フィルム50の厚みは、好ましくは38μm以下である。光学積層体100および光学積層体101は、表面保護フィルム10の引張弾性率と厚みとの積をAとし、偏光板30の引張弾性率と厚みとの積をBとし、剥離フィルム50の引張弾性率と厚みとの積をCとしたとき、好ましくは、A>B+Cを満足し、さらに好ましくは、A≦B+C+25550を満足する。なお、偏光板30の引張弾性率と厚みとの積Bは、偏光子31の引張弾性率と厚みとの積B1と、第1の保護層32の引張弾性率と厚みとの積B2と、第2の保護層33の引張弾性率と厚みとの積B3(第2の保護層が存在する場合)との和により算出される。 The optical laminate 100 and the optical laminate 101 may have a single-wafer shape or a long shape. The thickness of the polarizer 31 is typically 12 μm or less. The total thickness of the surface protective film 10 and the thickness of the first pressure-sensitive adhesive layer 20 is preferably 75 μm or more, and the thickness of the release film 50 is preferably 38 μm or less. In the optical laminate 100 and the optical laminate 101, the product of the tensile elastic modulus and the thickness of the surface protective film 10 is A, the product of the tensile elastic modulus of the polarizing plate 30 and the thickness is B, and the tensile elasticity of the release film 50. When the product of the rate and the thickness is C, preferably A> B + C is satisfied, and more preferably A ≦ B + C + 25550 is satisfied. The product B of the tensile elastic modulus and the thickness of the polarizing plate 30 is the product B1 of the tensile elastic modulus and the thickness of the polarizer 31 and the product B2 of the tensile elastic modulus and the thickness of the first protective layer 32. It is calculated by the sum of the product B3 (when the second protective layer is present) of the tensile elastic modulus of the second protective layer 33 and the thickness.

B.表面保護フィルム
表面保護フィルムは、偏光板の一方の表面に第1の粘着剤層を介して積層され、偏光板の保護フィルムとして機能し得る。表面保護フィルムは、代表的には、等方性を有する透明フィルムである。表面保護フィルムは、偏光板を第2の粘着剤層を介して他の光学部材へ貼り合せた後の任意の適切な時点で剥離・除去され得る。
B. Surface Protective Film The surface protective film is laminated on one surface of the polarizing plate via a first pressure-sensitive adhesive layer, and can function as a protective film for the polarizing plate. The surface protective film is typically a transparent film having isotropic properties. The surface protective film can be peeled off and removed at any suitable time after the polarizing plate is attached to another optical member via the second pressure-sensitive adhesive layer.

表面保護フィルムの厚みは、好ましくは25μm〜250μmであり、より好ましくは50μm〜200μmであり、特に好ましくは70μm〜150μmである。十分な厚みおよび剛性を有する表面保護フィルムを用いることにより、偏光板を液晶セル等の光学部材に貼り合せる工程においてカールの発生を抑制し得、さらには、光学積層体を構成する各層を搬送しながら積層する場合に、積層体の搬送性が向上し、その結果、光学積層体の製造効率が向上し得る。 The thickness of the surface protective film is preferably 25 μm to 250 μm, more preferably 50 μm to 200 μm, and particularly preferably 70 μm to 150 μm. By using a surface protective film having sufficient thickness and rigidity, it is possible to suppress the occurrence of curl in the process of attaching the polarizing plate to an optical member such as a liquid crystal cell, and further, each layer constituting the optical laminate is conveyed. However, in the case of laminating, the transportability of the laminated body is improved, and as a result, the manufacturing efficiency of the optical laminated body can be improved.

表面保護フィルムの引張弾性率は、好ましくは2000MPa〜5000MPaであり、より好ましくは2500MPa〜4500MPaであり、特に好ましくは3000MPa〜4000MPaである。 The tensile elastic modulus of the surface protective film is preferably 2000 MPa to 5000 MPa, more preferably 2500 MPa to 4500 MPa, and particularly preferably 3000 MPa to 4000 MPa.

表面保護フィルムを構成する材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂が挙げられる。これらのなかでもポリエステル系樹脂が好ましい。 Examples of the material constituting the surface protective film include polyester resin such as polyethylene terephthalate film, cellulose resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, and polyolefin resin. Examples include resins and acrylic resins. Of these, polyester-based resins are preferable.

C.偏光板
偏光板は、少なくとも偏光子を含む。好ましくは、偏光板は、偏光子の少なくとも片側に保護層を有する。
C. Polarizing plate The polarizing plate contains at least a polarizer. Preferably, the polarizing plate has a protective layer on at least one side of the polarizer.

C−1.偏光子
偏光子の厚みは、上記のとおり好ましくは12μm以下であり、より好ましくは1μm〜10μmであり、さらに好ましくは3μm〜8μmである。偏光子の引張弾性率は、好ましくは300MPa〜1000MPaであり、より好ましくは400MPa〜900MPaであり、特に好ましくは500MPa〜800MPaである。
C-1. Polarizer The thickness of the polarizer is preferably 12 μm or less, more preferably 1 μm to 10 μm, and further preferably 3 μm to 8 μm as described above. The tensile elastic modulus of the polarizer is preferably 300 MPa to 1000 MPa, more preferably 400 MPa to 900 MPa, and particularly preferably 500 MPa to 800 MPa.

偏光子は、好ましくは、波長380nm〜780nmのいずれかの波長で吸収二色性を示す。1つの実施形態においては、偏光子の波長589nmの透過率(単体透過率ともいう)は、好ましくは42.0%〜46.0%であり、より好ましくは44.5%〜46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。別の実施形態においては、偏光子は、好ましくは、透過率Tが42.3%未満のとき、偏光度Pが−(100.929T−42.4−1)×100%より大きく、透過率Tが42.3%以上のとき、偏光度Pが99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. In one embodiment, the transmittance of the polarizer at a wavelength of 589 nm (also referred to as single transmittance) is preferably 42.0% to 46.0%, more preferably 44.5% to 46.0%. Is. The degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more. In another embodiment, the polarizer preferably has a degree of polarization P greater than − (10 0.929T-42.4-1 ) × 100% when the transmittance T is less than 42.3% and is transparent. When the rate T is 42.3% or more, the degree of polarization P is 99.9% or more.

偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。 As the polarizer, any suitable polarizer can be adopted. For example, the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.

単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.

上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3〜7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラ等を防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.

積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。このような偏光子の製造方法の詳細は、例えば特開2012−73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。得られた樹脂基材/偏光子の積層体はそのまま用いてもよい(すなわち、樹脂基材を偏光子の保護層としてもよい)。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer).

C−2.保護層
保護層(第1の保護層および第2の保護層)は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN−メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。第1の保護層の構成材料と第2の保護層の構成材料とは互いに同じであってもよいし、異なっていてもよい。
C-2. Protective Layer The protective layer (first protective layer and second protective layer) is formed of any suitable film that can be used as a protective layer for the polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in Japanese Patent Application Laid-Open No. 2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition. The constituent material of the first protective layer and the constituent material of the second protective layer may be the same as or different from each other.

保護層には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。 If necessary, the protective layer may be subjected to surface treatment such as hard coating treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment.

保護層の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm〜500μm、さらに好ましくは5μm〜150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。第1の保護層の厚みと第2の保護層の厚みとは互いに同じであってもよいし、異なっていてもよい。保護層を構成する保護フィルムの引張弾性率は、好ましくは1500MPa〜3800MPaであり、より好ましくは2000MPa〜3300MPaであり、特に好ましくは2300MPa〜3000MPaである。 The thickness of the protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm to 500 μm, and even more preferably 5 μm to 150 μm. When the surface treatment is applied, the thickness of the protective layer is the thickness including the thickness of the surface treatment layer. The thickness of the first protective layer and the thickness of the second protective layer may be the same as or different from each other. The tensile elastic modulus of the protective film constituting the protective layer is preferably 1500 MPa to 3800 MPa, more preferably 2000 MPa to 3300 MPa, and particularly preferably 2300 MPa to 3000 MPa.

