JP6914973B2 - 容量検出用の連続時間レシーバの較正 - Google Patents

容量検出用の連続時間レシーバの較正 Download PDF

Info

Publication number
JP6914973B2
JP6914973B2 JP2018567136A JP2018567136A JP6914973B2 JP 6914973 B2 JP6914973 B2 JP 6914973B2 JP 2018567136 A JP2018567136 A JP 2018567136A JP 2018567136 A JP2018567136 A JP 2018567136A JP 6914973 B2 JP6914973 B2 JP 6914973B2
Authority
JP
Japan
Prior art keywords
phase
signal
capacitance detection
time period
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018567136A
Other languages
English (en)
Other versions
JP2019523481A (ja
Inventor
ペトル シェペレフ,
ペトル シェペレフ,
Original Assignee
シナプティクス インコーポレイテッド
シナプティクス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナプティクス インコーポレイテッド, シナプティクス インコーポレイテッド filed Critical シナプティクス インコーポレイテッド
Publication of JP2019523481A publication Critical patent/JP2019523481A/ja
Application granted granted Critical
Publication of JP6914973B2 publication Critical patent/JP6914973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、一般に電子装置、及び容量検出用の連続時間レシーバの較正に関する。
近接センサデバイス(一般にタッチパッド又はタッチセンサデバイスとも呼ばれる)を含む入力装置は、様々な電子システムに広く使用されている。近接センサデバイスは、典型的には、しばしば面によって区分された検出領域を有し、検出領域内で、近接センサデバイスが1つ以上の入力オブジェクトの存在、位置及び/又は動きを決定する。近接センサデバイスは、電子システムのインタフェースを提供するために使用されうる。例えば、近接センサデバイスは、より大きい計算処理システムの入力装置(ノートブック又はデスクトップコンピュータに組み込まれるかその周辺装置の不透明タッチパッドなど)としてしばしば使用される。近接センサデバイスは、しばしばより小さい計算処理システム(携帯電話に組み込まれたタッチスクリーンなど)にも使用される。
本明細書で述べる一実施形態は、入力装置の検出領域内の複数のセンサ電極と、複数のセンサ電極に結合された処理システムとを含む入力装置である。処理システムは、複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成するように構成され、容量検出信号は、第1の時間期間に複数のセンサ電極のうちの少なくとも1つのセンサ電極に送られる変調信号の影響を含む。処理システムは、第2の時間期間に第1のセンサ電極を使用して取得された容量検出信号の第2の測定値を生成するように構成され、第1及び第2の測定値間の位相差は90度である。処理システムは、第1及び第2の測定値に基づいて容量検出信号と変調信号の間の位相オフセットを決定するように構成される。
本明細書で述べる別の実施形態は、処理システムであって、容量検出のために複数のセンサ電極の少なくとも1つのセンサ電極上に変調信号を送るように構成されたセンサ回路と、複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成するように構成されたレシーバとを含み、容量検出信号が、第1の時間期間に少なくとも1つのセンサ電極に送られる変調信号の影響を含む処理システムである。レシーバは、第2の時間期間に第1のセンサ電極を使用して取得された容量検出信号の第2の測定値を生成するように構成され、第1及び第2の測定値間の位相差が、90度であり、第1及び第2の測定値に基づいて容量検出信号と変調信号間の位相オフセットを決定する。
本明細書で述べる別の実施形態は、容量検出を行う方法である。方法は、第1の時間期間に複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成することを含み、容量検出信号が、複数のセンサ電極のうちの少なくとも1つのセンサ電極に送られた変調信号の影響を含み、第2の時間期間に第1のセンサ電極を使用して取得された容量検出信号の第2の測定値を生成することを含み、第1及び第2の測定値間の位相差が90度である。方法は、第1及び第2の測定値に基づいて容量検出信号と変調信号の間の位相オフセットを決定することもまた含む。
本明細書で述べる一実施形態による入力装置を含む典型的システムのブロック図である。 本明細書で述べる一実施形態による容量検出画素の典型的パターンの一部分を示す図である。 本明細書で述べる一実施形態による検出領域のインピーダンス回路網を示す図である。 本明細書で述べる一実施形態による変調信号と容量検出信号の間の位相オフセットを示す図である。 本明細書で述べる一実施形態による位相シフト信号を使用して容量検出測定値を生成するフローチャートである。 本明細書で述べる一実施形態による位相シフト信号を使用して容量検出測定値を生成するレシーバの図である。 本明細書で述べる実施形態による、各センサ電極の変調信号と容量検出信号の間の位相オフセットを決定するフローチャートである。
理解を容易にするため、可能な場合は、図に共通の同一要素を示すために同一参照数字を使用した。一実施形態で開示された要素が、特定の記述なしに他の実施形態で有益に利用されうる。本明細書で参照される図面は、特に断らない限り一定の縮尺で描かれないことを理解されたい。また、図面は、提示と説明を明瞭にするために、しばしば単純化され、詳細又は構成要素が省略される。図面と検討は、後述される原理を説明する役割をし、同じ名称は同じ要素を示す。
以下の詳細な説明は、単に本質的に例示であり、開示又はその応用及び使用法を限定するものではない。更に、前述の技術分野、背景、概要又は以下の詳細な説明に示された明示又は暗示されたいかなる理論によっても拘束されない。
本発明の種々の実施形態は、改善された使い勝手を容易にする入力装置及び方法を提供する。本明細書の実施形態は、容量検出信号をサンプリングするためのレシーバを含む入力装置について述べる。一実施形態では、レシーバは、容量検出信号のサンプリングがセンサに印加される変調信号と同期されない連続復調を行う。連続復調を使用する1つの利点は、アナログ構成要素を使用して実行されるために使用されるレシーバ内の機能を、デジタルロジックと置き換えできることである。例えば、低域フィルタリングを実行するための大きいキャパシタを含む代わりに、このフィルタリングをデジタルロジックによって実行でき、それにより、レシーバのサイズ、コスト及び/又は電力消費が低減される。
しかしながら、レシーバを変調信号に同期させない1つの欠点は、レシーバによって取得される測定値(又は、サンプル)が、センサ電極の位相遅延に左右されることである。この位相遅延は、変調信号をレシーバにおける容量検出信号に対して位相オフセットさせうる。したがって、変調信号のピークが、容量検出信号のピークに対してオフセットされ、レシーバが、容量検出信号のピーク(即ち、最大振幅)でサンプリングしない場合は、容量検出の精度が悪影響を受ける。
レシーバを較正するために、一実施形態では、レシーバが、2つの時間期間中に容量検出信号を測定又はサンプリングする。第1の時間期間中、レシーバは、第1のセンサ電極に対応する容量検出信号の第1の測定値(又は、サンプル)を生成する。第2の時間期間中、レシーバは、同じセンサ電極の容量検出信号の第2の測定値を生成するが、第1及び第2の測定値間の位相差は90度(即ち、π/2)である。この位相差を得るため、入力装置は、第1及び第2の測定値が取得されたときに制御するために使用されるサンプリング信号を90度移相してもよく、入力装置は、第1及び第2の時間期間中に変調信号を90度移相してもよい。
第1及び第2の測定値を使用することによって、レシーバは、容量検出信号と変調信号の間の位相オフセットを決定できる。この位相オフセットを使用して、入力装置によって生成されるその後の測定値を変更でき、それにより、そのような測定値の少なくとも幾つかは、容量検出信号がピーク振幅のときに取得される。更に、一実施形態では、容量検出信号がそのピーク振幅でないときに2つの測定値が取得された場合でも、入力装置は、2つの測定値を使用して容量検出信号のピーク振幅を推定できる。
