JP6913405B1 - Manufacturing method of molded product - Google Patents

Manufacturing method of molded product Download PDF

Info

Publication number
JP6913405B1
JP6913405B1 JP2020024301A JP2020024301A JP6913405B1 JP 6913405 B1 JP6913405 B1 JP 6913405B1 JP 2020024301 A JP2020024301 A JP 2020024301A JP 2020024301 A JP2020024301 A JP 2020024301A JP 6913405 B1 JP6913405 B1 JP 6913405B1
Authority
JP
Japan
Prior art keywords
cured product
curing
mold
hardness
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020024301A
Other languages
Japanese (ja)
Other versions
JP2021126871A (en
Inventor
勝博 岩崎
勝博 岩崎
久仁子 丸岡
久仁子 丸岡
秋月 朴
秋月 朴
金田 安生
安生 金田
一雅 高村
一雅 高村
治人 荒木
治人 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2020024301A priority Critical patent/JP6913405B1/en
Priority to JP2021110652A priority patent/JP7025809B2/en
Application granted granted Critical
Publication of JP6913405B1 publication Critical patent/JP6913405B1/en
Publication of JP2021126871A publication Critical patent/JP2021126871A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】非金属無機材料を含む製品を成形型を用いて製造する場合における成形型の利用効率を高める。【解決手段】本発明は、非金属無機材料から成る粉体、溶媒、分散剤、硬化性樹脂を含む原料溶液と硬化剤とを混合して成形型に注入する注入工程と、前記原料溶液と前記硬化剤の混合物を前記成形型内で硬化させて所定の硬さの一次硬化体を形成する型内硬化工程と、前記一次硬化体を前記成形型から脱離させる脱型工程と、前記成形型から脱離された前記一次硬化体の硬化反応を進行させることにより所定の硬さの二次硬化体を得る型外硬化工程と、前記二次硬化体を乾燥する乾燥工程と、乾燥後の二次硬化体を脱脂する脱脂工程と、脱脂後の二次硬化体を焼結する焼結工程とを順に実行することにより成形体を製造する方法であって、前記一次硬化体の硬さが、前記型外硬化工程で得られる二次硬化体の硬さの40%〜70%である、成形体製造方法である。【選択図】図1PROBLEM TO BE SOLVED: To improve the utilization efficiency of a molding die when a product containing a non-metallic inorganic material is manufactured by using the molding die. The present invention comprises an injection step of mixing a raw material solution containing a powder, a solvent, a dispersant, and a curable resin made of a non-metallic inorganic material and a curing agent and injecting the curing agent into a molding die, and the raw material solution. An in-mold curing step of curing a mixture of the curing agents in the molding mold to form a primary cured product having a predetermined hardness, a demolding step of removing the primary cured product from the molding mold, and the molding. An out-of-mold curing step of obtaining a secondary cured product having a predetermined hardness by advancing the curing reaction of the primary cured product released from the mold, a drying step of drying the secondary cured product, and after drying. It is a method of manufacturing a molded product by sequentially executing a degreasing step of degreasing the secondary cured product and a sintering step of sintering the secondary cured product after degreasing, and the hardness of the primary cured product is increased. , 40% to 70% of the hardness of the secondary cured product obtained in the out-of-mold curing step, which is a method for producing a molded product. [Selection diagram] Fig. 1

Description

本発明は、シリカガラスやセラミックス等の非金属無機材料を原料に含む成形体の製造方法に関する。 The present invention relates to a method for producing a molded product containing a non-metallic inorganic material such as silica glass or ceramics as a raw material.

光通信の伝送路やレーザガイド等に使用される光ファイバは、屈折率の高いコアと、その周りを取り囲む、屈折率の低いクラッド層とから構成され、シリカガラス、フッ化物ガラス等の非金属無機物質を主な材料とする。通信技術の進歩にともない、一般的なシングルモードファイバに加え、マルチコアファイバ、空孔アシストファイバ、フォトニック結晶型ファイバ、パンダファイバ(PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ)等の特殊な構造の光ファイバが開発されている。 An optical fiber used for an optical communication transmission path, a laser guide, etc. is composed of a core having a high refractive index and a clad layer having a low refractive index surrounding the core, and is a non-metal such as silica glass or fluoride glass. The main material is inorganic substances. With the progress of communication technology, in addition to general single-mode fiber, special structures such as multi-core fiber, pore-assisted fiber, photonic crystal fiber, and panda fiber (PANDA (Polarization-maintaining AND Absorption-reducing) fiber) Optical fiber is being developed.

特殊な構造の光ファイバは一般的な構造の光ファイバに比べて光ファイバ母材の製造工程が複雑であり、手間とコストがかかる。例えば空孔アシストファイバは、以下のようにして製造される。まず、VAD法(気相軸付け法:Vapor phase Axial Deposition method)によってコアとその外周を覆うクラッド層を形成し、第1母材を得る。次いで第1母材のクラッド層内に該母材の長手方向に延びる複数の貫通孔をドリルを用いて、あるいは超音波で切削することにより形成し、第2母材(貫通孔付き第1の母材)を得る。そして、第2母材の洗浄、脱水、乾燥工程を経てファイバ母材が完成する。このようにして得られたファイバ母材を線引きすることにより光ファイバが完成する(特許文献1)。 An optical fiber having a special structure has a complicated manufacturing process of an optical fiber base material as compared with an optical fiber having a general structure, which requires labor and cost. For example, the pore-assisted fiber is manufactured as follows. First, a clad layer covering the core and its outer circumference is formed by the VAD method (Vapor phase Axial Deposition method) to obtain a first base material. Next, a plurality of through holes extending in the longitudinal direction of the base material are formed in the clad layer of the first base material by cutting with a drill or ultrasonic waves, and the second base material (first with through holes) is formed. Base material) is obtained. Then, the fiber base material is completed through the washing, dehydrating, and drying steps of the second base material. An optical fiber is completed by drawing the fiber base material thus obtained (Patent Document 1).

ところが、ドリルや超音波による切削加工では、貫通孔の内径寸法や真円度、真直度等を所望の値に調整することが難しい。特に貫通孔の内径寸法が小さく、且つ、長さ寸法が大きいファイバ母材の場合には、貫通孔の真円度、真直度を高精度に調整することが困難になる。
また、マルチコアファイバ用のファイバ母材の場合は、上述した製造方法に、第2母材の貫通孔に別工程で製造されたコア材を挿入し、貫通孔の内表面に溶着させる工程が加わるが、ドリルや超音波による切削加工では貫通孔の内表面粗さを小さくすることが難しい。そのため、コアとクラッド層との境界部分における光損失(散乱損失、吸収損失等)が大きくなってしまう。
However, it is difficult to adjust the inner diameter, roundness, straightness, etc. of the through hole to a desired value by cutting with a drill or ultrasonic waves. In particular, in the case of a fiber base material having a small inner diameter dimension of the through hole and a large length dimension, it becomes difficult to adjust the roundness and straightness of the through hole with high accuracy.
Further, in the case of a fiber base material for a multi-core fiber, a step of inserting a core material manufactured in another process into the through hole of the second base material and welding it to the inner surface of the through hole is added to the above-mentioned manufacturing method. However, it is difficult to reduce the inner surface roughness of the through hole by cutting with a drill or ultrasonic waves. Therefore, the light loss (scattering loss, absorption loss, etc.) at the boundary between the core and the clad layer becomes large.

