JP6915347B2 - How to adjust the transformer and the winding position of the transformer - Google Patents

How to adjust the transformer and the winding position of the transformer Download PDF

Info

Publication number
JP6915347B2
JP6915347B2 JP2017073387A JP2017073387A JP6915347B2 JP 6915347 B2 JP6915347 B2 JP 6915347B2 JP 2017073387 A JP2017073387 A JP 2017073387A JP 2017073387 A JP2017073387 A JP 2017073387A JP 6915347 B2 JP6915347 B2 JP 6915347B2
Authority
JP
Japan
Prior art keywords
winding
coil group
outer winding
axial direction
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017073387A
Other languages
Japanese (ja)
Other versions
JP2018181864A (en
Inventor
章 富岡
章 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017073387A priority Critical patent/JP6915347B2/en
Publication of JP2018181864A publication Critical patent/JP2018181864A/en
Application granted granted Critical
Publication of JP6915347B2 publication Critical patent/JP6915347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変圧器及び変圧器の巻線位置調整方法に関し、特に、外側巻線の内側に内側巻線が配置された変圧器及び変圧器の巻線位置調整方法に関する。 The present invention relates to a transformer and a winding position adjusting method of a transformer, and more particularly to a transformer and a winding position adjusting method of a transformer in which an inner winding is arranged inside an outer winding.

変圧器は、電磁誘導を利用して交流電力の電圧を変換する機器であり、磁気回路を構成する鉄心と、電気回路を構成する巻線とを備えている。変圧器の巻線において、短絡事故時に大電流が流れると過大な電磁力が発生して巻線を軸方向に圧縮する方向及び拡張する方向に作用する。巻線が外側巻線と内側巻線とにより構成されて鉄心周りに配置される場合、外側巻線と内側巻線との軸方向位置が異なると、それらの軸方向での電磁力が対称にならなくなる。このため、外部推力と呼ばれる上向き若しくは下向きの外力が巻線に現れる。 A transformer is a device that converts the voltage of AC power by using electromagnetic induction, and includes an iron core that constitutes a magnetic circuit and a winding that constitutes an electric circuit. In the winding of a transformer, when a large current flows in the event of a short circuit, an excessive electromagnetic force is generated and acts in the direction of axially compressing and expanding the winding. When a winding is composed of an outer winding and an inner winding and arranged around an iron core, if the outer winding and the inner winding are in different axial positions, their axial electromagnetic forces are symmetrical. Will not be. Therefore, an upward or downward external force called an external thrust appears in the winding.

外部推力は、外側巻線と内側巻線との磁気中心位置を軸方向で同じにすることで抑制可能となる。例えば、巻線の電流密度が一定の場合、内側巻線と外側巻線の軸方向位置を同じにすれば磁気中心位置も同じとなり、外部推力は発生しなくなる。各巻線は上下それぞれで絶縁物を介在させた状態でコイル受け等の支持構造により支持されるので、絶縁物の寸法管理、寸法調整によって各巻線の軸方向位置を同一にすれば外部推力が発生しなくなる。 The external thrust can be suppressed by making the magnetic center positions of the outer winding and the inner winding the same in the axial direction. For example, when the current density of the winding is constant, if the axial positions of the inner winding and the outer winding are the same, the magnetic center position is also the same, and no external thrust is generated. Since each winding is supported by a support structure such as a coil receiver with an insulator interposed between the upper and lower windings, external thrust is generated if the axial position of each winding is made the same by dimensional control and dimensional adjustment of the insulator. Will not be.

しかしながら、上記のように外部推力を抑制しようとしても、使用される絶縁物が荷重や水分で収縮する等の理由によって、絶縁物の寸法を完全に制御及び把握することは変圧器の製造上困難であるという問題がある。また、外側巻線の内側に内側巻線が配置されるので、組立後に内側巻線を外部から目視することは困難となり、外側巻線と内側巻線との軸方向での相対位置を把握することも困難になるという問題がある。 However, even if an attempt is made to suppress the external thrust as described above, it is difficult to completely control and grasp the dimensions of the insulation due to reasons such as the insulation used shrinking due to a load or moisture in the manufacture of a transformer. There is a problem that it is. Further, since the inner winding is arranged inside the outer winding, it is difficult to visually recognize the inner winding from the outside after assembly, and the relative position of the outer winding and the inner winding in the axial direction can be grasped. There is also the problem that it becomes difficult.

ここで、特許文献1に開示されるように、巻線を上下に分割し、上方の巻線と下方の巻線を並列回路として構成する方法が知られている。この方法では、磁束密度分布と電流の関係から上方の巻線と下方の巻線で鎖交する磁束に応じて電流が配分されるので、上下を一体とした外側巻線として外部推力を小さくすることができる。 Here, as disclosed in Patent Document 1, a method is known in which a winding is divided into upper and lower parts, and an upper winding and a lower winding are configured as a parallel circuit. In this method, the current is distributed according to the magnetic flux interlinking between the upper winding and the lower winding due to the relationship between the magnetic flux density distribution and the current. be able to.

特開昭57−109313号公報Japanese Unexamined Patent Publication No. 57-109313

ところが、特許文献1の方法では、磁束密度が軸方向中心で対称になる場合には外部推力がほぼゼロになるが、実際の巻線の構成では、絶縁やタップ引出等の都合によって磁束密度が非対称になる場合がある。この場合、外側巻線と内側巻線との磁気中心位置が同じにならなくなり、外部推力が発生してしまう。従って、外部推力に耐えることが可能な巻線支持構造物を設ける必要があり、該構造物や変圧器の筐体等の寸法が大きくなって変圧器全体としてのコストが上昇するという問題がある。 However, in the method of Patent Document 1, when the magnetic flux density is symmetrical at the center in the axial direction, the external thrust becomes almost zero, but in the actual winding configuration, the magnetic flux density becomes high due to the convenience of insulation, tap extraction, etc. It may be asymmetric. In this case, the magnetic center positions of the outer winding and the inner winding are not the same, and an external thrust is generated. Therefore, it is necessary to provide a winding support structure capable of withstanding external thrust, and there is a problem that the dimensions of the structure and the housing of the transformer become large and the cost of the transformer as a whole increases. ..