次に図に移り、図1は、本発明の実施形態による典型的入力装置100のブロック図である。入力装置100は、電子システム(図示せず)に入力を提供するように構成されうる。本明細書で使用されるとき、用語「電子システム」(又は「電子装置」)は、広義には、情報を電子的に処理できる任意のシステムを指す。電子システムの幾つかの非限定的な例には、デスクトップコンピュータ、ラップトップコンピュータ、ネットブックコンピュータ、タブレット、ウェブブラウザ、電子ブックリーダ及び携帯情報端末(PDA)などの全てのサイズ及び形状のパーソナルコンピュータが含まれる。追加の例示的な電子システムには、入力装置100と、別個のジョイスティック又はキースイッチとを含む物理キーボードなどの複合入力装置が含まれる。更に例示的な電子システムには、データ入力装置(リモートコントロールとマウスを含む)やデータ出力装置(表示画面とプリンタを含む)などの周辺装置が含まれる。他の例には、リモート端末、キオスク及びビデオゲーム機(例えば、ビデオゲーム機、携帯ゲーム装置など)が含まれる。他の例には、通信装置(スマートフォンなどの携帯電話を含む)及びメディア装置(レコーダ、エディタ、及びテレビ、セットトップボックス、音楽プレーヤ、デジタル写真フレーム、デジタルカメラなどのプレーヤを含む)が含まれる。更に、電子システムは、入力装置に対してホストでもスレーブでもよい。
入力装置100は、電子システムの物理部分として実現されてもよく、電子システムと物理的に別個でもよい。必要に応じて、入力装置100は、バス、ネットワーク、及び他の有線又は無線相互接続のいずれか1つ以上を使用して、電子システムの一部と通信できる。例には、I2C、SPI、PS/2、ユニバーサルシリアルバス(USB)、Bluetooth、RF及びIRDAが含まれる。
図1では、入力装置100は、検出領域120内の1つ以上の入力オブジェクト140によって提供された入力を検出するように構成された近接センサデバイス(例えば、しばしば「タッチパッド」又は「タッチセンサデバイス」とも呼ばれる)として示される。図1に示されたように、例示的な入力オブジェクトは、指とスタイラスを含む。
検出領域120は、入力装置100の上、そのまわり、その中、及び/又はその近くに、入力装置100がユーザ入力(例えば、1つ以上の入力オブジェクト140によって提供されたユーザ入力)を検出できる任意の空間を包含する。特定の検出領域のサイズ、形状及び位置は、実施形態により大きく異なりうる。幾つかの実施形態では、検出領域120は、信号対雑音比によって十分に正確なオブジェクト検出が妨げられるまで、入力装置100の表面から空間内に1つ以上の方向に拡張する。この検出領域120が特定方向に拡張する距離は、様々な実施形態で、およそ1ミリメートル未満、数ミリメートル、数センチメートル、又はそれ以上でよく、使用される検出技術のタイプと必要精度により大きく異なりうる。したがって、幾つかの実施形態は、入力装置100の任意の面との非接触、入力装置100の入力面(例えば、タッチ面)との接触、ある大きさの印加力又は圧力と結合された入力装置100の入力面との接触、及び/又はこれらの組み合わせを含む入力を検出する。様々な実施形態で、入力面は、例えば、センサ電極が中に存在するケーシングの表面、センサ電極又は任意のケーシングの上に貼り付けられた表面板によって提供されうる。幾つかの実施形態では、検出領域120は、入力装置100の入力面に投影されたときに矩形形状を有する。
入力装置100は、センサ構成要素と検出技術の任意の組み合わせを利用して、検出領域120内のユーザ入力を検出できる。入力装置100は、ユーザ入力を検出するための1つ以上の検出要素を含む。幾つかの非限定的な例として、入力装置100は、容量、弾性、抵抗、誘導、磁気、音響、超音波及び/又は光学技術を使用できる。
幾つかの実施態様は、一次元、二次元、三次元、又はそれより高次元の空間にわたる画像を提供するように構成される。幾つかの実施態様は、特定の軸又は平面に沿った入力の投射を提供するように構成される。
入力装置100の幾つかの抵抗性実施態様では、柔軟で導電性の第1の層が、1つ以上のスペーサ要素によって導電性の第2の層から分離される。動作中、層内に1つ以上の電圧勾配が作成される。柔軟な第1層を押すと、層間の電気接触を作成するのに十分だけ撓み、その結果、層間の接触を表す電圧出力が生じる。そのような電圧出力は、位置情報を決定するために使用されうる。
入力装置100の幾つかの誘導実施態様では、1つ以上の検出素子が、共振コイル又はコイル対によって誘導されるループ電流を検出する。次に、電流の大きさ、位相及び周波数の幾つかの組み合わせを使用して位置情報を決定できる。
入力装置100の幾つかの容量性実施態様では、電圧又は電流を印加して電界を作成する。近くの入力オブジェクトは、電界を変化させ、電圧や電流などの変化として検出されうる容量結合の検出可能な変化を生成する。
幾つかの容量実施態様は、アレイ又は他の規則若しくは不規則パターンの容量検出要素を利用して電界を生成する。幾つかの容量実施態様では、別個の検出要素がオーム的に短絡されてより大きいセンサ電極が構成されうる。幾つかの容量実施態様は、均一な抵抗でよい抵抗シートを利用する。
幾つかの容量実施態様は、センサ電極と入力オブジェクトの間の容量結合の変化に基づく「自己キャパシタンス」(又は「絶対キャパシタンス」)検出方法を利用する。様々な実施形態では、センサ電極近くの入力オブジェクトは、センサ電極近くの電界を変化させ、従って測定容量結合が変化する。1つの実施態様では、絶対キャパシタンス検出方法は、センサ電極を基準電圧(例えば系統接地)に対して変調することによって、またセンサ電極と入力オブジェクトの間の容量結合を検出することによって作動する。
幾つかの容量実施態様は、センサ電極間の容量結合の変化に基づく「相互キャパシタンス」(又は「トランスキャパシタンス」)検出方法を利用する。様々な実施形態では、センサ電極近くの入力オブジェクトが、センサ電極間の電界を変化させ、したがって測定容量結合が変化する。1つの実施態様では、トランス容量検出方法が、1つ以上のトランスミッタセンサ電極(「トランスミッタ電極」又は「トランスミッタ」とも)と1つ以上のレシーバセンサ電極(「レシーバ電極」又は「レシーバ」とも)の間の容量結合を検出することによって機能する。トランスミッタセンサ電極は、トランスミッタ信号を送信するために、基準電圧(例えば、系統接地)に対して変調される。レシーバセンサ電極は、結果信号の受信を容易にするために、基準電圧に対して実質的に一定に保持されうる。結果信号は、1つ以上のトランスミッタ信号、及び/又は環境的干渉(例えば、他の電磁気信号)の1つ以上の発生源に対応する影響を含みうる。センサ電極は、専用トランスミッタ又はレシーバでもよく、送信と受信の両方を行うように構成されてもよい。
図1で、処理システム110は、入力装置100の一部として示される。処理システム110は、入力装置100のハードウェアを動作させて検出領域120の入力を検出するように構成される。処理システム110は、1つ以上の集積回路(IC)及び/又は他の回路構成要素の一部又は全てを含む。例えば、相互キャパシタンスセンサデバイスのための処理システムは、トランスミッタセンサ電極によって信号を送信するように構成されたトランスミッタ回路及び/又はレシーバセンサ電極によって信号を受信するように構成されたレシーバ回路とを有しうる。幾つかの実施態様では、処理システム110は、また、ファームウェアコードやソフトウェアコードなどの電子的に読取り可能な命令を含みうる。幾つかの実施形態では、処理システム110を構成する構成要素は、入力装置100の検出素子の近くなどに一緒に配置される。他の実施形態では、処理システム110の構成要素は、入力装置100の検出要素に近い1つ以上の構成要素、及び他の場所にある1つ以上の構成要素と物理的に別である。例えば、入力装置100は、デスクトップコンピュータに結合された周辺装置でよく、処理システム110は、デスクトップコンピュータの中央処理ユニット上と、中央処理ユニットとは別個の1つ以上のIC(おそらく関連ファームウェアを有する)上で動作するように構成されたソフトウェアを含みうる。別の例として、入力装置100は、電話に物理的に組み込まれてもよく、処理システム110は、電話の主プロセッサの一部である回路とファームウェアを含んでもよい。幾つかの実施形態では、処理システム110は、入力装置100の実装にのみ使用される。他の実施形態では、処理システム110は、また、表示画面の作動や触覚アクチュエータの駆動などの他の機能を実行する。
処理システム110は、処理システム110の様々な機能を処理する1組のモジュールとして実現されうる。各モジュールは、処理システム110、ファームウェア、ソフトウェア又はこれらの組み合わせの一部である回路を含みうる。様々な実施形態では、モジュールの様々な組み合わせが使用されうる。例示的モジュールには、センサ電極や表示画面などのハードウェアを動作させるためのハードウェア動作モジュール、センサ信号や位置情報などのデータを処理するためのデータ処理モジュール、及び情報を報告するための報告モジュールが含まれる。更に他の例示的モジュールには、検出要素を作動させて入力を検出するように構成されたセンサ作動モジュール、モード変更ジェスチャなどのジェスチャを識別するように構成された識別モジュール、及び動作モードを変更するためのモード変更モジュールが含まれる。
