JP6924198B2 - 歪み誘導型電気光学材料を有する集積マイクロ波−光単一フォトントランスデューサ - Google Patents
歪み誘導型電気光学材料を有する集積マイクロ波−光単一フォトントランスデューサ Download PDFInfo
- Publication number
- JP6924198B2 JP6924198B2 JP2018541112A JP2018541112A JP6924198B2 JP 6924198 B2 JP6924198 B2 JP 6924198B2 JP 2018541112 A JP2018541112 A JP 2018541112A JP 2018541112 A JP2018541112 A JP 2018541112A JP 6924198 B2 JP6924198 B2 JP 6924198B2
- Authority
- JP
- Japan
- Prior art keywords
- resonator
- cavity
- optical
- microwave
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 39
- 230000003287 optical effect Effects 0.000 claims description 82
- 239000000758 substrate Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 22
- 230000005684 electric field Effects 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 17
- 230000005693 optoelectronics Effects 0.000 claims description 14
- 239000002096 quantum dot Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 4
- 239000011797 cavity material Substances 0.000 description 64
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005459 micromachining Methods 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 241000473391 Archosargus rhomboidalis Species 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005697 Pockels effect Effects 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
- G02B6/29341—Loop resonators operating in a whispering gallery mode evanescently coupled to a light guide, e.g. sphere or disk or cylinder
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
- H01P7/065—Cavity resonators integrated in a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/08—Strip line resonators
- H01P7/086—Coplanar waveguide resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/082—Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N69/00—Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0102—Constructional details, not otherwise provided for in this subclass
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/17—Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/15—Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/50—Phase-only modulation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Nanotechnology (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Electromagnetism (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Plasma & Fusion (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
として特徴づけられ、ここでnはEOM506の媒体の屈折率であり、rijは、電気光学係数である。位相偏移は、
として特徴づけられ、ここでLはインダクタ514のインダクタンスであり、ωaは、光信号の周波数である。周波数の変化は、
によって特徴づけられ、ここでτは光の往復時間(optical round-trip time)であり、cは光速である。指数i及びjは、電気光学材料の結晶軸の指数である。
によって記述され、ここで
は、それぞれ光キャビティ110における赤側波帯モード、キャリアモード、及び青側波帯モードについての消滅(生成)演算子であり、
は、キュービット104のマイクロ波フォトンについての消滅(生成)演算子であり、gは、光フォトンとマイクロ波フォトンとの間の結合強度である。回転波近似を適用した後、赤及び青側波帯モードを含む、電気光学デバイス100のハミルトニアン
は、
となり、ここでωopは光キャリア周波数であり、ω−及びω+は赤側波帯周波数及び青側波帯周波数であり、ωqはキュービット104のマイクロ波周波数である。
は、キャリア及び側波帯における光フォトン並びに超電導キュービット104のマイクロ波フォトンの間の3波混合を示す。ω+=ωop+ωqにおける強いポンプトーン(pump tone)を適用することによって、演算子
を古典的励振(classical drive)α+(c数)で置き換えることができ、ここで|α+|2は、ω+におけるポンプフォトンの平均数を表し、これは、速度(rate)ΩR=g|α+|において、量子マイクロ波ノード
と基本光モード
との間の有効な結合速度を与える。一実施形態において、現実のパラメータでは、結合強度g〜10kHz、及び共振器内の106フォトンに対応するα=1000で、この速度は約10MHzとすることができる。これが通信チャネルの速度の上限を設定する。一般に結合強度は、