ところで、巻線の支持構造物にあっては、巻線自体の自重を長期に亘って安定して支持することが不可欠なことから、巻線を下方から支持する構造物の剛性、強度が高くなる。言い換えると、巻線を上方から支持する構造物の方が相対的に剛性、強度が低くなり、コスト低減等の理由によって簡素化、軽量化が図られる。ところが、上記した外部推力に対する耐久性を考慮すると、上方の支持構造物についても剛性、強度を高めることが求められ、上方の支持構造物が高重量化、複雑化するという問題がある。 By the way, in a winding support structure, it is indispensable to stably support the weight of the winding itself for a long period of time, so that the structure that supports the winding from below has high rigidity and strength. Become. In other words, the structure that supports the winding from above has relatively lower rigidity and strength, and can be simplified and reduced in weight for reasons such as cost reduction. However, in consideration of the durability against the external thrust described above, it is required to increase the rigidity and strength of the upper support structure, and there is a problem that the upper support structure becomes heavier and more complicated.

本発明は、このような問題に鑑みてなされたものであり、巻線を支持する構造物の簡素化を図ることができる変圧器及び変圧器の巻線位置調整方法を提供することを目的の一つとする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a transformer and a method for adjusting the winding position of the transformer, which can simplify the structure supporting the winding. Make one.

本発明における一態様の変圧器は、鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線と、前記外側巻線を軸方向から支持する支持部とを有する変圧器であって、前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、前記支持部は、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が下方に位置するように前記外側巻線を支持することを特徴とする。また、本発明における一態様の変圧器は、鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線と、前記外側巻線を軸方向から支持する支持部とを有する変圧器であって、前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、前記支持部は、軸方向における前記外側巻線の位置を調整するための位置調整部を含み、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が一致又は下方に位置するように前記外側巻線を支持し、前記位置調整部は、前記上コイル群及び前記下コイル群それぞれの電流値に応じて前記外側巻線の軸方向の位置を調整可能に設けられていることを特徴とする。 One aspect of the transformer in the present invention is a transformer having an inner winding and an outer winding concentrically arranged around an iron core extending in the vertical direction, and a support portion for supporting the outer winding from the axial direction. The outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit, and the support portion is the outer side with respect to the center position of the inner winding in the axial direction. wherein the center position of the winding to support the outer winding to be located below side. Further, the transformer of one aspect of the present invention is a transformer having an inner winding and an outer winding concentrically arranged around an iron core extending in the vertical direction, and a support portion for supporting the outer winding from the axial direction. In the instrument, the outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit, and the support portion adjusts the position of the outer winding in the axial direction. The outer winding is supported so that the center position of the outer winding is aligned with or below the center position of the inner winding in the axial direction. It is characterized in that the position of the outer winding in the axial direction can be adjusted according to the current values of the upper coil group and the lower coil group.

このような構成によれば、外側巻線に発生する外部推力を下向きに安定して保つことができる。これにより、巻線の上方の支持構造物に加わる外部推力を抑制或いはなくすことができ、上方の支持構造物の簡素化、ひいては、製造コストの低廉化を図ることができる。ここで、一般に、巻線の下方の支持構造物は、巻線自体の自重を支持できるように予め頑強な支持構造が採用される他、設置面となる地面等からの支持力を利用した支持構造が採用される。従って、巻線の下方の支持構造物に外部推力が加わることを許容しても、外部推力のための補強を不要、若しくは僅かな補強を追加するだけで、外側巻線を安定して支持することができる。これにより、下方の支持構造物についても複雑化、高重量化することを抑制でき、製造コストも抑えることができる。 According to such a configuration, the external thrust generated in the outer winding can be stably maintained downward. As a result, the external thrust applied to the support structure above the winding can be suppressed or eliminated, and the support structure above can be simplified and the manufacturing cost can be reduced. Here, in general, the support structure below the winding adopts a robust support structure in advance so as to support the weight of the winding itself, and also supports using the support force from the ground or the like as the installation surface. The structure is adopted. Therefore, even if the external thrust is allowed to be applied to the support structure below the winding, the outer winding is stably supported without the need for reinforcement for the external thrust or by adding a slight reinforcement. be able to. As a result, it is possible to suppress the complexity and weight increase of the lower support structure, and it is also possible to suppress the manufacturing cost.

本発明における一態様の変圧器の巻線位置調整方法は、鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線を有する変圧器の巻線位置調整方法であって、前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、前記上コイル群及び前記下コイル群それぞれの電流値を測定する測定ステップと、前記測定ステップで測定した前記上コイル群及び前記下コイル群それぞれの電流値の比率を算出し、該比率を用いて軸方向における前記内側巻線の中心位置に対する前記外側巻線の中心位置のずれ方向を算出する算出ステップと、前記算出ステップで算出した前記ずれ方向に応じ、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が一致又は下方に位置するように調整する調整ステップとを備えていることを特徴とする。 One aspect of the transformer winding position adjusting method in the present invention is a winding position adjusting method for a transformer having an inner winding and an outer winding concentrically arranged around an iron core extending in the vertical direction. The outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit, and a measurement step for measuring the current value of each of the upper coil group and the lower coil group, and the measurement step. The ratio of the current values of the upper coil group and the lower coil group measured in 1 is calculated, and the deviation direction of the center position of the outer winding with respect to the center position of the inner winding in the axial direction is calculated using the ratio. The adjustment step of adjusting the center position of the outer winding to coincide with or lower than the center position of the inner winding in the axial direction according to the calculation step to be performed and the deviation direction calculated in the calculation step. It is characterized by having.

このような方法によれば、外側巻線の軸方向位置を上記のように調整するので、外側巻線の外部推力を低減することができる。これにより、巻線の支持構造物を簡素化、小型化を図ることができ、安価な変圧器を提供することが可能となる。 According to such a method, since the axial position of the outer winding is adjusted as described above, the external thrust of the outer winding can be reduced. As a result, the support structure of the winding can be simplified and downsized, and an inexpensive transformer can be provided.

本発明によれば、少なくとも巻線の上方の支持構造物に加わる外部推力を抑制でき、巻線を支持する構造物の簡素化を図ることができる。 According to the present invention, at least the external thrust applied to the supporting structure above the winding can be suppressed, and the structure supporting the winding can be simplified.

