JP6910763B2 - Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media - Google Patents

Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media Download PDF

Info

Publication number
JP6910763B2
JP6910763B2 JP2016138303A JP2016138303A JP6910763B2 JP 6910763 B2 JP6910763 B2 JP 6910763B2 JP 2016138303 A JP2016138303 A JP 2016138303A JP 2016138303 A JP2016138303 A JP 2016138303A JP 6910763 B2 JP6910763 B2 JP 6910763B2
Authority
JP
Japan
Prior art keywords
light
light source
subject
information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016138303A
Other languages
Japanese (ja)
Other versions
JP2018010116A (en
Inventor
智暁 井上
智暁 井上
義明 井田
義明 井田
祐一 楠美
祐一 楠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016138303A priority Critical patent/JP6910763B2/en
Publication of JP2018010116A publication Critical patent/JP2018010116A/en
Application granted granted Critical
Publication of JP6910763B2 publication Critical patent/JP6910763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Control For Cameras (AREA)

Description

本発明は、処理装置、処理システム、撮像装置、処理方法、プログラム、および記録媒体に関する。 The present invention relates to a processing device, a processing system, an imaging device, a processing method, a program, and a recording medium.

被写体に関するより多くの物理情報を取得しておくことで、撮像後の画像処理において、物理モデルに基づく画像生成を行うことができる。例えば、被写体の見えを変更した画像を生成することが可能となる。被写体の見えは、被写体の形状情報、被写体の反射率情報、または光源情報などの情報で決定される。光源から射出され被写体によって反射された反射光の物理的な振る舞いは局所的な面法線に依存するため、形状情報としては3次元形状ではなく面法線情報を用いることが特に有効である。 By acquiring more physical information about the subject, it is possible to generate an image based on the physical model in the image processing after imaging. For example, it is possible to generate an image in which the appearance of the subject is changed. The appearance of the subject is determined by information such as the shape information of the subject, the reflectance information of the subject, or the light source information. Since the physical behavior of the reflected light emitted from the light source and reflected by the subject depends on the local surface normal, it is particularly effective to use the surface normal information instead of the three-dimensional shape as the shape information.

従来、被写体の面法線と光源方向に基づいた反射特性を仮定し、複数の光源位置での被写体の輝度情報と仮定した反射特性から面法線を決定する照度差ステレオ法が知られている(例えば、非特許文献1参照)。被写体の反射特性としてはランバートの余弦則に従うランバート反射モデルが用いられることが多い。 Conventionally, an illuminance difference stereo method is known in which the reflection characteristics based on the surface normal of the subject and the direction of the light source are assumed, and the surface normal is determined from the reflection characteristics assumed to be the brightness information of the subject at a plurality of light source positions. (See, for example, Non-Patent Document 1). As the reflection characteristic of the subject, a Lambertian reflection model that follows Lambert's cosine law is often used.

一般的に、物体の反射光は、鏡面反射光と拡散反射光の各成分を有する。鏡面反射光とは、物体表面での正反射であり、物体表面(界面)においてフレネルの式に従うフレネル反射を指す。拡散反射光とは、被写体の表面を透過した後に物体内部で散乱されて返ってくる光を指す。鏡面反射成分はランバートの余弦則では表せないため、撮像装置で観測される被写体からの反射光に鏡面反射成分が含まれていると、照度差ステレオ法を用いて面法線を正確に算出することができない。光源からの光が当たらない陰影部においても仮定した反射モデルからのずれが生じ、被写体の面法線情報を正確に取得することができない。例えば、特許文献1では、4つ以上の光源を使用して得られた複数の面法線候補から、真の面法線を求める方法が開示されている。 Generally, the reflected light of an object has each component of specular reflected light and diffuse reflected light. Specular reflection light is regular reflection on the surface of an object, and refers to Fresnel reflection according to Fresnel's equation on the surface (interface) of an object. Diffuse reflected light refers to light that is scattered inside an object and returned after passing through the surface of the subject. Since the specular reflection component cannot be expressed by Lambert's cosine law, if the specular reflection component is included in the reflected light from the subject observed by the imaging device, the surface normal is calculated accurately using the illuminance difference stereo method. Can't. Even in the shaded area where the light from the light source does not hit, there is a deviation from the assumed reflection model, and it is not possible to accurately acquire the surface normal information of the subject. For example, Patent Document 1 discloses a method of obtaining a true surface normal from a plurality of surface normal candidates obtained by using four or more light sources.

また、低照度の被写体を撮影する際の光量確保のために、閃光装置を光源として備える撮像装置が知られている。例えば、特許文献2では、反射光量の測光値と被写体までの距離情報に基づいて閃光装置の発光量を制御する撮像装置が開示されている。 Further, an imaging device including a flash device as a light source is known in order to secure the amount of light when photographing a low-illuminance subject. For example, Patent Document 2 discloses an imaging device that controls the amount of light emitted by a flash device based on a photometric value of the amount of reflected light and distance information to a subject.

特開2010−122158号公報JP-A-2010-122158 特許第3880148号公報Japanese Patent No. 3880148

松下康之、“照度差ステレオ”、情報処理学会研究報告、Vol.2011−CVIM−177、No.29、pp.1−12、2011Yasuyuki Matsushita, "Illuminance Difference Stereo", Information Processing Society of Japan Research Report, Vol. 2011-CVIM-177, No. 29, pp. 1-12, 2011

デジタルカメラなどの撮像装置において照度差ステレオ法を用いて被写体の面法線を取得するためには、照射光源位置ごとの輝度情報の異なる複数の画像が必要となる。照度差ステレオ法では、複数の画像間での輝度の差異に基づいて面法線を算出する。光源の発光量が適切でない場合、画像内に含まれる面法線算出対象の被写体部分に白飛びや黒潰れといった現象が生じ、複数の画像間での輝度の差異が正確に算出できない。複数の画像間での輝度の差異が正確に算出できない部分では、算出された面法線は真の面法線から大きくずれてしまう。非特許文献1、特許文献1、および特許文献2では、照度差ステレオ法に使用する画像取得時の各光源の発光量の制御については開示されていない。また、複数の光源を個別に発光させて使用するが、複数の光源の適正発光量をそれぞれ算出することは煩雑である。 In order to acquire the surface normal of a subject by using the illuminance difference stereo method in an imaging device such as a digital camera, a plurality of images having different luminance information for each irradiation light source position are required. In the illuminance difference stereo method, the surface normal is calculated based on the difference in brightness between a plurality of images. If the amount of light emitted by the light source is not appropriate, phenomena such as overexposure and underexposure may occur in the subject portion of the surface normal calculation target included in the image, and the difference in brightness between a plurality of images cannot be calculated accurately. In the part where the difference in brightness between a plurality of images cannot be calculated accurately, the calculated surface normal deviates greatly from the true surface normal. Non-Patent Document 1, Patent Document 1, and Patent Document 2 do not disclose the control of the amount of light emitted from each light source at the time of image acquisition used in the illuminance difference stereo method. Further, although a plurality of light sources are individually made to emit light, it is complicated to calculate the appropriate amount of light emitted from each of the plurality of light sources.

このような課題に鑑みて、本発明は、照度差ステレオ法に適するように光源の発光量を簡易に制御可能であり、高精度に面法線を算出可能な処理装置、処理システム、撮像装置、処理方法、プログラム、および記録媒体を提供することを目的とする。 In view of these problems, the present invention has a processing device, a processing system, and an imaging device capable of easily controlling the amount of light emitted from a light source so as to be suitable for the illuminance difference stereo method and calculating surface normals with high accuracy. , Processing methods, programs, and recording media.

本発明の一側面としての処理装置は、互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする。
本発明の他の側面としての処理装置は、互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、前記被写体までの被写体距離を算出する距離算出部と、前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件と、前記被写体距離に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、前記各光源の位置と照射角度は固定されていることを特徴とする。
本発明の他の側面としての処理装置は、互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、前記光源の位置と照射角度の少なくとも一方を含む光源情報を取得する取得部と、前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件と、前記光源情報に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする。
The processing device as one aspect of the present invention is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images, and the three or more light sources. The first photometric value of the reflected light from the subject, the information on the amount of light emitted by the light source in the preliminary light emission, and the information on the amount of light emitted by the light source in the preliminary light emission, and the three or more light sources are acquired without making the preliminary light emission. a second photometric value of the reflected light from the subject, based on imaging conditions, have a control unit for controlling the light emission amount of each light source in acquiring the three or more images, and the position of each light source The irradiation angle is fixed, and the image is acquired at a subject distance equal to or greater than a predetermined subject distance .
The processing device as another aspect of the present invention is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images, and is a processing device for acquiring three or more images. A distance calculation unit that calculates the distance, a first light measurement value of the reflected light from the subject acquired by simultaneously pre-emission of the three or more light sources, information on the amount of light emitted by the light source in the pre-emission, and information on the amount of light emitted by the light source in the preliminary light emission. When acquiring the three or more images based on the second photometric value of the reflected light from the subject, the imaging conditions, and the subject distance, which are acquired without preliminarily emitting the three or more light sources. It has a control unit that controls the amount of light emitted from each light source, and is characterized in that the position and irradiation angle of each light source are fixed.
The processing device as another aspect of the present invention is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images, and is a processing device that obtains three or more images. An acquisition unit that acquires light source information including at least one of the irradiation angles, a first photometric value of the reflected light from the subject acquired by simultaneously pre-emitting the three or more light sources, and the light source in the pre-emission. Based on the information on the amount of light emitted by the above, the second metering value of the reflected light from the subject acquired without pre-illuminating the three or more light sources, the imaging conditions, and the light source information, the three or more. It has a control unit that controls the amount of light emitted from each light source when acquiring the image of the above, and is characterized in that the acquisition of the image is performed at a subject distance equal to or greater than a predetermined subject distance.

また、本発明の他の側面としての処理システムは、互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理システムであって、前記3つ以上の光源を同時に予備発光させた際の被写体からの反射光の第1測光値を取得する測光部と、前記第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を撮像する際の各光源の発光量を制御する制御部を有し、前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする。 Further, the processing system as another aspect of the present invention is a processing system that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images. A photometric unit that acquires the first photometric value of the reflected light from the subject when the above light sources are simultaneously pre-emitted , the first photometric value, information on the amount of light emitted by the light source in the pre-emission, and the above 3. Control the amount of light emitted by each light source when capturing three or more images based on the second photometric value of the reflected light from the subject acquired without pre-emission of two or more light sources and the imaging conditions. a control unit which possess, located an irradiation angle of each light source is fixed, the acquisition of the image is characterized to be performed by the object distance more than a predetermined subject distance.

また、本発明の他の側面としての撮像装置は、互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得する撮像部と、前記3つ以上の光源を同時に予備発光させた際の前記被写体からの反射光の第1測光値を取得する測光部と、前記第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を撮像する際の各光源の発光量を制御する制御部と、前記3つ以上の画像の輝度情報に基づいて、面法線情報を算出する法線算出部と、を有し、前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする。 Further, the image pickup device as another aspect of the present invention includes an image pickup unit that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images, and the three or more image pickup devices. A metering unit that acquires the first metering value of the reflected light from the subject when the light sources are simultaneously pre-emitted , the first metering value, information on the amount of light emitted by the light source in the pre-emission, and the above three. Based on the second photometric value of the reflected light from the subject acquired without preliminarily emitting the above light sources and the imaging conditions , the amount of light emitted by each light source when capturing the three or more images is controlled. a control unit, based on the luminance information of the three or more images, possess a normal calculation unit for calculating a surface normal information, the position and the irradiation angle of each light source is fixed, the image Is obtained at a subject distance greater than or equal to a predetermined subject distance .