D.剥離フィルム
剥離フィルムは、偏光板の表面保護フィルムとは反対側に第2の粘着剤層を介して積層され、偏光板を第2の粘着剤層を介して他の光学部材に貼り合せる際に剥離・除去される。
D. Release film The release film is laminated on the side opposite to the surface protective film of the polarizing plate via the second pressure-sensitive adhesive layer, and when the polarizing plate is attached to another optical member via the second pressure-sensitive adhesive layer. It is peeled off and removed.

剥離フィルムの厚みは、好ましくは5μm〜200μm、より好ましくは10μm〜100μm、さらに好ましくは20〜50μmである。剥離フィルムの引張弾性率は、好ましくは2000MPa〜5000MPaであり、より好ましくは2500MPa〜4500MPaであり、特に好ましくは3000MPa〜4000MPaである。 The thickness of the release film is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 20 to 50 μm. The tensile elastic modulus of the release film is preferably 2000 MPa to 5000 MPa, more preferably 2500 MPa to 4500 MPa, and particularly preferably 3000 MPa to 4000 MPa.

剥離フィルムは、代表的には、プラスチックフィルムと、プラスチックフィルムの片側に設けられた剥離付与層とで構成される。プラスチックフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン−酢酸ビニル共重合体フィルム等が挙げられる。これらのなかでもポリエステルフィルムが好ましい。剥離付与層は、シリコーン系、長鎖アルキル系、フッ素系等の任意の適切な剥離剤でコーティングした層であり得る。 The release film is typically composed of a plastic film and a release-imparting layer provided on one side of the plastic film. Examples of the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyester film such as polyethylene terephthalate film, polybutylene terephthalate film, and polyurethane. Examples thereof include a film and an ethylene-vinyl acetate copolymer film. Of these, polyester film is preferable. The release-imparting layer may be a layer coated with any suitable release agent such as silicone-based, long-chain alkyl-based, and fluorine-based.

剥離フィルムは、上記剥離付与層の上に第2の粘着剤層を構成する粘着剤を塗布し、乾燥させた後、偏光板に貼り合せられる。 The release film is obtained by applying the pressure-sensitive adhesive constituting the second pressure-sensitive adhesive layer on the release-imparting layer, drying the film, and then attaching the release film to a polarizing plate.

E.粘着剤層
粘着剤層を構成する粘着剤としては、任意の適切な粘着剤を用いることができる。このような粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。第1の粘着剤層を構成する粘着剤と第2の粘着剤層を構成する粘着剤とは互いに同じであってもよいし、異なっていてもよい。
E. Adhesive layer As the adhesive constituting the adhesive layer, any suitable adhesive can be used. Examples of such adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinylpyrrolidone adhesives, and polyacrylamide adhesives. Examples include adhesives and cellulose-based adhesives. Among these adhesives, those having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesiveness, and excellent weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used to exhibit such characteristics. The pressure-sensitive adhesive constituting the first pressure-sensitive adhesive layer and the pressure-sensitive adhesive constituting the second pressure-sensitive adhesive layer may be the same as or different from each other.

粘着剤層の厚みは、好ましくは7μm〜30μmであり、より好ましくは10μm〜25μmである。第1の粘着剤層の厚みと第2の粘着剤層の厚みとは互いに同じであってもよいし、異なっていてもよい。 The thickness of the pressure-sensitive adhesive layer is preferably 7 μm to 30 μm, more preferably 10 μm to 25 μm. The thickness of the first pressure-sensitive adhesive layer and the thickness of the second pressure-sensitive adhesive layer may be the same as or different from each other.

F.画像表示装置
A項からE項に記載の光学積層体は、液晶表示装置および有機EL表示装置等の画像表示装置に含まれる光学部材に偏光板を貼り合せる際に用いられ得る。したがって、本発明の光学積層体の製造方法は、上記偏光板を用いた画像表示装置の製造方法を包含する。本発明の画像表示装置の製造方法は、本発明の製造方法により得られた光学積層体の剥離フィルムを剥離し、第2の粘着剤層を介して偏光板を光学部材に貼り合せる工程を含む。
F. Image display device The optical laminate according to items A to E can be used when a polarizing plate is attached to an optical member included in an image display device such as a liquid crystal display device and an organic EL display device. Therefore, the method for manufacturing an optical laminate of the present invention includes a method for manufacturing an image display device using the above-mentioned polarizing plate. The method for manufacturing an image display device of the present invention includes a step of peeling a release film of an optical laminate obtained by the manufacturing method of the present invention and attaching a polarizing plate to an optical member via a second pressure-sensitive adhesive layer. ..

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法および評価方法は以下の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method and evaluation method for each characteristic are as follows.