として推定することができ、ここでVZPVは超電導キャビティのゼロ点電圧(約0.1μVから約1μVまでの範囲を有する)であり、dは光共振器110の厚さ(約1μmから約100μmまでの範囲を有する)であり、faは光通信周波数(約193THz)であり、nはポンプフォトンの数であり、rは電気光学材料の電気光学係数である。ポンプ信号は、上記の光導波路108を通して提供されることができることに留意されたい。
102、802:底部基板
104:量子コンピューティングデバイス(キュービット)
106:超電導チャネル
108:導波路
120:上部基板
110、804:光共振器
111:底部キャビティ
112:キャビティ
114:中央ピン
115:架台
122:マイクロ波共振器
130:変換キャビティ
302:隆起部
402:超電導表面
502、504:鏡
506:電気光学的変調器(EOM)
508:光ビーム
510:キュービット
512、516:キャパシタ
514:インダクタ
602:リング
604:付加材料
Claims (20)
- 入力信号のマイクロ波周波数においてウィスパリングギャラリーモードに対応する直径のマイクロ波キャビティを有する基板と、
前記入力信号の電場を集束させるように構成された前記キャビティ内の集束構造体と、
前記集束構造体の直下にある、電場に曝されたときに電気光学効果を発生させる結晶構造を有する光共振器であって、前記入力信号の電場が前記電気光学効果を介して前記共振器内で前記共振器の出力信号を変調する、光共振器と、
を含む、トランスデューサ。 - 前記キャビティは、円筒形であり、前記集束構造体は、前記キャビティと同軸の中心ピンである、請求項1に記載のトランスデューサ。
- 前記キャビティの内面上及び前記集束構造体の外面上に直接形成された超電導膜をさらに含む、前記請求項のいずれかに記載のトランスデューサ。
- 前記共振器は、上面に溝を有する第1の材料と、前記溝内に形成された第2の材料とから形成され、前記第2の材料は、前記第1の材料の結晶構造内に歪みを生じさせて前記電気光学効果を発生させる、前記請求項のいずれかに記載のトランスデューサ。
- 前記共振器は、光学ディスク構造を含む、請求項4に記載のトランスデューサ。
- 前記共振器は、光学リング構造を含む、請求項4に記載のトランスデューサ。
- 前記集束構造体は、前記共振器に面した表面を含む円筒形ピンであり、前記表面は、外周に沿った隆起部を有する、前記請求項のいずれかに記載のトランスデューサ。
- 前記共振器の下に、前記基板内の前記キャビティと同じ直径を有する第2のキャビティをさらに含む、前記請求項のいずれかに記載のトランスデューサ。
- 前記キャビティは、前記マイクロ波周波数においてウィスパリングギャラリーモードで共振し、前記共振器は、光周波数で共振する、前記請求項のいずれかに記載のトランスデューサ。
- 第1の周波数の第1の信号を提供するように構成されたキュービットと、
前記キュービットに結合したトランスデューサであって、
入力信号のマイクロ波周波数においてウィスパリングギャラリーモードに対応する直径のマイクロ波キャビティを有する基板と、
前記入力信号の電場を集束させるように構成された前記キャビティ内の集束構造体と、
前記集束構造体の直下にある、電場に曝されたときに電気光学効果を発生させる結晶構造を有する光共振器であって、前記入力信号の電場が前記電気光学効果を介して前記共振器内で前記共振器の出力信号を変調する、光共振器と、
を含む、トランスデューサと、
を含む、量子コンピューティングデバイス。 - 前記キャビティは、円筒形であり、前記集束構造体は、前記キャビティと同軸の中心ピンである、請求項10に記載の量子コンピューティングデバイス。
- 前記キャビティの内面上及び前記集束構造体の外面上に直接形成された超電導膜をさらに含む、請求項10又は請求項11のいずれかに記載の量子コンピューティングデバイス。
- 前記共振器は、上面に溝を有する第1の材料と、前記溝内に形成された第2の材料とから形成され、前記第2の材料は、前記第1の材料の結晶構造内に歪みを生じさせて前記電気光学効果を発生させる、請求項10〜請求項12のいずれかに記載の量子コンピューティングデバイス。
- 前記集束構造体は、前記共振器に面した表面を含む円筒形ピンであり、前記表面は、外周に沿った隆起部を有する、請求項10〜請求項13のいずれかに記載の量子コンピューティングデバイス。
- 前記共振器の下に、前記基板内の前記キャビティと同じ直径を有する第2のキャビティをさらに含む、請求項10〜請求項14のいずれかに記載の量子コンピューティングデバイス。
- 前記キャビティは、前記マイクロ波周波数においてウィスパリングギャラリーモードで共振し、前記共振器は、光周波数で共振する、請求項10〜請求項15のいずれかに記載の量子コンピューティングデバイス。
- トランスデューサを形成するための方法であって、
歪み材料を共振器材料上に堆積させて前記共振器材料の結晶構造を歪ませ、電場に曝されたときに電気光学効果を発生させるようにすることにより、第1の基板上に第1の周波数で共振する光共振器を製造することと、
第2の周波数においてウィスパリングギャラリーモードに対応する直径のマイクロ波キャビティを有する第2の基板を製造することと、
前記キャビティ内の集束構造体が前記共振器と整列するように前記第2の基板を前記第1の基板の上で位置合わせすることと、
を含む、方法。 - 前記共振器を製造することが、
前記共振器にパターン形成して溝を形成することと、
前記歪み材料を前記溝内に堆積させることと、
を含む、請求項17に記載の方法。 - 前記キャビティ内に超電導膜を堆積させることをさらに含む、請求項17又は請求項18のいずれかに記載の方法。
- 前記共振器に面した前記集束構造体の表面の外縁部上に隆起部を形成することをさらに含む、請求項17〜請求項19のいずれかに記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/018,288 US9885888B2 (en) | 2016-02-08 | 2016-02-08 | Integrated microwave-to-optical single-photon transducer with strain-induced electro-optic material |
US15/018,288 | 2016-02-08 | ||
PCT/IB2017/050179 WO2017137855A1 (en) | 2016-02-08 | 2017-01-13 | Integrated microwave-to-optical single-photon transducer with strain-induced electro-optic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019512104A JP2019512104A (ja) | 2019-05-09 |
JP6924198B2 true JP6924198B2 (ja) | 2021-08-25 |
Family