実施の形態に係る変圧器の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically the schematic structure of the transformer which concerns on embodiment. 上記変圧器の回路構成図である。It is a circuit block diagram of the said transformer. 外側巻線の軸方向の位置がずれた状態の説明用断面図である。It is explanatory cross-sectional view of the state which the position in the axial direction of the outer winding is deviated. 外側巻線の軸方向ずれ量と外部推力との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the axial deviation amount of an outer winding, and an external thrust. 外側巻線の軸方向ずれ量と上コイル群及び下コイル群の電流値の比率との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the axial deviation amount of the outer winding, and the ratio of the current values of the upper coil group and the lower coil group.

以下、本発明の実施の形態に係る変圧器について、添付の図面を参照しながら詳細に説明する。なお、以下においては、本発明に係る変圧器を油入変圧器に適用する場合について説明する。しかしながら、本発明の適用対象は、油入変圧器に限定されるものではなく適宜変更が可能である。例えば、乾式変圧器やガス絶縁変圧器に適用することもできる。 Hereinafter, the transformer according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following, a case where the transformer according to the present invention is applied to an oil-immersed transformer will be described. However, the application target of the present invention is not limited to the oil-immersed transformer, and can be changed as appropriate. For example, it can be applied to a dry transformer or a gas isolation transformer.

図1は、実施の形態に係る変圧器の概略構成を模式的に示す断面図である。図1に示すように、変圧器1は、鉛直方向に延びる鉄心2と、鉄心2の周りに巻回されて配置される内側巻線3及び外側巻線4と、内側巻線3及び外側巻線4を軸方向から支持する支持部5とを備えている。本実施の形態の変圧器1は、不図示のタンク内に絶縁油が満たされる油入変圧器であり、鉄心2、各巻線3、4及び支持部5はタンク内にて絶縁油に含浸した状態となっている。 FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a transformer according to an embodiment. As shown in FIG. 1, the transformer 1 includes an iron core 2 extending in the vertical direction, an inner winding 3 and an outer winding 4 wound around the iron core 2, and an inner winding 3 and an outer winding. It is provided with a support portion 5 that supports the wire 4 from the axial direction. The transformer 1 of the present embodiment is an oil-filled transformer in which a tank (not shown) is filled with insulating oil, and the iron core 2, each winding 3, 4 and the support portion 5 are impregnated with insulating oil in the tank. It is in a state.

内側巻線3及び外側巻線4は、鉄心2を軸位置として同心に配置されている。内側巻線3及び外側巻線4は、銅やアルミニウム等の導体をシート状の絶縁物で被覆してから、コイル状に複数ループ巻回されて形成される。ここで、各巻線3、4における軸方向とは、円筒状となる各巻線3、4の中心軸位置が延在する方向であり、図1の各巻線3、4では上下方向となる。外側巻線4は軸方向に分割され、上コイル群4a及び下コイル群4bを含むように形成されている。ここで、内側巻線3の中心位置C3及び外側巻線4の中心位置C4を一点鎖線で図示し、これら中心位置C3、C4は、内側巻線3及び外側巻線4の軸方向における寸法上での中心位置となる。 The inner winding 3 and the outer winding 4 are arranged concentrically with the iron core 2 as the axial position. The inner winding 3 and the outer winding 4 are formed by coating a conductor such as copper or aluminum with a sheet-shaped insulating material and then winding a plurality of loops in a coil shape. Here, the axial direction in each of the windings 3 and 4 is the direction in which the central axial position of each of the windings 3 and 4 having a cylindrical shape extends, and the axial direction in each of the windings 3 and 4 in FIG. 1 is the vertical direction. The outer winding 4 is divided in the axial direction and is formed so as to include the upper coil group 4a and the lower coil group 4b. Here, the center position C3 of the inner winding 3 and the center position C4 of the outer winding 4 are illustrated by a alternate long and short dash line, and these center positions C3 and C4 are dimensional in the axial direction of the inner winding 3 and the outer winding 4. It becomes the center position in.

支持部5は、内側巻線3及び外側巻線4の上方に設けられた上支持部材5a及び下方に設けられた下支持部材5bを備えている。各支持部材5a、5bは、具体的な形状の図示を省略したが、断面がほぼ一定に形成されるフレーム部材等により構成される。断面形状は特に限定されないが、例えばコの字状やロの字状に形成される。 The support portion 5 includes an upper support member 5a provided above the inner winding 3 and the outer winding 4, and a lower support member 5b provided below. Although the specific shapes of the support members 5a and 5b are not shown, they are composed of a frame member or the like having a substantially constant cross section. The cross-sectional shape is not particularly limited, but is formed in a U-shape or a B-shape, for example.

支持部5において、上支持部材5aと内側巻線3との間には内側上部絶縁物6aが配置され、下支持部材5bと内側巻線3との間には内側下部絶縁物6bが配置されている。また、上支持部材5aと外側巻線4との間には外側上部絶縁物7aが配置され、下支持部材5bと外側巻線4との間には外側下部絶縁物7bが配置されている。各絶縁物6a、6b、7a、7bは、複数種類の厚みのものを用意して選択的に用いたり、介在させる枚数を変えたりすることによって総厚を変更可能とされる。 In the support portion 5, the inner upper insulating material 6a is arranged between the upper supporting member 5a and the inner winding 3, and the inner lower insulating material 6b is arranged between the lower supporting member 5b and the inner winding 3. ing. Further, an outer upper insulator 7a is arranged between the upper support member 5a and the outer winding 4, and an outer lower insulator 7b is arranged between the lower support member 5b and the outer winding 4. The total thickness of each of the insulators 6a, 6b, 7a, and 7b can be changed by preparing a plurality of types of thicknesses and selectively using them, or by changing the number of intervening insulators.

このように総厚を変えることによって、各支持部材5a、5bの間で各巻線3、4の軸方向位置を調整することができ、外側巻線4の軸方向位置を調整する外側上部絶縁物7a及び外側下部絶縁物7bにより位置調整部が構成される。なお、これら絶縁物7a、7bに加え、位置調整部として支持部材5a、5bに螺合するボルト等を設け、このボルトを回転操作して軸方向に進退させることで外側巻線4の軸方向位置を調整するようにしてもよい。 By changing the total thickness in this way, the axial positions of the windings 3 and 4 can be adjusted between the support members 5a and 5b, and the outer upper insulator that adjusts the axial position of the outer winding 4 The position adjusting portion is composed of 7a and the outer lower insulating material 7b. In addition to these insulators 7a and 7b, a bolt or the like screwed to the support members 5a and 5b is provided as a position adjusting portion, and the bolt is rotated to move forward and backward in the axial direction to move the outer winding 4 in the axial direction. The position may be adjusted.