(1)厚み
デジタルマイクロメーター(アンリツ社製KC−351C)を用いて測定した。
(2)引張弾性率
測定対象のフィルムまたは偏光板を、JIS K6734:2000に基づき平行部幅10mm、長さ40mmの引張試験ダンベルに成形し、JIS K7161:1994に準拠して引張試験を行い、引張弾性率を求めた。
(3)表面保護フィルムの通常剥離力
長尺状の光学積層体の長辺側の端部を、光学積層体の長辺が測定用サンプルの短辺に対応するように50mm×100mmの大きさに切断して測定用サンプルとした。測定用サンプルから剥離フィルムを剥離し、剥離面の粘着剤層を平板状の剥離治具に貼り合せた。
次いで、測定用サンプルの短辺から偏光板界面と第1粘着剤層を剥離し、表面保護フィルムと第1粘着剤層をチャックし、引張り試験機を用いて引張り、剥離力(N/50mm)の測定を行った(引張方向:光学積層体の表面に対して180°、引張速度:300mm/min)。5個の測定用サンプルについて剥離力を測定し、各測定用サンプルでの測定値の平均値を表面保護フィルムの通常剥離力として採用した。
(4)表面保護フィルムのきっかけ剥離力
長尺状の光学積層体の長辺側の端部を、光学積層体の長辺が測定用サンプルの短辺に対応するように50mm×100mmの大きさに切断して測定用サンプルとした。測定用サンプルから剥離フィルムを剥離し、剥離面の粘着剤層を平板状の剥離治具に貼り合せた。
次いで、19mm幅のポリエステル粘着テープ(日東電工株式会社製、製品名「No.31B」)を、上記剥離治具に接触しないように測定用サンプルの短辺(光学積層体の長辺に対応する辺)側の端部における表面保護フィルムに貼り合せ、さらに、ポリエステル基材粘着テープ(日東電工株式会社製、製品名「No.343B」)を上記ポリエステル粘着テープに貼り合せた。
次いで、上記ポリエステル基材粘着テープをチャックし、引張り試験機を用いて引張り、剥離力(N/50mm)の測定を行い(引張方向:光学積層体の表面に対して90°、引張速度:300mm/min、引張距離:60mm)、剥離力のピーク値(最大値)を表面保護フィルムの「きっかけ剥離力(N/50mm)」とした。5個の測定用サンプルについてきっかけ剥離力を測定し、各測定用サンプルでの測定値の平均値を表面保護フィルムのきっかけ剥離力として採用した。なお、上記表面保護フィルムのきっかけ剥離力の測定では、表面保護フィルムは第1の粘着剤層と偏光板との間を剥離界面として剥離する(表面保護フィルムおよび第1の粘着剤層が偏光板から剥離する)。
(5)剥離フィルムの通常剥離力
長尺状の光学積層体の長辺側の端部を、光学積層体の長辺が測定用サンプルの短辺に対応するように50mm×100mmの大きさに切断して測定用サンプルとした。測定用サンプルを、表面保護フィルム側を下にして、アクリル系粘着剤を介して平板状の剥離治具に貼り合せた。
次いで、測定用サンプルの短辺から剥離フィルム界面と第2粘着剤層を剥離し、剥離フィルムをチャックし、引張り試験機を用いて引張り、剥離力(N/50mm)の測定を行った(引張方向:光学積層体の表面に対して180°、引張速度:300mm/min)。5個の測定用サンプルについて剥離力を測定し、各測定用サンプルでの測定値の平均値を剥離フィルムの通常剥離力として採用した。
(6)剥離フィルムのきっかけ剥離力
長尺状の光学積層体の長辺側の端部を、光学積層体の長辺が測定用サンプルの短辺に対応するように50mm×100mmの大きさに切断して測定用サンプルとした。測定用サンプルを、表面保護フィルム側を下にして、アクリル系粘着剤を介して平板状の剥離治具に貼り合せた。
次いで、19mm幅のポリエステル粘着テープ(日東電工株式会社製、製品名「No.31B」)を、上記剥離治具に接触しないように測定用サンプルの短辺(光学積層体の長辺に対応する辺)側の端部における剥離フィルムに貼り合せ、さらに、ポリエステル基材粘着テープ(日東電工株式会社製、製品名「No.343B」)を上記ポリエステル粘着テープに貼り合せた。
次いで、上記ポリエステル基材粘着テープをチャックし、引張り試験機を用いて引張り、剥離力(N/50mm)の測定を行い(引張方向:光学積層体の表面に対して90°、引張速度:300mm/min、引張距離:60mm)、剥離力のピーク値(最大値)を剥離フィルムの「きっかけ剥離力(N/50mm)」とした。5個の測定用サンプルについてきっかけ剥離力を測定し、各測定用サンプルでの測定値の平均値を剥離フィルムのきっかけ剥離力として採用した。
実施例1〜6については、剥離工程前の光学積層体および再貼合工程後の光学積層体のそれぞれについて、剥離フィルムのきっかけ剥離力を測定した。
(7)剥離フィルムの剥離試験
長尺状の光学積層体を1215mm×684mmの大きさに切断して剥離試験用サンプルとした。剥離試験用サンプルを、表面保護フィルム側を下にして、吸着パッドを有する吸着台の上に載せて固定した。次いで、直径20mmの剥離ロールを剥離試験用サンプルの頂点部分に当て、剥離ロールを回転させることにより剥離フィルムを剥離した(剥離方向:光学積層体の表面に対して180°、かつ、測定用サンプルの長辺および短辺に対して45°、剥離速度:300mm/min)。
剥離フィルムを剥離する際に偏光板が表面保護フィルムから剥離することなく、剥離フィルムのみを剥離できた場合は剥離成功とし、剥離フィルムを剥離する際に偏光板が表面保護フィルムから剥離した場合は剥離失敗とした。
10個の剥離試験用サンプルについて剥離フィルムを剥離し、剥離フィルムの剥離性を以下の基準で評価した。
◎・・・90%以上の剥離試験用サンプルについて剥離成功であった。
○・・・60%以上90%未満の剥離試験用サンプルについて剥離成功であった。
△・・・30%以上60%未満の剥離試験用サンプルについて剥離成功であった。
×・・・30%未満の剥離試験用サンプルについて剥離成功であった。
(1) Thickness Measured using a digital micrometer (KC-351C manufactured by Anritsu Co., Ltd.).
(2) Tensile elastic modulus The film or polarizing plate to be measured is formed into a tensile test dumbbell having a parallel portion width of 10 mm and a length of 40 mm based on JIS K6734: 2000, and a tensile test is performed in accordance with JIS K7161: 1994. The tensile elastic modulus was determined.
(3) Normal peeling force of surface protective film The size of the end of the long optical laminate on the long side is 50 mm x 100 mm so that the long side of the optical laminate corresponds to the short side of the measurement sample. It was cut into a sample for measurement. The release film was peeled off from the measurement sample, and the adhesive layer on the peeled surface was attached to a flat plate-shaped peeling jig.
Next, the polarizing plate interface and the first pressure-sensitive adhesive layer are peeled off from the short side of the measurement sample, the surface protective film and the first pressure-sensitive adhesive layer are chucked, and the tensile strength (N / 50 mm) is pulled by using a tensile tester. (Tensile direction: 180 ° with respect to the surface of the optical laminate, tensile speed: 300 mm / min). The peeling force was measured for five measuring samples, and the average value of the measured values of each measuring sample was adopted as the normal peeling force of the surface protective film.
(4) Trigger peeling force of surface protective film The size of the end of the long optical laminate on the long side is 50 mm x 100 mm so that the long side of the optical laminate corresponds to the short side of the measurement sample. It was cut into a sample for measurement. The release film was peeled off from the measurement sample, and the adhesive layer on the peeled surface was attached to a flat plate-shaped peeling jig.
Next, a 19 mm wide polyester adhesive tape (manufactured by Nitto Denko KK, product name "No. 31B") corresponds to the short side (long side of the optical laminate) of the measurement sample so as not to come into contact with the peeling jig. It was attached to the surface protective film at the end on the side) side, and further, a polyester base material adhesive tape (manufactured by Nitto Denko KK, product name "No. 343B") was attached to the polyester adhesive tape.
Next, the polyester base material adhesive tape is chucked, pulled using a tensile tester, and the peeling force (N / 50 mm) is measured (tensile direction: 90 ° with respect to the surface of the optical laminate, tensile speed: 300 mm). / Min, tensile distance: 60 mm), peak value (maximum value) of peeling force was defined as "trigger peeling force (N / 50 mm)" of the surface protective film. The trigger peeling force was measured for five measurement samples, and the average value of the measured values of each measurement sample was adopted as the trigger peeling force of the surface protective film. In the measurement of the trigger peeling force of the surface protective film, the surface protective film peels off between the first pressure-sensitive adhesive layer and the polarizing plate as a peeling interface (the surface protection film and the first pressure-sensitive adhesive layer are polarizing plates. Peel off from).
(5) Normal peeling force of release film The end of the long optical laminate on the long side is 50 mm x 100 mm so that the long side of the optical laminate corresponds to the short side of the measurement sample. It was cut into a sample for measurement. The measurement sample was attached to a flat plate-shaped peeling jig via an acrylic adhesive with the surface protective film side facing down.
Next, the peeling film interface and the second pressure-sensitive adhesive layer were peeled off from the short side of the measurement sample, the peeling film was chucked, and the peeling force (N / 50 mm) was measured by pulling using a tensile tester. Direction: 180 ° with respect to the surface of the optical laminate, tensile speed: 300 mm / min). The peeling force was measured for five measuring samples, and the average value of the measured values of each measuring sample was adopted as the normal peeling force of the peeling film.
(6) Trigger peeling force of release film The end of the long optical laminate on the long side is 50 mm x 100 mm so that the long side of the optical laminate corresponds to the short side of the measurement sample. It was cut into a sample for measurement. The measurement sample was attached to a flat plate-shaped peeling jig via an acrylic adhesive with the surface protective film side facing down.
Next, a 19 mm wide polyester adhesive tape (manufactured by Nitto Denko KK, product name "No. 31B") corresponds to the short side (long side of the optical laminate) of the measurement sample so as not to come into contact with the peeling jig. It was attached to the release film at the end on the side) side, and further, a polyester base material adhesive tape (manufactured by Nitto Denko KK, product name "No. 343B") was attached to the polyester adhesive tape.
Next, the polyester base material adhesive tape is chucked, pulled using a tensile tester, and the peeling force (N / 50 mm) is measured (tensile direction: 90 ° with respect to the surface of the optical laminate, tensile speed: 300 mm). / Min, tensile distance: 60 mm), peak value (maximum value) of peeling force was defined as "trigger peeling force (N / 50 mm)" of the peeling film. The trigger peeling force was measured for five measurement samples, and the average value of the measured values of each measurement sample was adopted as the trigger peeling force of the release film.
In Examples 1 to 6, the trigger peeling force of the peeling film was measured for each of the optical laminate before the peeling step and the optical laminate after the re-bonding step.
(7) Peeling Test of Peeling Film A long optical laminate was cut into a size of 1215 mm × 684 mm to prepare a sample for a peeling test. The peeling test sample was placed and fixed on a suction table having a suction pad with the surface protective film side facing down. Next, a peeling roll having a diameter of 20 mm was applied to the apex of the peeling test sample, and the peeling film was peeled off by rotating the peeling roll (peeling direction: 180 ° with respect to the surface of the optical laminate and the measurement sample. 45 ° to the long and short sides of the, peeling speed: 300 mm / min).
If only the release film can be peeled off without the polarizing plate peeling from the surface protection film when the release film is peeled off, the peeling is successful, and if the polarizing plate is peeled off from the surface protection film when the release film is peeled off, the peeling is successful. Peeling failed.
The peeling film was peeled off from 10 peeling test samples, and the peelability of the peeling film was evaluated according to the following criteria.
⊚: The peeling was successful for 90% or more of the peeling test samples.
◯: The peeling was successful for the peeling test sample of 60% or more and less than 90%.
Δ: The peeling test sample of 30% or more and less than 60% was successfully peeled.
X ... Peeling was successful for a peeling test sample of less than 30%.

