JP6911402B2 - Powder magnetic core - Google Patents

Powder magnetic core Download PDF

Info

Publication number
JP6911402B2
JP6911402B2 JP2017045492A JP2017045492A JP6911402B2 JP 6911402 B2 JP6911402 B2 JP 6911402B2 JP 2017045492 A JP2017045492 A JP 2017045492A JP 2017045492 A JP2017045492 A JP 2017045492A JP 6911402 B2 JP6911402 B2 JP 6911402B2
Authority
JP
Japan
Prior art keywords
magnetic material
coating
amorphous
crystalline
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017045492A
Other languages
Japanese (ja)
Other versions
JP2018152383A (en
Inventor
遼馬 中澤
遼馬 中澤
毅 ▲高▼橋
毅 ▲高▼橋
小野 裕之
裕之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017045492A priority Critical patent/JP6911402B2/en
Publication of JP2018152383A publication Critical patent/JP2018152383A/en
Application granted granted Critical
Publication of JP6911402B2 publication Critical patent/JP6911402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は圧粉磁心に関し、さらに詳しくは絶縁性の防錆被覆を有する金属磁性材料を含む圧粉磁心に関する。 The present invention relates to a dust core, and more particularly to a powder core containing a metallic magnetic material having an insulating rust preventive coating.

近年、インダクタ、チョークコイル、トランス等といったコイル部品やモーターなどの小型化が求められていることから、フェライトと比較して飽和磁束密度が大きく、直流重畳特性が高磁界まで保たれる金属磁性材料が広く用いられるようになった。金属磁性材料の多くは、Fe系合金で構成されており、金属磁性材料を圧縮成形して得られる圧粉磁心(コア)として広く用いられている。 In recent years, there has been a demand for miniaturization of coil parts such as inductors, choke coils, transformers, and motors. Therefore, a metallic magnetic material having a higher saturation magnetic flux density than ferrite and maintaining DC superimposition characteristics up to a high magnetic field. Has come to be widely used. Most of the metal magnetic materials are composed of Fe-based alloys, and are widely used as powder magnetic cores (cores) obtained by compression molding metal magnetic materials.

圧粉磁心は、様々な環境下で使用され、海浜、海上などの湿潤な環境においても、十分な信頼性、耐久性が求められる。かかる環境下においては、とりわけ高い耐食性、防錆性が要望される。 The dust core is used in various environments, and sufficient reliability and durability are required even in a humid environment such as a beach or the sea. In such an environment, particularly high corrosion resistance and rust prevention are required.

現在、実用化されている圧粉磁心の大部分は、上記のとおりFe系合金で構成されており、水分による浸食を受けやすい。このため、Fe系合金を含む金属磁性材料を用いた機器では、常に錆の発生が危惧される。 Most of the dust cores currently in practical use are composed of Fe-based alloys as described above, and are susceptible to erosion by moisture. For this reason, there is always a concern that rust will occur in equipment using a metallic magnetic material containing an Fe-based alloy.

特許文献1には、耐食性を向上させるCrを含む金属磁性粒子が開示され、さらに金属磁性体粒子の表面にSiO等を含むガラス被膜を形成し、耐食性の向上を図っていることが記載されている。しかし、耐食性を向上させる目的でCrを金属組成に取り込むなどの処置が必須となっており、材料選択の幅を狭めている。また、ガラス被膜は耐食性が低いという問題がある。十分な耐食性を発現させるためには、ガラス被膜の厚みを大きくする必要がある。その結果、金属磁性粒子間の間隔が広がってしまい、圧粉磁心としての透磁率μが低下してしまうと考えられる。 Patent Document 1 discloses metal magnetic particles containing Cr that improve corrosion resistance, and further describes that a glass film containing SiO 2 and the like is formed on the surface of the metal magnetic particles to improve corrosion resistance. ing. However, for the purpose of improving corrosion resistance, measures such as incorporating Cr into the metal composition are indispensable, and the range of material selection is narrowed. Further, the glass coating has a problem of low corrosion resistance. In order to develop sufficient corrosion resistance, it is necessary to increase the thickness of the glass coating. As a result, it is considered that the distance between the metal magnetic particles is widened and the magnetic permeability μ as the dust core is lowered.

また、特許文献2では、内部にコイルが形成された磁性部品をセラミックスおよび樹脂でコーティングすることによって、耐食性を向上させることが記載されている。しかしながら、このようなコーティングを施すには、圧粉磁心を800℃以上の高温で熱処理することが必要となる。圧粉磁心中に絶縁処理した銅の巻き線などを含む場合には、高温に曝されることで巻き線の絶縁性が破壊されてしまうという問題があった。 Further, Patent Document 2 describes that the corrosion resistance is improved by coating a magnetic component having a coil formed therein with ceramics and a resin. However, in order to apply such a coating, it is necessary to heat-treat the dust core at a high temperature of 800 ° C. or higher. When the dust core contains an insulated copper winding or the like, there is a problem that the insulating property of the winding is destroyed by being exposed to a high temperature.

特許文献3では、磁性粒子間の電気的な絶縁を目的として、磁性粒子の表面にMgOを含む層を形成する方法が記載されている。しかしながら、特許文献3に記載の方法では、磁性粒子とMgOとの接合性が弱く、圧粉磁心を成形する際の金型での成形時に、MgOが剥離してしまうことがある。この結果、磁性金属が露出してしまうため、耐食性が著しく低下する。 Patent Document 3 describes a method of forming a layer containing MgO on the surface of magnetic particles for the purpose of electrical insulation between magnetic particles. However, in the method described in Patent Document 3, the bondability between the magnetic particles and MgO is weak, and MgO may be peeled off during molding with a mold when molding the dust core. As a result, the magnetic metal is exposed, so that the corrosion resistance is significantly reduced.

特開2010−62424号公報JP-A-2010-62424 特開2010−118587号公報Japanese Unexamined Patent Publication No. 2010-118587 特表2003−522298号公報Special Table 2003-522298

発錆防止のためには、金属磁性材料を被覆層で被覆することは有望と考えられる。しかし、ガラス被膜は耐食性が不十分であり、十分な耐食性を得る上ではガラス被膜を厚くする必要がある。被覆層の厚みを厚くすると透磁率は低下する。 In order to prevent rusting, it is considered promising to coat the metallic magnetic material with a coating layer. However, the glass coating has insufficient corrosion resistance, and it is necessary to thicken the glass coating in order to obtain sufficient corrosion resistance. The magnetic permeability decreases as the thickness of the coating layer increases.

発錆は酸性または中性環境において進行しやすいため、圧粉磁心の発錆を防止するためには、圧粉磁心内部および圧粉磁心表面をアルカリ性にすることが有効と考えられる。この観点から、磁性粒子表面をMgOで被覆する特許文献3の教示は、有望と考えられる。しかし、上記のとおり、特許文献3の方法では、圧粉磁心の成形時にMgO被覆層が剥落しやすく、圧粉磁心の耐食性の向上には限界があった。 Since rusting tends to proceed in an acidic or neutral environment, it is considered effective to make the inside of the dust core and the surface of the dust core alkaline in order to prevent rusting of the dust core. From this point of view, the teaching of Patent Document 3 in which the surface of magnetic particles is coated with MgO is considered to be promising. However, as described above, in the method of Patent Document 3, the MgO coating layer is easily peeled off during the molding of the dust core, and there is a limit to the improvement of the corrosion resistance of the dust core.

本発明は、このような実状に鑑みてなされ、その目的は、耐食性の良好な圧粉磁心を提供することである。 The present invention has been made in view of such an actual situation, and an object of the present invention is to provide a dust core having good corrosion resistance.

本発明者らは、圧粉磁心を構成する金属磁性粒子の耐食性、特に防錆性の向上を目指し、結晶質の絶縁被膜を、非晶質の絶縁被膜を介して金属磁性粒子に接合することを検討した。ここで、結晶質の絶縁被膜はその結晶性の高さにより、被膜の均一性および緻密性が確保されている。このことは、酸素分子の侵入抑制に効果的であり、耐食性の向上に寄与する。また、靱性の高い非晶質の絶縁被膜が金属磁性粒子と結晶質の絶縁被膜の間に存在することにより、両者の接合性が向上する。このことによって、金型成形時における被膜の剥落が抑制され、防錆効果が維持される。 The present inventors aim to improve the corrosion resistance, particularly the rust prevention property, of the metal magnetic particles constituting the dust core, and bond the crystalline insulating film to the metal magnetic particles via the amorphous insulating film. It was investigated. Here, the crystallinity of the insulating coating ensures the uniformity and denseness of the coating due to its high crystallinity. This is effective in suppressing the invasion of oxygen molecules and contributes to the improvement of corrosion resistance. Further, the presence of an amorphous insulating film having high toughness between the metallic magnetic particles and the crystalline insulating film improves the bondability between the two. As a result, peeling of the coating film during mold molding is suppressed, and the rust preventive effect is maintained.