図2は、上記変圧器の回路構成図である。図2に示すように、外側巻線4では、上コイル群4a及び下コイル群4bにて巻線の方向が逆になっており、外側巻線4の軸方向中央部で上コイル群4a及び下コイル群4bが接続される。これにより、外側巻線4における軸方向中央部の接続部が1つの端子になり、外側巻線4の軸方向両端部がもう1つの端子になる。本実施の形態では、軸方向中央部の接続部から軸方向両端部に向かって矢印で示す方向の電流Ia、Ibが流れ、上コイル群4a及び下コイル群4bが並列回路となって構成される。上コイル群4a及び下コイル群4bは、巻線の方向が逆であるため、誘起される電圧は打ち消し合わないようになる。 FIG. 2 is a circuit configuration diagram of the transformer. As shown in FIG. 2, in the outer winding 4, the winding directions are opposite in the upper coil group 4a and the lower coil group 4b, and the upper coil group 4a and the upper coil group 4a and the central portion in the axial direction of the outer winding 4 The lower coil group 4b is connected. As a result, the connecting portion of the outer winding 4 at the central portion in the axial direction becomes one terminal, and both ends of the outer winding 4 in the axial direction become another terminal. In the present embodiment, currents Ia and Ib in the directions indicated by arrows flow from the connection portion at the central portion in the axial direction toward both ends in the axial direction, and the upper coil group 4a and the lower coil group 4b are configured as a parallel circuit. NS. Since the winding directions of the upper coil group 4a and the lower coil group 4b are opposite to each other, the induced voltages do not cancel each other out.

上コイル群4a及び下コイル群4bには、それぞれの電流値Ia、Ibを測定する電流計やセンサ等からなる電流測定手段8a、8bが接続される。電流測定手段8a、8bは、後述する外側巻線4の位置調整が完了した後は取り外してもよい。 Current measuring means 8a and 8b including an ammeter and a sensor for measuring the respective current values Ia and Ib are connected to the upper coil group 4a and the lower coil group 4b. The current measuring means 8a and 8b may be removed after the position adjustment of the outer winding 4 described later is completed.

続いて、外側巻線4の軸方向の位置がずれた場合について図3を参照して説明する。図3は、外側巻線の軸方向の位置がずれた状態の説明用断面図である。図3では、軸方向にて内側巻線3の中心位置C3に対し、外側巻線4の軸方向における中心位置C4が上方にずれた場合を仮定する。この場合、外側巻線4に作用する軸方向の電磁力の要素のうち、内側巻線3からの磁場は外側巻線4の半径方向成分が作用する。この磁場は図3にて矢印で示す方向となり、上コイル群4aには半径方向磁場Ba、下コイル群4bには半径方向磁場Bbが印加される。内側巻線3による半径方向磁場は、内側巻線3の軸方向両端位置で最大となり、軸方向中央部に向かって次第に小さくなる分布となる。従って、外側巻線4の軸方向の位置が上方向にずれると、各磁場Ba、Bbの大きさの関係はBa>Bbとなる。これに応じて、上コイル群4a及び下コイル群4bに流れる電流Ia、Ibの関係はIa<Ibとなる。理想的には上コイル群4aの軸方向力と下コイル群4bの軸方向力は同一となり、外側巻線4の外部推力はゼロとなる。 Subsequently, a case where the position of the outer winding 4 in the axial direction is deviated will be described with reference to FIG. FIG. 3 is a cross-sectional view for explanation of a state in which the positions of the outer windings in the axial direction are deviated. In FIG. 3, it is assumed that the center position C4 of the outer winding 4 in the axial direction is displaced upward with respect to the center position C3 of the inner winding 3 in the axial direction. In this case, among the elements of the axial electromagnetic force acting on the outer winding 4, the radial component of the outer winding 4 acts on the magnetic field from the inner winding 3. This magnetic field is in the direction indicated by the arrow in FIG. 3, and a radial magnetic field Ba is applied to the upper coil group 4a and a radial magnetic field Bb is applied to the lower coil group 4b. The radial magnetic field generated by the inner winding 3 becomes maximum at both ends in the axial direction of the inner winding 3, and gradually decreases toward the central portion in the axial direction. Therefore, when the axial position of the outer winding 4 shifts upward, the relationship between the magnitudes of the magnetic fields Ba and Bb becomes Ba> Bb. Correspondingly, the relationship between the currents Ia and Ib flowing in the upper coil group 4a and the lower coil group 4b is Ia <Ib. Ideally, the axial force of the upper coil group 4a and the axial force of the lower coil group 4b are the same, and the external thrust of the outer winding 4 is zero.

ところが、実際には、各巻線3、4の導体断面寸法や巻線断面寸法、漏れ磁束等に要因によって外部推力がゼロにはならない場合がある。そこで、本発明者は、かかる外部推力を検証するために測定を行った。この測定では、上記実施の形態の変圧器1に対し、一部構成を簡略化した測定用変圧器を製作した。測定用変圧器の主な諸元は、内側巻線の高さ850mm、外側巻線の高さ810mm、各巻線の厚さ51mm、内側巻線の内径φ538mm、外側巻線の内径φ760mm、各巻線のターン数82、空心変圧器とした。外側巻線は、軸方向中央部で二分割して上コイル群及び下コイル群を形成し、それらを並列接続した時と直列接続した時の外部推力を測定した。結果を図4のグラフに示す。 However, in reality, the external thrust may not become zero due to factors such as the conductor cross-sectional dimensions of the windings 3 and 4, the winding cross-sectional dimensions, and the leakage flux. Therefore, the present inventor made measurements to verify such external thrust. In this measurement, a measuring transformer having a partially simplified configuration was manufactured with respect to the transformer 1 of the above-described embodiment. The main specifications of the measuring transformer are the height of the inner winding 850 mm, the height of the outer winding 810 mm, the thickness of each winding 51 mm, the inner diameter of the inner winding φ538 mm, the inner diameter of the outer winding φ760 mm, and each winding. The number of turns was 82, and it was an air-core transformer. The outer winding was divided into two at the central portion in the axial direction to form an upper coil group and a lower coil group, and the external thrusts when they were connected in parallel and when they were connected in series were measured. The results are shown in the graph of FIG.