幾つかの実施形態では、処理システム110は、1つ以上のアクションを引き起こすことによって検出領域120内のユーザ入力(又は、ユーザ入力がないこと)に直接応答する。例示的なアクションには、動作モードの変更、並びにカーソル移動、選択、メニューナビゲーション、及び他の機能などのGUIアクションが含まれる。幾つかの実施形態では、処理システム110は、入力(又は、入力がないこと)に関する情報を電子システムのある部分(例えば、処理システム110と別個の電子システムの中央処理システムがある場合は、その別個の中央処理システム)に提供する。幾つかの実施形態では、電子システムのある部分は、処理システム110から受け取った情報を処理してユーザ入力に作用し、例えば、モード変更アクションとGUIアクションを含むあらゆる種類のアクションを容易にする。
例えば、幾つかの実施形態では、処理システム110は、入力装置100の検出素子を作動させて、検出領域120内の入力(又は入力がないこと)を示す電気信号を生成する。処理システム110は、電子システムに提供される情報を生成する際に、電気信号に対して適切な量の処理を実行できる。例えば、処理システム110は、センサ電極から得たアナログ電気信号をデジタル化できる。別の例として、処理システム110は、フィルタリング又は他の信号調整を実行できる。更に別の例として、処理システム110は、情報が電気信号とベースラインの差を表すように、ベースラインを控除するか他の方法で考慮できる。更に他の例として、処理システム110は、位置情報の決定、入力のコマンドとしての認識、手書きの認識などを行える。
「位置情報」は、本明細書で使用されるとき、絶対位置、相対位置、速度、加速度及び他のタイプの空間情報を広く含む。例示的な「ゼロ次元」位置情報は、近/遠又は接触/非接触情報を含む。例示的な「一次元」位置情報は、軸に沿った位置を含む。例示的な「二次元」位置情報は、平面内の運動を含む。例示的な「三次元」位置情報は、空間内の瞬間又は平均速度を含む。更に他の例は、空間情報の他の表現を含む。また、例えば、ある期間にわたる位置、運動又は瞬間速度を追跡する履歴データを含む、1つ以上のタイプの位置情報に関する履歴データが、決定されかつ/又は記憶されうる。
幾つかの実施形態では、入力装置100は、処理システム110又は他の処理システムによって作動される追加の入力構成要素によって実現される。そのような付加入力構成要素は、検出領域120内の入力のための冗長機能、又は他の機能を提供できる。図1は、入力装置100を使用して要素の選択を容易にするために使用されうる、検出領域120近くのボタン130を示す。他のタイプの追加の入力構成要素には、スライダ、ボール、ホイール、スイッチなどが含まれる。これと反対に、幾つかの実施形態では、入力装置100は、他の入力構成要素なしに実施されうる。
幾つかの実施形態では、入力装置100はタッチスクリーンインタフェースを含み、検出領域120は、表示画面のアクティブ領域の少なくとも一部と重なる。例えば、入力装置100は、表示画面を覆う実質的に透明なセンサ電極を含み、関連電子システムにタッチスクリーンインタフェースを提供できる。表示画面は、ユーザに視覚インタフェースを表示できる任意のタイプの動的表示装置でよく、また任意のタイプの発光ダイオード(LED)、有機LED(OLED)、陰極線管(CRT)、液晶ディスプレイ(LCD)、プラズマ、エレクトロルミネセンス(EL)、又は他の表示技術を含みうる。入力装置100と表示画面は、物理要素を共用できる。例えば、幾つかの実施形態は、表示と検出に同じ電気構成要素の幾つかを利用できる。別の例として、表示画面は、処理システム110によって一部分又は全体が操作されうる。
本発明の多くの実施形態について完全機能装置の文脈で述べるが、本発明の機構が、様々な形態のプログラム製品(例えば、ソフトウェア)として配布可能であることを理解されたい。例えば、本発明の機構は、電子プロセッサによって読み取り可能な情報保持媒体(例えば、処理システム110によって読み取り可能な非一時的コンピュータ読み取り可能及び/又は記録可能/書き込み可能情報保持媒体)上のソフトウェアプログラムとして実現され配布されうる。更に、本発明の実施形態は、配布を行うために使用される特定タイプの媒体にかかわらず、等しく適用される。非一時的電子的可読媒体の例には、様々なディスク、メモリスティック、メモリカード、メモリモジュールなどが含まれる。電子的に読取り可能な媒体は、フラッシュ、光学、磁気、ホログラフィ又は任意の他の記憶技術に基づきうる。
図2は、幾つかの実施形態により、パターンと関連付けられた検出領域120内で検出するように構成された典型的パターンの容量検出画素205(本明細書では容量画素又は検出画素とも呼ばれる)の一部を示す。各容量画素205は、前述されたセンサ電極の1つ以上を含みうる。図と説明を分かりやすくするため、図2は、容量画素205の領域を単純な矩形パターンで表し、容量画素205内の様々な他の構成要素を示していない。一実施形態では、容量検出画素205は、局所キャパシタンス(容量結合)の領域である。容量画素205は、第1の動作モードでは個別のセンサ電極と接地の間、第2の動作モードではトランスミッタ電極とレシーバ電極として使用されるセンサ電極のグループ間に形成されうる。容量結合は、容量画素205と関連付けられた検出領域120内の入力オブジェクトの近さと動きにより変化し、したがって、入力装置の検出領域120内の入力オブジェクトの存在の指標として使用されうる。
典型的パターン(例えば、矩形配列を構成するマトリクス)は、共通平面内にX列とY行で配列された容量検出画素205X,Yの配列(集合的に画素205と呼ばれる)を含み、XとYは正整数であるが、XとYの一方はゼロでよい。検出画素205のパターンは、対極配列、繰返しパターン、非繰返しパターン、不均一配列、単一行又は列、又は他の適切な配列など、他の構成を有する複数の検出画素205を含みうる。更に、後でより詳しく考察されるように、検出画素205内のセンサ電極は、円形、矩形、菱形、星形、正方形、非凸面、凸面、非凹面、凹面などの任意の形状でよい。ここに示されたように、検出画素205は、処理システム110に結合される。
第1の動作モードでは、容量検出画素205内の少なくとも1つのセンサ電極を利用して、絶対検出技術によって入力オブジェクトの存在を検出できる。処理システム110内のセンサ回路204は、各画素205内のトレース240を使用して、センサ電極を変調又は非変調信号によって駆動し、駆動信号に基づいてセンサ電極と入力オブジェクト(例えば、空きスペース又は接地)の間のキャパシタンスを測定するように構成され、このキャパシタンスは、処理システム110又は他のプロセッサによって利用されて、入力オブジェクトの位置又は指の特徴が決定される。一実施形態では、センサ回路204は、本明細書で述べた機能を実行するためのファームウェアを含みうる処理システム110内の大きい方のモジュールの一部である。更に、センサ回路204を含むモジュールは、本明細書に示したものと異なる機能を実行するための付加回路又はファームウェアを含みうる。
容量画素205の様々な電極は、典型的には、他の容量画素205の電極からオーミック分離される。更に、画素205が複数電極を含む場合、電極は、互いにオーミック分離されうる。即ち、1つ以上の絶縁体が、センサ電極を分離し、センサ電極が互いに電気短絡するのを防ぐ。
第2の動作モードで、容量画素205内のセンサ電極を利用して、トランスキャパシタンス検出技術によって入力オブジェクトの存在を検出する。即ち、処理システム110は、画素205内の少なくとも1つのセンサ電極をトランスミッタ信号によって駆動し、別の画素205内の他のセンサ電極の1つ以上を使用して結果信号を受け取ることができ、結果信号は、トランスミッタ信号に対応する影響を含む。結果信号は、入力オブジェクトの位置を決定するために処理システム110又は他のプロセッサによって利用される。
入力装置100は、前述したモードのいずれかで動作するように構成されうる。入力装置100は、また、前述されたモードの任意の複数のモード間で切り替わるように構成されうる。
幾つかの実施形態では、容量画素205は、そのような容量結合を決定するために「走査」される。即ち、一実施形態では、センサ電極の1つ以上が、トランスミッタ信号を送信するために駆動される。トランスミッタは、1つのトランスミッタ電極が一度に送信するか、多数のトランスミッタ電極が同時に送信するように作動されうる。複数のトランスミッタ電極が同時に送信する場合、複数のトランスミッタ電極は、同じトランスミッタ信号を送信し、実質的により大きいトランスミッタ電極を作成できる。あるいは、複数のトランスミッタ電極が、異なるトランスミッタ信号を送信できる。例えば、複数のトランスミッタ電極は、レシーバ電極の結果信号に対する複合的な影響を個々に決定することを可能にする1つ以上の符号化方式により、様々なトランスミッタ信号を送信できる。
レシーバセンサ電極として構成されたセンサ電極は、結果信号を取得するために単独又は複合的に作動されうる。結果信号は、容量画素205における容量結合の測定値を決定するために使用されうる。