すなわち、本発明は以下の要旨を含む。
(1)絶縁被膜によって被覆された金属磁性材料を含む圧粉磁心であって、前記絶縁被膜は金属磁性材料の近傍に存在する非晶質部位と、該非晶質部位に接触する結晶質部位とによって構成されていることを特徴とする圧粉磁心。
(2)前記絶縁被膜の断面における全面積に対する前記結晶質部位の面積比率が、20〜95%である、(1)に記載の圧粉磁心。
(3)前記結晶質部位がアルカリ土類金属を含むセラミックスによって構成されている、(1)または(2)に記載の圧粉磁心。
(4)前記非晶質部位がSiおよびOを含む、(1)〜(3)のいずれかに記載の圧粉磁心。
(5)前記絶縁被膜の全体厚みが30〜100nmである、(1)〜(4)にいずれかの記載の圧粉磁心。
That is, the present invention includes the following gist.
(1) A powder magnetic core containing a metallic magnetic material coated with an insulating coating, wherein the insulating coating has an amorphous portion existing in the vicinity of the metallic magnetic material and a crystalline portion in contact with the amorphous portion. A dust core characterized by being composed of.
(2) The dust core according to (1), wherein the area ratio of the crystalline portion to the total area in the cross section of the insulating coating is 20 to 95%.
(3) The dust core according to (1) or (2), wherein the crystalline portion is composed of ceramics containing an alkaline earth metal.
(4) The dust core according to any one of (1) to (3), wherein the amorphous portion contains Si and O.
(5) The dust core according to any one of (1) to (4), wherein the total thickness of the insulating coating is 30 to 100 nm.

本発明では、金属磁性材料を、絶縁被膜が被覆しており、絶縁被膜は金属磁性材料の近傍に存在する非晶質部位と、該非晶質部位に接触する結晶質部位とによって構成されている。結晶質部位は、その結晶性の高さにより、被膜の均一性および緻密性が確保されており、酸素分子の侵入抑制に効果を発揮する。このことは、耐食性の向上に寄与する。また被膜に存在する非晶質部位は靱性が高く、圧粉磁心の成形時における擦れや剪断力に対する耐性が向上し、被覆膜の剥落が防止される。これら二つの部位の相乗的作用により優れた耐食性が達成される。 In the present invention, the metal magnetic material is covered with an insulating coating, and the insulating coating is composed of an amorphous portion existing in the vicinity of the metal magnetic material and a crystalline portion in contact with the amorphous portion. .. Due to its high crystallinity, the crystalline portion ensures the uniformity and denseness of the coating film, and is effective in suppressing the invasion of oxygen molecules. This contributes to the improvement of corrosion resistance. In addition, the amorphous portion existing in the coating film has high toughness, the resistance to rubbing and shearing force during molding of the dust core is improved, and the coating film is prevented from peeling off. Excellent corrosion resistance is achieved by the synergistic action of these two sites.

また、絶縁被膜における結晶質部位の面積割合を20〜95%とすることで、さらに上記の相乗的作用が良好に働き、耐食性がさらに向上する。 Further, by setting the area ratio of the crystalline portion in the insulating film to 20 to 95%, the synergistic action described above works well, and the corrosion resistance is further improved.

結晶質部位を、アルカリ土類金属を含むセラミックスにより構成することが好ましい。絶縁被膜にアルカリ土類金属を導入することで、圧粉磁心内部および圧粉磁心表面がアルカリ性に維持されると考えられる。発錆は酸性または中性環境において進行しやすいため、圧粉磁心内部および圧粉磁心表面をアルカリ性に保つことで、発錆をさらに効果的に防止できる。 It is preferable that the crystalline part is composed of ceramics containing an alkaline earth metal. It is considered that the inside of the dust core and the surface of the dust core are maintained alkaline by introducing an alkaline earth metal into the insulating film. Since rusting tends to proceed in an acidic or neutral environment, rusting can be prevented more effectively by keeping the inside of the dust core and the surface of the dust core alkaline.

非晶質部位を、Si(ケイ素)およびO(酸素)を含む材質、たとえばSi系酸化物で構成することで、非晶質部位を簡便に形成でき、また結晶質部位を、金属磁性材料に強固に接合できる。 By forming the amorphous part with a material containing Si (silicon) and O (oxygen), for example, a Si-based oxide, the amorphous part can be easily formed, and the crystalline part can be made into a metallic magnetic material. Can be firmly joined.

絶縁被膜の全厚を30〜100nmとすることで、さらに耐食性が向上し、またこの範囲の厚みであれば透磁率の低下も抑制される。 By setting the total thickness of the insulating film to 30 to 100 nm, the corrosion resistance is further improved, and if the thickness is within this range, the decrease in magnetic permeability is suppressed.

以下、本発明を、具体的な実施形態に基づき説明するが、本発明の要旨を逸脱しない範囲で種々の改変は許容される。 Hereinafter, the present invention will be described based on specific embodiments, but various modifications are permitted without departing from the gist of the present invention.

(圧粉磁心)
本実施形態に係る圧粉磁心は、絶縁性の防錆被覆を有する金属磁性材料を含み、通常は結合剤として少量の樹脂を含む。金属磁性材料を構成する複数の金属磁性粒子同士が樹脂を介して結合することにより所定の形状に成形されてなる。
(Powder magnetic core)
The dust core according to the present embodiment contains a metallic magnetic material having an insulating rust preventive coating, and usually contains a small amount of resin as a binder. A plurality of metallic magnetic particles constituting the metallic magnetic material are bonded to each other via a resin to be formed into a predetermined shape.

このような圧粉磁心は、コイル型電子部品の磁心として好適に用いられる。たとえば、所定形状の圧粉磁心内部に、ワイヤが巻回された空芯コイルが埋設されたコイル型電子部品であってもよいし、所定形状の圧粉磁心の表面にワイヤが所定の巻き数だけ巻回されてなるコイル型電子部品であってもよい。ワイヤが巻回される磁心の形状としては、FT型、ET型、EI型、UU型、EE型、EER型、UI型、ドラム型、トロイダル型、ポット型、カップ型等を例示することができる。 Such a dust core is preferably used as a magnetic core of a coil type electronic component. For example, it may be a coil-type electronic component in which an air-core coil around which a wire is wound is embedded inside a dust core having a predetermined shape, or a wire may be wound on the surface of a dust core having a predetermined shape. It may be a coil-type electronic component that is simply wound. Examples of the shape of the magnetic core around which the wire is wound include an FT type, an ET type, an EI type, a UU type, an EE type, an ER type, a UI type, a drum type, a toroidal type, a pot type, and a cup type. can.

(金属磁性材料)
本実施形態に係る圧粉磁心を構成する金属磁性材料は、形状は特に限定はされないが、通常は粒子状である。本実施形態では、金属磁性材料の粒子径には特に制限はないが、粒子径の中央値(D50)は1μm〜100μmであると、透磁率が高いという点で好ましい。なお、上記の粒子径は、後述する絶縁被膜を有する粒子についての粒子径を意味する。
(Metallic magnetic material)
The metal magnetic material constituting the dust core according to the present embodiment is not particularly limited in shape, but is usually in the form of particles. In the present embodiment, the particle size of the metal magnetic material is not particularly limited, but the median particle size (D50) of 1 μm to 100 μm is preferable in that the magnetic permeability is high. The above particle size means the particle size of the particles having an insulating coating, which will be described later.

金属磁性材料は、特に限定はされないが、好ましくは軟磁性粒子であり、また耐食性、防錆性の向上が求められるFe系軟磁性粒子であれば、本発明の効果が特に有効に作用する。Fe系磁性粒子は、具体的には、純鉄、Fe系合金、Fe−Si系合金、Fe−Al系合金、Fe−Ni系合金、Fe−Si−Al系合金、Fe−Co系合金、Fe系アモルファス合金、Fe系ナノ結晶合金等が例示され、純鉄またはFe−Si系合金であることがより好ましい。 The metal magnetic material is not particularly limited, but is preferably soft magnetic particles, and the effect of the present invention works particularly effectively as long as it is Fe-based soft magnetic particles that are required to have improved corrosion resistance and rust prevention. Specifically, the Fe-based magnetic particles include pure iron, Fe-based alloys, Fe-Si-based alloys, Fe-Al-based alloys, Fe-Ni-based alloys, Fe-Si-Al-based alloys, and Fe-Co-based alloys. Examples thereof include Fe-based amorphous alloys and Fe-based nanocrystalline alloys, and pure iron or Fe—Si based alloys are more preferable.