また、本発明の他の側面としての処理方法は、互いに位置の異なる3つ以上の光源であって位置及び照射角度が固定された光源からの光を被写体に順次照射して所定の被写体距離以上の被写体距離で撮影された3つ以上の画像を取得させる処理方法であって、前記3つ以上の光源を同時に予備発光させた際の前記被写体からの反射光の第1測光値と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件を取得するステップと、前記第1測光値と、前記第2測光値と、前記撮像条件と、前記予備発光における前記光源による発光量の情報に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御するステップと、を有することを特徴とする。
Further, the processing method as another aspect of the present invention is to sequentially irradiate a subject with light from three or more light sources having different positions and fixed positions and irradiation angles to obtain a predetermined subject distance or more. This is a processing method for acquiring three or more images taken at the subject distance of , the first photometric value of the reflected light from the subject when the three or more light sources are preliminarily emitted at the same time, and the above 3. A step of acquiring a second photometric value of the reflected light from the subject and an imaging condition acquired without making one or more light sources preliminarily emit light , the first photometric value, the second photometric value, and the imaging. and conditions, based on the amount of light emission of the information by the light source in the preliminary light emission, and having the steps of: controlling the light emission amount of each light source in acquiring the three or more images.

本発明によれば、照度差ステレオ法に適するように光源の発光量を簡易に制御可能であり、高精度に面法線を算出可能な処理装置、処理システム、撮像装置、処理方法、プログラム、および記録媒体を提供することができる。 According to the present invention, a processing device, a processing system, an imaging device, a processing method, a program, which can easily control the amount of light emitted from a light source so as to be suitable for the illuminance difference stereo method and can calculate a surface normal with high accuracy. And a recording medium can be provided.

本発明の実施形態に係る撮像装置の外観図である(実施例1、2)。It is an external view of the image pickup apparatus which concerns on embodiment of this invention (Examples 1 and 2). 実施例1の撮像装置のブロック図である。It is a block diagram of the image pickup apparatus of Example 1. FIG. 処理システムを示す図である(実施例1、2)。It is a figure which shows the processing system (Examples 1 and 2). 実施例1の面法線情報の算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of the surface normal information of Example 1. FIG. 撮像素子の受光部と撮像光学系の瞳との関係図である。It is a relationship diagram of the light receiving part of an image sensor and the pupil of an image pickup optical system. 撮像部の模式図である。It is a schematic diagram of an imaging unit. 撮像状態を示す図である。It is a figure which shows the imaging state. 適正発光量算出の説明図である。It is explanatory drawing of the appropriate light emission amount calculation. 面法線と反射輝度値の関係図である。It is a relationship diagram of a surface normal and a reflected luminance value. 面法線と反射輝度値の関係図である。It is a relationship diagram of a surface normal and a reflected luminance value. 実施例2の撮像装置のブロック図である。It is a block diagram of the image pickup apparatus of Example 2. 実施例2の面法線情報の算出処理を示すフローチャートである。It is a flowchart which shows the calculation process of the surface normal information of Example 2. Torrance−Sparrowモデルの説明図である。It is explanatory drawing of the Torrance-Sparrow model.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings. In each figure, the same member is given the same reference number, and duplicate description is omitted.

照度差ステレオ法は、被写体の面法線と被写体から光源への方向(光源方向)に基づく被写体の反射特性を仮定し、複数の光源位置での被写体の輝度情報と仮定した反射特性から面法線情報を算出する方法である。所定の面法線と光源の位置が与えられたときに反射率が一意に定まらない場合、反射特性はランバートの余弦則に従うランバート反射モデルで近似すればよい。鏡面反射成分は、図12に示されるように、光源ベクトルsと視線方向ベクトルvの2等分線と、面法線nのなす角αに依存する。したがって、反射特性は、視線方向に基づく特性としてもよい。また、輝度情報は、光源が点灯している場合と消灯している場合のそれぞれの被写体を撮像し、これらの差分をとることで環境光等の光源以外の光源による影響を除いてもよい。 The illuminance difference stereo method assumes the reflection characteristics of the subject based on the surface normal of the subject and the direction from the subject to the light source (light source direction), and the surface method is based on the reflection characteristics assuming the brightness information of the subject at a plurality of light source positions. This is a method for calculating line information. If the reflectance is not uniquely determined given a given surface normal and the position of the light source, the reflectance can be approximated by a Lambertian reflection model that follows Lambert's cosine law. As shown in FIG. 12, the specular reflection component depends on the bisector of the light source vector s and the line-of-sight direction vector v and the angle α formed by the surface normal line n. Therefore, the reflection characteristic may be a characteristic based on the line-of-sight direction. Further, the luminance information may be obtained by photographing each subject when the light source is on and when the light source is off and taking the difference between them to remove the influence of a light source other than the light source such as ambient light.

以下、ランバート反射モデルで反射特性を仮定した場合について説明する。反射光の輝度値をi、物体のランバート拡散反射率をρd、入射光の強さをE、物体から光源への方向を示す単位ベクトル(光源方向ベクトル)をs、物体の単位面法線ベクトルをnとすると、輝度iはランバートの余弦則から以下の式(1)で表される。

Figure 0006910763
Hereinafter, the case where the reflection characteristics are assumed in the Lambertian reflection model will be described. The brightness value of the reflected light is i, the Lambert diffusion reflectance of the object is ρd, the intensity of the incident light is E, the unit vector indicating the direction from the object to the light source (light source direction vector) is s, and the unit surface normal vector of the object. When n is, the luminance i is expressed by the following equation (1) from Lambert's cosine law.
Figure 0006910763

異なるM個(M≧3)の光源ベクトルの各成分をs、s、・・・、s、光源ベクトルの成分ごとの輝度値をi、i、・・・iとすると、式(1)は以下の式(2)で表される。

Figure 0006910763
Let each component of different M (M ≧ 3) light source vectors be s 1 , s 2 , ..., s M , and the brightness values for each component of the light source vector be i 1 , i 2 , ... i M. , Equation (1) is represented by the following equation (2).
Figure 0006910763

式(2)の左辺はM行1列の輝度ベクトル、右辺の[s 、・・・s ]はM行3列の光源方向を示す入射光行列S、nは3行1列の単位面法線ベクトルである。M=3の場合は、入射光行列Sの逆行列S−1を用いて、Eρnは以下の式(3)で示される。

Figure 0006910763
The left side of equation (2) is the luminance vector of M rows and 1 column, the right side [s 1 T , ... s M T ] is the incident light matrix S indicating the light source direction of M rows and 3 columns, and n is 3 rows and 1 column. Unit plane normal vector of. When M = 3, Eρ d n is represented by the following equation (3) using the inverse matrix S -1 of the incident light matrix S.
Figure 0006910763

式(3)の左辺のベクトルのノルムが入射光の強さEとランバート拡散反射率ρの積であり、正規化したベクトルが物体の面法線ベクトルとして算出される。すなわち、入射光の強さEとランバート拡散反射率ρは積の形でのみ条件式に現れるので、Eρを1つの変数とみなすと、式(3)は単位面法線ベクトルnの2自由度と合わせて未知の3変数を決定する連立方程式とみなせる。したがって、少なくとも3つの光源を用いて輝度情報を取得することで、各変数を決定することができる。なお、入射光行列Sが正則行列でない場合は逆行列が存在しないため、入射光行列Sが正則行列となるように入射光行列Sの各成分s〜sを選択する必要がある。すなわち、成分s3を成分s1,s2に対して線形独立に選択することが望ましい。 The norm of the vector on the left side of the equation (3) is the product of the intensity E of the incident light and the Lambert diffuse reflectance ρ d , and the normalized vector is calculated as the surface normal vector of the object. That is, since the intensity E of the incident light and the Lambert diffuse reflectance ρ d appear in the conditional equation only in the form of a product, if Eρ d is regarded as one variable, the equation (3) is 2 of the unit surface normal vector n. It can be regarded as a simultaneous equation that determines three unknown variables together with the degree of freedom. Therefore, each variable can be determined by acquiring the luminance information using at least three light sources. If the incident light matrix S is not an invertible matrix, there is no inverse matrix. Therefore, it is necessary to select each component s 1 to s 3 of the incident light matrix S so that the incident light matrix S becomes an invertible matrix. That is, it is desirable to select the component s3 linearly independently of the components s1 and s2.

また、M>3の場合は求める未知変数より多い条件式が得られるので、任意に選択した3つの条件式からM=3の場合と同様の方法で単位面法線ベクトルnを算出すればよい。4つ以上の条件式を用いる場合は、入射光行列Sが正則行列ではなくなるため、例えば、Moore−Penrose疑似逆行列を使って近似解を算出してもよい。また、フィッティング手法や最適化手法によって単位面法線ベクトルnを算出してもよい。 Further, when M> 3, more conditional expressions can be obtained than the unknown variables to be obtained. Therefore, the unit surface normal vector n may be calculated from three arbitrarily selected conditional expressions by the same method as in the case of M = 3. .. When four or more conditional equations are used, the incident light matrix S is no longer an invertible matrix. Therefore, for example, a Moore-Penrose pseudo-inverse matrix may be used to calculate an approximate solution. Further, the unit surface normal vector n may be calculated by a fitting method or an optimization method.

被写体の反射特性をランバート反射モデルとは異なるモデルで仮定した場合は、条件式が単位面法線ベクトルnの各成分に対する線形方程式と異なる場合がある。その場合、未知変数以上の条件式が得られれば、フィッティング手法や最適化手法を用いることができる。 If the reflection characteristics of the subject are assumed by a model different from the Lambertian reflection model, the conditional equation may differ from the linear equation for each component of the unit surface normal vector n. In that case, if a conditional expression equal to or greater than the unknown variable is obtained, a fitting method or an optimization method can be used.

また、M>3の場合には3以上M−1以下の複数の条件式が得られるため、単位面法線ベクトルnの複数の解の候補を求めることができる。この場合、さらに別の条件を用いて複数の解の候補から解を選択すればよい。例えば、単位面法線ベクトルnの連続性を条件として用いることができる。単位面法線nを撮像装置の1画素ごとに算出する場合、画素(x、y)での面法線をn(x、y)として、n(x−1、y)が既知であれば以下の式(4)で示される評価関数が最小となる解を選択すればよい。

Figure 0006910763
Further, when M> 3, a plurality of conditional expressions of 3 or more and M-1 or less can be obtained, so that a plurality of solution candidates of the unit surface normal vector n can be obtained. In this case, a solution may be selected from a plurality of solution candidates using yet another condition. For example, the continuity of the unit surface normal vector n can be used as a condition. When calculating the unit normal line n for each pixel of the imaging device, if the surface normal line at the pixel (x, y) is n (x, y) and n (x-1, y) is known. The solution that minimizes the evaluation function represented by the following equation (4) may be selected.
Figure 0006910763

また、n(x+1、y)やn(x、y±1)も既知であれば、以下の式(5)が最小となる解を選択すればよい。

Figure 0006910763
Further, if n (x + 1, y) and n (x, y ± 1) are also known, the solution in which the following equation (5) is minimized may be selected.
Figure 0006910763

既知の面法線がなく、全画素位置で面法線の不定性があるとすれば、以下の式(6)で示される式(5)の全画素での総和が最小となるように解を選択してもよい。

Figure 0006910763
If there is no known surface normal and there is indefiniteness of the surface normal at all pixel positions, the solution is such that the sum of all pixels of equation (5) represented by the following equation (6) is minimized. May be selected.
Figure 0006910763

なお、最近傍以外の画素での面法線を用いてもよいし、注目する画素位置からの距離に応じて重みづけした評価関数を用いてもよい。 It should be noted that the surface normals of pixels other than the nearest neighbors may be used, or an evaluation function weighted according to the distance from the pixel position of interest may be used.