他の実施形態では、これらの容量結合を決定するために画素205を「走査」することは、変調信号で駆動することと、センサ電極の1つ以上の絶対キャパシタンスを測定することを含む。別の実施形態では、センサ電極は、変調信号が複数の容量画素205内のセンサ電極上で同時に駆動されるように作動されうる。そのような実施形態では、絶対容量測定値は、1つ以上の画素205のそれぞれから同時に得られうる。一実施形態では、入力装置100は、複数の容量画素205内のセンサ電極を同時に駆動し、画素205ごとの絶対容量測定値を同じ検出サイクルで測定する。様々な実施形態で、処理システム110は、センサ電極の一部によって選択的に駆動し受け取るように構成されうる。例えば、センサ電極は、ホストプロセッサ上で動作するアプリケーション、入力装置の状態、検出装置の動作モード、及び入力オブジェクトの決定位置(これらに限定されない)に基づいて選択されうる。別の実施形態では、入力オブジェクト(例えば、指)は、変調信号で駆動されるトランスミッタであり、センサ電極はレシーバである。
容量画素205からの1組の測定値は、前述したように画素205における容量結合を表す「容量イメージ」(「容量フレーム」とも)を構成する。複数の容量イメージが、複数の期間にわたって取得され、それらの間の差が使用されて、検出領域内の入力に関する情報が得られる。例えば、連続期間にわたって取得された連続する容量イメージを使用して、検出領域に入る入力オブジェクト、検出領域から出る入力オブジェクト、及び検出領域の中の1つ以上の入力オブジェクトの動きを追跡できる。
幾つかの実施形態では、容量画素205内のセンサ電極の1つ以上が、表示画面の表示更新に使用される1つ以上の表示電極を含む。1つ以上の実施形態では、表示電極は、Vcom電極(コモン電極)、ソース駆動線、ゲート線、アノード電極若しくはカソード電極、又は他の表示要素の1つ以上のセグメントを含む。これらの表示電極は、適切な表示画面基板上に配置されうる。例えば、電極は、幾つかの表示画面(例えば、面内スイッチング(IPS)又はプレーントゥラインスイッチング(PLS)有機発光ダイオード(OLED))内の透明基板(ガラス基板、TFTガラス、プラスチック基板又は他の透明材料)上、幾つかの表示画面(例えば、パターン化垂直整列(PVA)又はマルチドメイン垂直整列(MVA))のカラーフィルタガラスの下面上、放出層(OLED)の上などに配置されうる。そのような実施形態では、センサと表示電極の両方として使用される電極は、複数の機能を実行するので、組み合わせ電極とも呼ばれうる。
引き続き図2を参照し、センサ電極に結合された処理システム110は、回路204と、必要に応じてディスプレイドライバ回路208を含む。一実施形態では、センサ回路204は、トランスミッタ信号をセンサ電極に送り、入力検出が必要とされる期間にセンサ電極によって結果信号を受け取る。一実施形態では、センサ回路204は、入力検出が必要とされる期間にトランスミッタ信号をセンサ電極に送るように構成された回路を含むトランスミッタモジュールを含む。トランスミッタ信号は、一般に、変調され、入力検出に割り当てられた時間期間に1つ以上のバーストを含む。トランスミッタ信号は、検出領域内の入力オブジェクトに関するより多くのロバストな位置情報を得るように変更されうる振幅、周波数及び電圧を有しうる。絶対容量検出に使用される変調信号は、トランスキャパシタンス検出に使用されるトランスミッタ信号と同じでもよく異なってもよい。センサ回路204は、容量画素205内のセンサ電極の1つ以上に選択的に結合されうる。例えば、センサ回路204は、センサ電極120の選択部分に結合され、絶対キャパシタンス検出モード又はトランスキャパシタンス検出モードで動作できる。別の例では、センサ回路204は、絶対検出モードで動作しているとき、トランスキャパシタンス検出モードで動作しているときとは異なるセンサ電極に結合されうる。
様々な実施形態では、センサ回路204は、トランスキャパシタンス検出が行われる期間に、トランスミッタ信号に対応する影響を含む結果信号(例えば、容量検出信号)をセンサ電極によって受け取るように構成された回路を含むレシーバ206を含みうる。ここで、センサ回路204の一部は、トランスミッタ電極に結合され、トランスミッタ信号を駆動し、レシーバ206は、レシーバ電極に結合され、トランスミッタ信号の影響を含む結果信号を受け取る、1つ以上の実施形態では、レシーバ206は、変調信号を画素205のうちの1つの画素内の第1のセンサ電極に送り、変調信号に対応する容量検出信号を測定して、センサ電極の絶対キャパシタンスの変化を決定するように構成される。レシーバ206は、検出領域120内の入力オブジェクトの位置を決定してもよく、結果信号を示す情報を含む信号を、処理システム110内の別のモジュール、又はプロセッサ、例えば、検出領域120内の入力オブジェクトの位置を決定するための電子装置(即ち、ホストプロセッサ)に提供してもよい。1つ以上の実施形態では、レシーバ206は、複数のレシーバを含み、各レシーバは、アナログフロントエンド(AFE)でよい。レシーバ206は、センサモジュール204の一部として示したが、センサモジュール204と別個でもよい。例えば、センサモジュール204は、レシーバ206がレシーバ電極に結合されている間にセンサ電極(例えば、トランスミッタ電極)のうちの1つに変調信号を送信できる。
1つ以上の実施形態では、容量検出(又は、入力検出)と表示更新は、少なくとも部分的に重複する期間に行われうる。例えば、表示更新のために複合電極が駆動されるとき、複合電極は、容量性検出のためにも駆動されうる。又は、重なる容量検出と表示更新は、センサ電極が容量検出用に構成されているときに少なくとも部分的に重なる時間期間に、表示装置の基準電圧を変調すること及び/又は表示用の少なくとも1つの表示電極を変調することを含みうる。別の実施形態では、容量性検出と表示更新は、非表示更新期間とも呼ばれる非重複期間に行われてもよい。様々な実施形態では、非表示更新期間は、表示フレームの2つの表示ラインのための表示ライン更新期間の間に生じることがあり、少なくとも表示更新期間と同じ時間の長さでよい。そのような実施形態では、非表示更新期間は、長い水平ブランキング期間、長いhブランキング期間、又は分散ブランキング期間と呼ばれうる。他の実施形態では、非表示更新期間は、水平ブランキング期間と垂直ブランキング期間を含みうる。処理システム110は、様々な非表示更新時間の1つ以上又はその任意の組み合わせの最中に、容量性検出のためにセンサ電極を印加するように構成されうる。
ディスプレイドライバ回路208は、非検出(例えば、表示更新)期間中に表示装置の表示に表示画像更新情報を提供するように構成された回路を含む。一実施形態では、ディスプレイドライバ回路208は、本明細書で述べる表示機能を実行するためのファームウェアを含みうる大きいモジュールの一部でよい。ディスプレイドライバ回路208は、センサモジュール204と一緒に含まれてもよく、センサモジュール204と別個でもよい。一実施形態では、処理システムは、ディスプレイドライバ回路208とセンサモジュール204の少なくとも一部分(即ち、トランスミッタモジュール及び/又はレシーバモジュール)とを含む第1の一体型コントローラを含む。別の実施形態では、処理システムは、ディスプレイドライバ回路208を含む第1の一体型コントローラと、センサモジュール204を含む第2の一体型コントローラ回路とを含む。更に別の実施形態では、処理システムは、ディスプレイドライバ回路208と、トランスミッタモジュールとレシーバモジュールの一方とを含む第1の一体型コントローラと、トランスミッタモジュールとレシーバモジュールの他方を含む第2の一体型コントローラとを含む。
図3は、本明細書で述べる一実施形態による検出領域120のためのインピーダンス回路網を示す。図示されたように、検出領域120は、抵抗値(R)、誘導値(L)及び容量値(C)の回路網として表された容量性センサを含む。領域120は、矩形、菱形、円形などの任意の形状をとりうる。更に、検出領域120は、検出領域120内のそれぞれのセンサ電極の形状と位置によって定義されうる複数の容量ノード305を含む。各容量ノード305は、領域120内の他のノード305のそれぞれと異なる抵抗値、誘導値及び容量値(R,L,C)を有しうる。
図示されたように、変調信号310は、容量ノードに影響を及ぼし、その結果、容量検出信号315が生じる。違う言い方をすると、容量検出信号315は、変調信号310を領域120内のセンサ電極の1つ以上に送る作用を含む。トランスキャパシタンス検出を行う場合、変調信号310は、第1のセンサ電極に送られ、第1のセンサ電極は、第1のセンサ電極に容量結合された第2のセンサ電極上に容量検出信号315を生成する。例えば、変調信号310は、入力装置内の第1の層上のトランスミッタ電極に印加されるトランスミッタ信号でよく、一方、容量検出信号は、入力装置の第2の層上のレシーバ電極上で受け取られる結果信号である。
しかしながら、絶対容量検出を行う場合、変調信号310は、センサ電極を変調してレシーバ206がそのセンサ電極に対応する容量検出信号315を測定することを可能にするレシーバ206によって印加される(例えば、積分器への端子に)。図4は、トランス容量又は絶対容量検出を行うときのR,L,C回路網の影響を示すために概略的に描かれる。
各容量ノード305は、センサ電極の輪郭によって規定された形状を有し、レシーバ206は、空間内の特定位置にあるキャパシタンスの個々の測定値を測定して、1つ以上の入力オブジェクトの位置を計算できる。例えば、容量ノード305は、トランスミッタ電極とレシーバ電極の交差、又は絶対容量検出に使用されるセンサ電極の物理的外形によって規定されうる。各容量ノード305のR,L,C値が異なってもよいので、即ち、変調信号310と容量検出信号315の間の相対位相オフセットが異なってもよい。即ち、各ノード305におけるR、L、Cの値は、各容量検出信号315の位相と振幅を変調信号310に対して変更できる。