<製造例1>
厚みが約550μmのポリエチレンテレフタレートフィルム(三菱樹脂株式会社製 MRF38CK)を85℃で縦方向に3.7倍延伸し、100℃で横方向に3.9倍延伸し、210℃で熱処理して、厚さ38μmの二軸延伸ポリエステルフィルムを得た。
上記二軸延伸ポリエステルフィルムの表面に、下記に示す離型剤組成Aからなる離型剤を塗布量(乾燥後)が0.12g/mになるようにリバースグラビアコート方式により塗布して乾燥することにより、シリコーン系剥離剤で剥離処理された通常型の剥離フィルムA(厚み38μm、引張弾性率3500MPa)を得た。
(離型剤組成A)
・a1:メチル基とヘキセニル基とフェニル基の比が100:1:0.1である一般式(I)の硬化型シリコーン樹脂(分子量200000)を24重量部
<Manufacturing example 1>
A polyethylene terephthalate film (MRF38CK manufactured by Mitsubishi Plastics Co., Ltd.) having a thickness of about 550 μm was stretched 3.7 times in the vertical direction at 85 ° C., stretched 3.9 times in the horizontal direction at 100 ° C., and heat-treated at 210 ° C. A biaxially stretched polyester film having a thickness of 38 μm was obtained.
On the surface of the biaxially stretched polyester film, a mold release agent having a mold release agent composition A shown below is applied by a reverse gravure coating method so that the coating amount (after drying) is 0.12 g / m 2 and dried. A conventional release film A (thickness 38 μm, tensile elastic modulus 3500 MPa) was obtained by peeling treatment with a silicone-based release agent.
(Release agent composition A)
24 parts by weight of a curable silicone resin (molecular weight 200,000) of the general formula (I) having a ratio of a1: methyl group, hexenyl group and phenyl group of 100: 1: 0.1.

Figure 0006925808
・a2:メチル基とビニル基の比が100:0.2である一般式(II)の硬化型シリコーン樹脂(分子量200000)を33重量部
Figure 0006925808
33 parts by weight of a curable silicone resin (molecular weight 200,000) of the general formula (II) in which the ratio of a2: methyl group to vinyl group is 100: 0.2.

Figure 0006925808
・a3:メチル基とヒドロシリル基の比が100:1.5である一般式(III)の硬化型シリコーン樹脂(分子量200000)を8重量部
Figure 0006925808
A3: 8 parts by weight of a curable silicone resin (molecular weight 200,000) of the general formula (III) having a ratio of methyl group to hydrosilyl group of 100: 1.5.

Figure 0006925808
・a4:メチル基とヒドロシリル基の比が100:0.4である上記一般式(III)の硬化型シリコーン樹脂(分子量200000)を33重量部
・b1:一般式(IV)の未反応性シリコーン樹脂(分子量80000)を1重量部
Figure 0006925808
A4: 33 parts by weight of the curable silicone resin (molecular weight 200,000) of the above general formula (III) having a ratio of methyl group to hydrosilyl group of 100: 0.4. 1 part by weight of resin (molecular weight 80000)

Figure 0006925808
・c1:付加型白金触媒(PL−50T:信越化学工業製)を1重量部
MEK/トルエン混合溶媒(混合比率は1:1)
Figure 0006925808
C1: Addition type platinum catalyst (PL-50T: manufactured by Shin-Etsu Chemical Co., Ltd.) in 1 part by weight MEK / toluene mixed solvent (mixing ratio is 1: 1)

<製造例2>
ポリエチレンテレフタレートフィルムの延伸倍率を縦方向に5.1倍、横方向に5.3倍としたこと以外は製造例1と同様にして、シリコーン系剥離剤で剥離処理された通常型の剥離フィルムB(厚み25μm、引張弾性率3500MPa)を得た。
<Manufacturing example 2>
A normal type release film B that has been peeled with a silicone-based release agent in the same manner as in Production Example 1 except that the draw ratio of the polyethylene terephthalate film is 5.1 times in the vertical direction and 5.3 times in the horizontal direction. (Thickness 25 μm, tensile elastic modulus 3500 MPa) was obtained.

<製造例3>
離型剤として下記に示す離型剤組成Bからなる離型剤を用いたこと以外は製造例1と同様にして、シリコーン系剥離剤で剥離処理された重剥離型の剥離フィルムC(厚み38μm、引張弾性率3500MPa)を得た。
(離型剤組成B)
・a1:メチル基とヘキセニル基とフェニル基の比が100:1:0.1である上記一般式(I)の硬化型シリコーン樹脂(分子量200000)を32重量部
・a2:メチル基とビニル基の比が100:0.2である上記一般式(II)の硬化型シリコーン樹脂(分子量200000)を66重量部
・b1:上記一般式(IV)の未反応性シリコーン樹脂(分子量80000)を1重量部
・c1:付加型白金触媒(PL−50T:信越化学工業製)を1重量部
MEK/トルエン混合溶媒(混合比率は1:1)
<Manufacturing example 3>
A heavy release type release film C (thickness 38 μm) that has been peeled with a silicone-based release agent in the same manner as in Production Example 1 except that a release agent having a release agent composition B shown below is used as the release agent. , Tensile elastic modulus 3500 MPa) was obtained.
(Release agent composition B)
A1: 32 parts by weight of the curable silicone resin (molecular weight 200,000) of the above general formula (I) having a ratio of methyl group, hexenyl group and phenyl group of 100: 1: 0.1. 66 parts by weight of the curable silicone resin (molecular weight 200,000) of the general formula (II) having a ratio of 100: 0.2 b1: The unreacted silicone resin (molecular weight 80000) of the general formula (IV) is 1 Parts by weight c1: Additive platinum catalyst (PL-50T: manufactured by Shin-Etsu Chemical Industry Co., Ltd.) by weight 1 part by weight MEK / toluene mixed solvent (mixing ratio 1: 1)

<製造例4>
ポリエチレンテレフタレートフィルムの延伸倍率を縦方向に5.1倍、横方向に5.3倍としたこと以外は製造例3と同様にして、シリコーン系剥離剤で剥離処理された重剥離型の剥離フィルムD(厚み25μm、引張弾性率3500MPa)を得た。
<Manufacturing example 4>
A heavy-release type release film that has been peeled with a silicone-based release agent in the same manner as in Production Example 3 except that the draw ratio of the polyethylene terephthalate film was 5.1 times in the vertical direction and 5.3 times in the horizontal direction. D (thickness 25 μm, tensile elastic modulus 3500 MPa) was obtained.