ID=59497725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018541112A Active JP6924198B2 (ja) | 2016-02-08 | 2017-01-13 | 歪み誘導型電気光学材料を有する集積マイクロ波−光単一フォトントランスデューサ |
Country Status (6)
Country | Link |
---|---|
US (3) | US9885888B2 (ja) |
JP (1) | JP6924198B2 (ja) |
CN (1) | CN108604764B (ja) |
DE (1) | DE112017000319B4 (ja) |
GB (1) | GB2562979B (ja) |
WO (1) | WO2017137855A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10782590B2 (en) * | 2016-10-26 | 2020-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Doubly-resonant electro-optic conversion using a superconducting microwave resonator |
US10305015B1 (en) * | 2017-11-30 | 2019-05-28 | International Business Machines Corporation | Low loss architecture for superconducting qubit circuits |
US10263170B1 (en) | 2017-11-30 | 2019-04-16 | International Business Machines Corporation | Bumped resonator structure |
US10578891B1 (en) * | 2018-08-13 | 2020-03-03 | International Business Machines Corporation | Microwave-to-optical transducer |
US10998376B2 (en) | 2019-01-29 | 2021-05-04 | International Business Machines Corporation | Qubit-optical-CMOS integration using structured substrates |
US10379420B1 (en) * | 2019-03-22 | 2019-08-13 | Psiquantum, Corp. | Clock generation for a photonic quantum computer to convert electrical pulses into a plurality of clock signals |
US11163209B2 (en) * | 2019-06-11 | 2021-11-02 | Syracuse University | Metamaterial-boosted quantum electromechanical transducer for microwave-optical interfacing |
US11005574B2 (en) * | 2019-06-27 | 2021-05-11 | International Business Machines Corporation | Superconducting interposer for optical transduction of quantum information |
WO2021011765A1 (en) * | 2019-07-17 | 2021-01-21 | President And Fellows Of Harvard College | Nanophotonic quantum memory |
US10955726B2 (en) | 2019-08-15 | 2021-03-23 | International Business Machines Corporation | Intracavity grating to suppress single order of ring resonator |
CN110571629B (zh) * | 2019-09-09 | 2020-11-27 | 徐州天骋智能科技有限公司 | 调控电容型光子态微波量子态转换器及系统 |
US11940713B2 (en) * | 2020-11-10 | 2024-03-26 | International Business Machines Corporation | Active electro-optic quantum transducers comprising resonators with switchable nonlinearities |
CN113003531B (zh) * | 2021-02-08 | 2022-06-28 | 清华大学 | 一种实现频率调控的装置 |
US11657314B1 (en) * | 2021-03-03 | 2023-05-23 | International Business Machines Corporation | Microwave-to-optical quantum transducers |
US12015185B2 (en) | 2021-03-03 | 2024-06-18 | International Business Machines Corporation | Quantum transducers with embedded optical resonators |
US20240220840A1 (en) * | 2021-08-16 | 2024-07-04 | University Of Southern California | Quantum chip optoelectronic interposer |
US11984890B2 (en) | 2021-11-13 | 2024-05-14 | International Business Machines Corporation | Scalable interconnected quantum architecture |
GB2620197A (en) * | 2022-07-01 | 2024-01-03 | Univ Salford | Electro-optical component |
CN118201471B (zh) * | 2024-05-20 | 2024-07-16 | 北京量子信息科学研究院 | 一种半导体量子比特的声学腔读取装置及其制备方法 |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5926496A (en) * | 1995-05-25 | 1999-07-20 | Northwestern University | Semiconductor micro-resonator device |