図4は、本明細書に示した一実施形態による変調信号310と容量検出信号の間の位相オフセットを示す。チャート400は、図3に示された2つの異なる容量ノード305で生成された2つの容量検出信号315A及び315Bの間の位相オフセットΦを示す。この例では、2つの容量検出信号315A及び315Bを生成するために同じ検出信号310が使用される。2つの容量ノード305のR、L、C値が異なるので、容量検出信号315と変調信号310の間のそれぞれの位相オフセットは異なる。
縦点線405は、変調信号310の正ピークを示し、線410と線415はそれぞれ、容量検出信号315A及び315Bの正ピークを示す。図示されたように、容量検出信号315は、変調信号310と類似の形状を有するが、異なる振幅と位相遅延を有する。図3に示されたレシーバ206は、容量検出信号315の異なるポイントをサンプリングして容量検出測定値を生成する。しかしながら、レシーバ206がサンプリングする場合、容量検出信号315A及び315Bは、測定された信号の大きさに影響を及ぼしうる。例えば、レシーバ206が、線405によって示された時間に容量検出信号315A及び315Bをサンプリングする場合、信号315A及び315Bは、そのピークになく、したがって、測定された信号の大きさは、容量検出信号315A及び315Bがそのピークにあるときの線410及び415に対応する時間中に測定されるものより小さい。
チャート400は、様々な容量ノード305が、変調信号310に対して異なる位相オフセットを有しうることを示す。例えば、検出信号310は、1つのトランスミッタ電極に印加され、その結果、2つのレシーバ電極に容量検出信号315A及び315Bが生じる。レシーバ電極が、異なるR、L、C値を有しうるので、変調信号310に対する容量検出信号315A及び315Bの位相オフセットが異なる。更に、容量ノード305のR、L、C値は、例えば温度変化に基づいて変化又はドリフトしうる。理想的には、レシーバは、容量検出信号315A及び315Bがその局所的最大及び最小にあるときに位相オフセットとサンプルを識別できる。
図5は、本明細書で述べた一実施形態による位相シフト信号を使用して容量検出測定値を生成する方法500のフローチャートである。明確にするために、方法500のブロックは、本明細書で述べた一実施形態による信号シフト信号を使用して容量検出測定値を生成するレシーバ206を示す図6と並列に検討される。
ブロック505で、レシーバは、第1の時間期間中に第1のセンサ電極の容量検出信号の第1の測定値を生成する。図6に示されていないが、変調信号は、センサ電極(センサ電極605又はトランスミッタ電極)に印加され、その結果、サンプラ615で受け取られる容量検出信号315が生じる。サンプラ615は、レシーバ206に提供されたサンプリング信号610の位相を遅延できる移相器620から入力を受け取る。一実施形態では、サンプリング信号610は、容量検出信号315の容量検出測定値(又は、サンプル)を取得することをサンプラ615に指示する、処理システムで生成されたタイミング信号である。
レシーバ206が、容量検出信号315と同期された場合、サンプリング時間は、容量検出信号315のピーク(最大値)と谷(最小値)に同期されうる。しかしながら、レシーバ206が同期されない連続復調を行うとき、サンプリング信号610は、容量検出信号315より高い周波数でよく、それにより、サンプラ615は、容量検出信号315の波形の他の位置(即ち、ピークと谷だけではなく)で測定値を取得する。信号の大きさを最大にするために、本明細書の実施形態は、サンプリング信号610を移相して、サンプラ615が容量検出信号315の最大振幅に対応する測定値を生成するようにする技術を提供する。そのため、レシーバ206(又は、処理システム内の他の回路又はファームウェア)は、容量検出信号315がピークと谷にあるときにその後の測定値が取得されるように、移相器620が使用できる変調信号と容量検出信号315との間の位相オフセットを計算する。
容量検出信号315の第1の測定値を取得した後、処理システムは、第1の時間期間に、サンプリング信号610又は変調信号をこれらの信号の位相に対して90度移相する。図6に示された例では、第1の測定値が取得された後、移相器620は、第1の時間期間に、サンプリング信号610を、サンプリング信号610の位相に対して90度移相できる。代替として、サンプリング信号610の位相をずらす代わりに、処理システム内のドライバ(トランス容量性検出が行われる場合)又はレシーバ206(絶対キャパシタンス検出が行われる場合)は、第1の時間期間に、変調信号を、変調信号の位相に対して90度移相できる。変調信号を移相することにより、容量検出信号315も90度移相する。
ブロック515で、レシーバ206内のサンプラ615は、第2の時間期間に、第1のセンサ電極605の容量検出信号の第2の測定値を生成する。ブロック510で移相が行われた結果、第1及び第2の測定値の位相の位相差が90度になる。方法500は、2つの異なる時間期間を使用して第1及び第2の測定値を取得することを示すが、2つの異なるレシーバを使用し、それらが両方とも同じ容量検出信号315を受け取ることによって、類似の測定値が生じうる。この場合、第1及び第2の測定値を同時に得ることができる。しかしながら、そのためには、入力装置のコストを高めうる二重ハードウェア(例えば、1つではなく2つのレシーバ)を必要としうる。その代わりに、2つの時間期間を使用することによって、1つのレシーバ206だけが使用される。第1及び第2の時間期間が一緒に終わる限り、センサ電極605のR、L、C値が実質的に同じである。
一実施形態では、第1及び第2の時間期間は、同じ容量性フレーム(又は、容量性イメージ)内の連続容量検出バーストである。各容量検出バーストは、検出領域内の容量ノード又はセンサ電極の単一測定値を生成するために使用される所定サイクル数の変調信号(例えば、5サイクルの変調信号)を含みうる。この例では、第1の測定値は、第1の容量検出バースト中に取得され、第2の測定値は、次に起こる検出バースト中に取得される。あるいは、第1及び第2の測定値は、連続容量性フレーム内の容量検出バーストを使用して得られうる。これは、第1及び第2の時間期間が、より大きい時間期間離されることを意味するが、センサ電極605に対応する位相オフセットを決定するR、L、C値は、2つの連続容量性フレーム間で実質的に変化しない。したがって、第1及び第2の測定値は、きわめて類似しているが、90度の位相差を有する。
容量検出信号315の高調波は、以下のように表わされうる。
Figure 0006914973
式1は、容量検出信号315の高調波をその信号の同相部分と位相ずれ(直角位相)部分で表す。同相部分がその最大値にあるとき、直角位相部分はその最小値にあり、その逆も同様である。時間tは、レシーバ206により離散的な瞬間(又は、連続的な時間)を示しうる。更に、ωtは、信号315のサンプリングに使用されるサンプリング周波数を表し、Φ(i,t)は復調率である。様々な容量ノードの様々な容量検出信号のΦ(i,t)が異なりうるので、ノードに結合されたレシーバは、図4に示されたように、レシーバの利得が位相に依存する結果となるサンプルの様々な振幅を測定できる。
第1及び第2の測定値を使用することにより、レシーバ206は、Φ(i,t)の実際値を推定でき、したがって、各容量検出信号iの全振幅A(i)を測定できる。第1及び第2の測定値(1回分測定されたとき)は、同相及び直角位相データを提供し、したがって、以下の仮定は真である。
Figure 0006914973
Figure 0006914973
センサ電極605のR、L、C値は、第1の時間期間と第2の時間期間の間に実質的に変化しないので、2つの測定値のΦ値は、式2に示されたものと同じである。式3で、第2の測定値を取得するときにサンプリング信号又は変調信号が90度移相されるので、2つの時間期間の間のΦ値の変化の減算は90度、即ちπ/2である。その結果、容量検出信号315の全振幅(チルダA(▲A))は、以下の式を使用して推定されうる。
Figure 0006914973
この例では、S(t,ΔΦ(i,t)は、第1の時間期間に得られた第1の測定値を表し、S(t,ΔΦ(i,t)が、第2の時間期間に得られた第2の測定値を表わす。
ブロック520で、レシーバ260は、第1及び第2の測定値を使用して、容量検出信号315のピーク振幅における測定値を推定する。式4を使用すると、容量検出信号315の振幅が最大値にあるときにサンプラ615が測定値を生成しなかった場合でも、第1及び第2の測定値を処理して、信号315のピーク振幅を得ることができる。違う言い方をすると、式2と式3に示された関係のため、レシーバ206は、式4を使用して測定値を生成でき、この測定値は、サンプラ615が、容量検出信号315のピーク振幅における測定値を取得した場合に得られる測定値の推定値である。このようにして、レシーバ206(又は、処理システム内の他のロジック)は、第1及び第2の測定値に後処理を行って、信号315のピーク振幅に対応する測定値を決定できる。
図7は、本明細書で述べた実施形態による、センサ電極の変調信号と容量検出信号の間の位相オフセットを決定する方法700のフローチャートである。この実施形態で、方法700は、図5のブロック515が実行され、レシーバ206が、90度の位相差を有する第1及び第2の測定値を取得した後で始まる。別の実施形態で、方法700は、処理システムが容量処理システムのピーク振幅に対応する測定値を推定するブロック520の後で始まる。
