JP6923189B2 - Metal-centered porphyrin-carbon complex - Google Patents

Metal-centered porphyrin-carbon complex Download PDF

Info

Publication number
JP6923189B2
JP6923189B2 JP2017110962A JP2017110962A JP6923189B2 JP 6923189 B2 JP6923189 B2 JP 6923189B2 JP 2017110962 A JP2017110962 A JP 2017110962A JP 2017110962 A JP2017110962 A JP 2017110962A JP 6923189 B2 JP6923189 B2 JP 6923189B2
Authority
JP
Japan
Prior art keywords
porous carbon
metal
complex
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110962A
Other languages
Japanese (ja)
Other versions
JP2018202327A (en
Inventor
史織 久保
史織 久保
眞一 山崎
眞一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017110962A priority Critical patent/JP6923189B2/en
Publication of JP2018202327A publication Critical patent/JP2018202327A/en
Application granted granted Critical
Publication of JP6923189B2 publication Critical patent/JP6923189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、酸素を高い性能で還元し、COと糖を高い性能で酸化する金属中心ポルフィリン−炭素の複合体に関する。 The present invention relates to a metal-centered porphyrin-carbon complex that reduces oxygen with high performance and oxidizes CO and sugar with high performance.

燃料電池の陽極反応である酸素還元反応では、白金を含有する貴金属系電極触媒が広く用いられている。貴金属系電極触媒は活性が高いものの、経済性および枯渇性の面で課題を抱えている。一方、金属中心ポルフィリンは、電極触媒として、酸素還元能や、CO、アルコール、または糖類等の酸化能を有することが知られている。そこで、貴金属系電極触媒の代替として、金属中心ポルフィリンの開発が進められている。金属中心ポルフィリンは、通常、カーボンブラックの空隙内に担持された電極材料として用いられている。 In the oxygen reduction reaction, which is an anodic reaction of a fuel cell, a noble metal-based electrode catalyst containing platinum is widely used. Although the noble metal-based electrode catalyst has high activity, it has problems in terms of economy and depletion. On the other hand, the metal-centered porphyrin is known to have an oxygen reducing ability and an oxidizing ability of CO, alcohol, saccharides and the like as an electrode catalyst. Therefore, the development of metal-centered porphyrins is underway as an alternative to precious metal-based electrode catalysts. The metal center porphyrin is usually used as an electrode material supported in the voids of carbon black.

しかしながら、貴金属系電極触媒を炭素材料に担持させた電極材料と比較して、従来の金属中心ポルフィリン−炭素複合体は、酸素還元能が非常に低い。担体の比表面積が大きくても、ポルフィリン分子が、高い分散性を保持して、好ましい形で炭素表面を被覆できないと、酸素還元性能が上昇しないからである。また、電極触媒では、ポルフィリンを強固に担体に担持しつつ、反応物質の良好な拡散・移動を保障しなければならない。 However, the conventional metal-centered porphyrin-carbon composite has a very low oxygen reducing ability as compared with the electrode material in which the noble metal-based electrode catalyst is supported on the carbon material. This is because even if the specific surface area of the carrier is large, the oxygen reduction performance does not improve unless the porphyrin molecule maintains high dispersibility and coats the carbon surface in a preferable form. Further, in the electrode catalyst, it is necessary to ensure good diffusion and movement of the reactant while firmly supporting porphyrin on the carrier.

グラフェンやカーボンナノチューブなどにポルフィリンまたはフタロシアニンを複合化させて、酸素還元活性を上昇させた例がある。しかし、これらはポルフィリンの高分散担持や拡散・移動の改良よりも、分子−担体間の電子移動の効率を上げることに注力しており、炭素担体の細孔構造およびその寄与は不明である。さらに、この複合体を用いた酸素還元反応は、ほとんどの場合、塩基性条件下で行われている。また、現状では塩基性条件下で高耐久性を示す燃料電池の電解質膜が存在しない。このため、塩基性条件下で高い酸素還元能を発揮しても、燃料電池の陽極としての実用性は低い。一方、酸性条件下で高耐久性の電解質膜が開発されており、高性能な電極が開発されれば、白金代替燃料電池の実用化への道が開ける。 There is an example in which porphyrin or phthalocyanine is compounded with graphene or carbon nanotubes to increase the oxygen reduction activity. However, these focus on increasing the efficiency of electron transfer between the molecule and the carrier rather than improving the high dispersion support and diffusion / transfer of porphyrin, and the pore structure of the carbon carrier and its contribution are unknown. Furthermore, the oxygen reduction reaction using this complex is almost always carried out under basic conditions. Further, at present, there is no electrolyte membrane of a fuel cell showing high durability under basic conditions. Therefore, even if it exhibits high oxygen reducing ability under basic conditions, its practicality as an anode of a fuel cell is low. On the other hand, a highly durable electrolyte membrane has been developed under acidic conditions, and if a high-performance electrode is developed, it will open the way to practical use of a platinum alternative fuel cell.

また、金属中心ポルフィリンをカーボンブラックなどの炭素材料に担持させて、COや糖の酸化反応の電極材として用いた燃料電池やセンサーが知られている。このセンサーは、低過電圧、高反応速度、および十分な感度が得られることが知られている(特許文献1および特許文献2)。 Further, there are known fuel cells and sensors in which a metal-centered porphyrin is supported on a carbon material such as carbon black and used as an electrode material for an oxidation reaction of CO and sugar. This sensor is known to provide low overvoltage, high reaction rate, and sufficient sensitivity (Patent Documents 1 and 2).