好ましい金属磁性材料であるFe−Si系合金では、FeおよびSiの含有量が合計80重量%以上である。また、FeとSiとの比率には特に制限はないが、重量比でSi/Fe=0/100〜10/90であると、飽和磁荷が高くなり好ましい。 In the Fe—Si based alloy, which is a preferable metallic magnetic material, the total content of Fe and Si is 80% by weight or more. Further, the ratio of Fe and Si is not particularly limited, but when the weight ratio is Si / Fe = 0/100 to 10/90, the saturated magnetic charge becomes high, which is preferable.

本実施形態では、金属磁性材料は、材質が同じ金属磁性粒子から構成されていてもよいし、材質が異なる複数種の金属磁性粒子が混在して構成されていてもよい。たとえば、金属磁性材料は、Fe系合金粒子と、Fe−Si系合金粒子との混合物であってもよい。 In the present embodiment, the metal magnetic material may be composed of metal magnetic particles of the same material, or may be composed of a mixture of a plurality of types of metal magnetic particles having different materials. For example, the metal magnetic material may be a mixture of Fe-based alloy particles and Fe—Si-based alloy particles.

金属磁性材料の作製方法には特に制限はないが、例えばガスアトマイズ法、水アトマイズ法などが挙げられる。 The method for producing the metallic magnetic material is not particularly limited, and examples thereof include a gas atomizing method and a water atomizing method.

(絶縁被膜およびその形成法)
本実施形態では、金属磁性材料は、絶縁被膜によって被覆されており、本絶縁被膜は金属磁性材料の近傍に存在する非晶質部位と、該非晶質部位に接触する結晶質部位とによって構成されている。
(Insulation film and its formation method)
In the present embodiment, the metallic magnetic material is covered with an insulating coating, and the insulating coating is composed of an amorphous portion existing in the vicinity of the metallic magnetic material and a crystalline portion in contact with the amorphous portion. ing.

本実施形態で、「結晶質部位」とは、絶縁被膜のTEMによる格子縞観察において、格子縞が確認される部位をいい、「非晶質部位」とはそれ以外の部位、すなわち格子縞が確認されない部位をいう。 In the present embodiment, the "crystalline part" means a part where the plaid is confirmed in the TEM observation of the insulating coating, and the "amorphous part" is a part other than that, that is, a part where the plaid is not confirmed. To say.

本実施形態で「被覆されている」とは、金属磁性材料表面に上記絶縁被膜が直接形成されている態様、および金属磁性材料表面に形成された他の層を介して絶縁被膜が形成されている態様の両者を包含する。絶縁被膜は、金属磁性材料の表面が露出しないように、全面を覆っていることが好ましい。また、他の層が形成される場合には、粒子表面の少なくとも一部を絶縁被膜が覆っていればよいが、表面の全部を覆っていることが好ましい。さらに、絶縁被膜は粒子の表面を連続的に覆っていてもよいし、断続的に覆っていてもよい。 In the present embodiment, "coated" means that the insulating film is directly formed on the surface of the metal magnetic material, and that the insulating film is formed via another layer formed on the surface of the metal magnetic material. Includes both of these aspects. The insulating coating preferably covers the entire surface so that the surface of the metallic magnetic material is not exposed. When another layer is formed, at least a part of the particle surface may be covered with an insulating film, but it is preferable that the entire surface is covered. Further, the insulating coating may continuously or intermittently cover the surface of the particles.

結晶質部位は、結晶化した材料により構成されていれば特に限定はされない。絶縁被膜が結晶質部位を含むことで、被膜の均一性および緻密性が確保されている。このことは、酸素分子の侵入抑制に効果的であり、耐食性の向上に寄与する。耐食性をさらに向上する観点から、結晶質部位は発錆を防止する材料により構成されていることが好ましい。発錆を防止する材料としては、雰囲気を塩基性とできる物質がより好ましく、具体的にはアルカリ土類金属を含むセラミックス、等が挙げられる。本実施形態では、防錆材料としては、結晶の生成が容易であり、防錆性に優れるアルカリ土類金属を含むセラミックスが特に好ましい。 The crystalline portion is not particularly limited as long as it is composed of a crystallized material. Since the insulating film contains crystalline parts, the uniformity and denseness of the film are ensured. This is effective in suppressing the invasion of oxygen molecules and contributes to the improvement of corrosion resistance. From the viewpoint of further improving the corrosion resistance, it is preferable that the crystalline portion is made of a material that prevents rusting. As a material for preventing rust, a substance capable of making the atmosphere basic is more preferable, and specific examples thereof include ceramics containing an alkaline earth metal. In the present embodiment, as the rust preventive material, ceramics containing an alkaline earth metal, which is easy to form crystals and has excellent rust preventive properties, is particularly preferable.

本実施形態では、アルカリ土類金属を含むセラミックスは、アルカリ土類金属を含む無機化合物からなり、具体的には、アルカリ土類金属の酸化物または複合酸化物、アルカリ土類金属の水酸化物、アルカリ土類金属の炭酸塩、アルカリ土類金属のハロゲン化物、アルカリ土類金属のリン酸塩等が例示される。中でも、アルカリ土類金属の酸化物が好ましい。 In the present embodiment, the ceramics containing an alkaline earth metal is composed of an inorganic compound containing an alkaline earth metal, specifically, an oxide or a composite oxide of an alkaline earth metal, or a hydroxide of an alkaline earth metal. , Carbonates of alkaline earth metals, halides of alkaline earth metals, phosphates of alkaline earth metals and the like are exemplified. Of these, oxides of alkaline earth metals are preferable.

また、アルカリ土類金属としては、Mg(マグネシウム)、Ca(カルシウム)およびBa(バリウム)が例示され、本実施形態では、Mgが特に好ましい。 Further, examples of the alkaline earth metal include Mg (magnesium), Ca (calcium) and Ba (barium), and Mg is particularly preferable in this embodiment.

該セラミックスは、アルカリ土類金属を含む無機化合物のみから構成されていてもよいし、アルカリ土類金属を含む無機化合物以外の化合物を含んでいても良い。アルカリ土類金属を含む無機化合物以外の化合物は、無機化合物であってもよいし、有機化合物であってもよい。本実施形態では、アルカリ土類金属を含む無機化合物以外の化合物として、リン酸塩、Alを含有する酸化物、Siを含有する酸化物等が例示され、Alを含有する酸化物(アルミナ)が特に好ましい。 The ceramics may be composed of only an inorganic compound containing an alkaline earth metal, or may contain a compound other than the inorganic compound containing an alkaline earth metal. The compound other than the inorganic compound containing an alkaline earth metal may be an inorganic compound or an organic compound. In the present embodiment, as compounds other than the inorganic compound containing an alkaline earth metal, phosphates, oxides containing Al, oxides containing Si and the like are exemplified, and oxides containing Al (alumina) are used. Especially preferable.

アルカリ土類金属を含むセラミックスにより結晶質部位を形成することで圧粉磁心が良好な耐食性を有する理由は必ずしも明らかではないが、たとえば、以下のように推測される。すなわち、金属磁性材料の絶縁被膜がアルカリ土類金属を含むセラミックスを結晶質部位として含むことで、金属磁性材料の表面近傍の環境が適度にアルカリ性に制御されると考えられる。その結果、圧粉磁心の表面または内部に水分、特に塩分を含む水分が存在している場合であっても、金属磁性粒子の酸化(錆の進行)が抑制され、良好な耐食性、特に防錆性を示す。 The reason why the dust core has good corrosion resistance by forming the crystalline part with ceramics containing an alkaline earth metal is not always clear, but it is presumed as follows, for example. That is, it is considered that the environment near the surface of the metal magnetic material is appropriately controlled to be alkaline by including ceramics containing an alkaline earth metal as a crystalline part in the insulating film of the metal magnetic material. As a result, even when water, especially water containing salt, is present on or inside the dust core, oxidation of the metal magnetic particles (progression of rust) is suppressed, and good corrosion resistance, especially rust prevention. Show sex.

また、別の態様では、結晶性部位は、Alを含有する酸化物、Siを含有する酸化物あるいはCrを含有する酸化物から構成されていてもよい。このような酸化物としては、たとえばAl、SiO、Crなどが挙げられる。 In another aspect, the crystalline moiety may be composed of an oxide containing Al, an oxide containing Si, or an oxide containing Cr. Examples of such oxides include Al 2 O 3 , SiO 2 , Cr 2 O 3 and the like.

結晶質部位は、TEM観察により確認できる。絶縁被膜のTEMの格子縞観察により、格子縞が確認される部位とされない部位とが確認される。ここで、格子縞が確認された場所を結晶質部位、確認されない部位を非晶質部位と判断する。各部分の元素マッピングにより各部位の組成は確認される。 The crystalline part can be confirmed by TEM observation. By TEM observation of the checkered fringes of the insulating film, it is confirmed that the part where the checkered pattern is confirmed and the part where the checkered pattern is not confirmed. Here, the place where the plaid is confirmed is determined to be a crystalline part, and the part where no plaid is confirmed is determined to be an amorphous part. The composition of each part is confirmed by elemental mapping of each part.