図4は、外側巻線の軸方向ずれ量と外部推力との関係の一例を示すグラフである。図4のグラフを見ると、外側巻線に軸方向のずれがある場合、並列接続は直列接続よりも外部推力は小さくなっているものの、ゼロにはなっていない。従って、外部推力をさらに低減するためには、外側巻線の軸方向ずれ量を小さくすることが必要になることが理解できる。 FIG. 4 is a graph showing an example of the relationship between the amount of axial deviation of the outer winding and the external thrust. Looking at the graph of FIG. 4, when there is an axial deviation in the outer winding, the parallel connection has a smaller external thrust than the series connection, but it is not zero. Therefore, in order to further reduce the external thrust, it can be understood that it is necessary to reduce the amount of axial deviation of the outer winding.

また、本発明者は、測定用変圧器にて上コイル群及び下コイル群に流れる電流Ia、Ibを測定し、その比率と外側巻線の軸方向ずれ量との関係を解析的に演算した。この演算においても、測定用変圧器における軸方向にて内側巻線の中心位置に対し、外側巻線の中心位置が上方にずれたものとした。結果を図5のグラフに示す。 Further, the present inventor measured the currents Ia and Ib flowing in the upper coil group and the lower coil group with a measuring transformer, and analytically calculated the relationship between the ratio and the amount of axial deviation of the outer winding. .. Also in this calculation, it is assumed that the center position of the outer winding is shifted upward with respect to the center position of the inner winding in the axial direction in the measuring transformer. The results are shown in the graph of FIG.

図5は、外側巻線の軸方向ずれ量と上コイル群及び下コイル群の電流値の比率との関係の一例を示すグラフである。電流値の比率は、ここでは、上コイル群の電流Iaの値を下コイル群の電流Ibの値で除算し、百分率とした。図5のグラフで示すように、外側巻線の軸方向上方へのずれ量が大きくなるに従って、上述した半径方向磁場分布に起因し、電流値の比率(電流Ia/電流Ib)は小さくなる関係がある。この関係は、測定用変圧器だけではなく、上記実施の形態のように各巻線3、4を配置した変圧器1にも共通する。図5の関係は解析的に求めることができるため、上記実施の形態における上コイル群4a及び下コイル群4bに流れる電流Ia、Ibを測定し、その比率を求めて図5のグラフを参照することで、外側巻線4の軸方向ずれ量を求めることができる。なお、図5のグラフでは省略したが、電流値の比率(電流Ia/電流Ib)が100%より大きい場合には、ずれ量がマイナスつまり下方向に外側巻線4がずれていることが把握でき、外側巻線4のずれ方向も求めることができる。なお、電流値の比率(電流Ia/電流Ib)が100%より小さい場合には、ずれ量がプラスつまり上方向に外側巻線4がずれていることが把握できる。 FIG. 5 is a graph showing an example of the relationship between the amount of axial deviation of the outer winding and the ratio of the current values of the upper coil group and the lower coil group. Here, the ratio of the current values is obtained by dividing the value of the current Ia of the upper coil group by the value of the current Ib of the lower coil group to obtain a percentage. As shown in the graph of FIG. 5, as the amount of displacement of the outer winding in the axial direction increases, the ratio of the current values (current Ia / current Ib) decreases due to the above-mentioned radial magnetic field distribution. There is. This relationship is common not only to the measuring transformer but also to the transformer 1 in which the windings 3 and 4 are arranged as in the above embodiment. Since the relationship of FIG. 5 can be obtained analytically, the currents Ia and Ib flowing in the upper coil group 4a and the lower coil group 4b in the above embodiment are measured, and the ratio thereof is obtained and the graph of FIG. 5 is referred to. Therefore, the amount of axial deviation of the outer winding 4 can be obtained. Although omitted in the graph of FIG. 5, when the ratio of the current values (current Ia / current Ib) is larger than 100%, it is understood that the deviation amount is negative, that is, the outer winding 4 is displaced downward. It is possible, and the deviation direction of the outer winding 4 can also be obtained. When the ratio of the current values (current Ia / current Ib) is smaller than 100%, it can be understood that the deviation amount is positive, that is, the outer winding 4 is displaced upward.

このように上コイル群及び下コイル群の電流値の比率から、軸方向にて内側巻線3の中心位置C3に対する外側巻線4の中心位置C4のずれ量とずれ方向を求めることができ、外側巻線4の位置を調整することができる。以下、外側巻線4の位置調整方法について図1を用いて説明する。 In this way, from the ratio of the current values of the upper coil group and the lower coil group, the deviation amount and the deviation direction of the center position C4 of the outer winding 4 with respect to the center position C3 of the inner winding 3 can be obtained in the axial direction. The position of the outer winding 4 can be adjusted. Hereinafter, a method of adjusting the position of the outer winding 4 will be described with reference to FIG.

まず、変圧器1に対して所定の電力供給を行い、電流測定手段8a、8b(図2参照)で上コイル群4a及び下コイル群4bそれぞれの電流値Ia、Ibを測定する(測定ステップ)。その後、測定した電流値Ia、Ibの比率(電流Ia/電流Ib)を算出し、算出した比率と図5のグラフとを用いて軸方向における内側巻線3の中心位置C3に対する外側巻線4の中心位置C4のずれ方向及びずれ量を算出する(算出ステップ)。具体例を挙げると、電流Ia/電流Ibの比率が96%となったとすると、図5のグラフの関係より、外側巻線4の軸方向中心位置C4が、内側巻線3の軸方向中心位置C3より9mm上方になると算出することができる。 First, a predetermined power is supplied to the transformer 1, and the current values Ia and Ib of the upper coil group 4a and the lower coil group 4b are measured by the current measuring means 8a and 8b (see FIG. 2) (measurement step). .. After that, the ratio of the measured current values Ia and Ib (current Ia / current Ib) is calculated, and the outer winding 4 with respect to the center position C3 of the inner winding 3 in the axial direction is used with the calculated ratio and the graph of FIG. The deviation direction and the deviation amount of the center position C4 of the above are calculated (calculation step). To give a specific example, assuming that the ratio of current Ia / current Ib is 96%, the axial center position C4 of the outer winding 4 is the axial center position of the inner winding 3 from the relationship of the graph of FIG. It can be calculated that it is 9 mm above C3.