特開2010−284614号公報JP-A-2010-284614 特開2010−5493号公報JP-A-2010-5493

本発明は、高い電気化学的酸素還元性能、およびCOと糖の酸化性能を有する金属中心ポルフィリン−炭素の複合体を提供することを目的とする。 An object of the present invention is to provide a metal-centered porphyrin-carbon complex having high electrochemical oxygen reduction performance and CO and sugar oxidation performance.

本発明の複合体は、大半が直径10〜100nmの細孔を有する担持部を備え、メソ−マクロ孔容量が0.1〜5mL/gである多孔質炭素と、少なくとも多孔質炭素の担持部に担持された金属中心ポルフィリンとを有する。 Most of the composites of the present invention have a support portion having pores having a diameter of 10 to 100 nm, and a porous carbon having a meso-macro pore capacity of 0.1 to 5 mL / g and a support portion of at least porous carbon. It has a metal-centered porphyrin supported on the surface.

本発明の複合体の製造方法は、金属中心ポルフィリンを有機溶媒に溶解させて溶液を得る溶解工程と、溶液に多孔質炭素を分散させて、金属中心ポルフィリンを多孔質炭素に浸漬させる浸漬工程と、浸漬工程を経た溶液を、ろ過または溶媒蒸発乾固して複合体を得る複合化工程とを有する。 The method for producing the composite of the present invention includes a dissolution step of dissolving metal-centered porphyrin in an organic solvent to obtain a solution, and a dipping step of dispersing porous carbon in the solution and immersing the metal-centered porphyrin in the porous carbon. , The solution which has undergone the dipping step is filtered or solvent-evaporated to dryness to obtain a composite.

本発明の電極は、本発明の複合体を有し、酸素還元能、ならびにCO、糖、およびアルコール酸化能を有する。本発明の固体高分子型燃料電池は、本発明の電極を有する。本発明のCOセンサー、糖センサー、またはアルコールセンサーは、本発明の電極を有する。 The electrodes of the present invention have the complex of the present invention and have oxygen reducing ability and CO, sugar, and alcohol oxidizing ability. The polymer electrolyte fuel cell of the present invention has the electrodes of the present invention. The CO sensor, sugar sensor, or alcohol sensor of the present invention has the electrodes of the present invention.

本発明によれば、高い電気化学的酸素還元性能、およびCOと糖の酸化性能を有する金属中心ポルフィリン−炭素の複合体が得られる。 According to the present invention, a metal-centered porphyrin-carbon complex having high electrochemical oxygen reduction performance and CO and sugar oxidation performance can be obtained.

実施例の各種多孔質炭素材料の走査型電子顕微鏡像で、(a)と(b)は実施例1の画像、(c)と(d)は実施例2の画像、(e)と(f)は比較例1の画像。Scanning electron microscope images of various porous carbon materials of Examples, (a) and (b) are images of Example 1, (c) and (d) are images of Example 2, (e) and (f). ) Is the image of Comparative Example 1. 実施例の各種多孔質炭素材料の走査型電子顕微鏡像で、(a)は比較例3の画像、(b)は比較例4の画像。Scanning electron microscope images of various porous carbon materials of Examples, (a) is an image of Comparative Example 3, and (b) is an image of Comparative Example 4. 溶媒留去法で得られた実施例の電極の評価Aでの酸素還元反応のボルタモグラム。Voltamogram of oxygen reduction reaction in evaluation A of the electrode of the example obtained by the solvent distillation method. 平衡吸着法で得られた実施例の電極の評価Aでの酸素還元反応のボルタモグラム。Voltamogram of oxygen reduction reaction in evaluation A of the electrode of the example obtained by the equilibrium adsorption method. 平衡吸着法で得られた実施例の電極の評価Cでのグルコース酸化反応のボルタモグラム。Voltamogram of glucose oxidation reaction in evaluation C of the electrode of the example obtained by the equilibrium adsorption method. 溶媒留去法で得られた実施例の電極の評価BでのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction in evaluation B of the electrode of the example obtained by the solvent distillation method. 平衡吸着法で得られた実施例の電極の評価BでのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction in evaluation B of the electrode of the example obtained by the equilibrium adsorption method. 実施例の電極の評価DでのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction at evaluation D of the electrode of the example. 溶媒留去法で得られた実施例の電極の評価Cでのグルコース酸化反応のボルタモグラム。Voltamogram of glucose oxidation reaction in evaluation C of the electrode of the example obtained by the solvent distillation method. 実施例の電極の評価FでのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction at evaluation F of the electrode of the example. 平衡吸着法で得られた実施例の電極の評価FのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction of evaluation F of the electrode of the example obtained by the equilibrium adsorption method. 平衡吸着法で得られた実施例の電極の評価B、評価D、評価F、および評価GでのCO酸化反応のボルタモグラム。Voltamogram of CO oxidation reaction in evaluation B, evaluation D, evaluation F, and evaluation G of the electrodes of the examples obtained by the equilibrium adsorption method.

本発明の実施形態に係る複合体は、多孔質炭素と、金属中心ポルフィリンとを備えている。中心金属としてはCoまたはRh等が挙げられる。多孔質炭素は、大半が直径10〜100nmの細孔を有する担持部を備え、メソ−マクロ孔容量が0.1〜5mL/gである。「大半」とは、例えば多孔質炭素のある部位の走査型電子顕微鏡像で観測される細孔の数量の80%以上を示す。担持部は、直径10〜100nmの細孔の数量が90%以上であることが好ましく、95%以上であることがより好ましい。 The complex according to the embodiment of the present invention comprises porous carbon and a metal-centered porphyrin. Examples of the central metal include Co and Rh. The porous carbon has a support portion having pores having a diameter of 10 to 100 nm in most cases, and has a meso-macro pore capacity of 0.1 to 5 mL / g. “Most” refers to, for example, 80% or more of the number of pores observed in a scanning electron microscope image of a portion of porous carbon. The number of pores having a diameter of 10 to 100 nm in the supported portion is preferably 90% or more, and more preferably 95% or more.