上記の問題を解決するため、成形により光ファイバを製造する方法が提案されている(特許文献2)。この方法では、シリカガラス粉末、蒸留水、分散剤、硬化性樹脂からなるガラス原料溶液に硬化剤を混合し、この混合物をコア用金属ロッドが配置された成形型に注入する。成形型内では硬化性樹脂が硬化することにより混合物が固化するため、その固化体から成形型及びコア用金属ロッドを脱離させる。その後、固化体を乾燥させ、焼成することにより光ファイバ母材が完成する。 In order to solve the above problems, a method of manufacturing an optical fiber by molding has been proposed (Patent Document 2). In this method, a curing agent is mixed with a glass raw material solution consisting of silica glass powder, distilled water, a dispersant, and a curable resin, and the mixture is injected into a molding mold in which a metal rod for a core is arranged. Since the mixture is solidified by curing the curable resin in the mold, the mold and the metal rod for the core are separated from the solidified body. Then, the solidified body is dried and fired to complete the optical fiber base material.

特開2004-339004号公報Japanese Unexamined Patent Publication No. 2004-339004 特開2013-147384号公報Japanese Unexamined Patent Publication No. 2013-147384 特開2007-136912号公報Japanese Patent Application Laid-Open No. 2007-136912

特許文献2に記載の方法では、真円度、真直度の優れたコア用金属ロッドを用いることにより、貫通孔の真円度、真直度を高めることができる。また、コア用金属ロッドの外表面粗さによって貫通孔の内表面粗さが決まるため、該ロッドの外表面を鏡面研磨加工しておくことにより貫通孔の内表面を滑らかな状態にすることができる。切削により貫通孔を形成する場合に比べると、真円度、真直度に優れたコア用金属ロッドを製造したり、コア用金属ロッドの外表面を鏡面研磨加工したり作業の方が容易であるため、光ファイバ母材の製造にかかる手間やコストを抑えることができる。 In the method described in Patent Document 2, the roundness and straightness of the through hole can be increased by using a metal rod for a core having excellent roundness and straightness. Further, since the inner surface roughness of the through hole is determined by the outer surface roughness of the metal rod for the core, the inner surface of the through hole can be made smooth by mirror-polishing the outer surface of the rod. can. Compared to the case where a through hole is formed by cutting, it is easier to manufacture a metal rod for a core with excellent roundness and straightness, and to mirror-polish the outer surface of the metal rod for a core. Therefore, it is possible to reduce the labor and cost required for manufacturing the optical fiber base material.

ところで、成形品の製造現場では、固化体から脱離された成形型は、その表面から汚れが取り除かれた後、再び成形品の製造に使用される。従って、成形品の製造工程における成形型の使用時間、つまり特許文献2に記載の製造方法においては、ガラス原料溶液と硬化剤を成形型に注入してから固化体から成形型を脱離させるまでの時間、を短くすることができれば、該成形型の利用効率を高めることができる。 By the way, at the manufacturing site of a molded product, the molding mold desorbed from the solidified body is used again for manufacturing the molded product after the dirt is removed from the surface thereof. Therefore, in the usage time of the molding die in the manufacturing process of the molded product, that is, in the manufacturing method described in Patent Document 2, from the injection of the glass raw material solution and the curing agent into the molding die to the removal of the molding die from the solidified body. If the time can be shortened, the utilization efficiency of the molding die can be improved.

ガラス原料溶液と硬化剤の混合物が固化するまでにかかる時間は、ガラス原料溶液に含まれる硬化性樹脂と硬化剤の組み合わせや硬化反応の条件によって決まる。従って、硬化性樹脂と硬化剤の組み合わせや反応条件を適宜に設定することにより、ある程度は固化時間を短縮することができるものの、限界があった。 The time required for the mixture of the glass raw material solution and the curing agent to solidify depends on the combination of the curable resin and the curing agent contained in the glass raw material solution and the conditions of the curing reaction. Therefore, although the solidification time can be shortened to some extent by appropriately setting the combination of the curable resin and the curing agent and the reaction conditions, there is a limit.

なお、ここでは光ファイバを例に挙げて説明したが、シリカガラスやセラミックス等の非金属無機材料から成る様々な製品を成形型を用いて製造する場合には同様の問題があった。 Although an optical fiber has been described as an example here, there is a similar problem when various products made of non-metallic inorganic materials such as silica glass and ceramics are manufactured by using a molding die.

本発明が解決しようとする課題は、非金属無機材料を含む製品を成形型を用いて製造する場合における成形型の利用効率を高めることである。 An object to be solved by the present invention is to improve the utilization efficiency of a molding die when a product containing a non-metallic inorganic material is manufactured using the molding die.

上記課題を解決するために成された本発明は、
非金属無機材料から成る粉体、溶媒、分散剤、硬化性樹脂を含む原料溶液と硬化剤とを混合して成形型に注入する注入工程と、
前記原料溶液と前記硬化剤の混合物を前記成形型内で硬化させて所定の硬さの一次硬化体を形成する型内硬化工程と、
前記一次硬化体を前記成形型から脱離させる脱型工程と、
前記成形型から脱離された前記一次硬化体の硬化反応を進行させることにより所定の硬さの二次硬化体を得る型外硬化工程と、
前記二次硬化体を乾燥する乾燥工程と、
乾燥後の二次硬化体を脱脂する脱脂工程と、
脱脂後の二次硬化体を焼結する焼結工程と
を順に実行することにより成形体を製造する方法であって、
前記型外硬化工程が、前記一次硬化体を液体に浸漬した状態で硬化反応を進行させる液中硬化工程を有し、
前記一次硬化体の硬さが、前記型外硬化工程で得られた二次硬化体の硬さの40%〜70%であること、好ましくは45%〜65%であることを特徴とする。
The present invention made to solve the above problems
An injection step in which a raw material solution containing a powder, a solvent, a dispersant, and a curable resin made of a non-metallic inorganic material and a curing agent are mixed and injected into a molding die.
An in-mold curing step of curing a mixture of the raw material solution and the curing agent in the molding mold to form a primary cured product having a predetermined hardness.
A demolding step of desorbing the primary cured product from the molding die,
An out-of-mold curing step of obtaining a secondary cured product having a predetermined hardness by advancing the curing reaction of the primary cured product desorbed from the molding mold.
A drying step of drying the secondary cured product and
A degreasing process that degreases the secondary cured product after drying,
It is a method of manufacturing a molded product by sequentially executing a sintering step of sintering a secondary cured product after degreasing.
The out-mold curing step includes an in-liquid curing step in which the curing reaction proceeds in a state where the primary cured product is immersed in a liquid.
The hardness of the primary cured product is 40% to 70%, preferably 45% to 65% of the hardness of the secondary cured product obtained in the extramold curing step.