<実施例1>
1.偏光板の作製
長尺状の非晶質ポリエチレンテレフタレート(A−PET)フィルム(三菱樹脂社製、商品名「ノバクリア」、厚み:100μm)を基材として用意し、上記基材の片面に、ポリビニルアルコール(PVA)樹脂(日本合成化学工業社製、商品名「ゴーセノール(登録商標)NH−26」)の水溶液を60℃で塗布および乾燥して、厚み7μmのPVA系樹脂層を形成した。このようにして得られた積層体を、液温30℃の不溶化浴に30秒間浸漬させた(不溶化工程)。次いで、液温30℃の染色浴に60秒間浸漬させた(染色工程)。次いで、液温30℃の架橋浴に30秒間浸漬させた(架橋工程)。その後、積層体を、液温60℃のホウ酸水溶液に浸漬させながら、周速の異なるロール間で縦方向(長尺方向)に一軸延伸を行った。ホウ酸水溶液への浸漬時間は120秒であり、積層体が破断する直前まで延伸した。その後、積層体を洗浄浴に浸漬させた後、60℃の温風で乾燥させた(洗浄・乾燥工程)。このようにして、基材上に厚み5μmの偏光子が形成された長尺状の偏光子積層体を得た。
次いで、保護層を構成する保護フィルムとして厚み40μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを用意し、上記保護フィルムの易接着処理面にコロナ処理を施し、偏光子積層体の偏光子側の面にコロナ処理を施した上記保護フィルムを貼り合せ、偏光子から基材を剥離することにより、保護層(厚み:40μm、引張弾性率:2650MPa)/偏光子(厚み:5μm、引張弾性率:650MPa)の層構成を有する長尺状の偏光板を得た。
2.剥離フィルムの貼り合せ
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート99部及びアクリル酸4−ヒドロキシブチル1部を含有するモノマー混合物を仕込んだ。さらに、上記モノマー混合物(固形分)100部に対して、重合開始剤として2,2´−アゾビスイソブチロニトリル0.1部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を60℃付近に保って7時間重合反応を行った。その後、得られた反応液に、酢酸エチルを加えて、固形分濃度30%に調整した、重量平均分子量140万のアクリル系ポリマー(A−1)の溶液を調製した。
得られたアクリル系ポリマー(A−1)溶液の固形分100部に対して、架橋剤として、トリメチロールプロパンキシリレンジイソシアネート(商品名:タケネートD110N、三井化学(株)製)0.095部と、ジベンゾイルパーオキサイド(商品名:ナイパーBMT40SV、日本油脂(株)製)0.3部、チオール系シランカップリング剤(C1)として、メチル基及びメルカプト基含有アルコキシシリル樹脂(商品名:X−41−1810、信越化学工業(株)製)0.2部、アセトアセチル基含有シランカップリング剤(C2)として、アセトアセチル基含有シランカップリング剤(商品名:A−100、綜研化学(株)製)0.2部を配合して、アクリル系粘着剤溶液Aを調製した。
次いで、剥離フィルムAの表面に、上記アクリル系粘着剤溶液Aをファウンテンコータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥し、剥離フィルムAの表面に厚さ20μmの粘着剤層を形成した。次いで、上記偏光板の偏光子側に、粘着剤層を介して剥離フィルムAを貼り合せた。
次いで、上記剥離フィルムを貼り合せた上記偏光板から剥離フィルムを剥離し(剥離工程)、上記偏光板の上記偏光子側の面に剥離した剥離フィルムを再度貼り合せることにより(再貼合工程)、長尺状の剥離フィルム付偏光板を作製した。
3.表面保護フィルムの貼り合せ
攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた四つ口フラスコに、2−エチルヘキシルアクリレート(2EHA)94質量部、N,N−ジエチルアクリルアミド(DEAA)1質量部、エトキシジエチレングリコールアクリレート(EDE)1質量部、4−ヒドロキシブチルアクリレート(HBA)4質量部、重合開始剤として2,2’−アゾビスイソブチロニトリル0.2質量部、酢酸エチル150質量部を仕込み、緩やかに攪拌しながら窒素ガスを導入し、フラスコ内の液温を60℃付近に保って5時間重合反応を行い、アクリル系ポリマー(A−2)の溶液(40質量%)を調製した。アクリル系ポリマー(A−2)の重量平均分子量は57万、ガラス転移温度(Tg)は−68℃であった。
アクリル系ポリマー(A−2)溶液(40質量%)を酢酸エチルで20質量%に希釈し、この溶液500質量部(固形分100質量部)に、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、コロネートHX:C/HX)2質量部(固形分2質量部)、架橋触媒としてジラウリン酸ジブチルスズ(1質量%酢酸エチル溶液)2質量部(固形分0.02質量部)を加えて、混合攪拌を行い、アクリル系粘着剤溶液Bを調製した。
表面保護フィルムとして厚さ75μmの透明なポリエチレンテレフタレート(PET)フィルム(ポリエステルフィルム)を用意した。上記PETフィルムに上記アクリル系粘着剤溶液Bを塗布し、130℃で1分間加熱して、厚さ15μmの粘着剤層を形成した。次いで、上記粘着剤層の表面に、片面にシリコーン処理を施したセパレーターであるポリエチレンテレフタレートフィルム(厚さ25μm)のシリコーン処理面を貼り合せ、粘着シート(セパレーター付き表面保護フィルム)を作製した。
上記粘着シートからセパレーターを剥離し、上記表面保護フィルム(厚み:75μm、引張弾性率:3500MPa)を上記剥離フィルム付偏光板の上記剥離フィルムとは反対側の面に貼り合せることにより、長尺状の光学積層体1を作製した。上記光学積層体1は、表面保護フィルム/第1の粘着剤層/偏光板/第2の粘着剤層/剥離フィルムの層構成を有する。
得られた光学積層体1を剥離力および剥離試験の評価に供した。また、以下の式(1)で表わされるコシ指標(X)を算出した。結果を表1および表2に示す。
X=A−B−C (1)
A:表面保護フィルムの引張弾性率(MPa)×表面保護フィルムの厚み(μm)
B:偏光板の引張弾性率(MPa)×偏光板の厚み(μm)
C:剥離フィルムの引張弾性率(MPa)×剥離フィルムの厚み(μm)
なお、偏光板が第1の保護層および第2の保護層を有する場合には、上記式(1)中のBの値は以下の式(2)に基づいて算出するものとする。
B=B1+B2+B3 (2)
B1:偏光子の引張弾性率(MPa)×偏光子の厚み(μm)
B2:第1の保護層の引張弾性率(MPa)×第1の保護層の厚み(μm)
B3:第2の保護層の引張弾性率(MPa)×第2の保護層の厚み(μm)
<Example 1>
1. 1. Fabrication of polarizing plate A long amorphous polyethylene terephthalate (A-PET) film (manufactured by Mitsubishi Resin Co., Ltd., trade name "Novaclear", thickness: 100 μm) was prepared as a base material, and polyvinyl was applied to one side of the base material. An aqueous solution of an alcohol (PVA) resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosenol (registered trademark) NH-26") was applied and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 7 μm. The laminate thus obtained was immersed in an insolubilizing bath at a liquid temperature of 30 ° C. for 30 seconds (insolubilization step). Then, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. for 60 seconds (dyeing step). Then, it was immersed in a cross-linking bath having a liquid temperature of 30 ° C. for 30 seconds (cross-linking step). Then, the laminate was uniaxially stretched in the longitudinal direction (long direction) between rolls having different peripheral speeds while being immersed in a boric acid aqueous solution having a liquid temperature of 60 ° C. The immersion time in the boric acid aqueous solution was 120 seconds, and the laminate was stretched until just before breaking. Then, the laminate was immersed in a washing bath and then dried with warm air at 60 ° C. (washing / drying step). In this way, a long polarizing element laminate in which a polarizer having a thickness of 5 μm was formed on the substrate was obtained.
Next, a (meth) acrylic resin film having a lactone ring structure having a thickness of 40 μm was prepared as a protective film constituting the protective layer, and the easily adhesive-treated surface of the protective film was subjected to corona treatment, and the polarizer side of the polarizing element laminate was subjected to corona treatment. A protective layer (thickness: 40 μm, tensile modulus: 2650 MPa) / polarizer (thickness: 5 μm, tensile modulus : A long polarizing plate having a layer structure of 650 MPa) was obtained.
2. Lamination of release film A monomer mixture containing 99 parts of butyl acrylate and 1 part of 4-hydroxybutyl acrylate was charged in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. Further, 0.1 part of 2,2'-azobisisobutyronitrile was charged together with ethyl acetate as a polymerization initiator with respect to 100 parts of the above-mentioned monomer mixture (solid content), and nitrogen gas was introduced while gently stirring. After the nitrogen substitution, the liquid temperature in the flask was maintained at around 60 ° C. and the polymerization reaction was carried out for 7 hours. Then, ethyl acetate was added to the obtained reaction solution to prepare a solution of an acrylic polymer (A-1) having a weight average molecular weight of 1.4 million adjusted to a solid content concentration of 30%.
With respect to 100 parts of the solid content of the obtained acrylic polymer (A-1) solution, 0.095 parts of trimethylolpropanexylylene diisocyanate (trade name: Takenate D110N, manufactured by Mitsui Kagaku Co., Ltd.) was used as a cross-linking agent. , Dibenzoyl peroxide (trade name: Niper BMT40SV, manufactured by Nippon Oil & Fats Co., Ltd.) 0.3 part, as a thiol-based silane coupling agent (C1), an alkoxysilyl resin containing a methyl group and a mercapto group (trade name: X- 41-1810, manufactured by Shin-Etsu Chemical Industry Co., Ltd., 0.2 parts, as an acetacetyl group-containing silane coupling agent (C2), an acetacetyl group-containing silane coupling agent (trade name: A-100, Soken Kagaku Co., Ltd.) ) To prepare an acrylic pressure-sensitive adhesive solution A by blending 0.2 parts.
Next, the acrylic pressure-sensitive adhesive solution A was uniformly applied to the surface of the release film A with a fountain coater, dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes, and the surface of the release film A had a thickness of 20 μm. A pressure-sensitive adhesive layer was formed. Next, the release film A was attached to the polarizer side of the polarizing plate via the pressure-sensitive adhesive layer.
Next, the release film is peeled from the polarizing plate to which the release film is bonded (peeling step), and the peeled film is reattached to the surface of the polarizing plate on the polarizer side (rebonding step). , A long-shaped polarizing plate with a release film was prepared.
3. 3. Lamination of surface protective film In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 94 parts by mass of 2-ethylhexyl acrylate (2EHA) and 1 mass of N, N-diethylacrylamide (DEAA). Parts, 1 part by mass of ethoxydiethylene glycol acrylate (EDE), 4 parts by mass of 4-hydroxybutyl acrylate (HBA), 0.2 parts by mass of 2,2'-azobisisobutyronitrile as a polymerization initiator, 150 parts by mass of ethyl acetate. Is charged, nitrogen gas is introduced while gently stirring, the liquid temperature in the flask is maintained at around 60 ° C., and the polymerization reaction is carried out for 5 hours to prepare a solution (40% by mass) of the acrylic polymer (A-2). bottom. The weight average molecular weight of the acrylic polymer (A-2) was 570,000, and the glass transition temperature (Tg) was −68 ° C.
Acrylic polymer (A-2) solution (40% by mass) is diluted with ethyl acetate to 20% by mass, and an isocyanurate form of hexamethylene diisocyanate (Nippon Polyurethane Industry Co., Ltd.) is added to 500 parts by mass (solid content 100 parts by mass) of this solution. Co., Ltd., Coronate HX: C / HX) 2 parts by mass (solid content 2 parts by mass), dibutyltin dilaurate (1 mass% ethyl acetate solution) 2 parts by mass (solid content 0.02 parts by mass) was added as a cross-linking catalyst. , Mixing and stirring was carried out to prepare an acrylic pressure-sensitive adhesive solution B.
A transparent polyethylene terephthalate (PET) film (polyester film) having a thickness of 75 μm was prepared as a surface protective film. The acrylic pressure-sensitive adhesive solution B was applied to the PET film and heated at 130 ° C. for 1 minute to form a pressure-sensitive adhesive layer having a thickness of 15 μm. Next, a silicone-treated surface of a polyethylene terephthalate film (thickness 25 μm), which is a separator treated with silicone on one side, was bonded to the surface of the pressure-sensitive adhesive layer to prepare a pressure-sensitive adhesive sheet (surface protection film with a separator).
The separator is peeled off from the adhesive sheet, and the surface protective film (thickness: 75 μm, tensile elastic modulus: 3500 MPa) is attached to the surface of the polarizing plate with the release film opposite to the release film to form a long shape. The optical laminate 1 of the above was produced. The optical laminate 1 has a layer structure of a surface protective film / first pressure-sensitive adhesive layer / polarizing plate / second pressure-sensitive adhesive layer / release film.
The obtained optical laminate 1 was used for evaluation of peeling force and peeling test. In addition, the stiffness index (X) represented by the following formula (1) was calculated. The results are shown in Tables 1 and 2.
X = ABC (1)
A: Tension elastic modulus of surface protective film (MPa) x thickness of surface protective film (μm)
B: Tension elastic modulus of the polarizing plate (MPa) x thickness of the polarizing plate (μm)
C: Tension elastic modulus of release film (MPa) x thickness of release film (μm)
When the polarizing plate has a first protective layer and a second protective layer, the value of B in the above formula (1) shall be calculated based on the following formula (2).
B = B1 + B2 + B3 (2)
B1: Tension elastic modulus of the polarizer (MPa) x thickness of the polarizer (μm)
B2: Tension elastic modulus (MPa) of the first protective layer × thickness (μm) of the first protective layer
B3: Tension elastic modulus of the second protective layer (MPa) × thickness of the second protective layer (μm)