ブロック705で、レシーバは、第1及び第2の測定値を使用して容量検出信号と変調信号の間の位相オフセットを決定して、その後の容量検出測定値のためにレシーバを較正する。図6に示されたように、レシーバ206は、アナログデジタル変換器(ADC)625の出力に結合された位相オフセットモジュール630を含む。例えば、サンプラ615が第1及び第2の測定値を測定した後で、ADC625は、それらの測定値のデジタル表現を位相オフセットモジュール630に送って位相オフセットを決定する。処理システムは、ADC625の出力を使用して、容量検出信号315のサンプリングに基づいて入力オブジェクトの位置を決定できる。
位相オフセットモジュール630は、容量検出信号315と変調信号の間の位相オフセットを決定する。即ち、位相オフセットモジュール630は、各容量検出信号315とそれぞれの変調信号の間の図4に示された位相オフセットΦを決定する。駆動波形(即ち、変調信号)の位相が分かっているので、以下の式を使って位相オフセットを計算できる。
Figure 0006914973
式5で、ハットΦ(▲Φ)は、容量検出信号315と変調信号の間の位相オフセットを表わす。更に、チルダΦι(▲Φι)は、変調信号の位相の推定値を表わす。式5に示された計算を行うことによって、位相オフセットモジュール630は、容量検出信号315がそのピーク振幅のときに少なくとも1つのサンプルが取得されるようにするサンプリング信号610の適切な位相オフセットを決定できる。一例では、位相オフセットモジュール630は、サンプリング信号610をシフトする移相器620に位相オフセットであるハットΦ(▲Φ)を送って、サンプラ615が、容量検出信号315の測定値をそのピークで取得するようにする。当然ながら、サンプリング信号610の周波数は、容量検出信号315と変調信号より高いことがあるので、サンプラ615は、容量検出信号315の他の測定値又はサンプルをそのピーク振幅以外で生成できる。それにもかかわらず、本明細書で述べる技術は、レシーバが、各容量ノードのR,L,C値によって生じた位相オフセットを識別し、サンプリング信号610をシフトすることによってこのオフセットを補償できる。
ブロック710で、レシーバは、位相オフセットを使用してサンプリング信号を移相し、第3の時間期間に第1の電極605の容量検出信号の第3の測定値を生成する。例えば、位相オフセットモジュール630が、その後の容量検出バーストの位相オフセットハットΦ(▲Φ)を決定した後、レシーバは、第3の測定値が容量検出信号315のピークに合致するように、サンプリング信号610を位相オフセットハットΦ(▲Φ)だけ移相できる。方法700は、第1の電極(即ち、センサ電極605)に対応する位相オフセットを決定することを示すが、このプロセスを、検出領域内の他のセンサ電極(例えば、他の容量ノード)のそれぞれの第1及び第2の測定値を使用して繰り返して、全てのセンサ電極又は容量ノードの変調信号と容量検出信号に対するそれぞれの位相オフセットを決定できる。
ブロック715で、レシーバは、位相をディザリングして、容量検出信号315の第4の測定値を生成するときの外挿誤差を生成する。前述されたように、各容量ノードのR、L、C値は、例えば温度変化のため又は入力オブジェクトがノードに近いので、ドリフトしうる。R,L,C値が変化すると、変調信号と容量検出信号の間の位相オフセットが変化する。したがって、ブロック710で決定された位相オフセットは、時間の経過とともに陳腐になるか不正確になり、したがって、サンプラ615が容量検出信号315をサンプリングするときに制御にその位相オフセットを使用すると、測定値が信号315内のピーク又は谷と合致しなくなる。位相オフセットにおけるドリフトを処理する1つの方法は、2つの連続するバースト又は2つの連続する容量性フレーム中に2つの新しい測定値(90度の位相差を有する)を取得する方法500を繰り返すことである。しかしながら、これを行うには、容量検出を減速又は中断できる2つのバーストが必要である。
代わりに、位相をディザリングすることによって、レシーバは、オフセットがドリフトするときに位相オフセットを更新でき、したがって、方法500の繰り返しを回避できる(又は、少なくとも遅延できる)。一実施形態では、第4の測定値を生成するとき、レシーバ206は、位相の小さい変動又はディザリングε(t)を、変調信号又はサンプリング信号610に導入する。例えば、移相器620は、位相オフセットモジュール630によって提供される位相オフセットを1〜5度変化させて位相をディザリングできる。即ち、レシーバ206は、外挿誤差を生成するサンプリング信号610に非最適な位相オフセットを意図的に適用する。サンプル間のディザリングの大きさは、位相オフセット推定値の精度により、大きく変更されることがあり、これは、信号の測定振幅を比較することによって決定されうる。ブロック705で決定された初期の位相オフセット計算に時間が近いほど、移相器620は、小さいディザリングパラメータ(即ち、サンプル間の範囲とステップサイズが小さい)を使用できる。初期位相オフセット計算から時間が遠いほど、移相器620は、大きいディザリングパラメータ(即ち、範囲とステップサイズが大きい)を使用できる。
第4の測定値を生成した後、位相オフセットモジュール630は、以下の式を使用して、更新された位相オフセットチルダ▲Φ(▲Φ)(T)を計算できる。
Figure 0006914973
ディザリング関数ε(t)は、位相の可能な外挿に対応する振幅を有する任意の周期的で対称的なゼロ平均関数でよい。外挿誤差の履歴を追跡することによって、レシーバは、その後の測定値ごとの位相オフセットを調整し、ある期間にわたって変調信号と容量検出信号の間の位相オフセットのドリフトを考慮できる。ブロック720で、レシーバは、外挿誤差とディザリング履歴を使用して位相オフセットを更新する。このようにして、レシーバ206は、所定の容量ノードのR,L,C値が変化するときに図5の方法500を繰り返さなければならないことを遅延又は回避できる。
別の実施形態では、移相器620は、位相のディザリングに依存して、容量検出信号と変調信号の間の初期位相オフセットを識別できる。即ち、前述のように2つの測定値を取得する代わりに、移相器620は、複数の測定値を取得し、同時に、変調信号又はサンプリング信号に、0〜90度の異なる位相シフトを適用して、位相オフセットの初期推定値を決定できる。この例では、方法500は、使用されない。初期位相オフセットが識別された後、移相器620は、ブロック715で述べたようなより小さい位相シフトを使用して、複数のサンプルにわたる容量検出信号と変調信号の間の位相オフセットを更新できる。
ブロック725で、レシーバは、ブロック715で決定された位相の変化がしきい値を超えるかどうかを決定する。即ち、R、L、C値が大幅に変化しない場合は、位相オフセットをその最適値から遠ざかるようにディザリングすることが有効でありうる。しかしながら、これらの値が素早く変化する場合、前述のように位相をディザリングすることは、新しい位相オフセットを識別するのに十分でないことがある。しきい値を超えた場合、方法700は、図5のブロック505に戻り、方法500を繰り返す。即ち、レシーバ206は、90度の位相差を有する2つの測定値を取得し、再び位相オフセットを識別する。
しかしながら、更新された位相オフセットがしきい値を超えない場合、即ち、位相オフセットが、少し変化したか全く変化しなかった場合、方法700は、ブロック715に戻り、レシーバ206は、容量検出信号の別の測定値を再び生成し、同時に位相オフセットをディザリングできる。レシーバ206は、容量ノードが検出されるたびに位相オフセットをディザリングできるが、別の実施形態では、レシーバ206は、幾つかの容量検出バーストの位相オフセットしかディザリングできない。例えば、レシーバ206は、サンプラ615がセンサ電極605の測定値を取得する1回おきしか位相オフセットをディザリングできない。
一実施形態では、レシーバ206は、複数のセンサ電極に選択的に結合されうる。そのような場合、位相オフセットモジュール630は、異なる各センサ電極のそれぞれの最適な位相オフセットを計算できる。したがって、移相器620は、現在どのセンサ電極605が容量検出信号315を生成しているかにより、サンプリング信号610に異なる位相シフトを適用できる。それぞれの位相オフセット(及び、ディザリングによって計算された最新の位相オフセット)は、レシーバ206又は処理システム内の他の場所に記憶されうる。
本明細書に示された実施形態及び例は、本発明による実施形態とその特定の応用例を最もよく説明し、それにより当業者がこの技術を作成し使用できるようにするために提示された。しかしながら、当業者は、以上の説明及び例が、単に説明と例のために提示されたことを理解するであろう。以上の説明は、網羅的でもなく、開示した厳密な形態に本発明を限定するものでもない。
以上のことを考慮して、本開示の範囲は、以下の請求項によって決定される。
100 入力装置
110 処理システム
120 検出領域
204 センサ回路
206 レシーバ
208 ディスプレイドライバ回路
605 センサ電極
615 サンプラ
630 位相オフセットモジュール