金属磁性粒子の絶縁被膜の組成を確認する方法としては、絶縁被膜に含まれる金属元素の量を定量的に測定できる方法を用いることが好ましい。本実施形態では、圧粉磁心の断面を掘削加工し、薄片を切り出し、TEM−EDS観察によって、元素マッピングを行う。得られた元素マッピングにより絶縁被膜の組成を確認する。これらの具体的方法は、後述する。 As a method for confirming the composition of the insulating coating of the metal magnetic particles, it is preferable to use a method capable of quantitatively measuring the amount of metal elements contained in the insulating coating. In the present embodiment, the cross section of the dust core is excavated, flakes are cut out, and element mapping is performed by TEM-EDS observation. The composition of the insulating coating is confirmed by the obtained element mapping. These specific methods will be described later.

非晶質部位は、非結晶の材料により構成されていれば特に限定はされないが、金属磁性材料と絶縁被膜との接合性を向上する観点から、靱性が高い材料により構成されていることがより好ましい。好ましい非晶質材料としては、Si(ケイ素)およびO(酸素)を含む材料、B、Al、B−Al等が挙げられる。本実施形態では、非晶質部位は、SiおよびOを含む材料、すなわち、Si系酸化物からなることが特に好ましい。Si系酸化物は、Siを含有する酸化物であり、たとえばSiO等の酸化ケイ素により形成されている。 The amorphous portion is not particularly limited as long as it is composed of a non-crystalline material, but it is more likely that the amorphous portion is composed of a material having high toughness from the viewpoint of improving the bondability between the metal magnetic material and the insulating coating. preferable. Preferred amorphous materials include materials containing Si (silicon) and O (oxygen), B 2 O 3 , Al 2 O 3 , B 2 O 3- Al 2 O 3, and the like. In the present embodiment, it is particularly preferable that the amorphous portion is made of a material containing Si and O, that is, a Si-based oxide. The Si-based oxide is an oxide containing Si, and is formed of, for example, silicon oxide such as SiO 2.

絶縁被膜が非晶質部位を含むことで、圧粉磁心の成形時における擦れや剪断力に対する耐性が向上し、絶縁被膜の剥落が防止される。 Since the insulating film contains an amorphous portion, the resistance to rubbing and shearing force during molding of the dust core is improved, and the insulating film is prevented from peeling off.

絶縁被膜における結晶質部位の割合は、絶縁被膜の全面積に対する結晶質部位の面積比率で、好ましくは20〜95%、さらに好ましくは40〜80%、特に好ましくは60〜80%の範囲ある。結晶質部位の面積比率は、絶縁被膜の断面のTEM観察により確認できる。結晶質部位の面積比率が高くなり過ぎると、非晶質部位による機能(剥落防止)が損なわれ、耐食性が低下することがある。 The ratio of the crystalline portion in the insulating coating is the area ratio of the crystalline portion to the total area of the insulating coating, preferably in the range of 20 to 95%, more preferably 40 to 80%, and particularly preferably 60 to 80%. The area ratio of the crystalline part can be confirmed by TEM observation of the cross section of the insulating film. If the area ratio of the crystalline part becomes too high, the function (prevention of peeling) by the amorphous part is impaired, and the corrosion resistance may decrease.

結晶質部位の面積比率を上記範囲に制御することで、結晶質部位による機能(耐食性の向上)と、非晶質部位による機能(剥落防止)との相乗効果により、優れた耐食性が達成される。 By controlling the area ratio of the crystalline part within the above range, excellent corrosion resistance is achieved by the synergistic effect of the function of the crystalline part (improvement of corrosion resistance) and the function of the amorphous part (prevention of peeling). ..

絶縁被膜の厚みは、好ましくは5〜160nm、さらに好ましくは30〜100nm、特に好ましくは50〜95nmの範囲にある。絶縁被膜の厚みが薄過ぎると十分な耐食性が得られず、また厚過ぎると金属磁性材料間の間隔が広がってしまい、圧粉磁心としての透磁率μが低下することがある。また、別の好ましい態様では、絶縁被膜の厚みは5〜50nmであってもよい。絶縁被膜が薄いと透磁率は向上する。また別の好ましい態様では、絶縁被膜の厚みは、95〜160nmであってもよい。絶縁被膜の厚みが厚いと、耐食性は向上する。 The thickness of the insulating coating is preferably in the range of 5 to 160 nm, more preferably 30 to 100 nm, and particularly preferably 50 to 95 nm. If the thickness of the insulating film is too thin, sufficient corrosion resistance cannot be obtained, and if it is too thick, the distance between the metal magnetic materials may be widened, and the magnetic permeability μ as the dust core may decrease. In another preferred embodiment, the thickness of the insulating coating may be 5 to 50 nm. The thinner the insulating film, the better the magnetic permeability. In yet another preferred embodiment, the thickness of the insulating coating may be 95-160 nm. The thicker the insulating coating, the better the corrosion resistance.

また、本実施形態では、結晶質部位と非晶質部位とは、絶縁被膜中で偏在している。すなわち、絶縁被膜の厚み方向において、金属磁性材料に近い領域に非晶質部位が多く偏在し、絶縁被膜の表面近傍に結晶質部位が多く偏在する。具体的には、絶縁被膜の全厚に対し、金属磁性材料の表面から30%以下の領域に、非晶質部位の80%以上が偏在し、絶縁被膜の表面から70%以下の領域に、結晶質部位の80%以上が偏在していることが好ましい。 Further, in the present embodiment, the crystalline portion and the amorphous portion are unevenly distributed in the insulating film. That is, in the thickness direction of the insulating coating, many amorphous portions are unevenly distributed in the region close to the metallic magnetic material, and many crystalline portions are unevenly distributed near the surface of the insulating coating. Specifically, with respect to the total thickness of the insulating coating, 80% or more of the amorphous parts are unevenly distributed in the region of 30% or less from the surface of the metal magnetic material, and 70% or less of the surface of the insulating coating. It is preferable that 80% or more of the crystalline parts are unevenly distributed.

非晶質部位が金属磁性材料の表面近傍に偏在することで、非晶質部位が金属磁性材料に密着しやすくなり、絶縁被膜と金属磁性材料との接合強度が高くなり、圧粉磁心の成形時における擦れや剪断力に対する耐性が向上し、絶縁被膜の剥落が防止される。結晶質部位が絶縁被膜の表面近傍に偏在することで、絶縁被膜の表面の均一性および緻密性が確保される。この結果、金属磁性材料内部への酸素分子の侵入が抑制され、耐食性が向上する。周囲に水分が存在している場合であっても、金属磁性粒子の酸化(錆の進行)が抑制され、良好な耐食性、特に防錆性を示す。 Since the amorphous part is unevenly distributed near the surface of the metal magnetic material, the amorphous part easily adheres to the metal magnetic material, the bonding strength between the insulating film and the metal magnetic material is increased, and the powder magnetic core is formed. The resistance to rubbing and shearing force at times is improved, and the insulating film is prevented from peeling off. The uneven distribution of crystalline portions near the surface of the insulating coating ensures the uniformity and denseness of the surface of the insulating coating. As a result, the invasion of oxygen molecules into the metal magnetic material is suppressed, and the corrosion resistance is improved. Even when water is present in the surroundings, oxidation of the metal magnetic particles (progress of rust) is suppressed, and good corrosion resistance, especially rust prevention, is exhibited.

絶縁被膜は、金属磁性材料の表面に直接形成されていてもよいが、Fe系酸化物膜を介して金属磁性材料上に形成されていてもよい。Fe系酸化物膜は、Feを含有する酸化物膜であり、たとえばFe、FeO等の酸化鉄により形成されている。Fe系酸化物膜を設ける場合、その平均厚みは、好ましくは1〜50nm、さらに好ましくは10〜30nm、特に好ましくは15〜25nmの範囲にある。 The insulating film may be formed directly on the surface of the metal magnetic material, or may be formed on the metal magnetic material via an Fe-based oxide film. The Fe-based oxide film is an oxide film containing Fe, and is formed of, for example, iron oxide such as Fe 2 O 3 and Fe O. When the Fe-based oxide film is provided, its average thickness is preferably in the range of 1 to 50 nm, more preferably 10 to 30 nm, and particularly preferably 15 to 25 nm.

絶縁被膜と金属磁性材料との間に、Fe系酸化物膜を介在させることで、絶縁被膜がFe系酸化物膜を介して金属磁性材料に強固に接合され、絶縁被膜が剥がれづらくなり、圧粉磁心の耐食性はさらに向上する。またFe系酸化物膜の厚みが50nm以下であれば、金属磁性材料間の間隔が過度に離間しないため、圧粉磁心としての透磁率μの低下も抑制される。 By interposing an Fe-based oxide film between the insulating film and the metal magnetic material, the insulating film is firmly bonded to the metal magnetic material via the Fe-based oxide film, and the insulating film is hard to peel off, resulting in pressure. The corrosion resistance of the powder magnetic core is further improved. Further, when the thickness of the Fe-based oxide film is 50 nm or less, the distance between the metal magnetic materials is not excessively separated, so that the decrease in the magnetic permeability μ as the dust core is suppressed.