<実施例2>
剥離フィルムとして、剥離フィルムBを用いたこと以外は実施例1と同様にして長尺状の光学積層体2を作製した。光学積層体2を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Example 2>
A long optical laminate 2 was produced in the same manner as in Example 1 except that the release film B was used as the release film. The optical laminate 2 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<実施例3>
剥離フィルムとして、剥離フィルムCを用いたこと以外は実施例1と同様にして長尺状の光学積層体3を作製した。光学積層体3を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Example 3>
A long optical laminate 3 was produced in the same manner as in Example 1 except that the release film C was used as the release film. The optical laminate 3 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<実施例4>
剥離フィルムとして、剥離フィルムDを用いたこと以外は実施例1と同様にして長尺状の光学積層体4を作製した。光学積層体4を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Example 4>
A long optical laminate 4 was produced in the same manner as in Example 1 except that the release film D was used as the release film. The optical laminate 4 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<実施例5>
保護層(第1の保護層)を構成する保護フィルムとして厚み20μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを用い、上記保護フィルムの易接着処理面にコロナ処理を施し、偏光子積層体の偏光子側の面にコロナ処理を施した上記保護フィルムを貼り合せ、偏光子から基材を剥離した。次いで、保護層(第2の保護層)を構成する保護フィルムとして厚み20μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを用い、上記保護フィルムの易接着処理面にコロナ処理を施し、偏光子の基材剥離面にコロナ処理を施した上記保護フィルムを貼り合せることにより、第1の保護層(厚み:20μm、引張弾性率:2650MPa)/偏光子(厚み:5μm、引張弾性率:650MPa)/第2の保護層(厚み:20μm、引張弾性率:2650MPa)の層構成を有する偏光板を得た。
上記偏光板を用いたこと以外は実施例1と同様にして長尺状の光学積層体5を作製した。光学積層体5を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Example 5>
A (meth) acrylic resin film having a lactone ring structure with a thickness of 20 μm is used as a protective film constituting the protective layer (first protective layer), and the easily adhesive-treated surface of the protective film is corona-treated to form a polarizer laminate. The protective film subjected to corona treatment was attached to the surface on the polarizer side of the above, and the base material was peeled off from the polarizer. Next, a (meth) acrylic resin film having a lactone ring structure with a thickness of 20 μm was used as a protective film constituting the protective layer (second protective layer), and the easily adhesive-treated surface of the protective film was subjected to corona treatment to obtain a polarizing element. The first protective layer (thickness: 20 μm, tensile elastic modulus: 2650 MPa) / polarizing element (thickness: 5 μm, tensile elastic modulus: 650 MPa) by adhering the corona-treated protective film to the peeled surface of the base material. / A polarizing plate having a layer structure of a second protective layer (thickness: 20 μm, tensile elastic modulus: 2650 MPa) was obtained.
A long optical laminate 5 was produced in the same manner as in Example 1 except that the above polarizing plate was used. The optical laminate 5 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<実施例6>
保護層(第1の保護層)を構成する保護フィルムとして厚み25μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを用いたこと、および、保護層(第2の保護層)を構成する保護フィルムとして厚み13μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを用いたこと以外は実施例5と同様にして長尺状の光学積層体6を作製した。光学積層体6を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Example 6>
A (meth) acrylic resin film having a lactone ring structure with a thickness of 25 μm was used as the protective film constituting the protective layer (first protective layer), and the protective film constituting the protective layer (second protective layer). A long optical laminate 6 was produced in the same manner as in Example 5 except that a (meth) acrylic resin film having a lactone ring structure having a thickness of 13 μm was used. The optical laminate 6 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例1>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例1と同様にして長尺状の光学積層体7を作製した。光学積層体7を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative example 1>
The same as in Example 1 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 7 was produced. The optical laminate 7 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例2>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例2と同様にして長尺状の光学積層体8を作製した。光学積層体8を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative example 2>
The same as in Example 2 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 8 was produced. The optical laminate 8 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例3>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例3と同様にして長尺状の光学積層体9を作製した。光学積層体9を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative example 3>
The same as in Example 3 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 9 was produced. The optical laminate 9 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例4>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例4と同様にして長尺状の光学積層体10を作製した。光学積層体10を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative example 4>
Same as in Example 4 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 10 was produced. The optical laminate 10 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例5>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例5と同様にして長尺状の光学積層体11を作製した。光学積層体11を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative example 5>
The same as in Example 5 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 11 was produced. The optical laminate 11 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