Claims (20)

  1. 入力装置の検出領域内に配置された複数のセンサ電極と、
    前記複数のセンサ電極に結合された処理システムと、を備え、
    前記処理システムは、
    第1の時間期間に前記複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成し、前記容量検出信号が、前記複数のセンサ電極のうちの少なくとも1つのセンサ電極に印加される第1の変調信号の影響を含み、
    第2の時間期間に前記第1のセンサ電極を使用して取得された前記容量検出信号の第2の測定値を生成し、
    前記第1の測定値及び前記第2の測定値に基づいて前記容量検出信号と前記第1の変調信号の間の位相オフセットを決定し、
    前記第1のセンサ電極を使用して取得される前記容量検出信号の第3の測定値を生成するために使用されるサンプリング信号を前記位相オフセットだけ移相し、前記サンプリング信号を前記位相オフセットだけ移相することにより、前記第3の測定値が前記容量検出信号のピーク振幅と合致する、
    ように構成され、
    前記第1の測定値と前記第2の測定値と間の位相差が90度である、入力装置。
  2. 前記処理システムが、前記第2の時間期間に、
    前記第2の測定値を生成するために使用される第2のサンプリング信号を、前記第1の時間期間に前記第1の測定値を生成するために使用される第1のサンプリング信号の位相に対して90度移相するように構成された、請求項1に記載の入力装置。
  3. 前記処理システムが、前記第2の時間期間に、
    第2の変調信号を、前記第1の時間期間に使用される前記第1の変調信号の位相に対して90度移相するように構成された、請求項1に記載の入力装置。
  4. 前記第1及び第2の時間期間が、同一容量検出フレーム及び連続容量検出フレーム内の連続検出バーストの1つに対応する、請求項1に記載の入力装置。
  5. 前記容量検出信号が、前記第1の変調信号と同じ形状を有するが、異なる振幅と位相遅延を有する、請求項1に記載の入力装置。
  6. 前記処理システムが、第3の時間期間に前記第1のセンサ電極を使用して取得された前記容量検出信号の第4の測定値を生成するときに前記サンプリング信号と前記第1の変調信号の一方を移相して外挿誤差を識別し、前記第3の時間期間が、前記第1及び第2の時間期間の後で生じ、前記外挿誤差に基づいて前記位相オフセットを更新するように構成された、請求項5に記載の入力装置。
  7. 前記処理システムが、前記第1及び第2の測定値を生成するための連続時間レシーバを含み、前記第1の変調信号は、前記レシーバが第1及び第2の測定値を生成することを決定するために使用されるサンプリング信号と同期されない、請求項1に記載の入力装置。
  8. 容量検出のための複数のセンサ電極のうちの少なくとも1つに第1の変調信号を印加するように構成されたセンサ回路と、
    レシーバであって、
    第1の時間期間に前記複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成し、前記容量検出信号が、前記少なくとも1つのセンサ電極に印加される第1の変調信号の影響を含み、
    第2の時間期間に前記第1のセンサ電極を使用して取得された前記容量検出信号の第2の測定値を生成し、前記第1及び第2の測定値間の位相差が90度であり、
    前記第1及び第2の測定値に基づいて前記容量検出信号と前記第1の変調信号の間の位相オフセットを決定し、
    前記第1のセンサ電極を使用して取得される前記容量検出信号の第3の測定値を生成するために使用されるサンプリング信号を前記位相オフセットだけ移相するように構成され、前記サンプリング信号を前記位相オフセットだけ移相することにより、前記第3の測定値が前記容量検出信号のピーク振幅と合致する、
    ように構成されたレシーバとを含む処理システム。
  9. 前記レシーバが、前記第2の時間期間に、
    前記第2の測定値を生成するために使用される第2のサンプリング信号を、前記第1の時間期間に前記第1の測定値を生成するために使用される第1のサンプリング信号の位相に対して90度移相するように構成された、請求項8に記載の処理システム。
  10. 前記センサ回路が、前記第2の時間期間に、
    第2の変調信号を、前記第1の時間期間に使用される前記第1の変調信号の位相に対して90度移相するように構成された、請求項8に記載の処理システム。
  11. 前記第1及び第2の時間期間が、同一容量検出フレーム及び連続容量検出フレーム内の連続検出バーストの1つに対応する、請求項8に記載の処理システム。
  12. 前記容量検出信号が、前記第1の変調信号と同じ形状を有するが、異なる振幅と位相遅延を有する、請求項8に記載の処理システム。
  13. 前記レシーバが、第3の時間期間に前記第1のセンサ電極を使用して取得された前記容量検出信号の第4の測定を生成するときに前記サンプリング信号を移相して外挿誤差を識別し、前記第3の時間期間が、前記第1及び第2の時間期間の後で生じ、前記外挿誤差に基づいて前記位相オフセットを更新するように構成された、請求項12に記載の処理システム。
  14. 前記レシーバが、連続時間レシーバであり、前記第1の変調信号は、前記レシーバが前記第1及び第2の測定値を生成することを決定するために使用されるサンプリング信号と同期されない、請求項8に記載の処理システム。
  15. 前記レシーバが、前記第1の時間期間に前記複数のセンサ電極に複数の変調信号を印加するときに前記複数のセンサ電極のそれぞれの複数の第1の測定値を生成し、
    前記第2の時間期間に前記複数のセンサ電極のそれぞれの複数の第2の測定値を生成し、前記複数のセンサ電極のそれぞれの前記複数の第1及び第2の測定値間のそれぞれの位相差が90度であり、
    前記複数のセンサ電極を使用して取得された複数の検出信号と前記複数の変調信号の間のそれぞれの位相オフセットを、前記複数の第1及び第2の測定値に基づいて決定するように構成された、請求項8に記載の処理システム。
  16. 容量検出を行う方法であって、
    第1の時間期間に前記複数のセンサ電極のうちの第1のセンサ電極を使用して取得された容量検出信号の第1の測定値を生成するステップであって、前記容量検出信号が、前記複数のセンサ電極のうちの少なくとも1つのセンサ電極に印加される第1の変調信号の影響を含むステップと、
    第2の時間期間に前記第1のセンサ電極を使用して取得された前記容量検出信号の第2の測定値を生成するステップであって、前記第1及び第2の測定値間の位相差が90度であるステップと、
    前記容量検出信号と前記第1の変調信号の間の位相オフセットを、前記第1及び第2の測定値に基づいて決定するステップと、
    前記第1のセンサ電極を使用して取得される前記容量検出信号の第3の測定値を生成するために使用されるサンプリング信号を前記位相オフセットだけ移相するステップであって、前記サンプリング信号を前記位相オフセットだけ移相することにより、前記第3の測定値が前記容量検出信号のピーク振幅と合致するステップと、を含む方法。
  17. 前記第2の時間期間に、前記第2の測定値を生成するために使用される第2のサンプリング信号を、前記第1の時間期間に前記第1の測定値を生成するために使用される第1のサンプリング信号の位相に対して90度移相するステップを更に含む、請求項16に記載の方法。
  18. 前記第2の時間期間に、第2の変調信号を、前記第1の時間期間に使用される前記第1の変調信号の位相に対して90度移相するステップを更に含む、請求項16に記載の方法。
  19. 前記第1及び第2の時間期間が、同一容量検出フレーム及び連続容量検出フレーム内の連続検出バーストの1つに対応する、請求項16に記載の方法。
  20. 前記容量検出信号が、前記第1の変調信号と同じ形状を有するが、異なる振幅と位相遅延を有する、請求項16に記載の方法。
JP2018567136A 2016-06-30 2017-05-08 容量検出用の連続時間レシーバの較正 Active JP6914973B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/199,361 2016-06-30
US15/199,361 US10379668B2 (en) 2016-06-30 2016-06-30 Calibrating a continuous-time receiver for capacitive sensing
PCT/US2017/031516 WO2018004827A2 (en) 2016-06-30 2017-05-08 Calibrating a continuous-time receiver for capacitive sensing