上記のように外側巻線4のずれ量を求めた後、そのずれ量に応じて外側巻線4の調整量を決定し、軸方向における内側巻線3の中心位置C3に対し、外側巻線4の中心位置C4が一致又は下方に位置するように調整する(調整ステップ)。例えば、上記のように外側巻線4が9mm上方である場合には、外側巻線4を調整量として9mm以上下げればよいので、外側下部絶縁物7bの総厚を9mm以上薄くし、その薄くした分、外側上部絶縁物7aの総厚を厚くする。これにより、各絶縁物6a、6b、7a、7b、上支持部材5a及び下支持部材5bを介し、内側巻線3の中心位置C3に対して外側巻線4の中心位置C4が一致又は下方に位置するよう各巻線3、4が支持される。 After obtaining the deviation amount of the outer winding 4 as described above, the adjustment amount of the outer winding 4 is determined according to the deviation amount, and the outer winding is relative to the center position C3 of the inner winding 3 in the axial direction. Adjust so that the center position C4 of 4 is located at the same position or below (adjustment step). For example, when the outer winding 4 is 9 mm above as described above, the outer winding 4 may be lowered by 9 mm or more as an adjustment amount, so that the total thickness of the outer lower insulating material 7b is reduced by 9 mm or more to make it thinner. Therefore, the total thickness of the outer upper insulating material 7a is increased. As a result, the center position C4 of the outer winding 4 coincides with or downwards with respect to the center position C3 of the inner winding 3 via the respective insulators 6a, 6b, 7a, 7b, the upper support member 5a, and the lower support member 5b. Each winding 3, 4 is supported so that it is located.

上記の位置調整方法の実施によって、軸方向で内側巻線3の中心位置C3に対して外側巻線4の中心位置C4が一致すると、外側巻線4に作用する外部推力がほぼゼロになり、より好ましくは、軸方向で内側巻線3の磁気中心位置に対して外側巻線4の磁気中心位置が一致すると、外側巻線4の外部推力をより一層ゼロに近付けることができる。このように外部推力を抑制することで、上支持部材5a及び下支持部材5bに加わる負荷を軽減でき、それらの構造の簡略化、軽量化を図ることができ、製造コストを安価にすることができる。 By implementing the above position adjusting method, when the center position C4 of the outer winding 4 coincides with the center position C3 of the inner winding 3 in the axial direction, the external thrust acting on the outer winding 4 becomes almost zero. More preferably, when the magnetic center position of the outer winding 4 coincides with the magnetic center position of the inner winding 3 in the axial direction, the external thrust of the outer winding 4 can be further brought closer to zero. By suppressing the external thrust in this way, the load applied to the upper support member 5a and the lower support member 5b can be reduced, the structures thereof can be simplified and the weight can be reduced, and the manufacturing cost can be reduced. can.

また、上記位置調整方法の実施によって、図1に示すように、軸方向で内側巻線3の中心位置C3に対して外側巻線4の中心位置C4が下方に位置するように支持すると、外側巻線4に発生する外部推力を下向きに保つことができる。これにより、外側巻線4から上支持部材5aに加わる外部推力を抑制或いはなくすことができ、上支持部材5aの構造の簡略化、軽量化を実現することができる。 Further, by implementing the above position adjusting method, as shown in FIG. 1, when the center position C4 of the outer winding 4 is supported so as to be located below the center position C3 of the inner winding 3 in the axial direction, the outer winding 3 is supported. The external thrust generated in the winding 4 can be kept downward. As a result, the external thrust applied from the outer winding 4 to the upper support member 5a can be suppressed or eliminated, and the structure of the upper support member 5a can be simplified and reduced in weight.

ここで、内側巻線3の中心位置C3より外側巻線4の中心位置C4の方が下方にすると、それらが一致する場合に比べ、外側巻線4から下支持部材5bに加わる外部推力は大きくなる。ところが、下支持部材5bは、変圧器1の運搬や長期に亘る使用においても各巻線3、4を下方から支持できる耐久性、強度等を予め備えた設計が一般になされる。また、図示省略したが、下支持部材5bにあっては、設置面となる地面等からの支持力が直接的に作用して各巻線3、4を支える構造が採用される場合が多い。このため、下支持部材5bに外部推力が加わっても、下支持部材5bの補強を不要としたり、僅かな補強を追加したりするだけで、外側巻線4の支持を良好に維持することができる。これにより、下支持部材5bの構造が複雑化、高重量化することを回避でき、上支持部材5aと併せた支持部5全体としても構造の簡略化を図ることができる。 Here, when the center position C4 of the outer winding 4 is lower than the center position C3 of the inner winding 3, the external thrust applied from the outer winding 4 to the lower support member 5b is larger than when they match. Become. However, the lower support member 5b is generally designed to have durability, strength, and the like that can support the windings 3 and 4 from below even when the transformer 1 is transported or used for a long period of time. Further, although not shown, the lower support member 5b often adopts a structure in which the supporting force from the ground or the like, which is the installation surface, directly acts to support the windings 3 and 4. Therefore, even if an external thrust is applied to the lower support member 5b, it is possible to maintain good support of the outer winding 4 by eliminating the need for reinforcement of the lower support member 5b or by adding a slight reinforcement. can. As a result, it is possible to avoid complicating the structure of the lower support member 5b and increasing the weight, and it is possible to simplify the structure of the entire support portion 5 together with the upper support member 5a.

なお、軸方向で内側巻線3の磁気中心位置に対して外側巻線4の磁気中心位置が下方に位置するように支持しても、同様の作用、効果を得ることができる。 Even if the magnetic center position of the outer winding 4 is supported so as to be located below the magnetic center position of the inner winding 3 in the axial direction, the same action and effect can be obtained.

また、内側巻線3の中心位置C3より外側巻線4の中心位置C4を下方に位置調整する場合、仮に、巻線3、4の経年変化や公差等の種々の理由によって外部推力の大きさが変わっても、外側巻線4からの外部推力の向きは変わらずに下向きに維持し易くなる。これにより、上支持部材5aについては、外部推力が加わらない条件として構造設計を行うことができ、これによっても上支持部材5aの構造の簡略化、軽量化を実現することができる。 Further, when the center position C4 of the outer winding 4 is adjusted downward from the center position C3 of the inner winding 3, the magnitude of the external thrust is assumed to be due to various reasons such as aging and tolerance of the windings 3 and 4. Is changed, the direction of the external thrust from the outer winding 4 does not change, and it becomes easy to maintain the direction downward. As a result, the structure of the upper support member 5a can be designed under the condition that no external thrust is applied, and the structure of the upper support member 5a can be simplified and reduced in weight.