<比較例6>
偏光板の偏光子側に上記剥離フィルムを貼り合せた後、剥離フィルムを剥離する剥離工程および剥離面に再度剥離フィルムを貼り合せる再貼合工程を行わなかったこと以外は、実施例6と同様にして長尺状の光学積層体12を作製した。光学積層体12を実施例1と同様の評価に供した。結果を表1および表2に示す。
<Comparative Example 6>
The same as in Example 6 except that the peeling step of peeling the peeling film and the re-sticking step of re-sticking the release film to the peeling surface were not performed after the release film was attached to the polarizer side of the polarizing plate. A long optical laminate 12 was produced. The optical laminate 12 was subjected to the same evaluation as in Example 1. The results are shown in Tables 1 and 2.

Figure 0006925808
Figure 0006925808

Figure 0006925808
Figure 0006925808

表1および表2から明らかなように、実施例1〜6の光学積層体は比較例の光学積層体に比べて剥離フィルムの剥離性が高い。特に、コシ指標が25550以下である実施例1、実施例3、実施例5、および実施例6の光学積層体は、剥離フィルムの剥離性が極めて高い。 As is clear from Tables 1 and 2, the optical laminates of Examples 1 to 6 have higher peelability of the release film than the optical laminates of Comparative Examples. In particular, the optical laminates of Example 1, Example 3, Example 5, and Example 6 having a stiffness index of 25550 or less have extremely high peelability of the release film.

本発明の製造方法は、液晶表示装置、有機EL表示装置等の画像表示装置に用いられる光学積層体の製造に好適に用いられる。 The manufacturing method of the present invention is suitably used for manufacturing an optical laminate used in an image display device such as a liquid crystal display device or an organic EL display device.

10 表面保護フィルム
20 第1の粘着剤層
30 偏光板
31 偏光子
32 第1の保護層
33 第2の保護層
40 第2の粘着剤層
50 剥離フィルム
100 光学積層体
101 光学積層体
10 Surface protective film 20 First adhesive layer 30 Polarizing plate 31 Polarizer 32 First protective layer 33 Second protective layer 40 Second adhesive layer 50 Release film 100 Optical laminate 101 Optical laminate

Claims (6)

表面保護フィルムと、第1の粘着剤層と、偏光板と、第2の粘着剤層と、剥離フィルムとをこの順に有する光学積層体の製造方法であって、
前記第2の粘着剤層から前記剥離フィルムを剥離する剥離工程と、
剥離した前記剥離フィルムを前記第2の粘着剤層に再度貼り合せる再貼合工程と、を含み、
前記表面保護フィルムおよび前記第1の粘着剤層が前記偏光板から剥離されるときのきっかけ剥離力をX(N/50mm)とし、前記剥離工程の前の前記剥離フィルムのきっかけ剥離力をY1(N/50mm)とし、前記再貼合工程の後の前記剥離フィルムのきっかけ剥離力をY2(N/50mm)としたとき、
Y2<X≦Y1
を満足し、
前記表面保護フィルムの引張弾性率と厚みとの積をAとし、前記偏光板の引張弾性率と厚みとの積をBとし、前記剥離フィルムの引張弾性率と厚みとの積をCとしたとき、
A>B+C
を満足し、さらに、
A≦B+C+25550
を満足する、
光学積層体の製造方法。
A method for producing an optical laminate having a surface protective film, a first pressure-sensitive adhesive layer, a polarizing plate, a second pressure-sensitive adhesive layer, and a release film in this order.
A peeling step of peeling the release film from the second pressure-sensitive adhesive layer,
A re-bonding step of re-bonding the peeled release film to the second pressure-sensitive adhesive layer is included.
The trigger peeling force when the surface protective film and the first pressure-sensitive adhesive layer are peeled from the polarizing plate is X (N / 50 mm), and the trigger peeling force of the release film before the peeling step is Y1 ( N / 50 mm), and when the trigger peeling force of the release film after the re-bonding step is Y2 (N / 50 mm)
Y2 <X≤Y1
Satisfied ,
When the product of the tensile elastic modulus and the thickness of the surface protective film is A, the product of the tensile elastic modulus and the thickness of the polarizing plate is B, and the product of the tensile elastic modulus and the thickness of the release film is C. ,
A> B + C
Satisfied and further
A ≤ B + C + 25550
Satisfy
A method for manufacturing an optical laminate.
X−Y2>0.1
を満足する、請求項1に記載の光学積層体の製造方法。
XY2> 0.1
The method for producing an optical laminate according to claim 1.
前記剥離工程の後、前記再貼合工程の前に、前記偏光板および前記第2の粘着層のうち少なくとも一方の異物の有無を検査する異物検査工程を含む、請求項1または2に記載の光学積層体の製造方法。 The first or second aspect of claim 1 or 2, further comprising a foreign matter inspection step of inspecting the presence or absence of foreign matter in at least one of the polarizing plate and the second adhesive layer after the peeling step and before the reattachment step. A method for manufacturing an optical laminate. 前記表面保護フィルムの厚みと、前記第1の粘着剤層の厚みとの合計が75μm以上であり、
前記剥離フィルムの厚みが38μm以下である、請求項1〜のいずれかに記載の光学積層体の製造方法。
The total thickness of the surface protective film and the thickness of the first pressure-sensitive adhesive layer is 75 μm or more.
The method for producing an optical laminate according to any one of claims 1 to 3 , wherein the release film has a thickness of 38 μm or less.
前記偏光板が、偏光子と、前記偏光子の前記表面保護フィルム側に積層された保護層とを有し、
前記偏光子の厚みが12μm以下である、請求項1〜のいずれかに記載の光学積層体の製造方法。
The polarizing plate has a polarizing element and a protective layer laminated on the surface protective film side of the polarizing element.
The method for producing an optical laminate according to any one of claims 1 to 4 , wherein the polarizing element has a thickness of 12 μm or less.
請求項1〜のいずれかに記載の光学積層体の製造方法により得られた前記光学積層体の前記剥離フィルムを剥離し、前記第2の粘着剤層を介して前記偏光板を光学部材に貼り合せる工程を含む、画像表示装置の製造方法。 The release film of the optical laminate obtained by the method for producing an optical laminate according to any one of claims 1 to 5 is peeled off, and the polarizing plate is used as an optical member via the second pressure-sensitive adhesive layer. A method of manufacturing an image display device, which includes a step of laminating.
JP2017012094A 2017-01-26 2017-01-26 Manufacturing method of optical laminate and manufacturing method of image display device Active JP6925808B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017012094A JP6925808B2 (en) 2017-01-26 2017-01-26 Manufacturing method of optical laminate and manufacturing method of image display device
TW106144982A TWI760404B (en) 2017-01-26 2017-12-21 Manufacturing method of optical laminated body and manufacturing method of image display device
KR1020180002279A KR102371779B1 (en) 2017-01-26 2018-01-08 Method of producing optical laminate and method of producing image display device
CN201810014447.2A CN108363134B (en) 2017-01-26 2018-01-08 Method for manufacturing optical laminate and method for manufacturing image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012094A JP6925808B2 (en) 2017-01-26 2017-01-26 Manufacturing method of optical laminate and manufacturing method of image display device