メソ−マクロ孔容量は0.4〜0.8mL/gであることが好ましい。多孔質炭素にはマイクロ孔があってもよい。金属中心ポルフィリンは、少なくとも多孔質炭素の担持部に担持されている。金属中心ポルフィリンは、複数種類を混合して用いてもよいし、金属中心ポルフィリンと、PtやPt−Ru等とを混合したものを用いてもよい。多孔質炭素は、外径50nm〜10μmの樹枝状の炭素がつながった構造であることが好ましい。 The meso-macro pore volume is preferably 0.4 to 0.8 mL / g. Porous carbon may have micropores. The metal-centered porphyrin is supported at least on a carrier of porous carbon. As the metal-centered porphyrin, a plurality of types may be mixed and used, or a mixture of the metal-centered porphyrin and Pt, Pt-Ru or the like may be used. The porous carbon preferably has a structure in which dendritic carbons having an outer diameter of 50 nm to 10 μm are connected.

金属中心ポルフィリンは、下記の化学式(I)で表わされていてもよい。

Figure 0006923189
The metal center porphyrin may be represented by the following chemical formula (I).
Figure 0006923189

ここで、MはCoまたはRhである。R 、R 、R 、R 、R 、R 、R 10 、およびR 12 は、独立して、水素原子、メチル基、エチル基、SO X、QC(=O)OQ′、QC(=O)Q′、またはQOZである(Xは水素原子またはアルカリ金属である。Qは単結合、水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である。Q′は水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である。Zは水素原子またはアルカリ金属である)。R 、R 、R 、およびR 11 は、独立して、水素原子または下記の化学式(II)で表わされる物質である(R ′、R ′、およびR ′は、独立して、水素原子、−COOT、−OCH T、−OT(Tは水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である))。 Here, M is Co or Rh. R 1 , R 3 , R 4 , R 6 , R 7 , R 9 , R 10 , and R 12 are independently hydrogen atoms, methyl groups, ethyl groups, SO 3 X, QC (= O) OQ'. , QC (= O) Q', or QOZ (X is a hydrogen atom or an alkali metal. Q is a single bond, a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal. Q'is It is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal. Z is a hydrogen atom or an alkali metal). R 2 , R 5 , R 8 and R 11 are independent hydrogen atoms or substances represented by the following chemical formula (II) (R 1 ′, R 2 ′, and R 3 ′ are independent. Hydrogen atom, -COOT, -OCH 2 T, -OT (T is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal).

Figure 0006923189
Figure 0006923189

本発明の実施形態に係る複合体の製造方法は、溶解工程と、浸漬工程と、複合化工程とを備えている。溶解工程では、金属中心ポルフィリンを有機溶媒に溶解させて溶液を得る。浸漬工程では、溶液に多孔質炭素を分散させて、金属中心ポルフィリンを多孔質炭素に浸漬させる。複合化工程では、浸漬工程を経た溶液を、ろ過または溶媒蒸発乾固して複合体を得る。 The method for producing a complex according to an embodiment of the present invention includes a melting step, a dipping step, and a compounding step. In the dissolution step, the metal-centered porphyrin is dissolved in an organic solvent to obtain a solution. In the dipping step, the porous carbon is dispersed in the solution, and the metal-centered porphyrin is immersed in the porous carbon. In the compounding step, the solution that has undergone the dipping step is filtered or solvent-evaporated to dryness to obtain a complex.

本発明の実施形態に係る電極は、本発明の複合体を有し、酸素還元能、ならびにCO、糖、およびアルコール酸化能を有する。本発明の実施形態に係る固体高分子型燃料電池は、本発明の電極を有する。本発明の実施形態に係るセンサーは、本発明の電極を有するCOセンサー、糖センサー、またはアルコールセンサーである。 The electrode according to the embodiment of the present invention has the complex of the present invention, and has an oxygen reducing ability and a CO, sugar, and alcohol oxidizing ability. The polymer electrolyte fuel cell according to the embodiment of the present invention has the electrodes of the present invention. The sensor according to the embodiment of the present invention is a CO sensor, a sugar sensor, or an alcohol sensor having the electrodes of the present invention.

本発明の実施形態に係る複合体の製造方法を具体的に説明する。まず、多孔質炭素を用意する。多孔質炭素は、例えば非特許文献1(S. Kubo, R.J. White, K. Tauer, M-M. Titirici, Chem. Mater. 2013, 25, p4781)記載の方法で得られる。つぎに、金属中心ポルフィリンを、例えば、アセトンやエタノール等の有機溶媒に溶解させて金属中心ポルフィリン溶液を得る。そして、スパチュラ等を用いて多孔質炭素材料を砕き、金属中心ポルフィリン溶液に分散させる。なお、多孔質炭素材料は、乳鉢を用いてさらに細かく破砕してもよい。つぎに、この分散液を、ろ過もしくは減圧下で溶媒留去することにより、目的の複合体を得る。 The method for producing the complex according to the embodiment of the present invention will be specifically described. First, the porous carbon is prepared. Porous carbon can be obtained, for example, by the method described in Non-Patent Document 1 (S. Kubo, R.J. White, K. Tauer, M-M. Titirici, Chem. Mater. 2013, 25, p4781). Next, the metal-centered porphyrin is dissolved in an organic solvent such as acetone or ethanol to obtain a metal-centered porphyrin solution. Then, the porous carbon material is crushed using a spatula or the like and dispersed in a metal-centered porphyrin solution. The porous carbon material may be further crushed using a mortar. Next, the desired complex is obtained by filtering or distilling off the solvent under reduced pressure.