Publications (2)

Publication Number Publication Date
JP2019523481A JP2019523481A (ja) 2019-08-22
JP6914973B2 true JP6914973B2 (ja) 2021-08-04

Family

ID=60785472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567136A Active JP6914973B2 (ja) 2016-06-30 2017-05-08 容量検出用の連続時間レシーバの較正

Country Status (4)

Country Link
US (1) US10379668B2 (ja)
JP (1) JP6914973B2 (ja)
CN (1) CN109313521B (ja)
WO (1) WO2018004827A2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809855B2 (en) * 2015-08-19 2020-10-20 Novatek Microelectronics Corp. Driving circuit and a method for driving a display panel having a touch panel
US10935620B2 (en) * 2019-02-26 2021-03-02 Cirrus Logic, Inc. On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
KR20220024860A (ko) * 2019-06-26 2022-03-03 텍추얼 랩스 컴퍼니 물체의 위상 감지

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126428A (ja) * 1985-11-27 1987-06-08 Fujitsu Ltd 文字図形入力処理方式
US8279180B2 (en) 2006-05-02 2012-10-02 Apple Inc. Multipoint touch surface controller
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US8711129B2 (en) 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
US7920134B2 (en) 2007-06-13 2011-04-05 Apple Inc. Periodic sensor autocalibration and emulation by varying stimulus level
US7911283B1 (en) * 2007-12-31 2011-03-22 Nortel Networks Limited Low noise oscillator and method
US8237667B2 (en) 2008-09-10 2012-08-07 Apple Inc. Phase compensation for multi-stimulus controller
US8592697B2 (en) 2008-09-10 2013-11-26 Apple Inc. Single-chip multi-stimulus sensor controller
US8031094B2 (en) 2009-09-11 2011-10-04 Apple Inc. Touch controller with improved analog front end
US8664548B2 (en) 2009-09-11 2014-03-04 Apple Inc. Touch controller with improved diagnostics calibration and communications support
EP2333642A1 (en) 2009-09-27 2011-06-15 Inferpoint Systems Limited Touch control screen
TWI420826B (zh) 2010-04-09 2013-12-21 Memsor Corp 具有校正機制之電容式感測器及電容偵測方法
KR101239103B1 (ko) 2011-04-19 2013-03-06 주식회사 동부하이텍 차동 신호 처리를 이용한 터치스크린 컨트롤러
KR101915259B1 (ko) 2011-09-09 2018-11-05 삼성전자 주식회사 터치 스크린 센서 집적 회로, 이의 동작 방법, 및 이를 포함하는 시스템
US8810537B2 (en) * 2012-02-15 2014-08-19 Apple Inc. Quadrature demodulation for touch sensitive devices
US9086768B2 (en) 2012-04-30 2015-07-21 Apple Inc. Mitigation of parasitic capacitance
US8913021B2 (en) 2012-04-30 2014-12-16 Apple Inc. Capacitance touch near-field—far field switching
US8890840B2 (en) * 2012-04-30 2014-11-18 Mediatek Inc. Method and apparatus for using oscillation signals with different phases to detect capacitance values at capacitive sensing nodes of touch panel
US9665231B2 (en) 2012-05-18 2017-05-30 Egalax_Empia Technology Inc. Detecting method and device for touch screen
US10061444B2 (en) 2013-07-31 2018-08-28 Apple Inc. Self capacitance touch sensing
WO2015050888A1 (en) * 2013-10-02 2015-04-09 Synaptics Incorporated Simultaneous display updating and capacitive sensing for an integrated device
US9442615B2 (en) 2013-10-02 2016-09-13 Synaptics Incorporated Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch
JP6241246B2 (ja) * 2013-12-10 2017-12-06 セイコーエプソン株式会社 検出装置、センサー、電子機器及び移動体
US10691235B2 (en) 2013-12-13 2020-06-23 Apple Inc. On-cell touch architecture
US9547400B2 (en) 2014-04-25 2017-01-17 Synaptics Incorporated Interference detection using frequency modulation

Also Published As

Publication number Publication date
US20180004348A1 (en) 2018-01-04
CN109313521A (zh) 2019-02-05
WO2018004827A3 (en) 2018-07-26
CN109313521B (zh) 2022-04-12
US10379668B2 (en) 2019-08-13
WO2018004827A2 (en) 2018-01-04
JP2019523481A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
US9965105B2 (en) Systems and methods for detecting low ground mass conditions in sensor devices
US8952925B2 (en) System and method for determining resistance in an input device
CN107562253B (zh) 对电容性感测测量结果进行归一化以降低低接地质量和噪声的影响
US9600121B2 (en) Driving sensor electrodes for noise measurement
CN105005422B (zh) 使用频率调制的干扰检测
US9134827B2 (en) System and method for mathematically independent signaling in gradient sensor devices
US9329731B2 (en) Routing trace compensation
US9971463B2 (en) Row-based sensing on matrix pad sensors
US9176633B2 (en) Sensor device and method for estimating noise in a capacitive sensing device
US10175827B2 (en) Detecting an active pen using a capacitive sensing device
CN105468215B (zh) 用于电容感测的电流反馈技术
US20120182229A1 (en) Device and method for interference avoidance in an input device
JP6914973B2 (ja) 容量検出用の連続時間レシーバの較正
JP2020510897A (ja) スイッチング要素による容量性ベースラインシフトの低減
US9268435B2 (en) Single layer capacitive sensor and capacitive sensing input device
US10037112B2 (en) Sensing an active device'S transmission using timing interleaved with display updates
CN107272969B (zh) 使用非整数激励的电容性感测
CN107239161B (zh) 用于力检测器的基于拐折的校准方法
CN109032436B (zh) 用于电容性感测的连续时间接收器的干扰抑制和时钟抖动
JP2020053024A (ja) 入力装置、方法、及び、プロセッシングシステム
US8886480B2 (en) System and method for signaling in gradient sensor devices
CN105760027B (zh) 用于输入感应的开关电容技术
JP2021149962A (ja) 感知デバイスのための再構成可能なレシーバチャンネル
CN108345415B (zh) 利用对象速度信息的对象追踪

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6914973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150