EP1053574A4 (en) * | 1997-12-29 | 2002-11-06 | Coretek Inc | FABRY-PEROT FILTER AND LASER WITH SURFACE EMISSION AND VERTICAL, CONFOCAL CAVITY, TUNABLE BY MICROELECTROMECHANICS |
JP3062750B1 (ja) * | 1999-03-10 | 2000-07-12 | 郵政省通信総合研究所長 | 波長変換装置 |
KR100546017B1 (ko) | 1999-08-16 | 2006-01-25 | 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 | 주파수 정보의 획득 방법 |
WO2001041502A1 (fr) * | 1999-12-03 | 2001-06-07 | Kabushiki Kaisha Kenwood | Transducteur electroacoustique utilisant un dispositif optique |
WO2001096936A1 (en) * | 2000-06-15 | 2001-12-20 | California Institute Of Technology | Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators |
US6248069B1 (en) * | 2000-10-30 | 2001-06-19 | General Electric Company | Ultrasound imaging system and method using a quantum well-device for enabling optical interconnections |
EP1430754A1 (en) * | 2001-03-07 | 2004-06-23 | Blacklight Power, Inc. | Microwave power cell, chemical reactor, and power converter |
US6979836B2 (en) * | 2001-08-29 | 2005-12-27 | D-Wave Systems, Inc. | Superconducting low inductance qubit |
US7031360B2 (en) * | 2002-02-12 | 2006-04-18 | Nl Nanosemiconductor Gmbh | Tilted cavity semiconductor laser (TCSL) and method of making same |
ATE445922T1 (de) * | 2002-04-09 | 2009-10-15 | California Inst Of Techn | Auf einem optoelektronischen oszillator basierende atomuhr |
US7786496B2 (en) * | 2002-04-24 | 2010-08-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing same |
US6943934B1 (en) * | 2002-05-28 | 2005-09-13 | California Institute Of Technology | Nonlinear optical whispering gallery mode resonators |
US7050212B2 (en) * | 2002-11-22 | 2006-05-23 | California Institute Of Technology | Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators |
US7112860B2 (en) * | 2003-03-03 | 2006-09-26 | Cree, Inc. | Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices |
JP2004279872A (ja) * | 2003-03-18 | 2004-10-07 | Matsushita Electric Ind Co Ltd | 光変調素子および当該光変調素子を有するシステム |
US6963119B2 (en) * | 2003-05-30 | 2005-11-08 | International Business Machines Corporation | Integrated optical transducer assembly |
CN1947027B (zh) * | 2004-04-26 | 2011-04-06 | 皇家飞利浦电子股份有限公司 | 电-光磁共振换能器 |
US7450790B1 (en) * | 2005-09-27 | 2008-11-11 | The Regents Of The University Of California | Non-electronic radio frequency front-end with immunity to electromagnetic pulse damage |
US7515786B1 (en) * | 2006-07-21 | 2009-04-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | White-light whispering gallery mode optical resonator system and method |
JP5514102B2 (ja) * | 2007-06-13 | 2014-06-04 | オーイーウェイブス,インコーポレーテッド | ウィスパリングギャラリーモード共振器に同期されるチューニング可能レーザ |
US7561770B2 (en) * | 2007-07-30 | 2009-07-14 | Hewlett-Packard Development Company, L.P. | Microresonator systems and methods of fabricating the same |
US8670807B2 (en) | 2007-08-21 | 2014-03-11 | D-Wave Systems Inc. | Systems, methods, and apparatus for controlling the elements of superconducting processors |
US8357980B2 (en) * | 2007-10-15 | 2013-01-22 | Hewlett-Packard Development Company, L.P. | Plasmonic high-speed devices for enhancing the performance of microelectronic devices |