また、別の条件として、任意の光源位置での輝度情報を用いてもよい。ランバート反射モデルに代表される拡散反射モデルでは、単位面法線ベクトルと光源方向ベクトルが近いほど反射光の輝度が大きくなる。よって、複数の光源方向での輝度値のうち最も輝度値が大きくなる光源方向ベクトルに近い解を選択することで、単位面法線ベクトルを決定することができる。 Further, as another condition, the luminance information at an arbitrary light source position may be used. In the diffuse reflection model represented by the Lambertian reflection model, the closer the unit surface normal vector and the light source direction vector are, the greater the brightness of the reflected light. Therefore, the unit surface normal vector can be determined by selecting a solution close to the light source direction vector having the largest brightness value among the brightness values in a plurality of light source directions.

また、鏡面反射モデルでは、光源ベクトルをs、物体からカメラへの方向の単位ベクトル(カメラの視線ベクトル)をvとすると、以下の式(7)が成り立つ。

Figure 0006910763
Further, in the specular reflection model, if the light source vector is s and the unit vector in the direction from the object to the camera (camera line-of-sight vector) is v, the following equation (7) holds.
Figure 0006910763

式(7)に示されるように、光源方向ベクトルsとカメラの視線ベクトルvが既知であれば単位面法線ベクトルnを算出することができる。表面に粗さがある場合、鏡面反射も出射角の広がりを持つが、平滑面として求めた解の付近に広がるため、複数の解の候補うち最も平滑面に対する解に近い候補を選択すればよい。また、複数の解の候補の平均によって真の解を決定してもよい。 As shown in the equation (7), if the light source direction vector s and the camera line-of-sight vector v are known, the unit surface normal vector n can be calculated. When the surface is rough, the specular reflection also has a widening of the emission angle, but it spreads near the solution obtained as a smooth surface, so it is sufficient to select the candidate closest to the solution for the smooth surface from among the multiple solution candidates. .. Moreover, the true solution may be determined by averaging a plurality of solution candidates.

照度差ステレオ法では、入射光の強さEは各光源方向の条件において一定であり、被写体からの反射光の輝度値が正確に検出されることを前提としている。また、閃光装置を備える撮像装置では、発光量が大き過ぎる場合、被写体部分の露光量が多くなりすぎる。そのため、被写体部分に白飛びと言われる階調性が失われる現象が生じ、正確な輝度値を取得できない。逆に、発光量が小さ過ぎる場合、被写体部分の露光量が少なくなりすぎる。そのため、被写体部分に黒潰れと言われる階調性が失われる現象が生じ、正確な輝度値が取得できない。すなわち、位置の異なる複数の光源の発光量(各光源方向の入射光の強さ)が適切でない場合、被写体部分に白飛びや黒潰れが発生し、正確な輝度値が取得できない。したがって、算出される面法線が真の面法線から大きくずれてしまう。そのため、各光源の発光量を適切に制御する必要があるが、複数の光源を使用するため、適正発光量の算出が煩雑になる。 In the illuminance difference stereo method, it is assumed that the intensity E of the incident light is constant under the conditions of each light source direction, and the brightness value of the reflected light from the subject is accurately detected. Further, in an imaging device provided with a flash device, if the amount of light emitted is too large, the amount of exposure of the subject portion becomes too large. Therefore, a phenomenon called overexposure, which is called overexposure, occurs in the subject portion, and an accurate luminance value cannot be obtained. On the contrary, when the amount of light emitted is too small, the amount of exposure of the subject portion becomes too small. Therefore, a phenomenon called black crushing in which the gradation property is lost occurs in the subject portion, and an accurate luminance value cannot be obtained. That is, if the amount of light emitted from a plurality of light sources having different positions (intensity of incident light in each light source direction) is not appropriate, overexposure or underexposure occurs in the subject portion, and an accurate luminance value cannot be obtained. Therefore, the calculated surface normal deviates significantly from the true surface normal. Therefore, it is necessary to appropriately control the amount of light emitted from each light source, but since a plurality of light sources are used, the calculation of the appropriate amount of light emitted becomes complicated.

図1は本実施例の撮像装置1000Aの外観図であり、図2は本実施例の撮像装置1000Aのブロック図である。撮像装置1000Aは、被写体を撮像する撮像部100および光源部200を備える。撮像部100は、撮像光学系101および撮像素子102を備える。本実施例では、光源部200は、撮像光学系101の光軸を中心とする同心円状に等間隔で配置される8個の光源から構成される。なお、照度差ステレオ法を実施する際に必要な光源は少なくとも3個であるため、光源部200は3個以上の光源を備えていればよい。また、本実施例では光源部200は複数の光源を撮像光学系101の光軸を中心とした同心円状に等間隔で配置しているが、本発明はこれに限定されない。また、本実施例では、光源部200の各光源としてLED(Light Emitting Diode)を用いているが、キセノンランプ等の他の光源を用いてもよい。また、本実施例では、光源部200は、撮像装置1000Aに内蔵されているが、着脱可能に取り付けられる構成としてもよい。レリーズボタン300は、撮影やオートフォーカスを作動させるためのボタンである。 FIG. 1 is an external view of the image pickup apparatus 1000A of this embodiment, and FIG. 2 is a block diagram of the image pickup apparatus 1000A of this embodiment. The image pickup apparatus 1000A includes an image pickup unit 100 for photographing a subject and a light source unit 200. The image pickup unit 100 includes an image pickup optical system 101 and an image pickup element 102. In this embodiment, the light source unit 200 is composed of eight light sources arranged concentrically at equal intervals about the optical axis of the imaging optical system 101. Since at least three light sources are required when performing the illuminance difference stereo method, the light source unit 200 may include three or more light sources. Further, in the present embodiment, the light source unit 200 arranges a plurality of light sources concentrically at equal intervals about the optical axis of the imaging optical system 101, but the present invention is not limited to this. Further, in this embodiment, an LED (Light Emitting Diode) is used as each light source of the light source unit 200, but another light source such as a xenon lamp may be used. Further, in this embodiment, the light source unit 200 is built in the image pickup apparatus 1000A, but may be detachably attached. The release button 300 is a button for activating shooting and autofocus.

撮像光学系101は、絞り101aを備え、被写体から射出される光を撮像素子102上に結像させる。また、撮像光学系101は、各レンズ群を移動させるで、撮像倍率を変えることができる変倍光学系であってもよい。本実施例では、撮像光学系101は、撮像装置1000Aに内蔵されているが、一眼レフカメラのように撮像装置1000Aに着脱可能に取り付けられる構成であってもよい。撮像素子102は、CCDセンサやCMOSセンサ等の光電変換素子により構成され、被写体を撮像する。撮像素子102の光電変換によって生成されるアナログ電気信号は、A/Dコンバータ103でデジタル信号に変換されて画像処理部104に入力される。 The image pickup optical system 101 includes a diaphragm 101a, and forms an image of light emitted from the subject on the image pickup element 102. Further, the imaging optical system 101 may be a variable magnification optical system in which the imaging magnification can be changed by moving each lens group. In this embodiment, the imaging optical system 101 is built in the imaging device 1000A, but may be detachably attached to the imaging device 1000A like a single-lens reflex camera. The image sensor 102 is composed of a photoelectric conversion element such as a CCD sensor or a CMOS sensor, and images a subject. The analog electric signal generated by the photoelectric conversion of the image pickup device 102 is converted into a digital signal by the A / D converter 103 and input to the image processing unit 104.

画像処理部104は、デジタル信号に対して一般的に行われる画像処理と併せて、被写体の面法線情報を取得する。面法線情報とは、面法線の1自由度の候補を少なくとも1つ以上決定する情報、面法線の複数の解候補から真の解を選択するための情報、および求めた面法線の妥当性に関する情報である。画像処理部104は、被写体からの反射光を測光する測光部104a、および測光部104aの測光値に基づいて各光源の適正発光量を制御する発光量制御部104bを備える。また、画像処理部104は、面法線情報を算出する法線算出部104c、および被写体までの距離情報を算出する被写体距離算出部104dを備える。画像処理部104で処理された出力画像は、半導体メモリや光ディスク等の画像記録部109に保存される。また、出力画像を表示部105に表示してもよい。本実施例では、測光部104a、発光量制御部104b、法線算出部104c、および被写体距離算出部104dは、撮像装置1000Aに内蔵されているが、後述するように撮像装置1000Aとは別に構成されてもよい。 The image processing unit 104 acquires the surface normal information of the subject in addition to the image processing generally performed on the digital signal. The surface normal information is information for determining at least one candidate for one degree of freedom of the surface normal, information for selecting a true solution from a plurality of solution candidates for the surface normal, and the obtained surface normal. Information about the validity of. The image processing unit 104 includes a photometric unit 104a that measures the reflected light from the subject, and a light emission amount control unit 104b that controls an appropriate light emission amount of each light source based on the photometric value of the photometric unit 104a. Further, the image processing unit 104 includes a normal calculation unit 104c for calculating surface normal information and a subject distance calculation unit 104d for calculating distance information to the subject. The output image processed by the image processing unit 104 is stored in an image recording unit 109 such as a semiconductor memory or an optical disk. Further, the output image may be displayed on the display unit 105. In this embodiment, the light measuring unit 104a, the light emitting amount control unit 104b, the normal calculation unit 104c, and the subject distance calculation unit 104d are built in the image pickup device 1000A, but are configured separately from the image pickup device 1000A as described later. May be done.

情報入力部108は、ユーザーによって選択された撮像条件(絞り値、露出時間、ISO感度または撮影枚数など)をシステムコントローラ110に供給する。照射光源制御部106は、システムコントローラ110から出力される指示に応じて光源部200の発光状態を制御する。撮像制御部107は、システムコントローラ110から出力される情報に基づいて、ユーザーが選択した所望の撮影条件で画像を取得する。ROM111は、システムコントローラ110によって実行される各種のプログラムやそれに必要となるデータを格納している。光源情報取得部112は、光源部200の各光源位置や光源発光時の照射角度などの光源情報を取得する。本実施例では、光源部200の各光源位置および照射角度は固定されているが、光源部200を各光源位置や照射角度を任意に設定可能に構成してもよい。この場合、光源情報取得部112は、撮影時に設定された各光源位置や照射角度などの光源情報を取得すればよい。なお、本実施例のように各光源位置や照射角度が固定されている場合、光源情報をROM111に保存しておいてもよい。この場合、ROM111が光源情報取得部として機能するため、光源情報取得部112を備える必要はない。 The information input unit 108 supplies the image pickup conditions (aperture value, exposure time, ISO sensitivity, number of shots, etc.) selected by the user to the system controller 110. The irradiation light source control unit 106 controls the light emitting state of the light source unit 200 in response to an instruction output from the system controller 110. The image pickup control unit 107 acquires an image under desired shooting conditions selected by the user based on the information output from the system controller 110. The ROM 111 stores various programs executed by the system controller 110 and data required for the various programs. The light source information acquisition unit 112 acquires light source information such as the position of each light source of the light source unit 200 and the irradiation angle when the light source emits light. In this embodiment, each light source position and irradiation angle of the light source unit 200 are fixed, but the light source unit 200 may be configured so that each light source position and irradiation angle can be arbitrarily set. In this case, the light source information acquisition unit 112 may acquire light source information such as each light source position and irradiation angle set at the time of shooting. When each light source position and irradiation angle are fixed as in this embodiment, the light source information may be stored in the ROM 111. In this case, since the ROM 111 functions as the light source information acquisition unit, it is not necessary to include the light source information acquisition unit 112.

本実施例の面法線情報の算出処理について、図3のフローチャートを参照して説明する。図3は、本実施例の面法線情報の算出処理を示すフローチャートである。本実施例の面法線情報の算出処理は、システムコントローラ110および画像処理部104により、コンピュータを処理装置として機能させるための処理プログラムにしたがって実行される。なお、処理プログラムは、例えば、コンピュータに読み取り可能な記録媒体に記録してもよい。 The calculation process of the surface normal information of this embodiment will be described with reference to the flowchart of FIG. FIG. 3 is a flowchart showing a calculation process of the surface normal information of this embodiment. The calculation process of the surface normal information of this embodiment is executed by the system controller 110 and the image processing unit 104 according to a processing program for making the computer function as a processing device. The processing program may be recorded on a computer-readable recording medium, for example.

ステップS101では、システムコントローラ110は、情報入力部108からユーザーによって設定される第1撮像条件(絞り値、露出時間、ISO感度または撮影枚数など)を撮像条件として設定する。 In step S101, the system controller 110 sets the first imaging condition (aperture value, exposure time, ISO sensitivity, number of shots, etc.) set by the user from the information input unit 108 as the imaging condition.

ステップS102では、システムコントローラ110は、レリーズボタン300の半押し動作に連動し、光源が予備発光(プリ発光)していない状態で被写体からの反射光を撮像素子102で受光する。A/Dコンバータ103は、撮像素子102の光電変換によって生成されたアナログ電気信号をデジタル信号に変換し、画像処理部104に出力する。測光部104aは、画像処理部104に入力されたデジタル信号に基づいて第2測光値を取得する。第2測光値は、光源が予備発光していない状態の測光値、すなわち環境光のみが照射された被写体の反射光の測光値である。また、本実施例では測光部104aが撮像素子102によって得られた画像信号に基づいて測光値を取得しているが、別途設けられた測光用のセンサーが取得してもよい。 In step S102, the system controller 110 is interlocked with the half-pressing operation of the release button 300, and the image sensor 102 receives the reflected light from the subject in a state where the light source is not pre-flashed (pre-flashed). The A / D converter 103 converts the analog electric signal generated by the photoelectric conversion of the image sensor 102 into a digital signal and outputs it to the image processing unit 104. The metering unit 104a acquires the second metering value based on the digital signal input to the image processing unit 104. The second photometric value is a photometric value in a state where the light source does not emit preliminary light, that is, a photometric value of the reflected light of the subject irradiated with only ambient light. Further, in this embodiment, the photometric unit 104a acquires the photometric value based on the image signal obtained by the image sensor 102, but a sensor for photometry provided separately may acquire the photometric value.

ステップS103では、システムコントローラ110は、被写体距離算出部104dに被写体距離を算出させる。ここで、被写体距離を算出する方法について説明する。被写体距離算出部104dは、ステップS101でオートフォーカスまたはユーザーが手動でフォーカスを行う場合のフォーカスレンズの位置から被写体距離を推定してもよい。また、被写体距離算出部104dは、異なる視点から撮影した複数の視差画像を取得し、ステレオ法によって被写体距離を推定してもよい。ステレオ法では、取得した複数の視差画像中の被写体の対応点の視差量、各視点の位置情報および光学系の焦点距離から、三角測量によって奥行きを推定する。被写体距離は、被写体中の対応点で算出された奥行きの平均値としてもよいし、被写体の特定の点における奥行きとしてもよい。視差画像から被写体距離の推定を行う場合、複数の視差画像の撮像部は、図4に示されるように、撮像光学系の瞳のうちそれぞれ異なる領域を通過した複数の光束を撮像素子の互いに異なる受光部(画素)に導いて光電変換を行う撮像系を有する。 In step S103, the system controller 110 causes the subject distance calculation unit 104d to calculate the subject distance. Here, a method of calculating the subject distance will be described. The subject distance calculation unit 104d may estimate the subject distance from the position of the focus lens when autofocusing or manually focusing by the user in step S101. Further, the subject distance calculation unit 104d may acquire a plurality of parallax images taken from different viewpoints and estimate the subject distance by the stereo method. In the stereo method, the depth is estimated by triangulation from the parallax amount of the corresponding points of the subject in the acquired plurality of parallax images, the position information of each viewpoint, and the focal length of the optical system. The subject distance may be an average value of depths calculated at corresponding points in the subject, or may be a depth at a specific point of the subject. When estimating the subject distance from the parallax image, as shown in FIG. 4, the image pickup units of the plurality of parallax images make a plurality of light beams that have passed through different regions of the pupil of the image pickup optical system different from each other. It has an image pickup system that guides a light receiving unit (pixel) to perform photoelectric conversion.

図4は、撮像素子の受光部と撮像光学系の瞳との関係図である。撮像素子には、受光部であるG1画素とG2画素の対(画素対)が複数配列されている。複数のG1画素をまとめてG1画素群といい、複数のG2画素をまとめてG2画素群という。対のG1画素とG2画素は、共通の(すなわち、画素対ごとに1つずつ設けられた)マイクロレンズMLを介して撮像光学系の射出瞳EXPと共役な関係を有する。また、マイクロレンズMLと受光部との間には、カラーフィルタCFが設けられている。 FIG. 4 is a diagram showing the relationship between the light receiving portion of the image sensor and the pupil of the image pickup optical system. A plurality of pairs (pixel pairs) of G1 pixels and G2 pixels, which are light receiving units, are arranged in the image sensor. A plurality of G1 pixels are collectively referred to as a G1 pixel group, and a plurality of G2 pixels are collectively referred to as a G2 pixel group. The pair of G1 pixels and the G2 pixel have a conjugate relationship with the exit pupil EXP of the imaging optical system via a common (that is, one for each pixel pair) microlens ML. Further, a color filter CF is provided between the microlens ML and the light receiving portion.

図5は、図4のマイクロレンズMLの代わりに、射出瞳EXPの位置に薄肉レンズがあると仮定した場合の撮像系の模式図である。G1画素は射出瞳EXPのうちP1領域を通過した光束を受光し、G2画素は射出瞳EXPのうちP2領域を通過した光束を受光する。撮像している物点OSPには必ずしも物体が存在している必要はなく、物点OSPを通った光束は通過する瞳内での領域(位置)に応じてG1画素またはG2画素に入射する。瞳内の互いに異なる領域を光束が通過することは、物点OSPからの入射光が角度(視差)によって分離されることに相当する。すなわち、マイクロレンズMLごとに設けられたG1画素およびG2画素のうち、G1画素からの出力信号を用いて生成された画像とG2画素からの出力信号を用いて生成された画像とが、互いに視差を有する複数(ここでは一対)の視差画像となる。以下の説明において、瞳内の互いに異なる領域を通過した光束を互いに異なる受光部(画素)により受光することを瞳分割という。 FIG. 5 is a schematic view of an imaging system assuming that there is a thin-walled lens at the position of the exit pupil EXP instead of the microlens ML of FIG. The G1 pixel receives the luminous flux that has passed through the P1 region of the exit pupil EXP, and the G2 pixel receives the luminous flux that has passed through the P2 region of the exit pupil EXP. An object does not necessarily have to be present in the object point OSP being imaged, and the luminous flux passing through the object point OSP is incident on the G1 pixel or the G2 pixel depending on the region (position) in the pupil through which the object is being imaged. The passage of the luminous flux through different regions in the pupil corresponds to the separation of the incident light from the object point OSP by the angle (parallax). That is, among the G1 pixels and G2 pixels provided for each microlens ML, the image generated by using the output signal from the G1 pixel and the image generated by using the output signal from the G2 pixel are separated from each other. It becomes a plurality of (here, a pair) parallax images having. In the following description, receiving light flux passing through different regions in the pupil by different light receiving portions (pixels) is referred to as pupil division.

図4および図5において、射出瞳EXPの位置がずれる等して、上述した共役関係が完全ではなくなったりP1領域とP2領域とが部分的にオーバーラップしたりしても、得られた複数の画像を視差画像として扱うことができる。 In FIGS. 4 and 5, even if the above-mentioned conjugate relationship is not perfect or the P1 region and the P2 region partially overlap due to the position of the exit pupil EXP being displaced, a plurality of obtained cases are obtained. The image can be treated as a parallax image.

さらに別の例として、1つの撮像装置に複数の撮像光学系を設けることで視差画像を取得してもよい。また、複数のカメラを用いて同一被写体を撮像することで視差画像を取得してもよい。 As yet another example, a parallax image may be acquired by providing a plurality of imaging optical systems in one imaging device. Further, a parallax image may be acquired by capturing the same subject using a plurality of cameras.

ステップS104では、システムコントローラ110は、光源情報取得部112に、光源情報を取得させる。本実施例の光源情報とは、光源部200の各光源位置や光源発光時の照射角度のうち少なくとも1つの情報である。 In step S104, the system controller 110 causes the light source information acquisition unit 112 to acquire the light source information. The light source information of this embodiment is at least one information of each light source position of the light source unit 200 and the irradiation angle at the time of light emission of the light source.

なお、ステップS103とステップS104は、ステップS102からステップS106までの間に実行されればよい。 It should be noted that step S103 and step S104 may be executed between steps S102 and S106.

ステップS105では、システムコントローラ110は、照射光源制御部106に、本撮影に使用する光源をあらかじめ設定された光量で同時に予備発光(プリ発光)させる。予備発光の光量は、白飛び発生による測光値の検出精度の劣化を低減させるため、本撮像時に対して低く設定することが好ましい。照度差ステレオ方式では位置の異なる複数の光源を個別に発光させて複数の画像を取得するが、本実施例では測光値検出のための予備発光を光源を同時に発光させて一度に行う。予備発光を一度だけ実行することで、光源ごとに予備発光を実行する場合に比べて制御負荷を低減することができる。 In step S105, the system controller 110 causes the irradiation light source control unit 106 to simultaneously make a preliminary emission (pre-emission) of the light source used for the main shooting with a preset amount of light. The amount of pre-emission is preferably set lower than that at the time of the main imaging in order to reduce the deterioration of the detection accuracy of the photometric value due to the occurrence of overexposure. In the illuminance difference stereo method, a plurality of light sources having different positions are individually emitted to acquire a plurality of images, but in this embodiment, preliminary emission for detecting the photometric value is performed by simultaneously emitting the light sources. By executing the preliminary light emission only once, the control load can be reduced as compared with the case where the preliminary light emission is executed for each light source.

ステップS106では、システムコントローラ110は、ステップS105の予備発光に同期して、被写体からの反射光を撮像素子102で受光する。A/Dコンバータ103は、撮像素子102の光電変換によって生成されたアナログ電気信号をデジタル信号に変換し、画像処理部104に出力する。測光部104aは、画像処理部104に入力されたデジタル信号に基づいて第1測光値を取得する。第1測光値は、光源が予備発光している状態の測光値、すなわち環境光および光源の予備発光光が照射された被写体の反射光の測光値である。また、発光量制御部104bは、ステップS101で設定された第1撮像条件、第1および第2測光値、光源情報、ならびに被写体距離に基づいて光源ごとの適正発光量を算出する。 In step S106, the system controller 110 receives the reflected light from the subject by the image sensor 102 in synchronization with the preliminary light emission in step S105. The A / D converter 103 converts the analog electric signal generated by the photoelectric conversion of the image sensor 102 into a digital signal and outputs it to the image processing unit 104. The photometric unit 104a acquires the first photometric value based on the digital signal input to the image processing unit 104. The first photometric value is a photometric value in a state where the light source emits preliminary light, that is, a photometric value of the reflected light of the subject irradiated with the ambient light and the preliminary light emitted from the light source. Further, the light emission amount control unit 104b calculates an appropriate light emission amount for each light source based on the first imaging condition, the first and second photometric values set in step S101, the light source information, and the subject distance.