本実施形態では、金属磁性材料は、絶縁被膜により被覆され、金属材料は実質的に露出しない。すなわち、金属磁性材料は、実質的に全表面が絶縁被膜により被覆されてなることが好ましい。しかしながら、製法上の制限などにより、一部の金属表面が露出することは不可避的に生じ得る。したがって、本実施形態においては、金属磁性材料の全表面のうち、10%以下の面積で金属表面が露出していることは許容される。 In the present embodiment, the metallic magnetic material is covered with an insulating coating, and the metallic material is substantially not exposed. That is, it is preferable that substantially the entire surface of the metallic magnetic material is covered with an insulating film. However, it is unavoidable that a part of the metal surface is exposed due to restrictions on the manufacturing method or the like. Therefore, in the present embodiment, it is permissible that the metal surface is exposed in an area of 10% or less of the entire surface of the metal magnetic material.

また、本実施形態では、圧粉磁心を構成する金属磁性材料のうち、個数割合で90%以上の粒子が絶縁被膜により被覆されていることが好ましく、全て(100%)の粒子が絶縁被膜により被覆されていることがより好ましい。すなわち、圧粉磁心を構成する金属磁性材料は、10%未満の割合で、絶縁被膜で被覆されていないか、あるいは被覆が不十分な粒子を含んでいても良い。なお、被覆が不十分な粒子とは、粒子の全表面のうち、50%以上の面積で金属表面が露出している粒子を意味する。 Further, in the present embodiment, it is preferable that 90% or more of the metal magnetic materials constituting the dust core are covered with the insulating coating, and all (100%) particles are covered with the insulating coating. It is more preferable that it is coated. That is, the metal magnetic material constituting the dust core may contain particles that are not coated with the insulating coating or are insufficiently coated at a ratio of less than 10%. The particles with insufficient coating mean particles in which the metal surface is exposed in an area of 50% or more of the entire surface of the particles.

結晶質部位と非晶質部位とを含む絶縁被膜で被覆された金属磁性材料の製法は特に限定はされない。たとえば非晶質部位の前駆体材料で金属磁性材料を被覆し、前駆体材料により被覆された金属磁性材料を熱処理し、非晶質部位を形成する。また、結晶質部位の前駆体材料で金属磁性材料を被覆し、前駆体材料により被覆された金属磁性材料を熱処理し、結晶質部位を形成する。 The method for producing the metallic magnetic material coated with the insulating film including the crystalline portion and the amorphous portion is not particularly limited. For example, the metal magnetic material is coated with the precursor material of the amorphous portion, and the metal magnetic material coated with the precursor material is heat-treated to form the amorphous portion. Further, the metal magnetic material is coated with the precursor material of the crystalline portion, and the metallic magnetic material coated with the precursor material is heat-treated to form the crystalline portion.

結晶質部位の形成と非晶質部位の形成とは、同時に行っても良く、逐次的に行っても良い。好ましくは非晶質部位を形成した後に、結晶質部位を形成する。この順で各部位を形成することで、非晶質部位が金属磁性材料側に偏在した絶縁被膜が得られる。以下、非晶質部位がSiおよびOを含むSi系酸化物であり、結晶質部位がアルカリ土類金属を含むセラミックスからなる場合を例にとり、絶縁被膜の形成法を説明する。 The formation of the crystalline portion and the formation of the amorphous portion may be performed simultaneously or sequentially. Preferably, after forming the amorphous part, the crystalline part is formed. By forming each part in this order, an insulating film in which the amorphous part is unevenly distributed on the metal magnetic material side can be obtained. Hereinafter, a method for forming an insulating film will be described by taking as an example a case where the amorphous portion is a Si-based oxide containing Si and O and the crystalline portion is made of ceramics containing an alkaline earth metal.

Si系酸化物からなる非晶質部位は、アルコキシシランなどのSi源を金属磁性材料に噴霧、乾燥し、熱処理することで形成できる。熱処理条件はたとえばアルゴン雰囲気中で約400〜550℃、10時間程度であればよい。熱処理温度が高過ぎると、結晶化することがある。非晶質部位の面積比率は、アルコキシシランの湿式塗布量により制御でき、また、アルコキシシランのコーティングおよび熱処理を複数回行うことで非晶質部位(Si系酸化物)の面積比率を制御することもできる。 Amorphous moieties made of Si-based oxides can be formed by spraying a Si source such as alkoxysilane onto a metallic magnetic material, drying it, and heat-treating it. The heat treatment conditions may be, for example, about 400 to 550 ° C. for about 10 hours in an argon atmosphere. If the heat treatment temperature is too high, it may crystallize. The area ratio of the amorphous part can be controlled by the wet coating amount of alkoxysilane, and the area ratio of the amorphous part (Si-based oxide) can be controlled by performing the alkoxysilane coating and heat treatment multiple times. You can also.

金属磁性材料に、Si系酸化物を形成した後に、結晶質部位(アルカリ土類金属含有セラミックス)の前駆体物質の溶液を噴霧、乾燥し、熱処理することで、結晶質部位を形成できる。前駆体物質の溶液は、たとえば、所定のイオン結晶(Mg(NO等)をアセトン等の溶媒に溶解して得られる。熱処理条件はたとえば大気中で約600〜1200℃、10時間程度であればよい。なお、結晶質部位の形成時に、熱処理温度が高過ぎると、非晶質部位が結晶化することがあるため、結晶質部位の構成材料の結晶化温度と、非晶質部位の構成材料の結晶化温度を勘案して、各部位の構成材料および熱処理温度を決定することが好ましい。結晶質部位の面積比率は、被膜原料の塗工量により制御でき、また、被膜原料溶液のコーティングおよび熱処理を複数回行うことで結晶質部位の面積比率を制御することもできる。 After forming a Si-based oxide on the metallic magnetic material, a crystalline portion can be formed by spraying, drying, and heat-treating a solution of a precursor substance of the crystalline portion (alkaline earth metal-containing ceramics). The solution of the precursor substance is obtained, for example, by dissolving a predetermined ionic crystal (Mg (NO 3 ) 2, etc.) in a solvent such as acetone. The heat treatment conditions may be, for example, about 600 to 1200 ° C. for about 10 hours in the atmosphere. If the heat treatment temperature is too high during the formation of the crystalline part, the amorphous part may crystallize. Therefore, the crystallization temperature of the constituent material of the crystalline part and the crystal of the constituent material of the amorphous part. It is preferable to determine the constituent material of each part and the heat treatment temperature in consideration of the crystallization temperature. The area ratio of the crystalline portion can be controlled by the amount of coating of the coating raw material, and the area ratio of the crystalline portion can also be controlled by performing the coating and heat treatment of the coating raw material solution a plurality of times.

金属磁性材料がFe系磁性材料の場合には、粉体の表面酸化によりFe系酸化物膜を形成できる。酸化膜の形成は、弱い酸化雰囲気中で熱処理することで行われる。熱処理条件は特に限定はされないが、たとえば大気中、約800℃で行うことができる。熱処理時間を調整することで、Fe系酸化物膜の厚みを制御できる。金属磁性材料の表面にFe系酸化物膜を形成した後に、上記方法により絶縁被膜を形成することで、Fe系酸化膜を介して、絶縁被膜を金属磁性材料上に形成できる。 When the metal magnetic material is an Fe-based magnetic material, an Fe-based oxide film can be formed by surface oxidation of the powder. The oxide film is formed by heat treatment in a weak oxidizing atmosphere. The heat treatment conditions are not particularly limited, but can be performed, for example, in the air at about 800 ° C. By adjusting the heat treatment time, the thickness of the Fe-based oxide film can be controlled. By forming the Fe-based oxide film on the surface of the metal magnetic material and then forming the insulating film by the above method, the insulating film can be formed on the metal magnetic material via the Fe-based oxide film.

また金属磁性材料が非Fe系磁性材料の場合には、Feを含有する溶液を金属磁性材料に噴霧し、熱処理することで、Fe系酸化物膜を形成できる。 When the metal magnetic material is a non-Fe-based magnetic material, an Fe-based oxide film can be formed by spraying a solution containing Fe on the metal magnetic material and heat-treating the metal magnetic material.

上記には、絶縁被膜の形成法の一例を示したが、本発明ではこれらの形成法に限定されることはなく、他の湿式法、乾式法であってもよい。また、結晶質部位と非晶質部位との間には、相互の成分が一部固溶した固溶層が形成されていてもよい。 Although an example of the method for forming the insulating film is shown above, the present invention is not limited to these forming methods, and other wet methods and dry methods may be used. Further, a solid solution layer in which mutual components are partially dissolved may be formed between the crystalline part and the amorphous part.