Publications (3)

Publication Number Publication Date
JP2018120120A JP2018120120A (en) 2018-08-02
JP2018120120A5 JP2018120120A5 (en) 2019-10-10
JP6925808B2 true JP6925808B2 (en) 2021-08-25

Family

ID=63011036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012094A Active JP6925808B2 (en) 2017-01-26 2017-01-26 Manufacturing method of optical laminate and manufacturing method of image display device

Country Status (4)

Country Link
JP (1) JP6925808B2 (en)
KR (1) KR102371779B1 (en)
CN (1) CN108363134B (en)
TW (1) TWI760404B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273472B2 (en) * 2018-08-27 2023-05-15 日東電工株式会社 laminate
WO2020067291A1 (en) * 2018-09-26 2020-04-02 富士フイルム株式会社 Transfer film, polarizing plate, image display device, and method for producing polarizing plate
JP7039507B2 (en) * 2019-02-27 2022-03-22 住友化学株式会社 Laminate
JP7039508B2 (en) 2019-02-27 2022-03-22 住友化学株式会社 Flexible laminate
JP7039509B2 (en) 2019-02-27 2022-03-22 住友化学株式会社 Laminate
JP2020140008A (en) * 2019-02-27 2020-09-03 住友化学株式会社 Flexible laminate
CN113490869B (en) * 2019-02-27 2023-11-07 住友化学株式会社 Laminate body
TW202112542A (en) * 2019-08-08 2021-04-01 日商住友化學股份有限公司 Laminate prevent peeling of the protective film or warping of the laminate from occurring in the laminate of the protective film and the transparent resin film
CN114270233A (en) * 2019-08-21 2022-04-01 日东电工株式会社 Optical laminate
JP7469889B2 (en) * 2020-01-28 2024-04-17 住友化学株式会社 Optical laminate and method for manufacturing display device
JP7128932B1 (en) 2021-04-15 2022-08-31 住友化学株式会社 optical laminate
JP2022164140A (en) * 2021-04-16 2022-10-27 日東電工株式会社 Method for manufacturing optical laminate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same
JP2009157363A (en) * 2007-12-03 2009-07-16 Nitto Denko Corp Layered optical product, optical display device, and method for manufacturing optical display device
JP5058953B2 (en) * 2007-12-06 2012-10-24 日東電工株式会社 Manufacturing method of optical display unit and roll material used therefor
KR20100117591A (en) * 2008-01-08 2010-11-03 스미또모 가가꾸 가부시키가이샤 Polarizer
WO2009128115A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Optical film layered roll and method and device for manufacturing the same
JP2010044304A (en) * 2008-08-18 2010-02-25 Tokyo Cathode Laboratory Co Ltd Inspection method for substrate having protective film
JP5647593B2 (en) * 2011-11-17 2015-01-07 株式会社有沢製作所 Protective film with carrier film
KR101587222B1 (en) * 2013-04-15 2016-01-20 주식회사 엘지화학 Apparatus for detecting alien substance for optical film
JP2015018202A (en) * 2013-06-12 2015-01-29 住友化学株式会社 Bonded optical member and method for manufacturing the same
TWI695047B (en) * 2013-06-21 2020-06-01 日商日東電工股份有限公司 Adhesive layer with separator and its manufacturing method, polarizing film with adhesive layer with separator and its manufacturing method, and image display device
KR101713880B1 (en) * 2014-08-14 2017-03-22 주식회사 엘지화학 System for controlling tension of films and System for manufacturing a polarizing plate comprising the same
JP2016118771A (en) * 2014-12-18 2016-06-30 住友化学株式会社 Polarizing plate with protective film and laminate including the same
JP2016118761A (en) * 2014-12-22 2016-06-30 住友化学株式会社 Polarizing plate and manufacturing method of the same, and set of polarizing plates, liquid crystal panel, and liquid crystal display device
JP2017003906A (en) * 2015-06-15 2017-01-05 日東電工株式会社 Polarization film with adhesive layer on both sides, and image formation apparatus
JP2017008173A (en) * 2015-06-19 2017-01-12 日東電工株式会社 Surface protective film

Also Published As

Publication number Publication date
TWI760404B (en) 2022-04-11
TW201840439A (en) 2018-11-16
KR20180088276A (en) 2018-08-03
CN108363134B (en) 2021-11-09
CN108363134A (en) 2018-08-03
JP2018120120A (en) 2018-08-02
KR102371779B1 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
JP6925808B2 (en) Manufacturing method of optical laminate and manufacturing method of image display device
CN108363133B (en) Optical laminate and image display device
TWI782908B (en) Optical film, peeling method, and manufacturing method of optical display panel
JP4976051B2 (en) Surface protective film for polarizing plate, polarizing plate protected by the surface protective film, and image display device
JP6741477B2 (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP7227185B2 (en) Piece protective polarizing film with adhesive layer, image display device and method for continuous production thereof
TWI681205B (en) Film laminate, peeling method of first peeling film, and method of manufacturing optical display panel
TW202016625A (en) Laminate including an adhesive optical film, a release film, and a surface protective film
JP6763102B2 (en) Single-sided protective polarizing film with adhesive layer, image display device and its continuous manufacturing method
JP2023061955A (en) Optical film and optical display panel
KR101525128B1 (en) Method for preparing ultra thin polarizing plate, ultra thin polarizing plate and liquid crystal display device comprising the same
TWI683874B (en) Adhesive composition, adhesive and adhesive sheet
JP2017181789A (en) Removal method of release film and manufacturing method of optical display panel
JP2023105601A (en) Surface-protective film and optical member with surface-protective film
TWI787487B (en) Manufacturing method of polarizer
JP2023151127A (en) Laminate and method of manufacturing the same
TW202334254A (en) Surface-protective film and optical member with surface-protective film
WO2017164065A1 (en) Surface-protecting film-equipped polarizing film, and method for producing polarizing film
TW202248246A (en) Adhesive sheet, optical laminate, image display device, and method for producing adhesive sheet
JP2011227337A (en) Polarizing plate, liquid crystal panel, and liquid crystal display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210608

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210804

R150 Certificate of patent or registration of utility model

Ref document number: 6925808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150