本実施形態の複合体は、例えば、固体高分子型燃料電池等の燃料電池の電極として用いることができる。ナフィオン(商品名)等のプロトン伝導性を有するイオン交換樹脂を含む溶液中に本実施形態の複合体を分散させ、その分散液をガラス状炭素電極等の導電性電極上に塗布し、乾燥させることにより、燃料電池反応のモデル電極とすることができる。 The complex of the present embodiment can be used as an electrode of a fuel cell such as a polymer electrolyte fuel cell, for example. The composite of the present embodiment is dispersed in a solution containing an ion exchange resin having proton conductivity such as Nafion (trade name), and the dispersion is applied onto a conductive electrode such as a glassy carbon electrode and dried. As a result, it can be used as a model electrode for the fuel cell reaction.

以下に、本発明を実施例によりさらに具体的に示すが、本発明の範囲は本実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the present Examples.

<多孔質炭素の合成>
実施例の金属中心ポルフィリンを担持する多孔質炭素は、非特許文献1記載の方法によって合成した。なお、実施例1と実施例3では、水熱処理温度を130℃、焼成温度を900℃とした。実施例2と実施例4では、水熱処理温度を180℃、焼成温度を900℃とした。なお、本発明の複合体の特徴は、金属中心ポルフィリンを担持する多孔質炭素にある。このため、本発明の複合体を構成している多孔質炭素自体を、実施例1から実施例4で表記している。比較例についても同様で、多孔質炭素自体を比較例1から比較例4で表記している。
<Synthesis of porous carbon>
The porous carbon supporting the metal center porphyrin of the example was synthesized by the method described in Non-Patent Document 1. In Examples 1 and 3, the hydrothermal treatment temperature was 130 ° C. and the firing temperature was 900 ° C. In Examples 2 and 4, the hydrothermal treatment temperature was 180 ° C. and the firing temperature was 900 ° C. The feature of the complex of the present invention is the porous carbon supporting the metal center porphyrin. Therefore, the porous carbon itself constituting the complex of the present invention is described in Examples 1 to 4. The same applies to the comparative example, and the porous carbon itself is described in Comparative Examples 1 to 4.

比較例1の金属中心ポルフィリンを担持する多孔質炭素は、焼成温度を900℃に変更した点を除いて、非特許文献2(S. Kubo, R.J. White, N. Yoshizawa, M. Antonietti, M-M. Titirici, Chem. Mater. 2011, 23, p4882)記載の方法によって合成した。比較例2の金属中心ポルフィリンを担持する多孔質炭素は、水熱処理温度を120℃、焼成温度を900℃に変更した点を除いて、非特許文献2記載の方法によって合成した。比較例3の多孔質炭素は、市販のカーボンブラックのケッチェンブラック(Ketjenblack)である。比較例4の多孔質炭素は、市販のカーボンブラックのVulcan XC72Rである。 The porous carbon supporting the metal-centered porphyrin of Comparative Example 1 has a non-patent document 2 (S. Kubo, RJ White, N. Yoshizawa, M. Antonietti, MM. Titirici, Chem. Mater. 2011, 23, p4882) Synthesized by the method described. The porous carbon supporting the metal-centered porphyrin of Comparative Example 2 was synthesized by the method described in Non-Patent Document 2 except that the hydrothermal treatment temperature was changed to 120 ° C. and the firing temperature was changed to 900 ° C. The porous carbon of Comparative Example 3 is Ketjenblack, which is a commercially available carbon black. The porous carbon of Comparative Example 4 is a commercially available carbon black Vulcan XC72R.

得られた多孔質炭素の走査型電子顕微鏡(HITACHI、S-4700)像を図1に示す。図1の(a)、(c)、および(e)は、加速電圧1kV、倍率5万倍で撮影した画像である。図1の(b)、(d)、および(f)は、加速電圧1kV、倍率15万倍で撮影した画像である。図1に示すように、実施例1および実施例2の多孔質炭素の細孔径は、大半が10〜100nmであった。また、図1に示すように、実施例1および実施例2の多孔質炭素は、外径50nm〜10μmの樹枝状の炭素がつながった構造であった。 A scanning electron microscope (HITACHI, S-4700) image of the obtained porous carbon is shown in FIG. (A), (c), and (e) of FIG. 1 are images taken at an acceleration voltage of 1 kV and a magnification of 50,000 times. (B), (d), and (f) of FIG. 1 are images taken at an acceleration voltage of 1 kV and a magnification of 150,000 times. As shown in FIG. 1, most of the pore diameters of the porous carbons of Examples 1 and 2 were 10 to 100 nm. Further, as shown in FIG. 1, the porous carbons of Examples 1 and 2 had a structure in which dendritic carbons having an outer diameter of 50 nm to 10 μm were connected.

得られた多孔質炭素の細孔特性を表1に示す。比表面積は、マイクロトラックベル社製Belsorp Maxを使用して、液体窒素温度で測定した吸着等温線から求めたBET比表面積である。マイクロ孔容量はt−plot法により求めた。メソ−マクロ孔容量は、全細孔容量からマイクロ孔容量を引いた値である。細孔直径は、BJH法より求めた細孔分布曲線のピーク位置の値である。これらの値は、多孔質炭素の走査型電子顕微鏡像の細孔径を計測した値と大きく違わなかった。なお、比較例1から比較例4の多孔質炭素では、実施例1から実施例4の吸着等温線の細孔分布曲線で見られたような鋭く明確なピークが存在しなかった。 Table 1 shows the pore characteristics of the obtained porous carbon. The specific surface area is the BET specific surface area determined from the adsorption isotherm measured at the temperature of liquid nitrogen using Belsolp Max manufactured by Microtrac Bell. The micropore capacity was determined by the t-prot method. The meso-macro pore capacity is the value obtained by subtracting the micropore capacity from the total pore capacity. The pore diameter is the value of the peak position of the pore distribution curve obtained by the BJH method. These values were not significantly different from the values measured for the pore size of the scanning electron microscope image of porous carbon. In the porous carbons of Comparative Examples 1 to 4, there was no sharp and clear peak as seen in the pore distribution curve of the adsorption isotherm of Examples 1 to 4.