(樹脂)
圧粉磁心を構成する樹脂としては、公知の樹脂を用いることができる。具体的には、各種有機高分子樹脂、シリコーン樹脂、フェノール樹脂、エポキシ樹脂および水ガラス等が例示される。金属磁性材料および樹脂の含有量には特に制限はない。圧粉磁心全体に占める金属磁性材料の含有量は90重量%〜98重量%であることが好ましく、樹脂の含有量は2重量%〜10重量%であることが好ましい。
(resin)
A known resin can be used as the resin constituting the dust core. Specifically, various organic polymer resins, silicone resins, phenol resins, epoxy resins, water glasses and the like are exemplified. The contents of the metallic magnetic material and the resin are not particularly limited. The content of the metal magnetic material in the entire dust core is preferably 90% by weight to 98% by weight, and the content of the resin is preferably 2% by weight to 10% by weight.

(圧粉磁心の製造方法)
圧粉磁心の製造方法としては、特に制限されず、公知の方法を採用することができる。まず、絶縁被膜で被覆された金属磁性材料と、結合剤としての公知の樹脂とを混合し、混合物を得る。また、必要に応じて、得られた混合物を造粒粉としてもよい。そして、混合物または造粒粉を金型内に充填して圧縮成形し、作製すべき磁性体(圧粉磁心)の形状を有する成形体を得る。得られた成形体に対して、熱処理を行うことにより、金属磁性粒子が固定された所定形状の圧粉磁心が得られる。熱硬化処理の条件に特に制限はなく、例えば150〜220℃で1〜10時間、熱処理を行う。また、熱処理時の雰囲気にも特に制限はなく、大気中で熱処理をしてもよい。得られた圧粉磁心に、ワイヤを所定回数だけ巻回することにより、インダクタ等のコイル型電子部品が得られる。
(Manufacturing method of dust core)
The method for producing the dust core is not particularly limited, and a known method can be adopted. First, a metallic magnetic material coated with an insulating coating and a known resin as a binder are mixed to obtain a mixture. Further, if necessary, the obtained mixture may be used as a granulated powder. Then, the mixture or granulated powder is filled in a mold and compression molded to obtain a molded product having the shape of a magnetic material (compact magnetic core) to be produced. By heat-treating the obtained molded product, a dust core having a predetermined shape in which metal magnetic particles are fixed can be obtained. The conditions of the thermosetting treatment are not particularly limited, and heat treatment is performed at 150 to 220 ° C. for 1 to 10 hours, for example. Further, the atmosphere at the time of heat treatment is not particularly limited, and the heat treatment may be performed in the atmosphere. A coil-type electronic component such as an inductor can be obtained by winding a wire around the obtained dust core a predetermined number of times.

また、上記の混合物または造粒粉と、ワイヤを所定回数だけ巻回して形成された空心コイルとを、金型内に充填して圧縮成形しコイルが内部に埋設された成形体を得てもよい。得られた成形体に対して、熱処理を行うことにより、コイルが埋設された所定形状の圧粉磁心が得られる。このような圧粉磁心は、その内部にコイルが埋設されているので、インダクタ等のコイル型電子部品として機能する。 Further, even if the above mixture or granulated powder and an air-core coil formed by winding a wire a predetermined number of times are filled in a mold and compression-molded to obtain a molded body in which the coil is embedded inside. good. By heat-treating the obtained molded product, a dust core having a predetermined shape in which a coil is embedded can be obtained. Since a coil is embedded in such a dust core, it functions as a coil-type electronic component such as an inductor.

以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and may be modified in various ways within the scope of the present invention.

以下、実施例を用いて、発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

金属磁性材料として、重量比でSi/Fe=4.5/95.5のFe−Si系合金粒子をガスアトマイズ法で作製した。なお、当該Fe−Si系合金粒子の粒子径の中央値(D50)は5μmであった。 As a metallic magnetic material, Fe—Si alloy particles having a weight ratio of Si / Fe = 4.5 / 95.5 were produced by a gas atomization method. The median particle size (D50) of the Fe—Si alloy particles was 5 μm.

(非晶質部位の形成)
(試料1〜15、17〜24、28〜41)
金属磁性材料に、アルコキシシラン溶液を湿式噴霧した。アルコキシシラン溶液としてトリメトキシシランの50質量%溶液を用いた。ここで湿式塗布は5mL/分で行い、湿式塗布の時間を調整することで、塗布量を調整し、非晶質部位の形成量を制御した。湿式噴霧後の粉体をアルゴン雰囲気中400℃で10時間、加熱処理を行い、Si系酸化物からなる非晶質部位を形成した。
(Formation of amorphous part)
(Samples 1-15, 17-24, 28-41)
An alkoxysilane solution was wet-sprayed onto the metallic magnetic material. A 50% by mass solution of trimethoxysilane was used as the alkoxysilane solution. Here, the wet coating was performed at 5 mL / min, and the coating amount was adjusted by adjusting the wet coating time to control the formation amount of the amorphous portion. The powder after wet spraying was heat-treated at 400 ° C. for 10 hours in an argon atmosphere to form an amorphous portion composed of a Si-based oxide.

(試料25)
金属磁性材料に、Al(NOのアセトン溶液を湿式噴霧した。溶液中でのAl(NOの濃度は5wt%とした。ここで、湿式塗布は5mL/分で塗布を行い、湿式塗布の時間を調整することで、塗布量を調整し、非晶質部位の形成量を制御した。湿式噴霧後の粉体をアルゴン雰囲気中550℃で10時間、加熱処理を行い、Alからなる非晶質部位を形成した。
(Sample 25)
The metal magnetic material was wet-sprayed with an acetone solution of Al (NO 3 ) 3. The concentration of Al (NO 3 ) 3 in the solution was 5 wt%. Here, the wet coating was performed at 5 mL / min, and the coating amount was adjusted by adjusting the wet coating time to control the formation amount of the amorphous portion. The powder after wet spraying was heat-treated at 550 ° C. for 10 hours in an argon atmosphere to form an amorphous portion composed of Al 2 O 3.

(試料26)
金属磁性材料に、トリエトキシボランのアセトン溶液を湿式噴霧した。溶液中でのトリエトキシボランの濃度は50質量%とした。ここで、湿式塗布は5mL/分で塗布を行い、湿式塗布の時間を調整することで、塗布量を調整し、非晶質部位の形成量を制御した。湿式噴霧後の粉体をアルゴン雰囲気中500℃で10時間、加熱処理を行い、Bからなる非晶質部位を形成した。
(Sample 26)
Acetone solution of triethoxyborane was wet-sprayed on the metallic magnetic material. The concentration of triethoxyborane in the solution was 50% by mass. Here, the wet coating was performed at 5 mL / min, and the coating amount was adjusted by adjusting the wet coating time to control the formation amount of the amorphous portion. The powder after wet spraying was heat-treated at 500 ° C. for 10 hours in an argon atmosphere to form an amorphous portion composed of B 2 O 3.

(試料27)
金属磁性材料に、トリエトキシボランおよびトリメトキシシランを混合し、アセトンに溶かした溶液を湿式噴霧した。溶液中のトリエトキシボランおよびトリメトキシシランの合計量を50質量%とし、両者の比率を10質量%:40質量%とした。ここで、湿式塗布は5mL/分で塗布を行い、湿式塗布の時間を調整することで、塗布量を調整し、非晶質部位の形成量を制御した。湿式噴霧後の粉体をアルゴン雰囲気中450℃で10時間、加熱処理を行い、B−SiOからなる非晶質部位を形成した。
(Sample 27)
Triethoxyborane and trimethoxysilane were mixed with the metallic magnetic material, and a solution dissolved in acetone was wet-sprayed. The total amount of triethoxyborane and trimethoxysilane in the solution was 50% by mass, and the ratio of both was 10% by mass: 40% by mass. Here, the wet coating was performed at 5 mL / min, and the coating amount was adjusted by adjusting the wet coating time to control the formation amount of the amorphous portion. The powder after wet spraying was heat-treated at 450 ° C. for 10 hours in an argon atmosphere to form an amorphous portion composed of B 2 O 3- SiO 2.

(試料16)
試料16では、非晶質部位の生成を行わずに、後述の結晶質部位の生成を行った。
(Sample 16)
In Sample 16, the crystalline part described later was generated without forming the amorphous part.

(結晶質部位の形成)
(試料2〜16、25〜41)
Mg(NOを、アセトンに溶解または分散し、濃度5重量%のアルカリ土類金属化合物溶液を調製した。非晶質部位を形成した金属磁性材料(ただし、試料16では金属磁性材料のみ)に、アルカリ土類金属化合物溶液を湿式塗布した。湿式塗布後の粉体を700℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。ここで湿式塗布量を5mL/分とし、湿式塗布の時間を調整することで、塗布量を調整し、結晶質部位の形成量を制御した。
(Formation of crystalline part)
(Samples 2-16, 25-41)
Mg (NO 3 ) 2 was dissolved or dispersed in acetone to prepare an alkaline earth metal compound solution having a concentration of 5% by weight. An alkaline earth metal compound solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed (however, only the metallic magnetic material in Sample 16). The powder after wet coating was heat-treated at 700 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion. Here, the wet coating amount was set to 5 mL / min, and the wet coating time was adjusted to adjust the coating amount and control the formation amount of the crystalline portion.

(試料17)
Mg(NOおよびAl(NOを、アセトンに溶解または分散し、濃度5重量%の溶液を調製した。ここで、溶液中のMg(NOおよびAl(NOについて、両者の比率を4.5重量%:0.5重量%とした。非晶質部位を形成した金属磁性材料に、上記溶液を湿式塗布した。ここで、湿式塗布は5mL/分で塗布を行い、湿式塗布の時間を調整することで、塗布量を調整し、結晶質部位の形成量を制御した。湿式塗布後の粉体を900℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 17)
Mg (NO 3 ) 2 and Al (NO 3 ) 3 were dissolved or dispersed in acetone to prepare a solution having a concentration of 5% by weight. Here, the ratio of Mg (NO 3 ) 2 and Al (NO 3 ) 3 in the solution was set to 4.5% by weight: 0.5% by weight. The above solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed. Here, the wet coating was performed at 5 mL / min, and the coating amount was adjusted by adjusting the wet coating time to control the formation amount of the crystalline portion. The powder after wet coating was heat-treated at 900 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料18)
Mg(NOを、アセトンに溶解または分散し、濃度5重量%のアルカリ土類金属化合物溶液を調製した。非晶質部位を形成した金属磁性材料に、アルカリ土類金属化合物溶液を湿式塗布した。湿式塗布後の粉体を600℃で10時間、加熱処理を行った。その後、85℃85%RHの湿度環境下に24時間保管することにより、MgOをMg(OH)とし、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 18)
Mg (NO 3 ) 2 was dissolved or dispersed in acetone to prepare an alkaline earth metal compound solution having a concentration of 5% by weight. An alkaline earth metal compound solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed. The powder after wet coating was heat-treated at 600 ° C. for 10 hours. Then, by storing in a humidity environment of 85 ° C. and 85% RH for 24 hours, MgO was changed to Mg (OH) 2, and a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion was obtained.

(試料19)
Ba(NOを、アセトンに溶解または分散し、濃度5重量%のアルカリ土類金属化合物溶液を調製した。非晶質部位を形成した金属磁性材料に、アルカリ土類金属化合物溶液を湿式塗布した。湿式塗布後の粉体を750℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 19)
Ba (NO 3 ) 2 was dissolved or dispersed in acetone to prepare an alkaline earth metal compound solution having a concentration of 5% by weight. An alkaline earth metal compound solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed. The powder after wet coating was heat-treated at 750 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料20)
Ca(NOを、アセトンに溶解または分散し、濃度5重量%のアルカリ土類金属化合物溶液を調製した。非晶質部位を形成した金属磁性材料に、アルカリ土類金属化合物溶液を湿式塗布した。湿式塗布後の粉体を800℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 20)
Ca (NO 3 ) 2 was dissolved or dispersed in acetone to prepare an alkaline earth metal compound solution having a concentration of 5% by weight. An alkaline earth metal compound solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed. The powder after wet coating was heat-treated at 800 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料21)
Sr(NOを、アセトンに溶解または分散し、濃度5重量%のアルカリ土類金属化合物溶液を調製した。非晶質部位を形成した金属磁性材料に、アルカリ土類金属化合物溶液を湿式塗布した。湿式塗布後の粉体を900℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 21)
Sr (NO 3 ) 2 was dissolved or dispersed in acetone to prepare an alkaline earth metal compound solution having a concentration of 5% by weight. An alkaline earth metal compound solution was wet-coated on the metallic magnetic material on which the amorphous portion was formed. The powder after wet coating was heat-treated at 900 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料22)
トリメトキシシランを、アセトンに溶解し、濃度50質量%の溶液を調製した。非晶質部位を形成した金属磁性材料に、本溶液を湿式塗布した。湿式塗布後の粉体を1000℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 22)
Trimethoxysilane was dissolved in acetone to prepare a solution having a concentration of 50% by mass. This solution was wet-coated on the metallic magnetic material on which the amorphous part was formed. The powder after wet coating was heat-treated at 1000 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料23)
Al(NOを、アセトンに溶解または分散し、濃度5重量%の溶液を調製した。非晶質部位を形成した金属磁性材料に、本溶液を湿式塗布した。湿式塗布後の粉体を1200℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 23)
Al (NO 3 ) 3 was dissolved or dispersed in acetone to prepare a solution having a concentration of 5% by weight. This solution was wet-coated on the metallic magnetic material on which the amorphous part was formed. The powder after wet coating was heat-treated at 1200 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料24)
Cr(NOを、アセトンに溶解または分散し、濃度5重量%の溶液を調製した。非晶質部位を形成した金属磁性材料に、本溶液を湿式塗布した。湿式塗布後の粉体を700℃で10時間、加熱処理を行い、結晶質部位と非晶質部位とを含む絶縁被膜を有する金属磁性材料を得た。
(Sample 24)
Cr (NO 3 ) 3 was dissolved or dispersed in acetone to prepare a solution having a concentration of 5% by weight. This solution was wet-coated on the metallic magnetic material on which the amorphous part was formed. The powder after wet coating was heat-treated at 700 ° C. for 10 hours to obtain a metallic magnetic material having an insulating film containing a crystalline portion and an amorphous portion.

(試料1)
試料1では、非晶質部位のみを形成し、結晶質部位の生成を行わなかった。
(Sample 1)
In Sample 1, only the amorphous part was formed, and the crystalline part was not formed.

結晶質部位と非晶質部位の面積比率は、被膜原料の塗布量の比率(「非晶質部を形成する時の塗布時間」と「結晶質部を形成する時の塗布時間」の比率)を調整することで制御した。 The area ratio between the crystalline part and the amorphous part is the ratio of the coating amount of the coating material (the ratio of "the coating time when forming the amorphous part" and "the coating time when forming the crystalline part"). Was controlled by adjusting.

(圧粉磁心の製造)
結合剤として、熱硬化樹脂であるエポキシ樹脂および硬化剤であるイミド樹脂を準備した。上記で得られた絶縁被膜を形成した金属磁性材料100質量%に対して、結合剤4質量%およびアセトンを加え、溶液を噴霧乾燥し、顆粒を得た。得られた顆粒を、355μmのメッシュで整粒した。整粒後の粉末を外径17.5mm、内径11.0mmのトロイダル形状の金型内に充填し、成形圧980MPaで加圧し圧粉磁心の成形体を得た。成形体重量は5gとした。作製した圧粉磁心の成形体を200℃で5時間、大気中での熱硬化処理を行い、試料1〜41の圧粉磁心を得た。
(Manufacturing of dust core)
As a binder, an epoxy resin as a thermosetting resin and an imide resin as a curing agent were prepared. To 100% by mass of the metal magnetic material having the insulating film formed above, 4% by mass of the binder and acetone were added, and the solution was spray-dried to obtain granules. The obtained granules were sized with a 355 μm mesh. The powder after sizing was filled in a toroidal mold having an outer diameter of 17.5 mm and an inner diameter of 11.0 mm, and pressed at a molding pressure of 980 MPa to obtain a compact magnetic core molded body. The weight of the molded product was 5 g. The prepared compact magnetic core was heat-cured in the air at 200 ° C. for 5 hours to obtain a dust core of Samples 1-41.

<絶縁被膜の確認>
得られた圧粉磁心を切断し、研磨を行うことによって、圧粉磁心の断面を露出させた。露出させた断面を集束イオンビーム(FIB:Focused Ion Beam)によって掘削加工し、面積1μm×1μm、厚み100nmの薄片を切り出した。得られた薄片をTEMにより観察し、500nm×500nmの視野で画像解析を行った。
<Confirmation of insulating film>
The obtained dust core was cut and polished to expose the cross section of the dust core. The exposed cross section was excavated by a focused ion beam (FIB), and a thin piece having an area of 1 μm × 1 μm and a thickness of 100 nm was cut out. The obtained flakes were observed by TEM, and image analysis was performed in a field of view of 500 nm × 500 nm.

金属磁性材料を除く部分(絶縁被膜)で、TEMの格子縞観察を行い、格子縞が確認される部位と確認されない部位で二値化を行った。格子縞が確認された部位を結晶質部位、確認されない部位を非晶質部位と判断した。全視野の面積に対する結晶質部位の面積から、結晶質部位の面積比率を算出した。 The TEM lattice fringes were observed in the portion (insulating coating) excluding the metallic magnetic material, and binarization was performed in the portion where the lattice fringes were confirmed and the portion where the lattice fringes were not confirmed. The part where the plaid was confirmed was judged to be a crystalline part, and the part where no plaid was confirmed was judged to be an amorphous part. The area ratio of the crystalline part was calculated from the area of the crystalline part with respect to the area of the entire visual field.

TEM−EDS観察によって、結晶質部位、非晶質部位の組成を確認した。結晶質部位および非晶質部位が、表1に記載の材質からなることを確認した。 The composition of the crystalline part and the amorphous part was confirmed by TEM-EDS observation. It was confirmed that the crystalline part and the amorphous part were made of the materials shown in Table 1.

<膜厚測定>
絶縁被膜の膜厚をTEM観察により計測した。金属磁性材料の表面から絶縁被膜に垂線を作図し、絶縁被膜に接触している線分の長さを計測した。計測は10か所で行い、線分の長さの平均値を絶縁被膜の厚みとした。
<Film thickness measurement>
The film thickness of the insulating film was measured by TEM observation. A perpendicular line was drawn from the surface of the metallic magnetic material to the insulating film, and the length of the line segment in contact with the insulating film was measured. The measurement was performed at 10 points, and the average value of the lengths of the line segments was taken as the thickness of the insulating coating.

<耐食性>
作製した圧粉磁心の成形体に対し、5%食塩水溶液を噴霧して、35℃で24時間保持する試験を行った。試験後の圧粉磁心をイオン交換水で洗浄し、乾燥させた後、発錆状況を光学顕微鏡(50倍)で観察し、3mm×3mmの視野内において錆が占める面積率を算出した。測定点は1サンプルにつき10点とし、平均の錆面積率を算出した。結果を表1に示す。
<Corrosion resistance>
A test was conducted in which a 5% aqueous salt solution was sprayed onto the prepared compact magnetic core molded product and kept at 35 ° C. for 24 hours. After the powder magnetic core after the test was washed with ion-exchanged water and dried, the rusting condition was observed with an optical microscope (50 times), and the area ratio occupied by rust in a field of view of 3 mm × 3 mm was calculated. The number of measurement points was 10 per sample, and the average rust area ratio was calculated. The results are shown in Table 1.

<透磁率>
得られた圧粉磁心について、初透磁率を測定した。初透磁率は、圧粉磁心にワイヤを巻きつけ巻き数を50turnとして、LCRメーター(HP社LCR428A)によって測定した。
<Permeability>
The initial magnetic permeability of the obtained dust core was measured. The initial magnetic permeability was measured by an LCR meter (HP LCR428A) with a wire wound around a dust core and the number of turns set to 50 turns.

以上の結果を下表にまとめる。表中、※を付した試料番号は、比較実験例を示す。 The above results are summarized in the table below. In the table, sample numbers marked with * indicate comparative experimental examples.

Figure 0006911402
Figure 0006911402

試料1および試料16より、結晶質部位あるいは非晶質部位のいずれか一方が含まれていない絶縁被膜では、十分な耐食性が得られないことが分かる。試料2〜15より、結晶質部位と非晶質部位との面積比率を適切な範囲に制御することで、耐食性が改善されることが分かる。試料17〜24より、結晶質部位が、MgO以外のアルカリ土類金属化合物やシリカ、アルミナ、酸化クロムであっても、良好な耐食性が達成されることが分かる。試料25〜27より、非晶質部位がAl、Bあるいはこれらの複合物であっても、SiOと同様に、良好な耐食性が達成されることが分かる。試料28〜41より、絶縁被膜の厚みが厚くなると、耐食性は良好ではあるが、初透磁率が低下することが分かる。 From Sample 1 and Sample 16, it can be seen that sufficient corrosion resistance cannot be obtained with an insulating coating that does not contain either a crystalline portion or an amorphous portion. From Samples 2 to 15, it can be seen that the corrosion resistance is improved by controlling the area ratio between the crystalline part and the amorphous part within an appropriate range. From Samples 17 to 24, it can be seen that good corrosion resistance is achieved even if the crystalline portion is an alkaline earth metal compound other than MgO, silica, alumina, or chromium oxide. From Samples 25 to 27, it can be seen that even if the amorphous portion is Al 2 O 3 , B 2 O 3, or a composite thereof, good corrosion resistance is achieved as in SiO 2. It can be seen from Samples 28 to 41 that when the thickness of the insulating film is thicker, the corrosion resistance is good, but the initial magnetic permeability is lowered.

Claims (4)

絶縁被膜によって被覆された金属磁性材料を含む圧粉磁心であって、前記絶縁被膜は金属磁性材料の近傍に存在する非晶質部位と、該非晶質部位に接触する結晶質部位とによって構成され
前記結晶質部位がアルカリ土類金属を含むセラミックスによって構成されていることを特徴とする圧粉磁心。
It is a dust core containing a metallic magnetic material coated with an insulating coating, and the insulating coating is composed of an amorphous portion existing in the vicinity of the metallic magnetic material and a crystalline portion in contact with the amorphous portion. ,
A dust core characterized in that the crystalline portion is composed of ceramics containing an alkaline earth metal.
前記絶縁被膜の断面における全面積に対する前記結晶質部位の面積比率が、20〜95%である、請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the area ratio of the crystalline portion to the total area in the cross section of the insulating coating is 20 to 95%. 前記非晶質部位がSiおよびOを含む、請求項1または2に記載の圧粉磁心。 The dust core according to claim 1 or 2 , wherein the amorphous portion contains Si and O. 前記絶縁被膜の全体厚みが30〜100nmである、請求項1〜にいずれかの記載の圧粉磁心。 The dust core according to any one of claims 1 to 3 , wherein the total thickness of the insulating coating is 30 to 100 nm.
JP2017045492A 2017-03-09 2017-03-09 Powder magnetic core Active JP6911402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045492A JP6911402B2 (en) 2017-03-09 2017-03-09 Powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045492A JP6911402B2 (en) 2017-03-09 2017-03-09 Powder magnetic core

Publications (2)

Publication Number Publication Date
JP2018152383A JP2018152383A (en) 2018-09-27
JP6911402B2 true JP6911402B2 (en) 2021-07-28

Family

ID=63680589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045492A Active JP6911402B2 (en) 2017-03-09 2017-03-09 Powder magnetic core

Country Status (1)

Country Link
JP (1) JP6911402B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298568B2 (en) 2020-08-25 2023-06-27 株式会社村田製作所 Magnetic powder production method and powder compact production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278147B2 (en) * 2003-11-12 2009-06-10 株式会社豊田中央研究所 Powder for magnetic core, dust core and method for producing the same
JP2006324612A (en) * 2005-04-20 2006-11-30 Mitsubishi Materials Pmg Corp Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
JP4483624B2 (en) * 2005-02-25 2010-06-16 Jfeスチール株式会社 Soft magnetic metal powder for dust core and dust core
JP4883755B2 (en) * 2005-05-31 2012-02-22 株式会社ダイヤメット Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP4706411B2 (en) * 2005-09-21 2011-06-22 住友電気工業株式会社 Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP2013138159A (en) * 2011-12-28 2013-07-11 Diamet:Kk Composite soft magnetic material and production method therefor
JP6075605B2 (en) * 2012-09-14 2017-02-08 アイシン精機株式会社 Soft magnetic material and manufacturing method thereof
JP6384752B2 (en) * 2014-07-15 2018-09-05 日立金属株式会社 Magnetic core and coil component using the same

Also Published As

Publication number Publication date
JP2018152383A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6926419B2 (en) Powder magnetic core
JP6504287B1 (en) Soft magnetic metal powder, dust core and magnetic parts
EP3537460B1 (en) Soft magnetic metal powder, dust core, and magnetic component
JP2010062424A (en) Manufacturing method of electronic component
JP5327765B2 (en) Powder core
EP3537458A1 (en) Soft magnetic metal powder, dust core, and magnetic component
KR20180103769A (en) Dust Core
JP6911402B2 (en) Powder magnetic core
JP2007273929A (en) Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method
JP6911401B2 (en) Powder magnetic core
JP2021174936A (en) Composite particle, core, and electronic component
JP6790531B2 (en) Soft magnetic metal powder and powder magnetic core
JP6790584B2 (en) Soft magnetic metal powder and powder magnetic core
CN109961917B (en) Dust core and inductance element
JP6891638B2 (en) Powder magnetic core
JP2021174935A (en) Mold, core, and electronic component
JP7268522B2 (en) Soft magnetic powders, magnetic cores and electronic components
JP7268521B2 (en) Soft magnetic powders, magnetic cores and electronic components
JP2021022732A (en) Soft magnetic powder, magnetic core, and electronic component
JP6911294B2 (en) Soft magnetic metal powder and powder magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150