上記方法において「硬さ」とは、典型的にはデュロメータ硬度であるが、押し込み硬さを表す、例えばバーコール硬度、モノトロン硬度を用いることができる。また、デュロメータ硬度、バーコール硬度、モノトロン硬度等に換算可能な物理量で「硬さ」を表すことも可能である。このような物理量としては、ヤング率等の弾性変形率が挙げられる。 In the above method, the "hardness" is typically a durometer hardness, but indentation hardness such as barcol hardness or monotron hardness can be used. It is also possible to express "hardness" by physical quantities that can be converted into durometer hardness, barcol hardness, monotron hardness, and the like. Examples of such physical quantities include elastic deformation rates such as Young's modulus.

一次硬化体の「所定の硬さ」とは、該一次硬化体を成形型から脱離させることができる硬さをいう。また、二次硬化体の「所定の硬さ」とは、一般的には硬化反応が終了した状態にあるときの硬さをいうが、乾燥工程、脱脂工程、焼結工程で不具合(例えば割れやヒビ)が発生しなければ、硬化反応が完全に終了していない状態の硬さでも良い。 The "predetermined hardness" of the primary cured product means the hardness that allows the primary cured product to be removed from the molding die. The "predetermined hardness" of the secondary cured product generally refers to the hardness when the curing reaction is completed, but there is a problem (for example, cracking) in the drying step, the degreasing step, and the sintering step. If cracks do not occur, the hardness may be such that the curing reaction is not completely completed.

本発明に係る成形体の製造方法においては、原料溶液と硬化剤の混合物を成形型内で硬化させることで得られる一次硬化体の硬さが、成形型から一次硬化体を脱離させた後、型外硬化工程で一次硬化体の硬化反応を進行させることにより得られる二次硬化体の硬さの40%〜70%、好ましくは45%〜65%になるようにした。言い換えると、成形型内における硬化性樹脂と硬化剤の硬化反応が終了する前の状態で硬化体(一次硬化体)から成形型を脱離させ、残りの硬化反応を成形型の外で行うようにした。従って、成形型の使用時間を短縮することができるため、成形型の利用効率を上げることができる。 In the method for producing a molded product according to the present invention, the hardness of the primary cured product obtained by curing the mixture of the raw material solution and the curing agent in the molding mold is after the primary cured product is desorbed from the molding mold. The hardness of the secondary cured product obtained by advancing the curing reaction of the primary cured product in the out-mold curing step was adjusted to 40% to 70%, preferably 45% to 65%. In other words, the mold is detached from the cured product (primary cured product) before the curing reaction between the curable resin and the curing agent in the mold is completed, and the remaining curing reaction is performed outside the mold. I made it. Therefore, since the usage time of the molding die can be shortened, the utilization efficiency of the molding die can be improved.

本発明に係る成形体の製造方法の工程図。The process drawing of the manufacturing method of the molded article which concerns on this invention. 成形時間とデュロメータ硬度との関係を示すグラフ。The graph which shows the relationship between the forming time and the durometer hardness. 各工程における硬さの変化を示すグラフ。The graph which shows the change of hardness in each process.

本発明は、非金属無機材料から成る粉体、溶媒、分散剤、硬化性樹脂を含む原料溶液と硬化剤とを混合して成形型に注入する注入工程と、前記原料溶液と前記硬化剤の混合物を前記成形型内で硬化させて所定の硬さの一次硬化体を形成する型内硬化工程と、前記一次硬化体を前記成形型から脱離させる脱型工程と、前記成形型から脱離された前記一次硬化体の硬化反応を進行させることにより所定の硬さの二次硬化体を得る型外硬化工程と、前記二次硬化体を乾燥する乾燥工程と、乾燥後の二次硬化体を脱脂する脱脂工程と、脱脂後の二次硬化体を焼結する焼結工程とを順に実行することにより成形体を製造する方法であって、前記一次硬化体の硬さが、前記型外硬化工程で得られた二次硬化体の硬さの40%〜70%である、成形体製造方法である。 The present invention comprises an injection step of mixing a raw material solution containing a powder, a solvent, a dispersant, and a curable resin made of a non-metallic inorganic material and a curing agent and injecting the curing agent into a mold, and the raw material solution and the curing agent. An in-mold curing step of curing the mixture in the mold to form a primary cured product having a predetermined hardness, a demolding step of desorbing the primary cured product from the mold, and desorption from the mold. An out-of-mold curing step of obtaining a secondary cured product having a predetermined hardness by advancing the curing reaction of the primary cured product, a drying step of drying the secondary cured product, and a secondary cured product after drying. This is a method of manufacturing a molded product by sequentially executing a degreasing step of degreasing and a sintering step of sintering a secondary cured product after degreasing, in which the hardness of the primary cured product is outside the mold. This is a method for producing a molded product, which is 40% to 70% of the hardness of the secondary cured product obtained in the curing step.

ここで、非金属無機材料としては、シリカ(SiO)ガラス、フッ化カルシウム(CaF)ガラス、セラミックス等を挙げることができる。また、セラミックスとしては、酸化アルミニウム、酸化ジルコニウム、窒化ケイ素、炭化ケイ素、窒化アルミニウム等が挙げられる。非金属無機材料から成る粉体は、単一の材料から構成されていても良く、複数種類の材料が混合されていても良い。また、原料溶液には金属不純物が含まれていても良い。 Here, examples of the non-metallic inorganic material include silica (SiO 2 ) glass, calcium fluoride (CaF 2 ) glass, and ceramics. Examples of ceramics include aluminum oxide, zirconium oxide, silicon nitride, silicon carbide, and aluminum nitride. The powder made of a non-metallic inorganic material may be composed of a single material, or may be a mixture of a plurality of types of materials. Further, the raw material solution may contain metal impurities.

硬化性樹脂とは重合反応により3次元網目構造を形成するものをいい、液状であることが好ましい。硬化性樹脂の例として、エポキシ樹脂、メラミン樹脂、フェノール樹脂、アクリル酸樹脂、ウレタン樹脂等を挙げることができる。
硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等を用いることができるが、硬化性樹脂との組合せにより適宜のものを採用するとよい。
The curable resin refers to a resin that forms a three-dimensional network structure by a polymerization reaction, and is preferably liquid. Examples of the curable resin include epoxy resin, melamine resin, phenol resin, acrylic acid resin, urethane resin and the like.
As the curing agent, for example, an amine-based curing agent, an acid anhydride-based curing agent, a polyamide-based curing agent, or the like can be used, but it is preferable to use an appropriate curing agent in combination with a curable resin.