Figure 0006923189
Figure 0006923189

<多孔質炭素への金属中心ポルフィリンの担持>
実施例と比較例で得られた多孔質炭素に金属中心ポルフィリンを担持して複合体を得た。用いた金属中心ポルフィリンの化学構造を下記に示す。
<Supporting metal-centered porphyrin on porous carbon>
A complex was obtained by supporting a metal-centered porphyrin on the porous carbons obtained in Examples and Comparative Examples. The chemical structure of the metal-centered porphyrin used is shown below.

Figure 0006923189
Figure 0006923189

具体的には、例えば以下のようにして多孔質炭素に金属中心ポルフィリンを担持した。0.3mMのCo(OEP)のジクロロメタン溶液10mLに、スパチュラで砕いた各種多孔質炭素材料30mgを加え3時間撹拌した。その後、メンブレンフィルターで溶液をろ過(以下、「平衡吸着」ということがある)して複合体を得た。また、0.9μmolのCo(OEP)のジクロロメタン溶液20mLに、スパチュラで砕いた各種多孔質炭素材料30mgを加え30分間撹拌した。その後、エバポレータで溶媒を留去(以下、「溶媒留去」ということがある)して複合体を得た。 Specifically, for example, the metal-centered porphyrin was supported on the porous carbon as follows. To 10 mL of a dichloromethane solution of 0.3 mM Co (OEP), 30 mg of various porous carbon materials crushed with a spatula was added, and the mixture was stirred for 3 hours. Then, the solution was filtered with a membrane filter (hereinafter, sometimes referred to as "equilibrium adsorption") to obtain a complex. Further, 30 mg of various porous carbon materials crushed with a spatula was added to 20 mL of a 0.9 μmol Co (OEP) dichloromethane solution, and the mixture was stirred for 30 minutes. Then, the solvent was distilled off with an evaporator (hereinafter, may be referred to as "solvent distillation") to obtain a complex.

平衡吸着では、多孔質炭素と相互作用がある金属中心ポルフィリンのみが、多孔質炭素に担持される。これに対して、溶媒留去では、所定量(本実施例では30μmol/g)の金属中心ポルフィリンが多孔質炭素に担持される。また、3μmolのCo(OEP)のジクロロメタン溶液60mLに、比較例4の多孔質炭素100mgを加え30分間撹拌した。その後、溶媒留去して複合体を得た。多孔質炭素に担持された金属中心ポルフィリンの吸着量を表2に示す。なお、Rh(HEMA)は、Rhodium hematoporphyrinである。 In equilibrium adsorption, only the metal-centered porphyrin that interacts with the porous carbon is supported on the porous carbon. On the other hand, in solvent distillation, a predetermined amount (30 μmol / g in this example) of metal-centered porphyrin is supported on the porous carbon. Further, 100 mg of porous carbon of Comparative Example 4 was added to 60 mL of a 3 μmol Co (OEP) dichloromethane solution, and the mixture was stirred for 30 minutes. Then, the solvent was distilled off to obtain a complex. Table 2 shows the adsorption amount of the metal center porphyrin supported on the porous carbon. Rh (HEMA) is Rhodium hematoporphyrin.

Figure 0006923189
Figure 0006923189

<複合体修飾電極の作製>
水0.25mL、エタノール0.25mL、およびナフィオン(Aldrich社、5%(w/w))5μLからなる混合液中に複合体5mgを加え、超音波分散機により、実施例または比較例の多孔質炭素を備える複合体を5分間分散させた。得られた複合体分散液から2μL分取し、ガラス状炭素電極上に滴下し、乾燥させて修飾電極を得た。
<Preparation of complex-modified electrode>
Add 5 mg of the complex to a mixture consisting of 0.25 mL of water, 0.25 mL of ethanol, and 5 μL of Nafion (Aldrich, 5% (w / w)), and use an ultrasonic disperser to make the examples or comparative examples porous. The complex with quality carbon was dispersed for 5 minutes. 2 μL of the obtained complex dispersion was collected, dropped onto a glassy carbon electrode, and dried to obtain a modified electrode.

<電気化学測定>
表3の条件下、掃引速度10mV/Sで、リニアスウィープボルタンメトリー測定により、修飾電極の酸素還元性能、CO酸化性能、またはグルコース酸化性能を評価した。なお、酸素還元性能は酸素雰囲気下で、CO酸化性能はCO雰囲気下でそれぞれ評価した。
<Electrochemical measurement>
Under the conditions shown in Table 3, the oxygen reduction performance, CO oxidation performance, or glucose oxidation performance of the modified electrode was evaluated by linear sweep voltammetry measurement at a sweep rate of 10 mV / S. The oxygen reduction performance was evaluated in an oxygen atmosphere, and the CO oxidation performance was evaluated in a CO atmosphere.

Figure 0006923189
Figure 0006923189

溶媒留去法で得られた複合体を用いた電極の評価Aでの酸素還元反応のボルタモグラムを図3に示す。図3に示すように、実施例1および実施例2の多孔質炭素を備える複合体を用いた電極の全掃引範囲における還元電流値は、比較例3および比較例4の多孔質炭素を備える複合体を用いた電極の全掃引範囲における還元電流値を上回った。 FIG. 3 shows a voltammogram of the oxygen reduction reaction in the evaluation A of the electrode using the complex obtained by the solvent distillation method. As shown in FIG. 3, the reduction current value in the entire sweep range of the electrode using the composite having porous carbon of Example 1 and Example 2 is the composite having porous carbon of Comparative Example 3 and Comparative Example 4. It exceeded the reduction current value in the entire sweep range of the electrodes using the body.