US8058549B2 (en) * | 2007-10-19 | 2011-11-15 | Qualcomm Mems Technologies, Inc. | Photovoltaic devices with integrated color interferometric film stacks |
US8094359B1 (en) * | 2008-05-15 | 2012-01-10 | Oewaves, Inc. | Electro-optic whispering-gallery-mode resonator devices |
US8452139B1 (en) * | 2008-07-25 | 2013-05-28 | Oewaves, Inc. | Wide-band RF photonic receivers and other devices using two optical modes of different quality factors |
US20100096011A1 (en) * | 2008-10-16 | 2010-04-22 | Qualcomm Mems Technologies, Inc. | High efficiency interferometric color filters for photovoltaic modules |
US7873081B1 (en) * | 2008-11-17 | 2011-01-18 | Gao Peiliang | Compact and high performance wavelength tunable laser |
US8498539B1 (en) * | 2009-04-21 | 2013-07-30 | Oewaves, Inc. | Dielectric photonic receivers and concentrators for radio frequency and microwave applications |
US7889992B1 (en) | 2009-09-21 | 2011-02-15 | International Business Machines Corporation | Hybrid superconductor-optical quantum repeater |
US8514400B2 (en) * | 2010-03-23 | 2013-08-20 | Oewaves, Inc. | Optical gyroscope sensors based on optical whispering gallery mode resonators |
CN202373845U (zh) | 2010-08-10 | 2012-08-08 | Oe电波公司 | 激光器对光学谐振器的反馈增强的自注入锁定 |
US20120103099A1 (en) | 2010-10-29 | 2012-05-03 | Stuke Michael J | Laser vibration sensor, system and method |
EP2727197B1 (en) * | 2011-06-30 | 2020-03-04 | Oewaves, Inc. | Compact optical atomic clocks and applications based on parametric nonlinear optical mixing in whispering gallery mode optical resonators |
US9966216B2 (en) * | 2011-11-04 | 2018-05-08 | Princeton University | Photo-electron source assembly with scaled nanostructures and nanoscale metallic photonic resonant cavity, and method of making same |
US8849075B2 (en) | 2011-11-11 | 2014-09-30 | California Institute Of Technology | Systems and methods for tuning a cavity |
CN103162845A (zh) * | 2011-12-12 | 2013-06-19 | 金石琦 | 飞秒时域单光子空间多波长探测装置 |
US9296609B2 (en) | 2013-09-03 | 2016-03-29 | Northrop Grumman Systems Corporation | Optical-microwave-quantum transducer |
US9260289B2 (en) | 2013-09-03 | 2016-02-16 | Northrop Grumman Systems Corporation | Optical-microwave-quantum transducer |
CN103762487B (zh) * | 2014-01-04 | 2016-05-25 | 天津奇谱光电技术有限公司 | 一种具有双输出光束的可调谐激光器 |
CN103730826A (zh) * | 2014-01-04 | 2014-04-16 | 天津奇谱光电技术有限公司 | 一种可调谐激光器系统 |
CN103779769B (zh) * | 2014-01-23 | 2016-03-02 | 北京大学 | 一种单模半微盘谐振腔 |
WO2015127498A1 (en) | 2014-02-25 | 2015-09-03 | Macquarie University | An opto-magneto-mechanical quantum interface between distant superconducting qubits |
US9454061B1 (en) * | 2015-12-17 | 2016-09-27 | International Business Machines Corporation | Quantum coherent microwave to optical conversion scheme employing a mechanical element and a squid |
-
2016
- 2016-02-08 US US15/018,288 patent/US9885888B2/en active Active
-
2017
- 2017-01-13 WO PCT/IB2017/050179 patent/WO2017137855A1/en active Application Filing
- 2017-01-13 CN CN201780010396.XA patent/CN108604764B/zh active Active
- 2017-01-13 JP JP2018541112A patent/JP6924198B2/ja active Active
- 2017-01-13 GB GB1814344.6A patent/GB2562979B/en active Active