本発明に係る成形体の製造方法では、原料溶液と硬化剤の混合物の硬化反応が完全に硬化する前であって、硬さが所定値にある硬化体(一次硬化体)を成形型から脱離させる。一次硬化体の硬さが所定値にあるか否かは、原料溶液と硬化剤を混合した後の経過時間と混合物の硬さとの関係を予め調べておくことにより、前記経過時間から判断することができる。 In the method for producing a molded product according to the present invention, a cured product (primary cured product) having a hardness at a predetermined value is removed from the molding mold before the curing reaction of the mixture of the raw material solution and the curing agent is completely cured. Let go. Whether or not the hardness of the primary cured product is at a predetermined value can be determined from the elapsed time by examining in advance the relationship between the elapsed time after mixing the raw material solution and the curing agent and the hardness of the mixture. Can be done.

上記の製造方法では、硬化性樹脂が完全に硬化する前の状態にある、つまり、硬さが低く、比較的軟らかい一次硬化体を成形型から脱離させる。成形型から脱離させた後の一次硬化体の形状を維持できなければ、本来の目的を逸脱することになるため、そのような不具合が生じないように、成形型から脱離させる際の一次硬化体の硬さは設定される。 In the above manufacturing method, the primary cured product, which is in a state before the curable resin is completely cured, that is, has a low hardness and is relatively soft, is desorbed from the molding die. If the shape of the primary cured product cannot be maintained after being separated from the mold, the original purpose will be deviated. Therefore, the primary when the primary cured product is separated from the mold so as not to cause such a problem. The hardness of the cured product is set.

本発明の製造方法では、一次硬化体を成形型から脱離させた後、該一次硬化体の硬化反応を進行させるための型外硬化工程を行う。型外硬化工程は、硬化性樹脂の硬化反応がほぼ終了するまで行われる。硬化反応がほぼ終了した状態とは、それ以上、型外硬化工程を継続しても二次硬化体の硬さがほとんど変化しない状態をいう。本発明においては、二次硬化体の硬さを100%とすると、一次硬化体の硬さが40〜70%、好ましくは45〜65%となるようにする。 In the production method of the present invention, after the primary cured product is removed from the molding die, an out-of-mold curing step for advancing the curing reaction of the primary cured product is performed. The out-of-mold curing step is carried out until the curing reaction of the curable resin is almost completed. The state in which the curing reaction is almost completed means a state in which the hardness of the secondary cured product hardly changes even if the out-of-mold curing process is continued. In the present invention, assuming that the hardness of the secondary cured product is 100%, the hardness of the primary cured product is 40 to 70%, preferably 45 to 65%.

二次硬化体の硬化反応がほぼ終了した状態にあるか否かは、成形型から一次硬化体を脱離させてから経過した時間、或いは、型外硬化工程を開始してから経過した時間と硬化体(一次硬化体)の硬さとの関係を予め調べておくことにより、前記経過時間から判断することができる。 Whether or not the curing reaction of the secondary cured product is almost completed depends on the time elapsed from the desorption of the primary cured product from the molding die or the time elapsed since the start of the out-of-mold curing process. By investigating the relationship with the hardness of the cured product (primary cured product) in advance, it can be determined from the elapsed time.

型外硬化工程は、常温下で行っても良く、加熱雰囲気下で行っても良い。硬化反応の進行を早めることができる点では加熱雰囲気下で型外硬化工程を行うことが好ましい。また、まずは常温下で硬化反応を進行させ、その後、加熱雰囲気下でさらに硬化反応を進行させるようにしても良い。加熱雰囲気の温度は、原料溶液に含まれる硬化性樹脂と硬化剤の組合せや硬化性樹脂と硬化剤の配合比等によって適宜の値に設定すればよい。 The out-of-mold curing step may be performed at room temperature or in a heating atmosphere. It is preferable to carry out the out-of-mold curing step in a heating atmosphere in that the progress of the curing reaction can be accelerated. Further, the curing reaction may be allowed to proceed first at room temperature and then further proceeded in a heating atmosphere. The temperature of the heating atmosphere may be set to an appropriate value depending on the combination of the curable resin and the curing agent contained in the raw material solution, the blending ratio of the curable resin and the curing agent, and the like.

また、型外硬化工程は、一次硬化体を液体に浸漬した状態で行うことが好ましい。特に、加熱する場合は、一次硬化体を液体に浸漬することで、一次硬化体の急激な温度上昇を緩和したり、次の乾燥工程における急激な乾燥を防いだりすることができる。このため、製造された成形体に割れやヒビ等の欠陥が生じたり、成形体が変形したりすることを防止できる。 Further, the out-of-mold curing step is preferably performed in a state where the primary cured product is immersed in a liquid. In particular, in the case of heating, by immersing the primary cured product in a liquid, it is possible to alleviate a rapid temperature rise of the primary cured product and prevent rapid drying in the next drying step. Therefore, it is possible to prevent defects such as cracks and cracks in the manufactured molded product and deformation of the molded product.

一次硬化体を浸漬する液体は、通常は前記混合物に含まれる溶媒と同じであるが、前記混合物に含まれる溶媒と性質が同じであれば異なる種類の液体を用いることができる。典型的には、液体は水であるが、非金属無機材料の種類、成形体の用途等により、アルコール類、有機溶媒などを用いることができる。 The liquid for immersing the primary cured product is usually the same as the solvent contained in the mixture, but different types of liquids can be used as long as they have the same properties as the solvent contained in the mixture. Typically, the liquid is water, but alcohols, organic solvents and the like can be used depending on the type of non-metallic inorganic material, the use of the molded product, and the like.

なお、特許文献3には、セラミックス粉体、分散剤、硬化性樹脂、及び溶媒を含む混合物を成形型内に注入し、そこに硬化剤を入れて硬化させ、硬化体を成形型から脱離させた後、該硬化体を溶媒に浸漬して熱処理し、乾燥、脱脂、焼結を経てセラミック成形体を製造する方法が開示されている。この方法では、脱型工程と乾燥工程の間に硬化体を加熱しており、一見すると本発明に係る製造方法と類似する。しかし、特許文献3の方法では、十分に硬化した状態にある硬化体から成形型を脱離させており、脱型工程と乾燥工程の間の加熱処理では硬化体の硬化反応はほとんど進行しない。また、特許文献3の方法における、脱型工程と乾燥工程の間の加熱工程は、硬化体の乾燥時の割れを抑えることを目的としており、本発明における型外硬化工程とは異なる。 In Patent Document 3, a mixture containing a ceramic powder, a dispersant, a curable resin, and a solvent is injected into a molding mold, and a curing agent is put therein to cure the cured product, and the cured product is removed from the molding mold. A method is disclosed in which the cured product is immersed in a solvent, heat-treated, dried, degreased, and sintered to produce a ceramic molded product. In this method, the cured product is heated between the demolding step and the drying step, and at first glance, it is similar to the manufacturing method according to the present invention. However, in the method of Patent Document 3, the molding die is desorbed from the cured product in a sufficiently cured state, and the curing reaction of the cured product hardly proceeds in the heat treatment between the demolding step and the drying step. Further, the heating step between the demolding step and the drying step in the method of Patent Document 3 aims to suppress cracking of the cured product during drying, and is different from the out-mold curing step in the present invention.