また、各巻線3、4の軸方向の位置の調整においては、介在させる各絶縁物6a、6b、7a、7bの厚みを変えることによって対応でき、作業時間の短縮、作業負担の軽減を図ることができる。 Further, the adjustment of the axial positions of the windings 3 and 4 can be handled by changing the thickness of the intervening insulators 6a, 6b, 7a, 7b, thereby shortening the working time and reducing the work load. Can be done.

更に、上コイル群4a及び下コイル群4bに流れる電流Ia、Ibを測定し、その比率によって外側巻線4の軸方向のずれ量及びずれ方向を求めて位置調整を行っているので、外側巻線4の実際の位置を測定することを省略することができる。これにより、各巻線3、4がタンクや筐体内等に配置されて目視し難かったり、各巻線3、4が大型化して位置測定が困難となったりしても、外側巻線4の位置調整量を容易に把握することができる。 Further, the currents Ia and Ib flowing through the upper coil group 4a and the lower coil group 4b are measured, and the axial deviation amount and the deviation direction of the outer winding 4 are determined by the ratio thereof, and the position adjustment is performed. It is possible to omit measuring the actual position of the wire 4. As a result, even if the windings 3 and 4 are arranged in the tank or the housing and are difficult to see, or if the windings 3 and 4 become large and the position measurement becomes difficult, the position of the outer winding 4 is adjusted. The amount can be easily grasped.

本発明の実施の形態は上記の各実施の形態に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施態様をカバーしている。 The embodiments of the present invention are not limited to the above embodiments, and may be variously modified, replaced, or modified without departing from the spirit of the technical idea of the present invention. Furthermore, if the technical idea of the present invention can be realized in another way by the advancement of technology or another technology derived from it, it may be carried out by using that method. Therefore, the scope of claims covers all embodiments that may be included within the scope of the technical idea of the present invention.

また、本実施の形態では、本発明を変圧器に適用した構成について説明したが、上述した作用効果が得られるのであれば、他の電力用静止器に適用することも可能である。 Further, in the present embodiment, the configuration in which the present invention is applied to a transformer has been described, but it is also possible to apply the present invention to other electric power stationary devices as long as the above-mentioned effects can be obtained.

なお、上記各実施の形態にて図示した内容は、説明用に模式的に表したものであり、上述した作用効果を発揮できれば、支持部5や、絶縁物6a、6b、7a、7bとした位置調整部の構成を変更してもよい。例えば、支持部5では、上支持部材5a及び下支持部材5bで両方の巻線3、4を支持する構成としたが、巻線3、4毎に支持部を設けた構成としてもよい。また、絶縁物6a、6b、7a、7bの代わりに上下からボルトなどを用いて外側巻線4の位置調整を行うことが可能な場合、内側巻線3の中心位置C3より外側巻線4の中心位置C4の方が上方にある場合、つまり電流値の比率(電流Ia/電流Ib)が100%未満の場合に上部からのボルト締付量を増加させるなどの調整を行ってもよい。この場合、図5のようなグラフをあらかじめ作成することなく、簡易な方法で上支持部材5aに外部推力が加わることを防止できる。 The contents illustrated in each of the above embodiments are schematically shown for explanation, and if the above-mentioned effects can be exhibited, the support portion 5 and the insulators 6a, 6b, 7a, and 7b are used. The configuration of the position adjusting unit may be changed. For example, in the support portion 5, both the windings 3 and 4 are supported by the upper support member 5a and the lower support member 5b, but a support portion may be provided for each of the windings 3 and 4. Further, when it is possible to adjust the position of the outer winding 4 by using bolts or the like from above and below instead of the insulators 6a, 6b, 7a, 7b, the outer winding 4 is located at the center position C3 of the inner winding 3. When the center position C4 is above, that is, when the ratio of the current values (current Ia / current Ib) is less than 100%, adjustments such as increasing the bolt tightening amount from the upper portion may be performed. In this case, it is possible to prevent an external thrust from being applied to the upper support member 5a by a simple method without creating a graph as shown in FIG. 5 in advance.

1 変圧器
2 鉄心
3 内側巻線
4 外側巻線
4a 上コイル群
4b 下コイル群
5 支持部
7a 外側上部絶縁物(位置調整部)
7b 外側下部絶縁物(位置調整部)
8a 電流測定手段
8b 電流測定手段
C3 中心位置
C4 中心位置
1 Transformer 2 Iron core 3 Inner winding 4 Outer winding 4a Upper coil group 4b Lower coil group 5 Support part 7a Outer upper upper insulation (position adjustment part)
7b Outer lower insulation (position adjustment part)
8a Current measuring means 8b Current measuring means C3 Center position C4 Center position

Claims (7)

鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線と、
前記外側巻線を軸方向から支持する支持部とを有する変圧器であって、
前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、
前記支持部は、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が下方に位置するように前記外側巻線を支持することを特徴とする変圧器。
With the inner and outer windings arranged concentrically around the vertically extending iron core,
A transformer having a support portion that supports the outer winding from the axial direction.
The outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit.
The support portion is a transformer that supports the outer winding so that the center position of the outer winding is located below the center position of the inner winding in the axial direction.
前記支持部は、軸方向における前記外側巻線の位置を調整するための位置調整部を含み、
前記位置調整部は、前記上コイル群及び前記下コイル群それぞれの電流値に応じて前記外側巻線の軸方向の位置を調整可能に設けられていることを特徴とする請求項1に記載の変圧器。
The support includes a position adjuster for adjusting the position of the outer winding in the axial direction.
The first aspect of the present invention, wherein the position adjusting unit is provided so that the axial position of the outer winding can be adjusted according to the current values of the upper coil group and the lower coil group, respectively. Transformer.
鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線と、
前記外側巻線を軸方向から支持する支持部とを有する変圧器であって、
前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、
前記支持部は、軸方向における前記外側巻線の位置を調整するための位置調整部を含み、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が一致又は下方に位置するように前記外側巻線を支持し、
前記位置調整部は、前記上コイル群及び前記下コイル群それぞれの電流値に応じて前記外側巻線の軸方向の位置を調整可能に設けられていることを特徴とする変圧器。
With the inner and outer windings arranged concentrically around the vertically extending iron core,
A transformer having a support portion that supports the outer winding from the axial direction.
The outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit.
The support portion includes a position adjusting portion for adjusting the position of the outer winding in the axial direction, and the center position of the outer winding coincides with or downwards with respect to the center position of the inner winding in the axial direction. Support the outer winding so that it is located
The position adjusting unit is a transformer characterized in that the position of the outer winding in the axial direction can be adjusted according to the current values of the upper coil group and the lower coil group.
前記支持部は、軸方向における前記内側巻線の磁気中心位置に対し、前記外側巻線の磁気中心位置が一致又は下方に位置するように前記外側巻線を支持することを特徴とする請求項1ないし請求項3のいずれかに記載の変圧器。 The claim is characterized in that the support portion supports the outer winding so that the magnetic center position of the outer winding coincides with or is located below the magnetic center position of the inner winding in the axial direction. The transformer according to any one of 1 to 3. 前記上コイル群及び前記下コイル群それぞれの電流値を測定する電流測定手段を含み、
前記電流測定手段が測定した前記上コイル群の電流値と前記下コイル群の電流値との比率に応じ、前記位置調整で前記外側巻線の軸方向の位置を調整したことを特徴とする請求項2または請求項3に記載の変圧器。
A current measuring means for measuring the current value of each of the upper coil group and the lower coil group is included.
The position adjusting unit adjusts the axial position of the outer winding according to the ratio of the current value of the upper coil group to the current value of the lower coil group measured by the current measuring means. The transformer according to claim 2 or 3.
鉛直方向に延びる鉄心の周りに同心に配置された内側巻線及び外側巻線を有する変圧器の巻線位置調整方法であって、
前記外側巻線は、軸方向に分割されて並列回路を構成する上コイル群及び下コイル群を含み、
前記上コイル群及び前記下コイル群それぞれの電流値を測定する測定ステップと、
前記測定ステップで測定した前記上コイル群及び前記下コイル群それぞれの電流値の比率を算出し、該比率を用いて軸方向における前記内側巻線の中心位置に対する前記外側巻線の中心位置のずれ方向を算出する算出ステップと、
前記算出ステップで算出した前記ずれ方向に応じ、軸方向における前記内側巻線の中心位置に対し、前記外側巻線の中心位置が一致又は下方に位置するように調整する調整ステップとを備えていることを特徴とする変圧器の巻線位置調整方法。
A method of adjusting the winding position of a transformer having an inner winding and an outer winding concentrically arranged around an iron core extending in the vertical direction.
The outer winding includes an upper coil group and a lower coil group which are divided in the axial direction to form a parallel circuit.
A measurement step for measuring the current values of the upper coil group and the lower coil group, respectively.
The ratio of the current values of the upper coil group and the lower coil group measured in the measurement step is calculated, and the ratio is used to shift the center position of the outer winding with respect to the center position of the inner winding in the axial direction. Calculation steps to calculate the direction and
It is provided with an adjustment step for adjusting the center position of the outer winding to coincide with or lower than the center position of the inner winding in the axial direction according to the deviation direction calculated in the calculation step. A method of adjusting the winding position of a transformer, which is characterized by this.
前記算出ステップでは、軸方向における前記内側巻線の中心位置に対する前記外側巻線の中心位置のずれ量をさらに算出し、前記調整ステップでは、該ずれ量に応じて前記外側巻線の調整量を決定することを特徴とする請求項6に記載の変圧器の巻線位置調整方法。 In the calculation step, the deviation amount of the center position of the outer winding with respect to the center position of the inner winding in the axial direction is further calculated, and in the adjustment step, the adjustment amount of the outer winding is adjusted according to the deviation amount. The method for adjusting a winding position of a transformer according to claim 6, wherein the method is determined.
JP2017073387A 2017-04-03 2017-04-03 How to adjust the transformer and the winding position of the transformer Active JP6915347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073387A JP6915347B2 (en) 2017-04-03 2017-04-03 How to adjust the transformer and the winding position of the transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073387A JP6915347B2 (en) 2017-04-03 2017-04-03 How to adjust the transformer and the winding position of the transformer

Publications (2)

Publication Number Publication Date
JP2018181864A JP2018181864A (en) 2018-11-15
JP6915347B2 true JP6915347B2 (en) 2021-08-04

Family

ID=64276863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073387A Active JP6915347B2 (en) 2017-04-03 2017-04-03 How to adjust the transformer and the winding position of the transformer

Country Status (1)

Country Link
JP (1) JP6915347B2 (en)

Also Published As

Publication number Publication date
JP2018181864A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US10090105B2 (en) Methods for designing and manufacturing transformers
US20130009737A1 (en) Transformer
CN102884597B (en) Method and apparatus for installing transformer
JP6915347B2 (en) How to adjust the transformer and the winding position of the transformer
EP3048623B1 (en) Transformer with reduced height, volume and weight
KR20010032573A (en) Flux control for high power static electromagnetic devices
JP2012524388A (en) Winding and winding manufacturing method
US6663039B2 (en) Process for manufacturing an electrical-power transformer having phase windings formed from insulated conductive cabling
KR20150095819A (en) A transformer high voltage coil assembly
EP2887362A2 (en) Power circuit, iron core for Scott connected transformer, Scott connected transformer and superheated steam generator
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
KR20150045364A (en) Transformer
KR100832876B1 (en) Ct winding method of mof
US20160211070A1 (en) Coupling coil structure and transformer
KR20160121966A (en) Insulation structure of transformer winding
EP3544033B1 (en) Electromagnetic induction device having a low losses winding
JP2016157915A (en) Transformer for reducing eddy current losses of coil
US20190206610A1 (en) Stationary Induction Apparatus and Lead Wire Support Device
EP2573781A1 (en) High voltage current coil
CN109074950B (en) High-voltage electrical device with regulating winding group
KR101333113B1 (en) Variable inductor
RU168747U1 (en) ELECTRIC MOBILE CONTROL REACTOR
Chaw et al. Design comparison for rectangular and round winding distribution transformer (1000 kVA)
US8344840B2 (en) Transformer
Siddu et al. Eddy Current and Magneto-Structural Analysis on Transformer Winding with Continuously Transposed Conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150