平衡吸着法で得られた複合体を用いた電極の評価Aでの酸素還元反応のボルタモグラムを図4に示す。図4に示すように、実施例1および実施例2の多孔質炭素を備える複合体を用いた電極の酸素還元電流値は、比較例1の多孔質炭素を備える複合体を用いた電極の酸素還元電流値を上回った。 FIG. 4 shows a voltammogram of the oxygen reduction reaction in the evaluation A of the electrode using the complex obtained by the equilibrium adsorption method. As shown in FIG. 4, the oxygen reduction current value of the electrode using the composite having porous carbon of Example 1 and Example 2 is the oxygen of the electrode using the composite having porous carbon of Comparative Example 1. It exceeded the reduction current value.

平衡吸着法で得られた複合体を用いた電極の評価Cでのグルコース酸化反応のボルタモグラムを図5に示す。 FIG. 5 shows a voltammogram of the glucose oxidation reaction in the evaluation C of the electrode using the complex obtained by the equilibrium adsorption method.

多孔質炭素を乳鉢で粉砕した後、溶媒留去法で得られた複合体を用いた電極の評価BでのCO酸化反応のボルタモグラムを図6に示す。図6に示すように、実施例1および実施例2の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例1の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。 FIG. 6 shows a voltammogram of the CO oxidation reaction in the evaluation B of the electrode using the composite obtained by the solvent distillation method after pulverizing the porous carbon in a mortar. As shown in FIG. 6, the CO oxidation current value of the electrode using the composite having porous carbon of Example 1 and Example 2 is the CO of the electrode using the composite having porous carbon of Comparative Example 1. It exceeded the oxidation current value.

平衡吸着法で得られた複合体を用いた電極の評価CでのCO酸化反応のボルタモグラムを図7に示す。図7に示すように、実施例1および実施例2の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例1の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。 FIG. 7 shows a voltammogram of the CO oxidation reaction in the evaluation C of the electrode using the complex obtained by the equilibrium adsorption method. As shown in FIG. 7, the CO oxidation current value of the electrode using the composite having porous carbon of Example 1 and Example 2 is the CO of the electrode using the composite having porous carbon of Comparative Example 1. It exceeded the oxidation current value.

評価DでのCO酸化反応のボルタモグラムを図8に示す。図8に示すように、実施例1
の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例1の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。実施例2の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例1、比較例3、および比較例4(金属中心ポルフィリン担持時にエタノール溶媒を使用)の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。
The voltammogram of the CO oxidation reaction at evaluation D is shown in FIG. As shown in FIG. 8, Example 1
The CO oxidation current value of the electrode using the composite containing the porous carbon of Comparative Example 1 was higher than the CO oxidation current value of the electrode using the composite containing the porous carbon of Comparative Example 1. The CO oxidation current value of the electrode using the composite provided with the porous carbon of Example 2 was determined by using the porous carbon of Comparative Example 1, Comparative Example 3, and Comparative Example 4 (an ethanol solvent was used when carrying the metal-centered porphyrin). It exceeded the CO oxidation current value of the electrode using the provided composite.

多孔質炭素を乳鉢で粉砕した後、溶媒留去法で得られた複合体を用いた電極の評価Cでのグルコース酸化反応のボルタモグラムを図9に示す。図9に示すように、実施例1および実施例2の多孔質炭素を備える複合体を用いた電極のグルコース酸化電流値は、比較例1の多孔質炭素を備える複合体を用いた電極のグルコース酸化電流値を上回った。 FIG. 9 shows a voltammogram of the glucose oxidation reaction in the evaluation C of the electrode using the composite obtained by the solvent distillation method after pulverizing the porous carbon in a mortar. As shown in FIG. 9, the glucose oxidation current value of the electrode using the composite having porous carbon of Example 1 and Example 2 is the glucose of the electrode using the composite having porous carbon of Comparative Example 1. It exceeded the oxidation current value.

評価FでのCO酸化反応のボルタモグラムを図10に示す。比較例として、活性炭(和光純薬、活性炭素、顆粒状、CAS no. 7440-44-0)を多孔質炭素に用いた電極についても記入した。図10に示すように、実施例3の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例2の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。実施例4の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例2、活性炭、比較例4および比較例3の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。 The voltammogram of the CO oxidation reaction in evaluation F is shown in FIG. As a comparative example, an electrode using activated carbon (Wako Pure Chemical Industries, Ltd., activated carbon, granular, CAS no. 7440-44-0) as the porous carbon is also described. As shown in FIG. 10, the CO oxidation current value of the electrode using the composite having porous carbon of Example 3 is the CO oxidation current value of the electrode using the composite having porous carbon of Comparative Example 2. It exceeded. The CO oxidation current value of the electrode using the composite having porous carbon of Example 4 is the CO oxidation current value of the electrode using the composite having porous carbon of Comparative Example 2, activated carbon, Comparative Example 4 and Comparative Example 3. It exceeded the current value.