次に、本発明をガラス成形体の製造方法に適用した実施形態について説明する。図1は、ガラス成形体の製造方法の一例を示している。この例では、まず、原料溶液の材料であるシリカ(SiO)ガラス粉体、蒸留水、分散剤、硬化性樹脂をボールミルに入れて混ぜ合わせる(S1)。これにより、各材料が微細に粉砕され、且つ均一に混ぜ合わされた状態の原料溶液が得られる。 Next, an embodiment in which the present invention is applied to a method for producing a glass molded product will be described. FIG. 1 shows an example of a method for manufacturing a glass molded product. In this example, first, silica (SiO 2 ) glass powder, distilled water, a dispersant, and a curable resin, which are the materials of the raw material solution, are put into a ball mill and mixed (S1). As a result, a raw material solution in which each material is finely pulverized and uniformly mixed is obtained.

次に、ボールミルから原料溶液を取り出し、これと硬化剤の混合物を成形型に注入し(S2)、成形型内で自己硬化反応により混合物を硬化(型内硬化反応)させて一次硬化体を得る(S3)。一次硬化体は、完全に硬化する前の状態であって、所定の硬さを有する。一次硬化体の硬さについては後述する。
続いて、一次硬化体を成形型から脱離させる(S4)。その後、常温下又は/及び加熱雰囲気下で一次硬化体の硬化反応(型外硬化反応)を進行させる(S5)。型外硬化反応は、一次硬化体を液体に浸漬した状態又は/及び気体(空気)中に放置した状態で行われる。これにより、硬化反応が略終了した状態の二次硬化体が得られる。
また、二次硬化体を乾燥(S6)、脱脂(S7)、及び焼結(S8)させることで、成形体が完成する。
Next, the raw material solution is taken out from the ball mill, a mixture of this and a curing agent is injected into a molding die (S2), and the mixture is cured by a self-curing reaction in the molding die (in-mold curing reaction) to obtain a primary cured product. (S3). The primary cured product is in a state before it is completely cured and has a predetermined hardness. The hardness of the primary cured product will be described later.
Subsequently, the primary cured product is removed from the molding die (S4). Then, the curing reaction (out-of-mold curing reaction) of the primary cured product is allowed to proceed at room temperature and / and in a heated atmosphere (S5). The out-of-mold curing reaction is carried out in a state where the primary cured product is immersed in a liquid and / or left in a gas (air). As a result, a secondary cured product in a state in which the curing reaction is substantially completed can be obtained.
Further, the molded product is completed by drying (S6), degreasing (S7), and sintering (S8) the secondary cured product.

本実施形態では、原料溶液と硬化剤の混合物が完全に硬化する前の状態の一次硬化体を成形型から脱離させる。したがって、一つの成形体を得るために使用する成形型の使用時間を短縮することができ、成形型の利用効率を上げることができる。 In the present embodiment, the primary cured product in a state before the mixture of the raw material solution and the curing agent is completely cured is removed from the molding die. Therefore, the usage time of the molding die used to obtain one molded body can be shortened, and the utilization efficiency of the molding die can be improved.

以下、実施例を挙げて具体的に説明する。
[実施例1]
表1に示す処方の原料溶液をボールミルに入れ、24時間混合した。そして、ボールミルから混合物を取り出した後、この混合物と硬化剤(表1参照)を成形型に注入し、20℃で、45分、55分、180分、360分、1050分の時間放置した。その後、成形型内で硬化した混合物(以下、硬化体)を成形型から脱離させた。
Hereinafter, examples will be specifically described.
[Example 1]
The raw material solutions of the formulations shown in Table 1 were placed in a ball mill and mixed for 24 hours. Then, after taking out the mixture from the ball mill, the mixture and the curing agent (see Table 1) were injected into a molding mold and left at 20 ° C. for 45 minutes, 55 minutes, 180 minutes, 360 minutes and 1050 minutes. Then, the mixture cured in the molding die (hereinafter, cured product) was removed from the molding die.

Figure 0006913405
Figure 0006913405

硬化体の硬さと放置時間(原料溶液と硬化剤を混合した後の経過時間、つまり硬化時間)を調べるため、成形型から脱離させた直後の硬化体のデュロメータ硬度を測定した。デュロメータ硬度の測定には、株式会社テクロック製デュロメータ(GS−719G、Aタイプ)を用いた。表2に、硬化時間と硬化体のデュロメータ硬度との関係を示す。表2に掲載されているデュロメータ硬度は、各硬化時間につき作製した3個の硬化体のデュロメータ硬度の平均値である。また、360分の硬化時間については、2回に分けてそれぞれ3個の硬化体を作製した。

Figure 0006913405
In order to examine the hardness of the cured product and the leaving time (the elapsed time after mixing the raw material solution and the curing agent, that is, the curing time), the durometer hardness of the cured product immediately after being removed from the molding die was measured. A durometer (GS-719G, A type) manufactured by TECLOCK Co., Ltd. was used for measuring the durometer hardness. Table 2 shows the relationship between the curing time and the durometer hardness of the cured product. The durometer hardness shown in Table 2 is the average value of the durometer hardness of the three cured products prepared for each curing time. Further, with regard to the curing time of 360 minutes, three cured products were prepared in two steps.
Figure 0006913405

次に、成形型を脱離させた後の硬化体を蒸留水に浸漬し、常温で18時間放置(常温放置)した後、蒸留水を55℃に加熱し、さらに2時間放置(55℃加熱)した。常温及び55℃で計20時間放置する工程を以下、「液中硬化工程」ともいう。液中硬化工程の後、蒸留水から硬化体を取り出して、60℃の雰囲気下で48時間放置した(以下、「気体中硬化工程」という)後、120℃で48時間乾燥した(以下、「乾燥工程」という)。液中硬化工程及び気体中硬化工程から本発明の型外硬化工程が構成される。また、常温の蒸留水中で放置する工程、55℃の蒸留水中で放置する工程は、それぞれ本発明の第1工程、第2工程に相当する。 Next, the cured product after desorbing the molding die was immersed in distilled water and left at room temperature for 18 hours (standing at room temperature), then the distilled water was heated to 55 ° C. and left for another 2 hours (heating at 55 ° C.). )did. The step of leaving at room temperature and 55 ° C. for a total of 20 hours is also referred to as a "in-liquid curing step". After the in-liquid curing step, the cured product was taken out from distilled water, left to stand in an atmosphere of 60 ° C. for 48 hours (hereinafter referred to as "in-gas curing step"), and then dried at 120 ° C. for 48 hours (hereinafter referred to as "" "Drying process"). The out-of-mold curing step of the present invention is composed of the in-liquid curing step and the in-gas curing step. Further, the step of leaving in distilled water at room temperature and the step of leaving in distilled water at 55 ° C. correspond to the first step and the second step of the present invention, respectively.