ここで、図6を参照して、本実施例の適正発光量の算出時の動作について説明する。図6は、撮像装置1000Aが被写体2000の面法線情報を取得する場合の撮像状態を示す図である。まず、測光部104aは、光源を予備発光させずに環境光(太陽光)のみが照射された被写体の反射光を測光し、第2測光値を取得する。次に、撮像装置1000Aが本撮影で使用する光源全てを予備発光させる。なお、簡単のため、図中では一部の光源の予備発光光(光Aおよび光B)だけを示しているが、実際は他の光源も予備発光している。被写体2000に照射された各光源からの予備発光光は、被写体2000で反射された後、撮像部100に入射する。測光部104aは、被写体2000を撮像した画像信号の輝度値情報に基づいて第1測光値を取得する。発光量制御部104bは、第1撮像条件、第1および第2測光値、光源情報、ならびに被写体距離に基づいて、本撮影で使用する全光源の適正発光量を算出する。 Here, with reference to FIG. 6, the operation at the time of calculating the appropriate light emission amount of this embodiment will be described. FIG. 6 is a diagram showing an imaging state when the imaging device 1000A acquires surface normal information of the subject 2000. First, the photometric unit 104a measures the reflected light of the subject irradiated with only ambient light (sunlight) without causing the light source to preliminarily emit light, and acquires a second photometric value. Next, the image pickup apparatus 1000A preliminarily emits all the light sources used in the main shooting. For the sake of simplicity, only the preliminary emission light (light A and light B) of some light sources is shown in the figure, but in reality, other light sources are also preliminary emission. The preliminary emission light from each light source applied to the subject 2000 is reflected by the subject 2000 and then incident on the image pickup unit 100. The photometric unit 104a acquires the first photometric value based on the luminance value information of the image signal obtained by capturing the subject 2000. The light emission amount control unit 104b calculates an appropriate light emission amount of all the light sources used in the main shooting based on the first imaging condition, the first and second photometric values, the light source information, and the subject distance.

照度差ステレオ方式では、同一の被写体に位置の異なる光源からの光を照射し、その輝度変化によって面法線情報を算出するため、光源からの発光光のみに基づく輝度情報が重要であり、環境光(太陽光)に基づく輝度情報は面法線の算出時には不要である。そのため、環境光の強度が強い場合、光源からの発光光のみに基づく輝度情報の階調性を保つように発光量を調整することが重要となる。上述したように、第1測光値は環境光および光源の予備発光光が照射された被写体の反射光の測光値であり、第2測光値は環境光のみが照射された被写体の反射光の測光値である。本実施例では、発光量制御部104bは、第1および第2測光値との差分に基づいて、光源の発光光のみによる輝度情報の階調性を保つように最小発光量を算出する。このように、第1および第2測光値との差分に基づいて最小発光量を算出することで、特に光源からの発光光のみに基づく輝度情報の低輝度領域の階調性の低下(黒潰れ)を抑制することが可能となる。また、環境光および光源の発光光による被写体の反射光に基づく画像信号に白飛びが発生した場合も、光源からの発光光のみに基づく輝度情報の高輝度領域の階調性の低下が生じる。本実施例では、環境光および光源の予備発光光が照射された被写体の反射光の測光値である第1測光値に基づいて、光源の発光光のみに基づく輝度情報の階調性を保つように最大発光量を算出する。発光量制御部104bは、最小発光量と最大発光量の間で最も輝度情報の階調性を確保できる発光量を適正発光量として設定する。最大発光量が最小発光量より大きい場合、発光量制御部104bは最大発光量を適正発光量として設定することが好ましい。最大発光量を適正発光量として設定することで、白飛びを回避しつつ、輝度情報の階調性を高く保つことができる。また、本実施例では、環境光の強度が強い場合について説明したが、暗室撮影などの環境光の強度が弱い場合、ステップS102を省略してもよい。 In the illuminance difference stereo method, the same subject is irradiated with light from different light sources, and the surface normal information is calculated based on the change in brightness. Therefore, the brightness information based only on the light emitted from the light source is important, and the environment. Luminance information based on light (sunlight) is not required when calculating the surface normal. Therefore, when the intensity of the ambient light is strong, it is important to adjust the amount of light emission so as to maintain the gradation of the luminance information based only on the light emitted from the light source. As described above, the first photometric value is the photometric value of the reflected light of the subject irradiated with the ambient light and the preliminary emission light of the light source, and the second photometric value is the photometric value of the reflected light of the subject irradiated with only the ambient light. The value. In this embodiment, the light emission amount control unit 104b calculates the minimum light emission amount based on the difference between the first and second photometric values so as to maintain the gradation of the luminance information only by the light emitted from the light source. In this way, by calculating the minimum emission amount based on the difference between the first and second photometric values, the gradation of the low-luminance region of the luminance information based only on the emission light from the light source is lowered (black crushing). ) Can be suppressed. Further, when the image signal based on the reflected light of the subject due to the ambient light and the light emitted from the light source is overexposed, the gradation of the high-luminance region of the luminance information based only on the emitted light from the light source is deteriorated. In this embodiment, the gradation of the luminance information based only on the emitted light of the light source is maintained based on the first photometric value which is the photometric value of the reflected light of the subject irradiated with the ambient light and the preliminary emission light of the light source. Calculate the maximum amount of light emitted. The light emission amount control unit 104b sets the light emission amount that can secure the gradation of the luminance information most between the minimum light emission amount and the maximum light emission amount as the appropriate light emission amount. When the maximum light emission amount is larger than the minimum light emission amount, the light emission amount control unit 104b preferably sets the maximum light emission amount as an appropriate light emission amount. By setting the maximum light emission amount as an appropriate light emission amount, it is possible to maintain high gradation of luminance information while avoiding overexposure. Further, in this embodiment, the case where the intensity of the ambient light is strong has been described, but when the intensity of the ambient light is weak such as in a dark room photography, step S102 may be omitted.

図7を参照して、全光源を同時に予備発光させる場合の適正発光量の算出の考え方について説明する。図7は、適正発光量算出の説明図である。2つの光源200A、200Bはそれぞれ、撮像部100の中心から距離hの位置に中心が位置するように配置されている。また、球被写体2001は、撮像部100から距離Dだけ離れた位置に配置されている。なお、簡単のため、図中では2つの光源200A、200Bだけを示している。 With reference to FIG. 7, the concept of calculating the appropriate amount of light emission when all the light sources are preliminarily emitted at the same time will be described. FIG. 7 is an explanatory diagram for calculating the appropriate light emission amount. The two light sources 200A and 200B are arranged so that the center is located at a distance h from the center of the imaging unit 100, respectively. Further, the ball subject 2001 is arranged at a position separated from the imaging unit 100 by a distance D. For the sake of simplicity, only two light sources 200A and 200B are shown in the figure.

図8は、図7で示した構成において光源を発光させた場合の球被写体2001の面法線θと規格化された反射輝度値iの関係図である。グラフ11は光源200Aを発光量Eで発光させた場合の反射輝度値、グラフ12は光源200Bを発光量Eで発光させた場合の反射輝度値を示している。ここで、球被写体2001は撮像装置1000Aよりも十分に小さく、反射特性はランバート反射モデルに従う。また、各光源が全方向へ一様な強度で放射する点光源であると仮定する。このとき、球被写体2001の各面に対する光源方向ベクトルは距離hと距離Dによって算出され、グラフ11、12は式(1)で示される特性となる。グラフ11は、−10度の面法線に対する反射輝度値が最大の−10度を始点としたコサイン関数である。また、グラフ12は、10度の面法線に対する反射輝度値が最大の10度を始点としたコサイン関数である。つまり、光源200A、200Bは、球被写体2001と撮像部100を結ぶ線を基準として球被写体2001に対する角度がそれぞれ−10度、10度となる位置に配置されている。 FIG. 8 is a diagram showing the relationship between the surface normal θ of the spherical subject 2001 and the standardized reflection luminance value i when the light source is made to emit light in the configuration shown in FIG. Graph 11 shows the reflected luminance value when the light source 200A is made to emit light with the light emitting amount E, and graph 12 shows the reflected luminance value when the light source 200B is made to emit light with the light emitting amount E. Here, the spherical subject 2001 is sufficiently smaller than the image pickup apparatus 1000A, and the reflection characteristic follows the Lambertian reflection model. Further, it is assumed that each light source is a point light source that radiates with uniform intensity in all directions. At this time, the light source direction vector for each surface of the sphere subject 2001 is calculated by the distance h and the distance D, and the graphs 11 and 12 have the characteristics represented by the equation (1). Graph 11 is a cosine function starting from -10 degrees, which has the maximum reflected luminance value with respect to a surface normal of -10 degrees. Further, the graph 12 is a cosine function starting from 10 degrees, which has the maximum reflected luminance value with respect to a surface normal of 10 degrees. That is, the light sources 200A and 200B are arranged at positions where the angles with respect to the sphere subject 2001 are -10 degrees and 10 degrees, respectively, with respect to the line connecting the sphere subject 2001 and the imaging unit 100.

グラフ14は、光源200A、200Bを同時にそれぞれ発光量E、つまり合成発光量2Eで発光させた場合の合成反射輝度値を示している。球被写体2001の面法線に対する反射輝度値は、グラフ11とグラフ12の和となる。ここで、所定の面法線のみを有する別の被写体を撮像する場合を考える。例えば、面法線30度の被写体に光源200A、200Bを同時にそれぞれ発光量Eで発光させた場合の合成反射輝度値を白飛びが発生しない限界値とする。このとき、2つの光源の合成発光量が2Eであることから、本撮影時に個別に発光させる各光源の発光量を2Eと算出してしまうと、光源200Bを発光させた際に白飛びが発生してしまう。 Graph 14 shows the combined reflection luminance value when the light sources 200A and 200B are simultaneously emitted with the light emission amount E, that is, the combined light emission amount 2E. The reflected luminance value of the sphere subject 2001 with respect to the surface normal is the sum of the graphs 11 and 12. Here, consider the case of photographing another subject having only a predetermined surface normal. For example, the combined reflection luminance value when the light sources 200A and 200B are simultaneously emitted with a light emission amount E on a subject having a surface normal of 30 degrees is set as a limit value at which overexposure does not occur. At this time, since the combined light emission amount of the two light sources is 2E, if the light emission amount of each light source to be individually emitted during the main shooting is calculated as 2E, overexposure occurs when the light source 200B is emitted. Resulting in.

グラフ15は、各光源を個別にそれぞれ発光量2Eで発光させた場合の反射輝度値の最大値を示している。グラフ15では、2つの光源を同時に合成発光量2Eで発光させたグラフ14に比べて、全ての面法線に対する反射輝度値が高くなっている。すなわち、全光源を同時に予備発光させた場合の第1測光値から白飛びを回避した最大発光量を算出するためには、被写体の反射特性を考慮する必要がある。 Graph 15 shows the maximum value of the reflected luminance value when each light source is individually emitted with a light emission amount of 2E. In the graph 15, the reflected luminance values for all the surface normals are higher than those in the graph 14 in which the two light sources are simultaneously emitted with the combined emission amount 2E. That is, in order to calculate the maximum amount of light emission that avoids overexposure from the first photometric value when all the light sources are preliminarily emitted at the same time, it is necessary to consider the reflection characteristics of the subject.

グラフ13は、被写体のランバート反射モデルを考慮することで、各光源の最大発光量を一律に1.5Eと設定した場合の反射輝度値の最大値を示している。グラフ13では、2つの光源を同時に合成発光量2Eで発光させたグラフ14に比べて、面法線−50度〜50度の全ての範囲で反射輝度値が低くなっている。そのため、広い面法線範囲で白飛びの発生を回避することができる。 Graph 13 shows the maximum value of the reflected luminance value when the maximum emission amount of each light source is uniformly set to 1.5E by considering the Lambertian reflection model of the subject. In the graph 13, the reflected luminance value is lower in the entire range of the surface normal of -50 degrees to 50 degrees as compared with the graph 14 in which the two light sources are simultaneously emitted with the combined light emission amount of 2E. Therefore, it is possible to avoid the occurrence of overexposure in a wide surface normal range.

図9は、撮像部100から球被写体2001までの距離が図8の半分(D/2)である場合の面法線θと規格化された反射輝度iの関係図である。撮像部100から球被写体2001までの距離が半分となることで、光源200A、200Bは球被写体2001と撮像部100を結ぶ線を基準として球被写体2001に対する角度がそれぞれ−20度、20度となる位置に配置されている。グラフ21は光源200Aを発光量Eで発光させた場合の反射輝度値、グラフ22は光源200Bを発光量Eで発光させた場合の反射輝度値を示している。グラフ24は、光源200A、200Bを同時にそれぞれ発光量E、つまり合成発光量2Eで発光させた場合の合成反射輝度値を示している。グラフ25は、各光源を個別にそれぞれ発光量2Eで発光させた場合の反射輝度値の最大値を示している。グラフ23は、被写体のランバート反射モデルを考慮することで、各光源の最大発光量を一律に1.3Eと設定した場合の反射輝度値の最大値を示している。 FIG. 9 is a diagram showing the relationship between the surface normal θ and the normalized reflection luminance i when the distance from the imaging unit 100 to the spherical subject 2001 is half (D / 2) of FIG. By halving the distance from the image pickup unit 100 to the ball subject 2001, the light sources 200A and 200B have angles of -20 degrees and 20 degrees with respect to the ball subject 2001 with respect to the line connecting the ball subject 2001 and the image pickup unit 100, respectively. It is placed in position. Graph 21 shows the reflected luminance value when the light source 200A is made to emit light with the light emitting amount E, and graph 22 shows the reflected luminance value when the light source 200B is made to emit light with the light emitting amount E. Graph 24 shows the combined reflection luminance value when the light sources 200A and 200B are simultaneously emitted with the light emission amount E, that is, the combined light emission amount 2E. Graph 25 shows the maximum value of the reflected luminance value when each light source is individually emitted with a light emission amount of 2E. Graph 23 shows the maximum value of the reflected luminance value when the maximum emission amount of each light source is uniformly set to 1.3E by considering the Lambertian reflection model of the subject.

最大発光量の設定値の変化は、光源位置や照射角度が固定されている場合でも、被写体までの距離によって被写体に対する光源方向ベクトルが変わることに起因している。すなわち、被写体の反射特性をランバート反射モデルと仮定すれば、発光量制御部104bは、光源情報、被写体距離、および第1測光値に基づいて各光源について一律な最大発光量を算出することが可能となる。全光源を同一発光量に設定することで、発光量の違いによる輝度情報の補正処理を省略することが可能となり、面法線算出時の処理負荷を低減することが可能となる。また、ROM111に光源情報と被写体距離に基づく最大発光量の設定テーブルを保存しておいてもよい。この場合、発光量制御部104bは、ROM111に保存されている最大発光量の設定テーブルを参照することで、光源の適正発光量を算出することができる。 The change in the set value of the maximum light emission amount is due to the fact that the light source direction vector with respect to the subject changes depending on the distance to the subject even when the light source position and the irradiation angle are fixed. That is, assuming that the reflection characteristic of the subject is a Lambertian reflection model, the light emission amount control unit 104b can calculate a uniform maximum light emission amount for each light source based on the light source information, the subject distance, and the first photometric value. It becomes. By setting all the light sources to the same light emission amount, it is possible to omit the correction processing of the luminance information due to the difference in the light emission amount, and it is possible to reduce the processing load at the time of calculating the surface normal. Further, the setting table of the maximum light emission amount based on the light source information and the subject distance may be saved in the ROM 111. In this case, the light emission amount control unit 104b can calculate the appropriate light emission amount of the light source by referring to the maximum light emission amount setting table stored in the ROM 111.

以上説明したように、適正発光量の制御負荷を低減させるために全光源を同時に予備発光させる場合において、広い範囲の面法線被写体に対して白飛びを回避することが可能となる。 As described above, when all the light sources are preliminarily emitted at the same time in order to reduce the control load of the appropriate emission amount, it is possible to avoid overexposure for a wide range of surface normal subjects.

ステップS107では、システムコントローラ110は、発光量制御部104bが照射光源制御部106を介して照度差ステレオ方式の撮像に使用する全光源をステップS106で算出された適正発光量で制御可能かどうかを判定する。制御できない光源が存在する場合はステップS108に進み、存在しない場合はステップS109に進む。 In step S107, the system controller 110 determines whether or not the light emission amount control unit 104b can control all the light sources used for the illumination difference stereo type imaging via the irradiation light source control unit 106 with the appropriate light source amount calculated in step S106. judge. If there is an uncontrollable light source, the process proceeds to step S108, and if it does not exist, the process proceeds to step S109.

ステップS108では、システムコントローラ110は、撮像制御部107に、撮像部100の撮像条件を第1撮像条件から第2撮像条件に変更させる。具体的には、ステップS106で算出された適正発光量が制御可能な発光量より小さい場合、例えば、絞り101aの絞り値を大きく(暗く)設定したり、露出時間を短く設定したり、またはISO感度を低く設定したりすればよい。上記設定を組み合わせて、撮像条件を変更してもよい。また、ステップS106で算出された適正発光量が制御可能な発光量より大きい場合、例えば、絞り値を小さく(明るく)設定したり、露出時間を長く設定したり、またはISO感度を高く設定したりすればよい。上記設定を組み合わせて、撮像条件を変更してもよい。さらに、ステップS106で算出された最小発光量が最大発光量より大きい場合、撮像素子102のダイナミックレンジが不足していることとなるため、本撮影時にHDR(ハイダイナミックレンジ)撮影を行う設定を行う。HDR撮影としては、一般的に知られている露出条件を異ならせた複数枚の画像を取得して合成する手法を用いればよい。照度差ステレオ方式におけるHDR撮影では、1つの光源発光に対して露出条件を異ならせた複数枚の画像を取得すればよい。すなわち、1つの光源に対して何枚の画像を取得するかといった撮像枚数の設定を行う。また、発光量制御部104bは、変更された撮像条件に基づいて発光量を補正してもよい。また、撮像条件は、1つの光源発光に対応した撮像ごとに変更してもよいし、全ての撮像において同一条件としてもよい。 In step S108, the system controller 110 causes the image pickup control unit 107 to change the image pickup condition of the image pickup unit 100 from the first image pickup condition to the second image pickup condition. Specifically, when the appropriate light emission amount calculated in step S106 is smaller than the controllable light emission amount, for example, the aperture value of the aperture 101a is set large (dark), the exposure time is set short, or ISO. The sensitivity may be set low. The imaging conditions may be changed by combining the above settings. When the appropriate light emission amount calculated in step S106 is larger than the controllable light emission amount, for example, the aperture value is set small (bright), the exposure time is set long, or the ISO sensitivity is set high. do it. The imaging conditions may be changed by combining the above settings. Further, if the minimum light emission amount calculated in step S106 is larger than the maximum light emission amount, the dynamic range of the image sensor 102 is insufficient. Therefore, HDR (high dynamic range) shooting is set at the time of main shooting. .. As HDR photography, a generally known method of acquiring and synthesizing a plurality of images having different exposure conditions may be used. In HDR shooting in the illuminance difference stereo system, it is sufficient to acquire a plurality of images having different exposure conditions for one light source emission. That is, the number of images to be captured is set, such as how many images are acquired for one light source. Further, the light emission amount control unit 104b may correct the light emission amount based on the changed imaging conditions. Further, the imaging conditions may be changed for each imaging corresponding to one light source emission, or may be the same conditions for all imaging.

ステップS109では、システムコントローラ110は、発光量制御部104bに、照射光源制御部106を介して各光源の発光量を設定させる。本実施例では、発光量制御部104bは、各光源の発光量が同等となるように設定する。 In step S109, the system controller 110 causes the light emission amount control unit 104b to set the light emission amount of each light source via the irradiation light source control unit 106. In this embodiment, the light emission amount control unit 104b is set so that the light emission amount of each light source is the same.

ステップS110では、システムコントローラ110は、レリーズボタン300の全押し動作に連動し、複数光源位置での被写体の撮像を行う。具体的には、システムコントローラ110は、照射光源制御部106を介して光源部200の互いに位置の異なる少なくとも3つ以上の光源からの光を被写体に順次照射させ、撮像制御部107を介して撮像部100に被写体を撮像させる。A/Dコンバータ103は、撮像素子102から出力されたアナログ信号をA/D変換することで撮影画像(輝度情報)を形成し、画像処理部104に出力する。なお、画像処理部104は、画像生成のために、通常の現像処理や各種の画像補正処理を実行してもよい。 In step S110, the system controller 110 is linked to the full pressing operation of the release button 300 to take an image of the subject at a plurality of light source positions. Specifically, the system controller 110 sequentially irradiates the subject with light from at least three or more light sources having different positions from each other in the light source unit 200 via the irradiation light source control unit 106, and images the subject through the image pickup control unit 107. The unit 100 is made to image the subject. The A / D converter 103 forms a captured image (luminance information) by A / D converting the analog signal output from the image sensor 102, and outputs the captured image (luminance information) to the image processing unit 104. The image processing unit 104 may perform normal development processing or various image correction processing for image generation.

ステップS111では、システムコントローラ110は、法線算出部104cに、ステップS110で補正された輝度情報に基づいて面法線情報を算出させる。法線算出部104cは、上述した照度差ステレオ法を用いて面法線情報を算出する。画像記録部109が面法線情報や画像情報を保存し、フローは完了する。なお、画像記録部109は、発光量の情報や撮像条件の情報を画像情報に付加した情報を保存してもよい。発光量の情報や撮像条件の情報を画像情報に付加して保存することで、輝度情報の補正処理や面法線の算出処理を後から実行することが可能となる。 In step S111, the system controller 110 causes the normal calculation unit 104c to calculate the surface normal information based on the luminance information corrected in step S110. The normal calculation unit 104c calculates the surface normal information using the above-mentioned illuminance difference stereo method. The image recording unit 109 saves the surface normal information and the image information, and the flow is completed. The image recording unit 109 may store information obtained by adding information on the amount of light emitted and information on imaging conditions to the image information. By adding the light emission amount information and the imaging condition information to the image information and saving the information, it is possible to execute the luminance information correction process and the surface normal calculation process later.

以上説明したように、本実施例では、各光源を同時に予備発光させ、その測光値に基づいて各光源の発光量を適正発光量に設定することで、輝度情報を高精度に取得できるため、面法線の算出精度を保つことが可能となる。 As described above, in the present embodiment, the luminance information can be acquired with high accuracy by preliminarily emitting light from each light source at the same time and setting the light emission amount of each light source to an appropriate light emission amount based on the photometric value. It is possible to maintain the calculation accuracy of the surface normal.

なお、本実施例では撮像装置1000A内で被写体の面法線情報を算出しているが、図2Bに示されるように、撮像装置1000Aとは異なる処理システム500を用いて被写体の面法線情報を算出してもよい。図2Bに示される処理システム500は、処理装置501、法線算出部502、撮像部503、光源部504、測光部505、および被写体距離算出部506を備える。処理装置501は、発光量制御部501aを備える。処理システム500を用いて面法線情報を算出する場合、まず、測光部505は処理装置501の指示により光源が予備発光していない状態で被写体からの反射光を測光する。次に、光源部504が処理装置501の指示により少なくとも3つ以上の光源を同時に予備発光させ、測光部505が被写体からの反射光を測光する。次に、被写体距離算出部506は被写体距離を算出し、発光量制御部501aが撮像条件、測光値、光源情報および被写体距離に基づいて光源ごとの適正発光量を算出する。続いて、発光量制御部501aは被写体に少なくとも3つ以上の光源位置から適正発光量の光を照射させるように光源部504を制御し、撮像部503が各光源位置の画像を取得する。なお、発光量制御部501aは各光源の発光量を制御できればよく、光源部200の点灯等の他の処理は処理装置501の他の部分が実行してもよい。最後に、法線算出部502が撮像部503により撮像された画像を用いて面法線情報を算出する。なお、処理システム500は、少なくとも処理装置501を備えていればよい。また、処理装置501は、法線算出部502を備えてもよい。また、撮像部503および光源部504はそれぞれ、個別の装置であってもよいし、光源部504が撮像部503に内蔵されていてもよい。 In this embodiment, the surface normal information of the subject is calculated in the imaging device 1000A, but as shown in FIG. 2B, the surface normal information of the subject is calculated by using a processing system 500 different from that of the imaging device 1000A. May be calculated. The processing system 500 shown in FIG. 2B includes a processing device 501, a normal calculation unit 502, an imaging unit 503, a light source unit 504, a photometric unit 505, and a subject distance calculation unit 506. The processing device 501 includes a light emitting amount control unit 501a. When calculating the surface normal information using the processing system 500, first, the photometric unit 505 measures the reflected light from the subject in a state where the light source does not pre-flash according to the instruction of the processing device 501. Next, the light source unit 504 preliminarily emits at least three or more light sources according to the instruction of the processing device 501, and the photometric unit 505 measures the reflected light from the subject. Next, the subject distance calculation unit 506 calculates the subject distance, and the light emission amount control unit 501a calculates the appropriate light emission amount for each light source based on the imaging conditions, the photometric value, the light source information, and the subject distance. Subsequently, the light emission amount control unit 501a controls the light source unit 504 so as to irradiate the subject with light of an appropriate light source amount from at least three or more light source positions, and the image pickup unit 503 acquires an image of each light source position. It is sufficient that the light emitting amount control unit 501a can control the light emitting amount of each light source, and other processing such as lighting of the light source unit 200 may be executed by another part of the processing device 501. Finally, the normal calculation unit 502 calculates the surface normal information using the image captured by the image pickup unit 503. The processing system 500 may include at least a processing device 501. Further, the processing device 501 may include a normal calculation unit 502. Further, the image pickup unit 503 and the light source unit 504 may be individual devices, or the light source unit 504 may be built in the image pickup unit 503.

図10は、本実施例の撮像装置1000Bのブロック図である。撮像装置1000Bの外観構成は、実施例1の撮像装置1000Aの外観の構成と同様であるため詳細な説明は省略する。また、撮像装置1000Bの内部の構成は、被写体距離算出部104dおよび光源情報取得部112を備えていないことを除き、撮像装置1000Aの内部の構成と同様である。そのため、内部構成の詳細な説明は省略し、撮像装置1000Aと異なる部分についてのみ説明する。 FIG. 10 is a block diagram of the image pickup apparatus 1000B of this embodiment. Since the appearance configuration of the image pickup apparatus 1000B is the same as the appearance configuration of the image pickup apparatus 1000A of the first embodiment, detailed description thereof will be omitted. The internal configuration of the image pickup apparatus 1000B is the same as the internal configuration of the image pickup apparatus 1000A, except that the subject distance calculation unit 104d and the light source information acquisition unit 112 are not provided. Therefore, a detailed description of the internal configuration will be omitted, and only a part different from the image pickup apparatus 1000A will be described.

本実施例の面法線情報算出処理について、図11のフローチャートを参照して説明する。図11は、本実施例の面法線情報の算出処理を示すフローチャートである。本実施例の面法線情報の算出処理は、システムコントローラ110および画像処理部104により、コンピュータを処理装置として機能させるための処理プログラムにしたがって実行される。なお、処理プログラムは、例えば、コンピュータに読み取り可能な記録媒体に記録してもよい。 The surface normal information calculation process of this embodiment will be described with reference to the flowchart of FIG. FIG. 11 is a flowchart showing a calculation process of the surface normal information of this embodiment. The calculation process of the surface normal information of this embodiment is executed by the system controller 110 and the image processing unit 104 according to a processing program for making the computer function as a processing device. The processing program may be recorded on a computer-readable recording medium, for example.

ステップS201およびステップS202までのステップはそれぞれ、実施例1のステップS101およびステップS102までのステップと同様であるため、説明は省略する。 Since the steps up to step S201 and step S202 are the same as the steps up to step S101 and step S102 of the first embodiment, the description thereof will be omitted.

ステップS203では、システムコントローラ110は、照射光源制御部106に、本撮影に使用する光源をあらかじめ設定された光量で同時に予備発光(プリ発光)させる。予備発光の光量は、白飛び発生による測光値の検出精度の劣化を低減させるため、本撮像時に対して低く設定することが好ましい。照度差ステレオ方式では位置の異なる複数の光源を個別に発光させて複数の画像を取得するが、本実施例では測光値検出のための予備発光を光源を同時に発光させて一度に行う。予備発光を一度で実行することで、光源ごとに予備発光を実行する場合に比べて制御負荷を低減することができる。 In step S203, the system controller 110 causes the irradiation light source control unit 106 to simultaneously make a preliminary emission (pre-emission) of the light source used for the main shooting with a preset amount of light. The amount of pre-emission is preferably set lower than that at the time of the main imaging in order to reduce the deterioration of the detection accuracy of the photometric value due to the occurrence of overexposure. In the illuminance difference stereo method, a plurality of light sources having different positions are individually emitted to acquire a plurality of images, but in this embodiment, preliminary emission for detecting the photometric value is performed by simultaneously emitting the light sources. By executing the preliminary light emission at one time, the control load can be reduced as compared with the case where the preliminary light emission is executed for each light source.

ステップS204では、システムコントローラ110は、ステップS203の予備発光に同期して、被写体からの反射光を撮像素子102で受光する。A/Dコンバータ103は、撮像素子102の光電変換によって生成されたアナログ電気信号をデジタル信号に変換し、画像処理部104に出力する。測光部104aは、画像処理部104に入力されたデジタル信号に基づいて第1測光値を取得する。第1測光値は、光源が予備発光している状態の測光値、すなわち環境光および光源の予備発光光が照射された被写体の反射光の測光値である。また、発光量制御部104bは、ステップS101で設定された第1撮像条件、および第1および第2測光値に基づいて光源ごとの適正発光量を算出する。本実施例では、実施例1と異なり、光源部200の各光源は固定の位置に配置され、照射角度も固定されているため、光源情報および被写体距離を取得しない。このとき、被写体距離が近ければ近いほど光源方向ベクトルが大きくなり、最大発光量を低く設定する必要がある。例えば、図8、9を用いて説明したように、被写体距離がDの場合は最大発光量は1.5Eとなり、被写体距離がD/2の場合は最大発光量は1.3Eとなる。言い換えると、撮影時の最小被写体距離条件を設定することで、設定した距離条件範囲内では被写体距離を用いることなく、白飛びを回避した最大発光量を算出することができる。本実施例では、撮影時の最小被写体距離条件を設定することで、最大発光量算出時の補正係数を用いて各光源の適正発光量を小さくする。上記構成により、被写体距離算出部と光源情報取得部を備えることなく、全光源を同時に予備発光させる方法で適正発光量を算出することが可能となり、装置の簡易化と処理負荷の低減を実現することができる。 In step S204, the system controller 110 receives the reflected light from the subject by the image sensor 102 in synchronization with the preliminary light emission in step S203. The A / D converter 103 converts the analog electric signal generated by the photoelectric conversion of the image sensor 102 into a digital signal and outputs it to the image processing unit 104. The photometric unit 104a acquires the first photometric value based on the digital signal input to the image processing unit 104. The first photometric value is a photometric value in a state where the light source emits preliminary light, that is, a photometric value of the reflected light of the subject irradiated with the ambient light and the preliminary light emitted from the light source. Further, the light emission amount control unit 104b calculates an appropriate light emission amount for each light source based on the first imaging condition set in step S101 and the first and second photometric values. In this embodiment, unlike the first embodiment, each light source of the light source unit 200 is arranged at a fixed position and the irradiation angle is also fixed, so that the light source information and the subject distance are not acquired. At this time, the closer the subject distance is, the larger the light source direction vector becomes, and it is necessary to set the maximum amount of light emission lower. For example, as described with reference to FIGS. 8 and 9, when the subject distance is D, the maximum light emission amount is 1.5E, and when the subject distance is D / 2, the maximum light emission amount is 1.3E. In other words, by setting the minimum subject distance condition at the time of shooting, it is possible to calculate the maximum amount of light emission that avoids overexposure within the set distance condition range without using the subject distance. In this embodiment, by setting the minimum subject distance condition at the time of shooting, the appropriate light emission amount of each light source is reduced by using the correction coefficient at the time of calculating the maximum light emission amount. With the above configuration, it is possible to calculate the appropriate amount of light emission by a method in which all light sources are preliminarily emitted at the same time without providing a subject distance calculation unit and a light source information acquisition unit, which simplifies the device and reduces the processing load. be able to.

ステップS205からステップS209までのステップはそれぞれ、実施例1のステップS107からステップS111までのステップと同様であるため、説明は省略する。 Since the steps from step S205 to step S209 are the same as the steps from step S107 to step S111 in the first embodiment, the description thereof will be omitted.

以上説明したように、本実施例では、被写体距離算出部と光源情報取得部を省略した場合でも輝度情報を高精度に取得できるため、面法線の算出精度を保つことが可能となる。 As described above, in the present embodiment, the luminance information can be acquired with high accuracy even when the subject distance calculation unit and the light source information acquisition unit are omitted, so that the surface normal calculation accuracy can be maintained.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof.

104 画像処理部(処理装置)
104b 適正発光量算出部(制御部)
104 Image processing unit (processing device)
104b Appropriate light emission amount calculation unit (control unit)

Claims (16)

互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、
前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、
前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする処理装置。
It is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images.
The first photometric value of the reflected light from the subject obtained by simultaneously pre-emitting the three or more light sources, the information on the amount of light emitted by the light source in the pre-emission, and the pre-emission of the three or more light sources. a second photometric value of the reflected light from the object to be acquired without causing, based on the imaging conditions, have a control unit for controlling the light emission amount of each light source in acquiring the three or more images,
A processing device characterized in that the position and irradiation angle of each of the light sources are fixed, and the acquisition of the image is performed at a subject distance equal to or greater than a predetermined subject distance.
前記3つ以上の画像の輝度情報に基づいて、面法線情報を算出する法線算出部を更に有することを特徴とする請求項1に記載の処理装置。 The processing apparatus according to claim 1, further comprising a normal calculation unit that calculates surface normal information based on the luminance information of the three or more images. 互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、
前記被写体までの被写体距離を算出する距離算出部
前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件と、前記被写体距離に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、
前記各光源の位置と照射角度は固定されていることを特徴とする処理装置。
It is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images.
A distance calculating unit for calculating the object distance to the subject,
The first photometric value of the reflected light from the subject obtained by simultaneously pre-emitting the three or more light sources, the information on the amount of light emitted by the light source in the pre-emission, and the pre-emission of the three or more light sources. Control to control the amount of light emitted from each light source when acquiring the three or more images based on the second photometric value of the reflected light from the subject, the imaging condition, and the subject distance. Has a part
The processing device location and irradiation angle of each light source shall be the feature that it is fixed.
前記制御部は、前記被写体距離が近いほど各光源の発光量が小さくなるように、各光源の発光量を制御することを特徴とする請求項に記載の処理装置。 The processing device according to claim 3 , wherein the control unit controls the light emission amount of each light source so that the light emission amount of each light source becomes smaller as the subject distance is shorter. 互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理装置であって、
前記光源の位置と照射角度の少なくとも一方を含む光源情報を取得する取得部
前記3つ以上の光源を同時に予備発光させて取得される前記被写体からの反射光の第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件と、前記光源情報に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御する制御部を有し、
前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする処理装置。
It is a processing device that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images.
An acquisition unit which acquires a light source information including at least one of the position and the irradiation angle of the light source,
The first photometric value of the reflected light from the subject obtained by simultaneously pre-emitting the three or more light sources, the information on the amount of light emitted by the light source in the pre-emission, and the pre-emission of the three or more light sources. Control to control the amount of light emitted from each light source when acquiring the three or more images based on the second photometric value of the reflected light from the subject, the imaging condition, and the light source information. Has a part
Processing apparatus you characterized in that acquisition of the images is performed by the object distance more than a predetermined subject distance.
前記光源情報は、各光源の位置と照射角度であることを特徴とする請求項に記載の処理装置。 The processing apparatus according to claim 5 , wherein the light source information is a position and an irradiation angle of each light source. 前記制御部が設定した各光源の発光量に基づいて、前記撮像条件を変更する撮像制御部を更に有することを特徴とする請求項1からのいずれか1項に記載の処理装置。 Based on the light emission amount of each light source, wherein the control unit is set, the processing apparatus according to any one of claims 1 to 6, further comprising an imaging control unit for changing the imaging condition. 前記撮像条件は、撮像部の露出時間、ISO感度、絞り値、または撮影枚数のうち少なくともいずれか1つであることを特徴とする請求項1乃至7のいずれか1項に記載の処理装置。 The processing apparatus according to any one of claims 1 to 7, wherein the imaging condition is at least one of the exposure time of the imaging unit, the ISO sensitivity, the aperture value, and the number of shots. 前記制御部は、前記3つ以上の光源の発光量が同等となるように、各光源の発光量を制御することを特徴とする請求項1からのいずれか1項に記載の処理装置。 The processing apparatus according to any one of claims 1 to 8 , wherein the control unit controls the amount of light emitted from each of the three or more light sources so that the amount of light emitted from the three or more light sources becomes the same. 互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得させる処理システムであって、
前記3つ以上の光源を同時に予備発光させた際の被写体からの反射光の第1測光値を取得する測光部と、
前記第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を撮像する際の各光源の発光量を制御する制御部を有し、
前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする処理システム。
It is a processing system that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images.
A metering unit that acquires the first photometric value of the reflected light from the subject when the three or more light sources are preliminarily emitted at the same time.
The first photometric value, information on the amount of light emitted by the light source in the preliminary light emission, the second photometric value of the reflected light from the subject acquired without causing the three or more light sources to perform preliminary light emission, and imaging conditions. based on, have a control unit for controlling the light emission amount of each light source at the time of imaging the three or more images,
A processing system characterized in that the position and irradiation angle of each light source are fixed, and the image is acquired at a subject distance equal to or greater than a predetermined subject distance.
前記3つ以上の画像の輝度情報に基づいて、面法線情報を算出する法線算出部を更に有することを特徴とする請求項10に記載の処理システム。 The processing system according to claim 10 , further comprising a normal calculation unit that calculates surface normal information based on the luminance information of the three or more images. 互いに位置の異なる3つ以上の光源を備える光源部を更に有することを特徴とする請求項10または11に記載の処理システム。 The processing system according to claim 10 or 11 , further comprising a light source unit including three or more light sources having different positions from each other. 互いに位置の異なる3つ以上の光源からの光を被写体に順次照射して3つ以上の画像を取得する撮像部と、
前記3つ以上の光源を同時に予備発光させた際の前記被写体からの反射光の第1測光値を取得する測光部と、
前記第1測光値と、前記予備発光における前記光源による発光量の情報と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件に基づいて、前記3つ以上の画像を撮像する際の各光源の発光量を制御する制御部と、
前記3つ以上の画像の輝度情報に基づいて、面法線情報を算出する法線算出部と、を有し、
前記各光源の位置と照射角度は固定されており、前記画像の取得は所定の被写体距離以上の被写体距離で行われることを特徴とする撮像装置。
An imaging unit that sequentially irradiates a subject with light from three or more light sources having different positions to acquire three or more images.
A photometric unit that acquires the first photometric value of the reflected light from the subject when the three or more light sources are preliminarily emitted at the same time.
The first photometric value, information on the amount of light emitted by the light source in the preliminary light emission, the second photometric value of the reflected light from the subject acquired without causing the three or more light sources to perform preliminary light emission, and imaging conditions. Based on, a control unit that controls the amount of light emitted from each light source when capturing the three or more images, and
Based on the luminance information of the three or more images, it possesses a normal calculation unit for calculating a surface normal information, and
An imaging device characterized in that the position and irradiation angle of each light source are fixed, and the image is acquired at a subject distance equal to or greater than a predetermined subject distance.
互いに位置の異なる3つ以上の光源であって位置及び照射角度が固定された光源からの光を被写体に順次照射して所定の被写体距離以上の被写体距離で撮影された3つ以上の画像を取得させる処理方法であって、
前記3つ以上の光源を同時に予備発光させた際の前記被写体からの反射光の第1測光値と、前記3つ以上の光源を予備発光させずに取得される前記被写体からの反射光の第2測光値と、撮像条件を取得するステップと、
前記第1測光値と、前記第2測光値と、前記撮像条件と、前記予備発光における前記光源による発光量の情報に基づいて、前記3つ以上の画像を取得する際の各光源の発光量を制御するステップと、を有することを特徴とする処理方法。
Acquires three or more images taken at a subject distance equal to or greater than a predetermined subject distance by sequentially irradiating the subject with light from three or more light sources having different positions and fixed positions and irradiation angles. It is a processing method to make
The first photometric value of the reflected light from the subject when the three or more light sources are preliminarily emitted at the same time, and the first photometric value of the reflected light from the subject acquired without pre-embossing the three or more light sources. 2 Photometric values, steps to acquire imaging conditions, and
Based on the information of the first photometric value, the second photometric value, the imaging condition, and the light emission amount of the light source in the preliminary light emission, the light emission amount of each light source when acquiring the three or more images. A processing method comprising: a step of controlling.
コンピュータを請求項1からのいずれか1項に記載の処理装置として機能させるためのプログラム。 A program for operating a computer as the processing device according to any one of claims 1 to 9. 請求項15に記載のプログラムを記録したコンピュータが読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 15 is recorded.
JP2016138303A 2016-07-13 2016-07-13 Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media Active JP6910763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138303A JP6910763B2 (en) 2016-07-13 2016-07-13 Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138303A JP6910763B2 (en) 2016-07-13 2016-07-13 Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media

Publications (2)

Publication Number Publication Date
JP2018010116A JP2018010116A (en) 2018-01-18
JP6910763B2 true JP6910763B2 (en) 2021-07-28

Family

ID=60995608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138303A Active JP6910763B2 (en) 2016-07-13 2016-07-13 Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media

Country Status (1)

Country Link
JP (1) JP6910763B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7187192B2 (en) * 2018-07-06 2022-12-12 キヤノン株式会社 Controllers, accessories, imaging devices and imaging systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053247B2 (en) * 2000-09-19 2008-02-27 ペンタックス株式会社 Flash photography system and camera
JP2007206797A (en) * 2006-01-31 2007-08-16 Omron Corp Image processing method and image processor
JP2010122158A (en) * 2008-11-21 2010-06-03 Juki Corp Method for preparing body surface normal vector map
JP2010145972A (en) * 2008-12-22 2010-07-01 Olympus Imaging Corp Camera system
JP6371044B2 (en) * 2013-08-31 2018-08-08 国立大学法人豊橋技術科学大学 Surface defect inspection apparatus and surface defect inspection method
JP2015127720A (en) * 2013-11-26 2015-07-09 株式会社ニコン Light emission control device and imaging device

Also Published As

Publication number Publication date
JP2018010116A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP2004212385A (en) Photographic device, photographing method and control method for the photographic device
JP7179472B2 (en) Processing device, processing system, imaging device, processing method, program, and recording medium
US10939090B2 (en) Control apparatus, imaging apparatus, illumination apparatus, image processing apparatus, image processing method, and storage medium
JP2017102637A (en) Processing apparatus, processing system, imaging device, processing method, program, and recording medium
JP6877936B2 (en) Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media
US11025829B2 (en) Imaging apparatus, accessory, processing apparatus, processing method, and storage medium
JP6671915B2 (en) Processing device, processing system, imaging device, processing method, program, and recording medium
US10965853B2 (en) Control apparatus, accessory, imaging apparatus, and imaging system capable of switching light emission modes for imaging
JP6425571B2 (en) IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
JP6862114B2 (en) Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media
JP7106259B2 (en) Image processing device, imaging device, and image processing method
US10346959B2 (en) Processing apparatus, processing system, image pickup apparatus, processing method, and non-transitory computer-readable storage medium
JP6910763B2 (en) Processing equipment, processing systems, imaging equipment, processing methods, programs, and recording media
JP7118776B2 (en) IMAGING DEVICE, IMAGE PROCESSING METHOD, IMAGE PROCESSING PROGRAM AND RECORDING MEDIUM
JP6679289B2 (en) Processing device, processing system, imaging device, processing method, processing program, and recording medium
JP2004328657A (en) Image input device, image input method and program
JP7520586B2 (en) Image processing device, image processing method, and program
JP2018054413A (en) Processing device, processing system, imaging device, processing method, program, and recording medium
JP7309425B2 (en) Processing device, processing system, imaging device, processing method, and program
JP7210170B2 (en) Processing device, processing system, imaging device, processing method, program, and recording medium
JP7490457B2 (en) Processing device, processing system, imaging device, processing method, and program
JP2020173591A (en) Processing device, processing system, imaging apparatus, processing method, and program
JP5515541B2 (en) Imaging device
JP2020095454A (en) Processing device, imaging device, processing system, processing method, program, and storage medium
JP2020127190A (en) Control apparatus, illumination apparatus, imaging apparatus, image processing apparatus, image processing method, program, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210414

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R151 Written notification of patent or utility model registration

Ref document number: 6910763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151