平衡吸着法で得られた複合体を用いた電極の評価FでのCO酸化反応のボルタモグラムを図11に示す。比較例として、これまで高い性能が得られていた比較例4の多孔質炭素とRh(DPDS)を備える複合体を用いた電極、および比較例4の多孔質炭素とRh(HEMA)を備える複合体を用いた電極についても記入した。図11に示すように、実施例4の多孔質炭素を備える複合体を用いた電極のCO酸化電流値は、比較例4の多孔質炭素を備える複合体を用いた電極のCO酸化電流値を上回った。 FIG. 11 shows a voltammogram of the CO oxidation reaction in the evaluation F of the electrode using the complex obtained by the equilibrium adsorption method. As a comparative example, an electrode using a composite containing the porous carbon and Rh (DPDS) of Comparative Example 4, which has been obtained so far, and a composite containing the porous carbon and Rh (HEMA) of Comparative Example 4 are used. We also filled in the electrodes using the body. As shown in FIG. 11, the CO oxidation current value of the electrode using the composite having porous carbon of Example 4 is the CO oxidation current value of the electrode using the composite having porous carbon of Comparative Example 4. It exceeded.

平衡吸着法で得られた複合体を用いた電極の評価B、評価D、評価F、および評価GでのCO酸化反応のボルタモグラムを図12に示す。 FIG. 12 shows a voltammogram of the CO oxidation reaction in the evaluation B, the evaluation D, the evaluation F, and the evaluation G of the electrode using the composite obtained by the equilibrium adsorption method.

以上より、本発明の複合体は、高い電気化学的酸素還元性能、ならびにCOおよび糖酸化性能を有する。直径10〜100nmの細孔および0.1〜5mL/gのメソ−マクロ孔容量を備える多孔質炭素が、金属中心ポルフィリンの高容量・高分散担持を促進するとともに、反応物および生成物の高効率な拡散および輸送を促進しているからだと考えられる。 From the above, the complex of the present invention has high electrochemical oxygen reduction performance as well as CO and sugar oxidation performance. Porous carbon with pores 10 to 100 nm in diameter and meso-macro pore capacity of 0.1 to 5 mL / g promotes high volume and high dispersion support of metal-centered porphyrins, as well as high reactants and products. It is believed that this is because it promotes efficient diffusion and transportation.

本発明の金属中心ポルフィリン−多孔質炭素の複合体は、電極反応の電極として有用である。すなわち、燃料電池やセンサーの電極としての利用に適する。さらに、多孔質炭素の細孔径が均一であるから、本発明の複合体は、形状選択能を利用したセンサーとしての利用に適する。

The metal-centered porphyrin-porous carbon complex of the present invention is useful as an electrode for electrode reactions. That is, it is suitable for use as an electrode of a fuel cell or a sensor. Further, since the pore size of the porous carbon is uniform, the complex of the present invention is suitable for use as a sensor utilizing the shape selectivity.

Claims (7)

走査型電子顕微鏡像で観測されるある部位の細孔の数量の80%以上が直径10〜100nmである細孔を有する担持部を備え、メソ−マクロ孔容量が0.1〜5mL/gである多孔質炭素と、
少なくとも前記多孔質炭素の前記担持部に担持され、下記の化学式(I)で表わされる金属中心ポルフィリンと、
を有する複合体。
Figure 0006923189
(MはCoまたはRhである。
、R 、R 、R 、R 、R 、R 10 、およびR 12 は、独立して、水素原子、メチル基、エチル基、SO X、QC(=O)OQ′、QC(=O)Q′、またはQOZである(Xは水素原子またはアルカリ金属である。Qは単結合、水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である。Q′は水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である。Zは水素原子またはアルカリ金属である)。
、R 、R 、およびR 11 は、独立して、水素原子または下記の化学式(II)で表わされる物質である(R ′、R ′、およびR ′は、独立して、水素原子、−COOT、−OCH T、−OT(Tは水素原子、炭素数1〜5のアルキル基、またはアルカリ金属である))。)
Figure 0006923189
A carrier having pores in which 80% or more of the pores of a certain part observed by a scanning electron microscope image have a diameter of 10 to 100 nm is provided, and the meso-macro pore capacity is 0.1 to 5 mL / g. With a porous carbon
A metal-centered porphyrin supported on the carrier of at least the porous carbon and represented by the following chemical formula (I).
Complex with.
Figure 0006923189
(M is Co or Rh.
R 1 , R 3 , R 4 , R 6 , R 7 , R 9 , R 10 , and R 12 are independently hydrogen atoms, methyl groups, ethyl groups, SO 3 X, QC (= O) OQ'. , QC (= O) Q', or QOZ (X is a hydrogen atom or an alkali metal. Q is a single bond, a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal. Q'is It is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal. Z is a hydrogen atom or an alkali metal).
R 2 , R 5 , R 8 and R 11 are independent hydrogen atoms or substances represented by the following chemical formula (II) (R 1 ′, R 2 ′, and R 3 ′ are independent. Hydrogen atom, -COOT, -OCH 2 T, -OT (T is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkali metal). )
Figure 0006923189
請求項1において、
前記多孔質炭素のメソ−マクロ孔容量が0.4〜0.8mL/gである複合体。
In claim 1,
A complex having a meso-macro pore volume of the porous carbon of 0.4 to 0.8 mL / g.
請求項1または2において、
前記多孔質炭素が、外径50nm〜10μmの樹枝状の炭素がつながった構造である複合体。
In claim 1 or 2,
A complex in which the porous carbon has a structure in which dendritic carbons having an outer diameter of 50 nm to 10 μm are connected.
請求項1からのいずれかに記載された複合体の製造方法であって、
前記金属中心ポルフィリンを有機溶媒に溶解させて溶液を得る溶解工程と、
前記溶液に前記多孔質炭素を分散させて、前記金属中心ポルフィリンを前記多孔質炭素に浸漬させる浸漬工程と、
前記浸漬工程を経た前記溶液を、ろ過または溶媒蒸発乾固して複合体を得る複合化工程と、
を有する複合体の製造方法。
The method for producing a complex according to any one of claims 1 to 3.
A dissolution step of dissolving the metal-centered porphyrin in an organic solvent to obtain a solution, and
A dipping step of dispersing the porous carbon in the solution and immersing the metal-centered porphyrin in the porous carbon.
A complexing step of filtering or solvent evaporating to dryness of the solution that has undergone the dipping step to obtain a complex,
A method for producing a complex having.
走査型電子顕微鏡像で観測されるある部位の細孔の数量の80%以上が直径10〜100nmである細孔を有する担持部を備え、メソ−マクロ孔容量が0.1〜5mL/gである多孔質炭素と、少なくとも前記多孔質炭素の前記担持部に担持された金属中心ポルフィリンとを有する複合体を有し、酸素還元能、ならびにCO、糖、およびアルコール酸化能を有する電極。 A carrier having pores in which 80% or more of the pores of a certain part observed in the scanning electron microscope image have pores having a diameter of 10 to 100 nm is provided, and the meso-macro pore capacity is 0.1 to 5 mL / g. An electrode having a composite having a certain porous carbon and at least a metal-centered porphyrin supported on the supporting portion of the porous carbon, and having an oxygen reducing ability and a CO, sugar, and alcohol oxidizing ability. 請求項に記載の電極を有する固体高分子型燃料電池。 A polymer electrolyte fuel cell having the electrode according to claim 5. 請求項に記載の電極を有するCOセンサー、糖センサー、またはアルコールセンサー。 A CO sensor, sugar sensor, or alcohol sensor having the electrode according to claim 5.
JP2017110962A 2017-06-05 2017-06-05 Metal-centered porphyrin-carbon complex Active JP6923189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110962A JP6923189B2 (en) 2017-06-05 2017-06-05 Metal-centered porphyrin-carbon complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110962A JP6923189B2 (en) 2017-06-05 2017-06-05 Metal-centered porphyrin-carbon complex

Publications (2)

Publication Number Publication Date
JP2018202327A JP2018202327A (en) 2018-12-27
JP6923189B2 true JP6923189B2 (en) 2021-08-18

Family

ID=64955739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110962A Active JP6923189B2 (en) 2017-06-05 2017-06-05 Metal-centered porphyrin-carbon complex

Country Status (1)

Country Link
JP (1) JP6923189B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280215A1 (en) * 2001-07-26 2003-01-29 University of Liege Porous carbon material
JP2007099612A (en) * 2005-09-06 2007-04-19 National Institute Of Advanced Industrial & Technology Mesoporous carbon bead with uniform particle diameter, method and apparatus for producing the same, and water-treating catalyst using the mesoporous carbon bead as carrier, device for evaluating performance of the catalyst, and practical wastewater treatment plant using the catalyst
JP5190965B2 (en) * 2009-06-15 2013-04-24 独立行政法人産業技術総合研究所 Catalyst for electrochemical oxidation of carbon monoxide
EP2478957A1 (en) * 2011-01-25 2012-07-25 Norit Nederland B.V. Production of catalytically active activated carbon
JP2014154225A (en) * 2013-02-05 2014-08-25 Sony Corp Electrode material, electrode, and battery

Also Published As

Publication number Publication date
JP2018202327A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
Li et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells
Zhong et al. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts
Su et al. Template synthesis of microporous carbon for direct methanol fuel cell application
Khan et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications
Mohamed et al. Electrocatalytic behavior of a nanocomposite of Ni/Pd supported by carbonized PVA nanofibers towards formic acid, ethanol and urea oxidation: A physicochemical and electro-analysis study
Lee et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2
Habibi et al. Facile synthesis of Pd nanoparticles on nano carbon supports and their application as an electrocatalyst for oxidation of ethanol in alkaline media: the effect of support
Liu et al. Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous carbons for oxygen reduction reaction
WO2014129597A1 (en) Carbon material for use as catalyst carrier
JP4799897B2 (en) Fuel cell
Khare et al. Carbon nanofiber-skinned three dimensional Ni/carbon micropillars: high performance electrodes of a microbial fuel cell
Zurowski et al. Activation of carbon-supported platinum nanoparticles by zeolite-type cesium salts of polyoxometallates of molybdenum and tungsten towards more efficient electrocatalytic oxidation of methanol and ethanol
Qiao et al. Rational design of hierarchical, porous, co‐supported, N‐doped carbon architectures as electrocatalyst for oxygen reduction
Rutkowska et al. Electroanalysis of ethanol oxidation and reactivity of platinum-ruthenium catalysts supported onto nanostructured titanium dioxide matrices
Park et al. Characterization of zeolitic imidazolate framework–derived polyhedral carbonaceous material and its application to electrocatalyst for oxygen reduction reaction
Doyle et al. Redox and oxygen evolution electrocatalytic properties of nafion and single-walled carbon nanotube/hydrous iron oxide composite films
Kang et al. Al-Based porous coordination polymer derived nanoporous carbon for immobilization of glucose oxidase and its application in glucose/O 2 biofuel cell and biosensor
Unni et al. Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions
JPWO2009116157A1 (en) Method for producing catalyst for fuel cell, electrode assembly and fuel cell
Alaba et al. Investigating the electrocatalytic oxidation of glycerol on simultaneous nitrogen-and fluorine-doped on activated carbon black composite
JP6854685B2 (en) A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.
Wang et al. Lysine-derived mesoporous carbon nanotubes as a proficient non-precious catalyst for oxygen reduction reaction
Lu et al. A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon
WO2020213647A1 (en) Catalyst, electrode, membrane electrode assembly, and air cell
Batool et al. Encapsulation of Pt Nanocrystals inside Pyrolyzed UiO-66-NH2 Metal–Organic Framework Supports as Oxygen Reduction Catalysts

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6923189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250