液中硬化工程における常温放置の後、及び55℃加熱の後、気体中硬化工程の後、乾燥工程の後における硬化体のデュロメータ硬度を測定した。それら測定結果のうち、硬化時間が55分である硬化体の脱型後及びその後の各工程の後におけるデュロメータ硬度を表3に、硬化時間が360分である硬化体の、脱型後及びその後の各工程の後におけるデュロメータ硬度を表4に、それぞれ代表して示す。これらの結果から分かるように、硬化時間が55分、360分の硬化体の間には脱型後の硬度に大きな差がみられたが、液中硬化(55℃)の後の硬度、気体中硬化(60℃)の後の硬度には大きな違いは見られなかった。 The durometer hardness of the cured product after being left at room temperature in the in-liquid curing step, after heating at 55 ° C., after the in-gas curing step, and after the drying step was measured. Among these measurement results, Table 3 shows the durometer hardness after demolding of the cured product having a curing time of 55 minutes and after each subsequent step, and after demolding of the cured product having a curing time of 360 minutes and thereafter. Table 4 shows the durometer hardness after each step as a representative. As can be seen from these results, there was a large difference in hardness after demolding between the cured products having a curing time of 55 minutes and 360 minutes, but the hardness and gas after in-liquid curing (55 ° C.) There was no significant difference in hardness after medium curing (60 ° C.).

Figure 0006913405
Figure 0006913405

Figure 0006913405
Figure 0006913405

[実施例2]
実施例2は、原料溶液に含まれるシリカガラス粉体の粒径が実施例1と異なる以外は、実施例1とほぼ同じである。すなわち、表5に示す処方の原料溶液をボールミルに入れ、実施例1と同じ手順、同じ条件で混合物を作製し、この混合物と表5に示す硬化剤を成形型に注入した。混合物と硬化剤を成形型に注入した後、20℃で、55分、65分、70分、180分、360分、1050分の間放置した。その後、成形型内で硬化した混合物(以下、硬化体)を成形型から脱離させ、硬化体を得た。次に、実施例1と同様に、成形型を脱離させた後の硬化体に対して、型外硬化工程(液中硬化工程(常温、55℃)、気体中硬化工程(60℃))、乾燥工程を順に実行した。
[Example 2]
Example 2 is substantially the same as Example 1 except that the particle size of the silica glass powder contained in the raw material solution is different from that of Example 1. That is, the raw material solution of the formulation shown in Table 5 was put into a ball mill, a mixture was prepared under the same procedure and the same conditions as in Example 1, and this mixture and the curing agent shown in Table 5 were injected into a molding die. After injecting the mixture and the curing agent into the mold, the mixture was left at 20 ° C. for 55 minutes, 65 minutes, 70 minutes, 180 minutes, 360 minutes and 1050 minutes. Then, the mixture cured in the molding die (hereinafter, cured product) was removed from the molding die to obtain a cured product. Next, as in Example 1, an out-of-mold curing step (in-liquid curing step (normal temperature, 55 ° C.), in-gas curing step (60 ° C.)) was applied to the cured product after the molding die was removed. , The drying step was carried out in order.

Figure 0006913405
Figure 0006913405

実施例1と同様、成形型から脱離させた直後、液中硬化工程における常温放置の後、及び55℃加熱の後、気体中硬化工程の後、乾燥工程の後における硬化体のデュロメータ硬度を測定した。その結果を表6〜表8に示す。表6は、硬化時間と成形型から脱離させた直後の硬化体のデュロメータ硬度との関係を示している。また、表7は硬化時間が70分である硬化体の、脱型後及びその後の各工程の後におけるデュロメータ硬度を、表8は硬化時間が360分である硬化体の脱型後及びその後の各工程の後におけるデュロメータ硬度を、それぞれ示している。表6〜8から分かるように、実施例2においても、実施例1と同様の結果が得られた。 Similar to Example 1, the durometer hardness of the cured product immediately after being removed from the mold, after being left at room temperature in the in-liquid curing step, after heating at 55 ° C., after the in-gas curing step, and after the drying step. It was measured. The results are shown in Tables 6 to 8. Table 6 shows the relationship between the curing time and the durometer hardness of the cured product immediately after being removed from the mold. Table 7 shows the durometer hardness of the cured product having a curing time of 70 minutes after demolding and after each subsequent step, and Table 8 shows the durometer hardness of the cured product having a curing time of 360 minutes after demolding and after that. The durometer hardness after each step is shown. As can be seen from Tables 6 to 8, the same results as in Example 1 were obtained in Example 2.

Figure 0006913405
Figure 0006913405

Figure 0006913405
Figure 0006913405

Figure 0006913405
Figure 0006913405

図2は、実施例1及び実施例2における、脱型直後の硬化体のデュロメータ硬度と硬化時間との関係を示すグラフである。同グラフの横軸は硬化時間を、縦軸はデュロメータ硬度を表している。また、三角印(△)が実施例1の、丸印(〇)が実施例2の結果を表している。このグラフから分かるように、硬化時間が360分を超えるとその長さに関係なく硬化体のデュロメータ硬度はほぼ一定であったことから、実施例1及び実施例2においては、360分で混合物中の硬化性樹脂の硬化反応がほぼ終了することが分かった。また、このとき、硬化体から蒸留水が排出されて該硬化が収縮していたため、成形型から硬化体を容易に脱離させることができた。 FIG. 2 is a graph showing the relationship between the durometer hardness of the cured product immediately after demolding and the curing time in Examples 1 and 2. The horizontal axis of the graph represents the curing time, and the vertical axis represents the durometer hardness. Further, the triangular mark (Δ) represents the result of Example 1, and the circle mark (◯) represents the result of Example 2. As can be seen from this graph, when the curing time exceeded 360 minutes, the durometer hardness of the cured product was almost constant regardless of the length. Therefore, in Example 1 and Example 2, the mixture was contained in 360 minutes. It was found that the curing reaction of the curable resin was almost completed. Further, at this time, since distilled water was discharged from the cured product and the curing was contracted, the cured product could be easily removed from the molding die.

一方、硬化時間が180分〜360分のときは、硬化がかなり進んでいるにも関わらず、収縮率が小さいため、硬化体を成形型から脱離させるときに割れが発生した。 On the other hand, when the curing time was 180 minutes to 360 minutes, although the curing had progressed considerably, the shrinkage rate was small, so that cracks occurred when the cured product was separated from the molding die.

これに対して、硬化時間が40分〜180分の範囲であれば、硬化体が変形したり、割れが生じたりすることなく、成形型から硬化体を脱離させることができることが分かった。なお、硬化時間が40分〜180分の範囲では、硬化体から水分が排出されておらず、従って収縮もしていないため、硬化体が成形型の内面に固着した状態にある。しかし、この時点では硬化体の硬さが小さいため、成形型を脱離させる際に該成形型の内面から硬化体を剥がすようにしても、硬化体に割れが生じることはなかった。
一方、硬化時間が40分よりも短いときは、成形型から脱離させる際に硬化体が伸びて変形してしまい、硬化体の形状を維持することができなかった。
On the other hand, it was found that when the curing time was in the range of 40 minutes to 180 minutes, the cured product could be desorbed from the mold without being deformed or cracked. When the curing time is in the range of 40 minutes to 180 minutes, water is not discharged from the cured product and therefore the cured product is not shrunk, so that the cured product is in a state of being fixed to the inner surface of the molding die. However, since the hardness of the cured product was small at this point, the cured product was not cracked even if the cured product was peeled off from the inner surface of the mold when the molding mold was removed.
On the other hand, when the curing time was shorter than 40 minutes, the cured product was stretched and deformed when it was removed from the molding die, and the shape of the cured product could not be maintained.

また、図2から明らかなように、実施例1と実施例2の間で、硬化時間とデュロメータ硬度の間に大きな違いがみられなかった。このことから、原料溶液に含まれるシリカガラス粉体の粒径が硬化体の硬さに及ぼす影響は小さいと推測された。 Further, as is clear from FIG. 2, no significant difference was observed between the curing time and the durometer hardness between Example 1 and Example 2. From this, it was presumed that the particle size of the silica glass powder contained in the raw material solution had a small effect on the hardness of the cured product.

図3は、表3、表4、表7及び表8に示されている結果をグラフに表したものである。同グラフの縦軸はデュロメータ硬度を表している。また、図3において、三角印(△)で示す折線は硬化時間が55分(実施例1)及び70分(実施例2)で脱型、つまり硬化反応が十分に進んでいない状態で脱型した硬化体の結果を示している。また、丸印(○)で示す折線は硬化時間が360分(実施例1及び2)で脱型、つまり硬化反応がほぼ終了した状態で脱型した硬化体の結果を示している。 FIG. 3 is a graph showing the results shown in Tables 3, 4, 7, and 8. The vertical axis of the graph represents the durometer hardness. Further, in FIG. 3, the polygonal line indicated by the triangular mark (Δ) is demolded when the curing time is 55 minutes (Example 1) and 70 minutes (Example 2), that is, the curing reaction is not sufficiently advanced. The result of the cured product is shown. Further, the polygonal lines indicated by circles (◯) indicate the results of the cured product that was demolded with a curing time of 360 minutes (Examples 1 and 2), that is, the cured product was demolded in a state where the curing reaction was almost completed.

図3から分かるように、硬化反応が十分に進んでいない状態で脱型した硬化体の脱型直後のデュロメータ硬度の値は、硬化反応がほぼ終了した状態で脱型した硬化体の脱型直後のデュロメータ硬度の値の約半分であったが、液中硬化工程(常温)が終了した時点で両者のデュロメータ硬度はほぼ同程度になった。そして、液中硬化工程(55℃)により、両者の硬化反応はさらに進行してデュロメータ硬度が上がり、乾燥工程が終了した時点の両者のデュロメータ硬度は同等であった。また、実施例1と実施例2ともに同じような結果が得られたことから、原料溶液に含まれるシリカガラス粉体の粒径が脱型後の硬化反応に及ぼす影響は小さいと推測された。 As can be seen from FIG. 3, the value of the durometer hardness immediately after the demolding of the cured product that was demolded when the curing reaction was not sufficiently advanced is immediately after the demolding of the cured product that was demolded when the curing reaction was almost completed. Although it was about half of the value of the durometer hardness in the above, the durometer hardness of both became almost the same when the submerged curing step (normal temperature) was completed. Then, by the submerged curing step (55 ° C.), the curing reaction of both progressed further and the durometer hardness increased, and the durometer hardness of both at the time when the drying step was completed was the same. Further, since the same results were obtained in both Example 1 and Example 2, it was presumed that the particle size of the silica glass powder contained in the raw material solution had a small effect on the curing reaction after demolding.

[実施例3]
表9に示す処方の原料溶液をボールミルに入れ、実施例1と同じ手順、同じ条件で混合物を作製し、この混合物と表9に示す硬化剤を成形型に注入した。これを、以下の表10に示す条件で硬化させた後、脱型し、型外硬化工程(液中硬化(常温)、液中硬化(55℃))、乾燥工程、脱脂工程を経て焼結させ、直径2mm、長さ5mmの石英ガラスキャピラリを製造した。その結果、乾燥工程、脱脂工程、焼結工程のいずれにおいても、硬化体に割れが生じることがなく、良好なシリカガラス成形体が得られた。
[Example 3]
The raw material solutions of the formulations shown in Table 9 were placed in a ball mill to prepare a mixture under the same procedure and conditions as in Example 1, and this mixture and the curing agent shown in Table 9 were injected into a molding die. This is cured under the conditions shown in Table 10 below, then demolded, and sintered through an extramold curing step (in-liquid curing (normal temperature), in-liquid curing (55 ° C.)), a drying step, and a degreasing step. A quartz glass capillary having a diameter of 2 mm and a length of 5 mm was produced. As a result, a good silica glass molded product was obtained without cracking in the cured product in any of the drying step, the degreasing step, and the sintering step.

Figure 0006913405
Figure 0006913405

Figure 0006913405
Figure 0006913405

[実施例4]
表11に示す処方の原料溶液をボールミルに入れ、実施例3と同じ手順、同じ条件で混合物を作製し、この混合物と表11に示す硬化剤を成形型に注入した。これを、以下の表12に示す条件で硬化させた後、脱型し、型外硬化工程(液中硬化(常温)、液中硬化(55℃))、乾燥工程、脱脂工程を経て焼結させ、直径2mm、長さ5mmのセラミックキャピラリを製造した。その結果、乾燥工程、脱脂工程、焼結工程のいずれにおいても、硬化体に割れが生じることがなく、良好なセラミック成形体が得られた。

Figure 0006913405
Figure 0006913405
[Example 4]
The raw material solutions of the formulations shown in Table 11 were placed in a ball mill to prepare a mixture under the same procedure and conditions as in Example 3, and the mixture and the curing agent shown in Table 11 were injected into a molding die. This is cured under the conditions shown in Table 12 below, then demolded, and sintered through an extramold curing step (in-liquid curing (normal temperature), in-liquid curing (55 ° C.)), a drying step, and a degreasing step. A ceramic capillary having a diameter of 2 mm and a length of 5 mm was produced. As a result, a good ceramic molded product was obtained without cracking in the cured product in any of the drying step, the degreasing step, and the sintering step.
Figure 0006913405
Figure 0006913405

Claims (5)

非金属無機材料から成る粉体、溶媒、分散剤、硬化性樹脂を含む原料溶液と硬化剤とを混合して成形型に注入する注入工程と、
前記原料溶液と前記硬化剤の混合物を前記成形型内で硬化させて所定の硬さの一次硬化体を形成する型内硬化工程と、
前記一次硬化体を前記成形型から脱離させる脱型工程と、
前記成形型から脱離された前記一次硬化体の硬化反応を進行させることにより所定の硬さの二次硬化体を得る型外硬化工程と、
前記二次硬化体を乾燥する乾燥工程と、
乾燥後の二次硬化体を脱脂する脱脂工程と、
脱脂後の二次硬化体を焼結する焼結工程と
を順に実行することにより成形体を製造する方法であって、
前記型外硬化工程が、前記一次硬化体を液体に浸漬した状態で硬化反応を進行させる液中硬化工程を有し、
前記一次硬化体の硬さが、前記型外硬化工程で得られた二次硬化体の硬さの40%〜70%である、成形体製造方法。
An injection step in which a raw material solution containing a powder, a solvent, a dispersant, and a curable resin made of a non-metallic inorganic material and a curing agent are mixed and injected into a molding die.
An in-mold curing step of curing a mixture of the raw material solution and the curing agent in the molding mold to form a primary cured product having a predetermined hardness.
A demolding step of desorbing the primary cured product from the molding die,
An out-of-mold curing step of obtaining a secondary cured product having a predetermined hardness by advancing the curing reaction of the primary cured product desorbed from the molding mold.
A drying step of drying the secondary cured product and
A degreasing process that degreases the secondary cured product after drying,
It is a method of manufacturing a molded product by sequentially executing a sintering step of sintering a secondary cured product after degreasing.
The out-mold curing step includes an in-liquid curing step in which the curing reaction proceeds in a state where the primary cured product is immersed in a liquid.
A method for producing a molded product, wherein the hardness of the primary cured product is 40% to 70% of the hardness of the secondary cured product obtained in the extramold curing step.
前記非金属無機材料がシリカガラスである、請求項1に記載の成形体製造方法。 The method for producing a molded product according to claim 1, wherein the non-metallic inorganic material is silica glass. 前記非金属無機材料がセラミックスである、請求項1に記載の成形体製造方法。 The method for producing a molded product according to claim 1, wherein the non-metallic inorganic material is ceramics. 前記液中硬化工程において、常温の液体中で硬化反応を進行させる第1工程と、加熱された液体中で硬化反応を進行させる第2工程が順に行われる請求項1〜3のいずれかに記載の成形体製造方法。 The invention according to any one of claims 1 to 3, wherein in the in-liquid curing step, a first step of proceeding the curing reaction in a liquid at room temperature and a second step of proceeding the curing reaction in a heated liquid are performed in order. Mold manufacturing method. 前記型外硬化工程が、前記液中硬化工程の後に行われる工程であって、前記液体から取り出された硬化体を、前記液中硬化工程における前記液体よりも高温で且つ、乾燥工程における温度よりも低温の気体中に放置し、硬化反応を進行させる気体中硬化工程を有する、請求項1〜4のいずれかに記載の成形体製造方法。 The out-of-mold curing step is a step performed after the in-liquid curing step, and the cured product taken out from the liquid is heated to a higher temperature than the liquid in the in-liquid curing step and from a temperature in the drying step. The method for producing a molded product according to any one of claims 1 to 4, further comprising a curing step in gas in which the curing reaction is allowed to proceed by leaving the material in a low-temperature gas.
JP2020024301A 2020-02-17 2020-02-17 Manufacturing method of molded product Active JP6913405B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020024301A JP6913405B1 (en) 2020-02-17 2020-02-17 Manufacturing method of molded product
JP2021110652A JP7025809B2 (en) 2020-02-17 2021-07-02 Manufacturing method of molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024301A JP6913405B1 (en) 2020-02-17 2020-02-17 Manufacturing method of molded product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021110652A Division JP7025809B2 (en) 2020-02-17 2021-07-02 Manufacturing method of molded product

Publications (2)

Publication Number Publication Date
JP6913405B1 true JP6913405B1 (en) 2021-08-04
JP2021126871A JP2021126871A (en) 2021-09-02

Family

ID=77057436

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020024301A Active JP6913405B1 (en) 2020-02-17 2020-02-17 Manufacturing method of molded product
JP2021110652A Active JP7025809B2 (en) 2020-02-17 2021-07-02 Manufacturing method of molded product

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021110652A Active JP7025809B2 (en) 2020-02-17 2021-07-02 Manufacturing method of molded product

Country Status (1)

Country Link
JP (2) JP6913405B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477352A (en) * 1990-07-19 1992-03-11 Toyota Motor Corp Binder composition for molding ceramic
JP3051897B2 (en) * 1991-05-22 2000-06-12 株式会社日立製作所 Method for producing graphite dispersed ceramic molded body
JP2001105414A (en) * 1999-10-05 2001-04-17 Sekisui Chem Co Ltd Patterned inorganic corner panel, molding device therefor, and manufacturing method therefor
JP4439311B2 (en) * 2003-08-27 2010-03-24 京セラ株式会社 Manufacturing method of three-dimensional structure
JP4601314B2 (en) * 2004-03-29 2010-12-22 京セラ株式会社 Large structure manufacturing method
JP2014058413A (en) 2012-09-14 2014-04-03 Taiheiyo Cement Corp Ceramic preform, and method for producing the same
JP6819235B2 (en) * 2016-11-17 2021-01-27 株式会社リコー Manufacturing method of three-dimensional model and manufacturing equipment of three-dimensional model

Also Published As

Publication number Publication date
JP2021154751A (en) 2021-10-07
JP2021126871A (en) 2021-09-02
JP7025809B2 (en) 2022-02-25

Similar Documents

Publication Publication Date Title
US5611848A (en) Process for preparing refractory molded articles and binders therefor
JP6913405B1 (en) Manufacturing method of molded product
JP3059152B2 (en) Method for producing silica glass by sol-gel process
US6410631B1 (en) Composition for production of silica glass using sol-gel process
JP2013147384A (en) Method for manufacturing optical fiber matrix and optical fiber matrix
CN109970450A (en) A kind of light sensitive ceramics liquid and its ceramic member for 3D printing
JP2007161544A (en) Method for manufacturing glassy carbon
JP2007517253A (en) Production of polymer optical waveguides using molds
JP2014201504A5 (en)
WO2022030583A1 (en) Optical fiber preform and method for producing optical fiber
JP5587959B2 (en) Optical fiber preform manufacturing method
JP2989957B2 (en) Forming method of preform for polarization-maintaining optical fiber
JP5492325B2 (en) Method for manufacturing optical fiber preform and optical fiber preform
JP7213110B2 (en) Quartz glass manufacturing method
JPH06247733A (en) Production of constant-polarization optical fiber preform
CN109834226A (en) A kind of alloy casting composite core and preparation method thereof
JPH06227854A (en) Production of formed ceramic article
JPH0781960A (en) Apparatus for production glass jacket pipe and production of optical fiber
JPS6259545A (en) Production of optical fiber preform
RU2510057C1 (en) Method of making ceramic connector for connecting optical fibres
JP2014205616A (en) Optical fiber preform
JP2000254759A (en) Manufacture of mold for precision casting
RU2215721C2 (en) Method of inhibiting inserted solid-propellant charge
JP3141477U (en) High hardness silicone rubber mold for casting
KR100549424B1 (en) Silica glass composition for sol-gel process

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6913405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150