- 2017-01-13 DE DE112017000319.9T patent/DE112017000319B4/de active Active
- 2017-05-31 US US15/609,701 patent/US9857609B2/en active Active
- 2017-05-31 US US15/609,838 patent/US9927636B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9857609B2 (en) | 2018-01-02 |
US9885888B2 (en) | 2018-02-06 |
GB2562979A (en) | 2018-11-28 |
US20170261771A1 (en) | 2017-09-14 |
DE112017000319T5 (de) | 2018-10-18 |
CN108604764B (zh) | 2020-04-10 |
GB2562979B (en) | 2019-04-17 |
US20170227795A1 (en) | 2017-08-10 |
DE112017000319B4 (de) | 2020-09-24 |
CN108604764A (zh) | 2018-09-28 |
GB201814344D0 (en) | 2018-10-17 |
WO2017137855A1 (en) | 2017-08-17 |
US20170261770A1 (en) | 2017-09-14 |
US9927636B2 (en) | 2018-03-27 |
JP2019512104A (ja) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6924198B2 (ja) | 歪み誘導型電気光学材料を有する集積マイクロ波−光単一フォトントランスデューサ | |
McKenna et al. | Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer | |
US12006206B2 (en) | Techniques for bidirectional transduction of quantum level signals between optical and microwave frequencies using a common acoustic intermediary | |
US10782590B2 (en) | Doubly-resonant electro-optic conversion using a superconducting microwave resonator | |
Vainsencher et al. | Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device | |
Xiong et al. | Integrated high frequency aluminum nitride optomechanical resonators | |
US20170248832A1 (en) | Microwave to Optical Conversion Device and Method for Converting a Microwave Photon to an Optical Photon | |
KR101510357B1 (ko) | 도파 격자 구조를 포함하는 광학 장치 | |
Wolff et al. | Germanium as a material for stimulated Brillouin scattering in the mid-infrared | |
Huang et al. | Acousto‐optic modulation in silicon waveguides based on piezoelectric aluminum scandium nitride film | |
CN108693602A (zh) | 一种氮化硅三维集成多微腔谐振滤波器件及其制备方法 | |
Rath et al. | Diamond electro-optomechanical resonators integrated in nanophotonic circuits | |
Romero et al. | Propagation and imaging of mechanical waves in a highly stressed single-mode acoustic waveguide | |
Modica et al. | Slow propagation of 2 GHz acoustical waves in a suspended GaAs phononic waveguide on insulator | |
Zhao et al. | Electro-optic transduction in silicon via gigahertz-frequency nanomechanics | |
Horváth et al. | Sub-Hz closed-loop electro-optomechanical oscillator with gallium phosphide photonic crystal integrated on SoI circuitry | |
Schneider et al. | Optomechanics with one-dimensional gallium phosphide photonic crystal cavities | |
Hirsch et al. | Directional emission in an on-chip acoustic waveguide | |
EP1336892A1 (en) | A controllable optical device | |
TWI534488B (zh) | 多模光波導彎轉之弧形共振腔元件及其製作方法 | |
Li et al. | High density lithium niobate photonic integrated circuits and lasers | |
Shen | Superconducting Electro-Optic Modulator for Cryogenic Data Egress | |
Sriram et al. | Heterodyne receiver on silicon: an exercise in integration | |
Vainsencher et al. | Using mechanics to convert between microwave and optical frequencies | |
KR20110094875A (ko) | 플라즈모닉 공진기를 이용한 광변조기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6924198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |