JP6908917B2 - Power control systems, photovoltaic plants, power control programs, and power control methods - Google Patents

Power control systems, photovoltaic plants, power control programs, and power control methods Download PDF

Info

Publication number
JP6908917B2
JP6908917B2 JP2017082413A JP2017082413A JP6908917B2 JP 6908917 B2 JP6908917 B2 JP 6908917B2 JP 2017082413 A JP2017082413 A JP 2017082413A JP 2017082413 A JP2017082413 A JP 2017082413A JP 6908917 B2 JP6908917 B2 JP 6908917B2
Authority
JP
Japan
Prior art keywords
power
plant
side plant
power transmission
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082413A
Other languages
Japanese (ja)
Other versions
JP2018182966A (en
Inventor
正雄 本家
正雄 本家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wave Energy Inc
Original Assignee
Wave Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wave Energy Inc filed Critical Wave Energy Inc
Priority to JP2017082413A priority Critical patent/JP6908917B2/en
Publication of JP2018182966A publication Critical patent/JP2018182966A/en
Application granted granted Critical
Publication of JP6908917B2 publication Critical patent/JP6908917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、送電側プラントと電力系統と受電側プラントを有した電力制御システムや、太陽電池と変換部とトランスと送電部を備えた太陽光発電プラント、送電側プラントと受電側プラントの電力制御プログラム、及び、電力制御方法に関する。 The present invention relates to a power control system having a power transmission side plant, a power system, and a power reception side plant, a solar power plant having a solar cell, a conversion unit, a transformer, and a power transmission unit, and power control of a power transmission side plant and a power reception side plant. Regarding programs and power control methods.

従来、変圧器の二次側電圧を所定の制限値内に調整する電力系統の電圧調整装置が知られている(特許文献1参照)。
この電圧調整装置は、自端電圧が規定電圧より上昇した時に発電量を抑制する機能を備えた太陽光発電装置を含む電力系統に設置され、タップ付変圧器のタップ位置を調整してタップ付変圧器の二次側電圧を所定の制限値内に調整する。
更に、この電圧調整装置は、前記タップ付変圧器の二次側電圧および通過電流を推定する計測部と、前記推定した二次側電圧を通過電流に応じて補正して第1の電圧値を得る第1の電圧補正部と、前記推定した二次側電圧を通過電流に応じて補正して第2の電圧値を得る第2の電圧補正部と、前記第1および第2の電圧補正部で計算された第1および第2の電圧値が所定の制限値を逸脱するときに前記タップ付変圧器のタップ操作を実行するタップ制御器を備え、前記第2の電圧値は前記太陽光発電装置の前記自端電圧を推定したものであって、前記第2の電圧値が前記規定電圧に近づいている状態を示すことをもって前記タップ付変圧器のタップ操作を実行する。
Conventionally, there is known a voltage adjusting device for a power system that adjusts the secondary voltage of a transformer within a predetermined limit value (see Patent Document 1).
This voltage regulator is installed in a power system that includes a solar power generator that has a function to suppress the amount of power generated when its own voltage rises above the specified voltage, and it is tapped by adjusting the tap position of the transformer with a tap. Adjust the secondary voltage of the transformer within the specified limit.
Further, this voltage regulator has a measuring unit that estimates the secondary side voltage and the passing current of the tapped transformer, and corrects the estimated secondary side voltage according to the passing current to obtain the first voltage value. The first voltage correction unit to obtain, the second voltage correction unit to correct the estimated secondary side voltage according to the passing current to obtain the second voltage value, and the first and second voltage correction units. It is provided with a tap controller that executes a tap operation of the tapped transformer when the first and second voltage values calculated in the above deviate from a predetermined limit value, and the second voltage value is the solar power generation. The tap operation of the tapped transformer is executed by estimating the self-end voltage of the device and indicating a state in which the second voltage value is approaching the specified voltage.

特開2016−163441号公報Japanese Unexamined Patent Publication No. 2016-163441

しかしながら、電力系統に設置された太陽光発電装置には、電力(=電流×電圧)に対して出力抑制がかかるため、特許文献1に記載された電圧調整装置によって電圧を下げても、当該太陽光発電装置から出力する電力が抑制されることに変わりはないため、結局、抑制された分だけ電力が無駄になり、発電効率が低下する。
更に、特許文献1の電圧調整装置は、変圧器がタップ付であることや、計測部、第1の電圧補正部、第2の電圧補正部、タップ制御器を備えることが必須であるため、太陽光発電装置における構造の複雑化や、部品数の増加を招く。
However, since the output of the photovoltaic power generation device installed in the power system is suppressed with respect to the electric power (= current × voltage), even if the voltage is lowered by the voltage adjusting device described in Patent Document 1, the sun is concerned. Since the power output from the photovoltaic power generation device is still suppressed, the power is wasted by the suppressed amount, and the power generation efficiency is lowered.
Further, since the voltage adjusting device of Patent Document 1 is indispensable to have a transformer with a tap and to include a measuring unit, a first voltage correction unit, a second voltage correction unit, and a tap controller. This will lead to complicated structures in photovoltaic power generation equipment and an increase in the number of parts.

本発明は、このような点に鑑み、送電側プラントによる送電を開始する以前に又は送電をしつつ受電側プラントによる受電をし、受電力を所定の送電力と同じ又はより大きくすることで、「発電した電力の有効活用」や「発電効率の向上」、送電側プラントの「構造の簡素化」、「部品数の低減」を実現し得る発電制御システムや発電制御プログラム、発電制御方法を提供することを目的とする。
又、本発明は、太陽電池の定格電力を変換部の定格電力に力率を掛けた値等より大きくすることで、「発電効率の向上」などを実現した太陽光発電プラントを提供することも目的とする。
In view of these points, the present invention receives power by the power receiving side plant before or while transmitting power by the power transmitting side plant, and makes the received power equal to or larger than a predetermined power transmission. Providing power generation control systems, power generation control programs, and power generation control methods that can realize "effective utilization of generated power", "improvement of power generation efficiency", "simplification of structure" of power transmission side plants, and "reduction of the number of parts" The purpose is to do.
The present invention also provides a photovoltaic power plant that realizes "improvement of power generation efficiency" by making the rated power of the solar cell larger than the value obtained by multiplying the rated power of the conversion unit by the power factor. The purpose.

本発明に係る電力制御システム1は、発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントを有した電力制御システムであって、前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記受電側プラントは電力系統からの受電をし、前記受電側プラントが電力系統から受電する受電力は、前記送電側プラントが電力系統へ送電する所定の送電力と同じ又はより大きいことを第1の特徴とする。 The power control system 1 according to the present invention is a power control system having a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system, and the power transmission side. The power receiving side plant receives power from the power system before the plant starts transmitting power to the power system or while transmitting power, and the power receiving power received by the power receiving side plant from the power system is transmitted by the power transmitting side plant. The first feature is that it is the same as or larger than the predetermined power transmission to be transmitted to the power system.

本発明に係る電力制御システム1の第2の特徴は、上記第1の特徴に加えて、前記送電力を制限値以下とする制限命令を送電側プラントに通知する制御装置も有し、この制御装置は、前記制限命令を送電側プラントに通知した際に、前記送電側プラントによる送電を開始させる以前に又は送電をさせつつ、前記受電側プラントに、前記制限値を越える送電力と同じ又はより大きい受電力の受電をさせる点にある。 The second feature of the power control system 1 according to the present invention is, in addition to the first feature, a control device that notifies the power transmission side plant of a limit command for reducing the power transmission to the limit value or less, and this control When the device notifies the power transmission side plant of the limit order, the power transmission side plant is the same as or more than the power transmission value exceeding the limit value before or while transmitting the power transmission by the power transmission side plant. The point is to receive a large amount of power.

本発明に係る電力制御システム1の第3の特徴は、上記第1又は2の特徴に加えて、前記受電側プラントは、前記電力系統から受電した電力を使用する電力使用機器と、前記電力系統から受電した電力を貯蔵する電力貯蔵装置を備えている点にある。 The third feature of the power control system 1 according to the present invention is that, in addition to the above-mentioned first or second feature, the power receiving side plant includes a power-using device that uses the power received from the power system and the power system. It is equipped with a power storage device that stores the power received from.

本発明に係る電力制御システム1の第4の特徴は、上記第1〜3の特徴に加えて、前記発電装置は、太陽光発電装置であり、この太陽光発電装置は、太陽電池と、この太陽電池からの直流電流を交流電流に変換する変換部を備え、前記太陽電池の定格電力は、前記変換部の定格電力に力率を掛けた値又は前記変換部の定格電力そのものより大きい点にある。 The fourth feature of the power control system 1 according to the present invention is that, in addition to the above-mentioned first to third features, the power generation device is a solar power generation device, and the solar power generation device includes a solar cell and the solar cell. A conversion unit that converts a DC current from a solar cell into an AC current is provided, and the rated power of the solar cell is greater than the value obtained by multiplying the rated power of the conversion unit by the power factor or the rated power of the conversion unit itself. be.

これらの特徴により、送電側プラント3が送電を開始する以前に又は送電をしつつ、受電側プラント4の受電をし、その受電側プラント4の受電力P4を、送電側プラント3の所定の送電力P3と同じ又はより大きくすることによって、電力会社等の電力系統Gにおいて電力の需要に対して供給の方が多く、停電発生の低減や電気の安定供給などのために、送電側プラント3から電力系統Gへの送電力P3に出力抑制がかかった場合などであっても、特許文献1とは異なり、送電側プラント3から電力系統Gに送電する都度に、その送電力P3等と同じ又はより大きい受電力P4を電力系統Gから抜くことが可能となって、送電側プラント3の発電装置2において生じた電力すべてを電力系統Gに送電でき、送電側プラント3から送電する電力が抑制されることはなく、電力の無駄が省け、発電効率が向上し得る(「発電した電力の有効活用」や「発電効率の向上」)。
ここで、「所定の送電力P3」とは、電力系統Gにおける需要を供給がオーバー(電力系統Gがオーバーフロー)する可能性がある際に、そのオーバーフローし得る電力分であるとも言える。
そして、送受電のタイミングや送受電力P3、P4を調整する送電側プラント3及び受電側プラント4に対して、特許文献1のように、変圧器をタップ付としたり、計測部などの別部品を設ける必要もない(「構造の簡素化」や「部品数の低減」)。
Due to these characteristics, the power receiving side plant 4 receives power before the power transmitting side plant 3 starts power transmission or while transmitting power, and the power received P4 of the power receiving side plant 4 is transmitted to a predetermined power transmission side plant 3. By making it the same as or larger than the electric power P3, the electric power system G of the electric power company or the like supplies more electricity to the demand for electric power, and the power transmission side plant 3 is used to reduce the occurrence of power failure and to provide a stable supply of electric power. Even when the output of the power transmission P3 to the power system G is suppressed, unlike Patent Document 1, each time the power transmission side plant 3 transmits power to the power system G, it is the same as the power transmission P3 or the like. It is possible to remove the larger received power P4 from the power system G, and all the power generated in the power generation device 2 of the power transmission side plant 3 can be transmitted to the power system G, and the power transmitted from the power transmission side plant 3 is suppressed. There is no such thing, waste of power can be eliminated, and power generation efficiency can be improved (“effective utilization of generated power” and “improvement of power transmission efficiency”).
Here, it can be said that the "predetermined power transmission P3" is the amount of power that can overflow when the supply of the demand in the power system G may be exceeded (the power system G overflows).
Then, as in Patent Document 1, for the power transmission side plant 3 and the power reception side plant 4 that adjust the power transmission / reception timing and the power transmission / reception powers P3 and P4, a transformer is attached with a tap, and another part such as a measurement unit is provided. There is no need to provide it (“simplification of structure” or “reduction of the number of parts”).

又、制御装置5が送電力P3を制限値C’以下とする制限命令Cを送電側プラント3に通知した際に、送電側プラント3による送電を開始させる以前に又は送電をさせつつ、受電側プラント4に、制限値C’を越える送電力と同じ又はより大きい受電力P4の受電をさせることによって、送電側プラント3から電力系統Gへの送電力P3に出力抑制がかかった場合など必要な場合だけ、電力系統Gに送電する分を抜くこととなり、必要でない場合には、電力系統Gに送電(売電など)するのみで、受電(買電など)せずとも良くなるため、経済性も向上する。 Further, when the control device 5 notifies the power transmission side plant 3 of the limit command C for setting the power transmission P3 to the limit value C'or less, the power reception side receives power before or while transmitting power by the power transmission side plant 3. It is necessary when the output of the power transmission P3 from the power transmission side plant 3 to the power system G is suppressed by causing the plant 4 to receive the power reception P4 that is the same as or larger than the power transmission that exceeds the limit value C'. Only in the case, the amount to be transmitted to the power system G is omitted, and when it is not necessary, only the power is transmitted to the power system G (power sale, etc.), and it is not necessary to receive power (power purchase, etc.), which is economical. Also improves.

更に、受電側プラント4に電力使用機器6と電力貯蔵装置7を設けることによって、電力系統Gから受電した電力をそのまま電力使用機器6で使用したり、又、電力使用機器6で使用する電力が少ない場合(例えば、春や秋など、一般の空調機等による消費電力が少ない時期)であっても、受電側プラント4において余った電力を電力貯蔵装置7によって貯蔵することによって、送電側プラント3から無駄なく送電された電力を、受電側プラント4においても、無駄なく活用できる。 Further, by providing the power-using device 6 and the power storage device 7 in the power-receiving side plant 4, the power received from the power system G can be used as it is in the power-using device 6, or the power used in the power-using device 6 can be used. Even when the amount of power is small (for example, when the power consumption by a general air conditioner or the like is low, such as in spring or autumn), the power storage device 7 stores the surplus power in the power receiving side plant 4, so that the power transmitting side plant 3 The electric power transmitted from the power source without waste can be utilized in the power receiving side plant 4 without waste.

そして、発電装置2である太陽光発電装置2’において、太陽電池11の定格電力T11を変換部12の定格電力T12に力率Fを掛けた値等より大きくすることによって、更なる「発電効率の向上」が図れる。 Then, in the photovoltaic power generation device 2'which is the power generation device 2, the rated power T11 of the solar cell 11 is made larger than the value obtained by multiplying the rated power T12 of the conversion unit 12 by the power factor F or the like, thereby further "power generation efficiency". Can be improved.

その他、太陽光発電プラント3’は、太陽電池と、この太陽電池からの直流電流を交流電流に変換する変換部と、この変換部からの交流電流の電圧を変圧するトランスと、このトランスからの交流電流を電力系統へ送電する送電部を備えた太陽光発電プラントであって、前記太陽電池の定格電力は、前記変換部の定格電力に力率を掛けた値又は前記変換部の定格電力そのものより大きくても良い In addition, the solar power generation plant 3'has a solar cell, a conversion unit that converts DC current from this solar cell into AC current, a transformer that transforms the voltage of AC current from this conversion unit, and a transformer from this transformer. A solar power plant equipped with a transmission unit that transmits alternating current to the power system, and the rated power of the solar cell is the value obtained by multiplying the rated power of the conversion unit by the power factor or the rated power of the conversion unit itself. it may be more rather than size.

この場合、太陽電池11の定格電力T11を変換部12の定格電力T12に力率Fを掛けた値等より大きくすることでも、更なる「発電効率の向上」が図れる。 In this case , further "improvement of power generation efficiency" can be achieved by making the rated power T11 of the solar cell 11 larger than the value obtained by multiplying the rated power T12 of the conversion unit 12 by the power factor F or the like.

本発明に係る電力制御プログラムは、発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントの電力制御プログラムであって、前記受電側プラントに、前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記電力系統からの受電をさせ、前記受電側プラントに、当該受電側プラントが電力系統から受電する受電力を、前記送電側プラントが電力系統へ送電する所定の送電力と同じに又はより大きくさせることを第1の特徴とする。 The power control program according to the present invention is a power control program for a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system. Before or while transmitting power to the power system, the power transmission side plant receives power from the power system, and the power receiving side plant receives power received from the power system by the power receiving side plant. The first feature is to make the power transmission side plant equal to or larger than the predetermined power transmission to be transmitted to the power system.

本発明に係る電力制御方法は、発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントの電力制御方法であって、前記受電側プラントに、前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記電力系統からの受電をさせ、前記受電側プラントに、当該受電側プラントが電力系統から受電する受電力を、前記送電側プラントが電力系統へ送電する所定の送電力と同じに又はより大きくさせることを第1の特徴とする。 The power control method according to the present invention is a power control method for a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system, and the power reception side plant receives power. Before or while transmitting power to the power system, the power transmission side plant receives power from the power system, and the power receiving side plant receives power received from the power system by the power receiving side plant. The first feature is to make the power transmission side plant equal to or larger than the predetermined power transmission to be transmitted to the power system.

これらの特徴により、送電側プラント3が送電を開始する以前に又は送電をしつつ、受電側プラント4の受電をし、その受電側プラント4の受電力P4を、送電側プラント3の所定の送電力P3と同じに又はより大きくすることによって、「発電した電力の有効活用」や「発電効率の向上」、「構造の簡素化」、「部品数の低減」が図れる。 Due to these characteristics, the power receiving side plant 4 receives power before the power transmitting side plant 3 starts power transmission or while transmitting power, and the power received P4 of the power receiving side plant 4 is transmitted to a predetermined power transmission side plant 3. By making it the same as or larger than the electric power P3, "effective utilization of generated electric power", "improvement of power generation efficiency", "simplification of structure", and "reduction of the number of parts" can be achieved.

本発明に係る電力制御システムや発電制御プログラム、発電制御方法によると、送電側プラントによる送電を開始する以前に又は送電をしつつ受電側プラントによる受電をし、受電力を所定の送電力と同じ又はより大きくして、「発電効率の向上」などを実現し得る。
又、本発明に係る太陽光発電プラントは、太陽電池の定格電力を変換部の定格電力に力率を掛けた値等より大きくして、「発電効率の向上」などを実現する。
According to the power control system, the power generation control program, and the power generation control method according to the present invention, power is received by the power receiving side plant before or while transmitting power, and the received power is the same as the predetermined power transmission. Alternatively, it can be made larger to realize "improvement of power generation efficiency" and the like.
Further, the photovoltaic power plant according to the present invention realizes "improvement of power generation efficiency" by making the rated power of the solar cell larger than the value obtained by multiplying the rated power of the conversion unit by the power factor or the like.

本発明に係る電力制御システムを示す概要図である。It is a schematic diagram which shows the electric power control system which concerns on this invention. 本発明に係る太陽光発電プラントを示す概要図である。It is a schematic diagram which shows the solar power plant which concerns on this invention. 太陽光発電プラントにおいて、過積載率、等価負荷率、及び、ロス率(1年間のロス率)の関係を示すグラフである。It is a graph which shows the relationship between the overload rate, the equivalent load factor, and the loss rate (loss rate for one year) in a photovoltaic power plant. 本発明に係る発電制御プログラム、発電制御方法を示すフローチャートである。It is a flowchart which shows the power generation control program and power generation control method which concerns on this invention.

以下、本発明の実施形態を、図面を参照して説明する。
<電力制御システム1の全体構成>
図1〜4に示されたように、本発明に係る電力制御システム1は、発電装置2からの電力を電力系統Gへ送電する送電側プラント3と、電力系統Gから電力を受電する受電側プラント4を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Overall configuration of power control system 1>
As shown in FIGS. 1 to 4, the power control system 1 according to the present invention includes a power transmission side plant 3 that transmits power from the power generation device 2 to the power system G and a power reception side that receives power from the power system G. It has a plant 4.

電力制御システム1は、上述した送電力P3を制限値C’以下とする制限命令Cを送電側プラント3に通知する制御装置5を有しても良い。
このような電力制御システム1における送電側プラント3及び受電側プラント4が送受電する対象である電力系統Gについて、まず述べる。
The power control system 1 may have a control device 5 that notifies the power transmission side plant 3 of a limit command C for setting the above-mentioned power transmission P3 to a limit value C'or less.
First, the power system G to which the power transmission side plant 3 and the power reception side plant 4 in such a power control system 1 transmit and receive power will be described.

<電力系統G>
図1、2に示すように、電力系統Gは、送電側プラント3から電力を受電し(送電され)、且つ、受電側プラント4に送電する(受電させる)ものであって、電力会社などが電気を消費者に供給するためのシステム全体のことを言う。
電力系統Gは、具体的には、変電所・送電線・配電線などの設備を備え、発電所(発電装置2を備えた送電側プラント3であるとも言える)が含まれる場合もある。
このような電力系統Gで扱われる電力は、交流、直流の何れでも良いが、以下は、交流であるとして述べる。
<Power system G>
As shown in FIGS. 1 and 2, the electric power system G receives (transmits) electric power from the power transmitting side plant 3 and transmits (transmits) electric power to the receiving side plant 4, and is transmitted by an electric power company or the like. It refers to the entire system for supplying electricity to consumers.
Specifically, the power system G is provided with equipment such as a substation, a power transmission line, and a distribution line, and may include a power plant (which can be said to be a power transmission side plant 3 equipped with a power generation device 2).
The electric power handled by the electric power system G may be either alternating current or direct current, but the following will be described as alternating current.

電力系統Gでは、発電装置2を備えた送電側プラント3から送電される電力の多くが交流であるため、送電線で3相3線式により送電され、その送電の際の送電ロスを減らすため、基幹的な長距離送電の区間は出来るだけ高電圧(例えば、6600Vや22000Vなど)で送電される。
電力系統Gで送電される電力は、消費地に近い場所で何段かに分けて電圧が変圧(降圧)され、柱上変圧器等以降は単相2線式や単相2線式での配電も行なわれる。
In the power system G, since most of the power transmitted from the power transmission side plant 3 provided with the power generation device 2 is alternating current, it is transmitted by a three-phase three-wire system on the power transmission line, in order to reduce the power transmission loss during the power transmission. , The basic long-distance transmission section is transmitted at the highest possible voltage (for example, 6600V or 22000V).
The power transmitted by the power system G is divided into several stages near the consumption area, and the voltage is transformed (stepped down). After the pole transformer, etc., the single-phase two-wire system or single-phase two-wire system is used. Power distribution is also carried out.

電力系統Gは、電力会社などの電力系統(商用電力系統)G’であったり、企業・自治体などの組織が独自に有するシステムやプラント内部の電力系統(独立電力系統)G”であっても良い。
このような電力系統Gにおいて電力の需要に対して供給の方が多い場合、具体的には、例えば、春や秋など、一般の空調機等による消費電力(需要)が少ないにも関わらず、日照条件によっては太陽光発電プラント等からの出力電力(供給)が多い場合などには、停電発生の低減や電気の安定供給などのために、送電側プラント3から電力系統Gへの送電力P3に出力抑制(出力する電力の抑制)が必要となることがある。
The power system G may be a power system (commercial power system) G'such as an electric power company, a system independently owned by an organization such as a company or a local government, or a power system (independent power system) G inside a plant. good.
When the power supply is larger than the power demand in such a power system G, specifically, for example, in spring or autumn, the power consumption (demand) by a general air conditioner or the like is small, but the power consumption (demand) is small. When the output power (supply) from a solar power generation plant or the like is large depending on the sunshine conditions, the power transmission P3 from the power transmission side plant 3 to the power system G in order to reduce the occurrence of power outages and to provide a stable supply of electricity. Output suppression (suppression of output power) may be required.

これを、発電装置2を備えた送電側プラント3から送電されて電力(水に例えられる)が電力系統G(水槽に例えられる)に溜まり、電力が溜まった電力系統Gから受電側プラント4へ送電されると換言した場合、送電側プラント3からの電力が多すぎる場合、電力は電力系統Gから溢れ出すこととなり、供給過多となった電力は、変電所などへのダメージや、逆流することによって大規模な停電引き起こすなど、安定した供給が出来なくなる。
このような電力系統Gに対して、春や秋の昼間の電力需要が下がった時間帯に、例えば、太陽光発電装置2’などの発電装置2が発電のピークを迎えると、火力発電所などの出力制御だけでは需要を供給がオーバー(電力系統Gがオーバーフロー)して、安定した供給が出来なくなるため、太陽光発電装置2’や風力発電などを行う発電装置2を備えた送電側プラント3からの出力抑制を行う必要が生じる。
そこで、次に発電装置2について述べる。
This is transmitted from the power transmission side plant 3 provided with the power generation device 2, and the electric power (which is likened to water) is stored in the power system G (which is likened to a water tank), and the electric power system G where the electric power is accumulated goes to the power receiving side plant 4. In other words, if there is too much power from the power transmission side plant 3, the power will overflow from the power system G, and the oversupplied power will damage the substation and flow back. As a result, a large-scale power outage will occur and stable supply will not be possible.
For such a power system G, when the power generation device 2 such as the photovoltaic power generation device 2'reaches the peak of power generation during the time when the daytime power demand in spring or autumn falls, for example, a thermal power plant or the like. The power supply side plant 3 equipped with a photovoltaic power generation device 2'or a power generation device 2 for performing wind power generation, etc. It becomes necessary to suppress the output from.
Therefore, the power generation device 2 will be described next.

<発電装置2>
図1、2に示すように、発電装置2は、発電するのであれば、何れの構成でも良い。
発電装置2は、例えば、太陽光発電、風力発電、水力発電、地熱発電、太陽熱発電、大気中の熱その他の自然界に存する熱による発電、バイオマス(動植物に由来する有機物であってエネルギー源として利用することができるもの)による発電などを行うものであっても良い。
この他、発電装置2は、海洋温度差や波力、潮流(海流)、潮汐による発電を行うものであっても良い。
以下は、特に、太陽光発電を行う太陽光発電装置2’について述べる。
<Power generation device 2>
As shown in FIGS. 1 and 2, the power generation device 2 may have any configuration as long as it generates power.
The power generation device 2 is, for example, solar power generation, wind power generation, hydroelectric power generation, geothermal power generation, solar thermal power generation, power generation by atmospheric heat or other heat existing in the natural world, and biomass (organic matter derived from animals and plants and used as an energy source). It may be something that can generate electricity.
In addition, the power generation device 2 may generate power by ocean thermal energy conversion, wave power, tidal current (ocean current), and tide.
In particular, the solar power generation device 2'that generates solar power will be described below.

<太陽光発電装置2’>
図1、2に示したように、太陽光発電装置2’は、太陽電池11と、この太陽電池11からの直流電流を交流電流に変換する変換部12を備えている。
この他、太陽光発電装置2’は、日射強度Rを測定する日射計15や、変換部12や後述する送電部14を収容する配電盤20や、この配電盤20内の空調を行うエアコン(図示省略)、太陽電池11や接続箱22等からの直流電流を集めて変換部12へ送る集電部などを有していても良く、又、後述するトランス13や送電部14も含めて太陽光発電装置2’と言っても構わない。
尚、「日射強度R」とは、JIS−C−8960:2012に準じ、「表面の単位面積当たりに、単位時間に、太陽から入射す放射エネルギー(単位:W/m2 )」を意味し、「日射量R」とも言う。
<Solar power generation device 2'>
As shown in FIGS. 1 and 2, the photovoltaic power generation device 2'includes a solar cell 11 and a conversion unit 12 that converts a direct current from the solar cell 11 into an alternating current.
In addition, the photovoltaic power generation device 2'contains a solar radiation meter 15 for measuring the solar radiation intensity R, a power distribution board 20 for accommodating a conversion unit 12 and a power transmission unit 14 described later, and an air conditioner for air conditioning in the power distribution panel 20 (not shown). ), It may have a current collecting unit that collects direct current from the solar cell 11 or the junction box 22 and sends it to the conversion unit 12, and also includes a transformer 13 and a power transmission unit 14 described later to generate solar power. It may be called device 2'.
In addition, "solar radiation intensity R" means " radiant energy (unit: W / m 2 ) incident from the sun in a unit time per unit area of the surface" according to JIS-C-8960: 2012. , Also called "solar radiation R".

太陽光発電装置2’における太陽電池11は複数であっても良く、これら複数の太陽電池11が直列に繋がって太陽電池ストリング21を形成していても良い。
太陽光発電装置2’において、複数の太陽電池ストリング21が並列に接続された接続箱22を有していても良く、このような接続箱22は複数であっても構わない。
A plurality of solar cells 11 in the photovoltaic power generation device 2'may be used, and the plurality of solar cells 11 may be connected in series to form a solar cell string 21.
In the photovoltaic power generation device 2', a plurality of solar cell strings 21 may have a junction box 22 connected in parallel, and there may be a plurality of such junction boxes 22.

<太陽電池11、その定格電力(電池定格電力)T11など>
図1、2に示したように、太陽電池11それぞれは、光が照射されることによって、正極(+極)と負極(−極)の間に直流電力を発生し、発生する電力(定格電力)は、約100〜300W(例えば、250W)である。
太陽電池11は、通常パネル状であり、その設置する際の角度(水平方向から太陽電池11のパネルまでの角度、以下、設置角度)θによって、発電量が異なる(例えば、設置角度θ=30°のときの発電量を100%とすれば、θ=20°で約99%、θ=10°で約95%、θ=0°で約90%)。
又、複数ある太陽電池11のうち、ある太陽電池11の+極に別の太陽電池11の−極を接続し、別の太陽電池11の+極にまた別の太陽電池11の−極を接続し、以下、これを繰り返して、複数(例えば、5〜20枚)の太陽電池11を直列に接続して、1本の太陽電池ストリング21となる。
<Solar cell 11, its rated power (battery rated power) T11, etc.>
As shown in FIGS. 1 and 2, each of the solar cells 11 generates DC power between the positive electrode (+ electrode) and the negative electrode (-pole) by being irradiated with light, and the generated electric power (rated power). ) Is about 100 to 300 W (for example, 250 W).
The solar cell 11 is usually in the shape of a panel, and the amount of power generation differs depending on the angle at which it is installed (the angle from the horizontal direction to the panel of the solar cell 11, hereinafter, the installation angle) θ (for example, the installation angle θ = 30). Assuming that the amount of power generated at ° is 100%, θ = 20 ° is about 99%, θ = 10 ° is about 95%, and θ = 0 ° is about 90%).
Further, among the plurality of solar cells 11, the positive pole of one solar cell 11 is connected to the negative pole of another solar cell 11, and the positive pole of another solar cell 11 is connected to the negative pole of another solar cell 11. Then, this is repeated, and a plurality of (for example, 5 to 20) solar cells 11 are connected in series to form one solar cell string 21.

このように、複数の太陽電池11が直列に繋がった太陽電池ストリング21全体としての+極(電力出力端)と、−極(グランド端)の間の電圧は、各太陽電池11で発生された直流電圧の和であって、天候、時刻などで変動するが、約200〜1000Vとなる。
又、太陽電池ストリング21の電力出力端から出力される定格電力は、各太陽電池11の電力の和であって、約500〜6000W(例えば、出力電力が250Wの太陽電池11を14枚接続した場合、3500W=3.5kW)となる。
In this way, the voltage between the positive pole (power output end) and the negative pole (ground end) of the entire solar cell string 21 in which a plurality of solar cells 11 are connected in series is generated in each solar cell 11. It is the sum of DC voltage, and it varies depending on the weather, time, etc., but it is about 200 to 1000V.
The rated power output from the power output end of the solar cell string 21 is the sum of the power of each solar cell 11, and is about 500 to 6000 W (for example, 14 solar cells 11 having an output power of 250 W are connected). In the case, 3500W = 3.5kW).

又、上述した複数(例えば、5〜15本)の太陽電池ストリング21が、1個の接続箱22へ並列に接続されている。
従って、それぞれの太陽電池ストリング21の電力出力端(+極)とグランド端(−極)の間の電圧は、同一となり、上述したように、約0.5〜6kWである。
Further, a plurality of (for example, 5 to 15) solar cell strings 21 described above are connected in parallel to one junction box 22.
Therefore, the voltage between the power output end (+ pole) and the ground end (-pole) of each solar cell string 21 is the same, and is about 0.5 to 6 kW as described above.

但し、1個の接続箱22に対して、複数の太陽電池ストリング21の電流が流れ込むため、接続箱22に集まる定格電力は、約2.5〜90kW(例えば、接続箱22に、出力電力が3.5kWの太陽電池ストリング21を、6本接続していれば21kW、12本接続していれば42kW)である。
更に、このような接続箱22が複数あれば、その数に応じて、太陽光発電装置2’(太陽光発電プラント3’)の太陽電池11全体として発電できる定格電力(電池定格電力)T11は、任意の値にすることが出来るが、例えば、36kWや、1003kW、2985kW、3383kW、3781kWなどであっても良い。
However, since the currents of the plurality of solar cell strings 21 flow into one junction box 22, the rated power collected in the junction box 22 is about 2.5 to 90 kW (for example, the output power is in the junction box 22). If six 3.5 kW solar cell strings 21 are connected, it is 21 kW, and if 12 are connected, it is 42 kW).
Further, if there are a plurality of such junction boxes 22, the rated power (battery rated power) T11 capable of generating the entire solar cell 11 of the photovoltaic power generation device 2'(solar power plant 3') is determined according to the number of the junction boxes 22. , But it may be, for example, 36 kW, 1003 kW, 2985 kW, 3383 kW, 3781 kW or the like.

<変換部12、その定格電力(変換定格電力)T12、力率Fなど>
図1、2に示したように、変換部12は、太陽電池11からの直流電流を交流電流に変換するものであって、より詳解すれば、太陽電池11からの直流電流を交流電流(例えば、100〜1000V等)に変換するインバータと、このインバータが変換する交流の電圧や周波数を制御する制御機と、気中遮断機(ACB)等を備える構成でも良い。
尚、変換部12は、パワコン(パワーコンディショナーの略)とも呼ばれる。
<Conversion unit 12, its rated power (conversion rated power) T12, power factor F, etc.>
As shown in FIGS. 1 and 2, the conversion unit 12 converts the direct current from the solar cell 11 into an alternating current, and more specifically, the direct current from the solar cell 11 is converted into an alternating current (for example). , 100 to 1000V, etc.), a controller that controls the AC voltage and frequency converted by this inverter, an air breaker (ACB), and the like.
The conversion unit 12 is also called a power conditioner (abbreviation of power conditioner).

このような変換部12は、直流を交流に変換できる定格電力(変換定格電力)T12や力率Fが何れの値であっても良いが、例えば、変換定格電力T12が、30kWや、500kW、750kW、1990kWなどであっても良い。
又、変換部12の力率Fは、変換部12における有効電力を皮相電力で割った比率(値)であって、その値は80%以上100%以下(例えば、87%や89%、90%、95%など)であっても良い。
Such a conversion unit 12 may have any value of the rated power (conversion rated power) T12 capable of converting direct current into alternating current and the power factor F. For example, the conversion rated power T12 is 30 kW or 500 kW. It may be 750 kW, 1990 kW or the like.
The power factor F of the conversion unit 12 is a ratio (value) obtained by dividing the active power of the conversion unit 12 by the apparent power, and the value is 80% or more and 100% or less (for example, 87%, 89%, 90). %, 95%, etc.).

尚、有効電力とは、交流(時間とともにその大きさと方向が周期的に変化する電流)における瞬時電力を1周期に渡って平均した値を言い、皮相電流とは、交流における電圧の実効値と電流の実効値の積である。
このような力率Fの最大値(力率最大値)Fmaxは、本来、変換部12自体の性能で決まるものの、後述する制御装置5から制限命令Cが送電側プラント3に通知された際には、変換部12に対して、本来設定された力率最大値Fmaxより低い力率Fの値(例えば、85%や90%など)を上限値として、出力抑制をかけても良い。
The active power is a value obtained by averaging the instantaneous power in alternating current (current whose magnitude and direction change periodically with time) over one cycle, and the apparent current is the effective value of voltage in alternating current. It is the product of the effective values of the current.
The maximum value (maximum power factor) Fmax of such a power factor F is originally determined by the performance of the conversion unit 12 itself, but when the limit command C is notified to the power transmission side plant 3 from the control device 5 described later. May suppress the output of the conversion unit 12 with a power factor F value lower than the originally set maximum power factor Fmax (for example, 85% or 90%) as an upper limit value.

<過積載率K>
上述した太陽電池11の電池定格電力T11を、変換部12の変換定格電力T12に力率Fを掛けた値で割った比率(値)を、過積載率Kとして、この過積載率Kを1.0より大きくしても良い。
これを換言すれば、電池定格電力T11は、変換部12の変換定格電力T12に力率Fを掛けた値より大きいと言える。
尚、過積載率Kは、上述した以外に、力率Fを掛けずにただ単に電池定格電力T11を変換定格電力T12で割った比率(値)を、過積載率Kとしても構わない。
<Overload rate K>
The ratio (value) obtained by dividing the battery rated power T11 of the solar cell 11 described above by the value obtained by multiplying the converted rated power T12 of the conversion unit 12 by the power factor F is defined as the overload rate K, and this overload rate K is set to 1. It may be larger than .0.
In other words, it can be said that the battery rated power T11 is larger than the value obtained by multiplying the converted rated power T12 of the conversion unit 12 by the power factor F.
In addition to the above, the overload rate K may be a ratio (value) obtained by simply dividing the battery rated power T11 by the conversion rated power T12 without multiplying the power factor F as the overload rate K.

図3や表1には、所定の過積載率Kに対する等価負荷率Z1やロス率(1年間のロス率)Z2の関係を示す。
又、表2には、過積載率Kを変化させた場合における電池定格電力T11、変換定格電力T12、1年間のロス率Z2、発電係数Z3、1年間の発電量Z4、減衰率Z5、20年間の発電量Z4’を示す。
FIG. 3 and Table 1 show the relationship between the equivalent load factor Z1 and the loss rate (loss rate for one year) Z2 with respect to the predetermined overload rate K.
Table 2 shows the battery rated power T11, the converted rated power T12, the one-year loss rate Z2, the power generation coefficient Z3, the one-year power generation amount Z4, and the attenuation rate Z5, 20 when the overload rate K is changed. The annual power generation amount Z4'is shown.

ここで、負荷率とは、所定期間(例えば、1年や1月、1日など)における太陽光発電装置2’(又は後述する太陽光発電プラント3’)から送電される平均電力を、最大電力(変換定格電力T12や、これに力率Fを掛けた値)で割った比率(値)であり、等価負荷率Z1とは、また別の所定期間において変動する負荷率を一定であるとみなして置き換えた値である。
つまり、この等価負荷率Z1が高いほど、より最大電力(変換定格電力T12など)に近い電力を平均して送電できていると言える。
又、ロス率Z2、Z2’・発電係数Z3・減衰率Z5は、出願人が所定年数(例えば、約3年間や約4年間、約8年間など)蓄積した膨大なデータに基づいて算出した値であって、まず、ロス率Z2、Z2’とは、ケーブル等から生じる発電ロスの比率であり、上述した等価負荷率や太陽電池11の設置角度θなどによって異なる。
更に、発電係数Z3とは、1年間の発電量(MWh)を電池定格電力(kW)で割った比率(値)であり、減衰率Z5とは、太陽電池11から出力される電力が1年間に減衰する比率(値)であり、20年間の発電量Z4’は、1年間の発電量Z4に、{1+(1−減衰率Z5)+(1−減衰率Z5)2 +(1−減衰率Z5)3 +・・・+(1−減衰率Z5)19}を掛けた発電量である。
Here, the load factor is the maximum average power transmitted from the photovoltaic power generation device 2'(or the photovoltaic power plant 3'described later) in a predetermined period (for example, one year, January, one day, etc.). It is the ratio (value) divided by the electric power (conversion rated power T12 or the value obtained by multiplying this by the power factor F), and the equivalent load factor Z1 is a constant load factor that fluctuates in another predetermined period. It is a value that is deemed to have been replaced.
That is, it can be said that the higher the equivalent load factor Z1, the more power that is closer to the maximum power (conversion rated power T12, etc.) can be transmitted on average.
Further, the loss rate Z2, Z2', the power generation coefficient Z3, and the attenuation rate Z5 are values calculated based on a huge amount of data accumulated by the applicant for a predetermined number of years (for example, about 3 years, about 4 years, about 8 years, etc.). First, the loss factors Z2 and Z2'are the ratios of power generation losses generated from cables and the like, and differ depending on the above-mentioned equivalent load factor, the installation angle θ of the solar cell 11, and the like.
Further, the power generation coefficient Z3 is a ratio (value) obtained by dividing the amount of power generation (MWh) for one year by the rated power (kW) of the battery, and the attenuation factor Z5 is the power output from the solar cell 11 for one year. is the ratio (value) to be attenuated, a 20-year power generation Z4 'is the amount of power generation Z4 of 1 year, 1 + (1-decay factor Z5) + (1-decay factor Z5) 2 + (1-attenuated Rate Z5) 3 + ... + (1-Attenuation rate Z5) 19 } is the amount of power generated.

Figure 0006908917
Figure 0006908917

Figure 0006908917
Figure 0006908917

図3や表1、2に示したように、過積載率Kが上がるにつれて、1年間のロス率Z2は上がるものの、等価負荷率Z1も上がることから、過積載率Kは、1.1以上1.9以下であったり、好ましくは1.3以上1.7以下、更に好ましくは1.5以上1.6以下(1.55など)であっても構わない。
尚、過積載率Kは、上述したように、1.0より大きいだけでなく、1.0以下であっても良い。
又、表2に示したように、過積載率Kによって20年間の発電量Z4’に差が出るが、この20年間の発電量Z4’に、単位発電量当たりの売電額(例えば、21円/kWhや31円/kWh、42円/kWhなど)を掛けることで、20年後の収入の差も算出できるとも言える。
As shown in FIGS. 3 and 1 and 2, as the overload rate K increases, the loss rate Z2 for one year increases, but the equivalent load factor Z1 also increases. Therefore, the overload rate K is 1.1 or more. It may be 1.9 or less, preferably 1.3 or more and 1.7 or less, and more preferably 1.5 or more and 1.6 or less (1.55 or the like).
As described above, the overload rate K may be 1.0 or less as well as greater than 1.0.
Further, as shown in Table 2, there is a difference in the amount of power generation Z4'for 20 years depending on the overload rate K, but the amount of power sold per unit amount of power generation (for example, 21) is added to the amount of power generation Z4'for these 20 years. By multiplying by yen / kWh, 31 yen / kWh, 42 yen / kWh, etc.), it can be said that the difference in income after 20 years can also be calculated.

ここまで述べた変換部12へ直流電流を供給するのは、太陽光発電装置2’(後述の太陽光発電プラント3’の場合は、太陽電池11であるが、風力発電、波力発電等によって回転される発電機(モータ)からの電流となる。
尚、このモータからの出力電流が交流であれば、変換部12は、交流を直流に変換するコンバータと、この直流を交流に変換するインバータの両方を備えていれば良く、出力電流が直流であれば、変換部12はインバータ装置だけを備えていれば良いが、以下は、太陽電池11のように、直流電流が変換部12へ流れ込む場合を述べる。
The DC current is supplied to the conversion unit 12 described so far by the photovoltaic power generation device 2'(in the case of the photovoltaic power generation plant 3'described later, the solar cell 11 is supplied, but by wind power generation, wave power generation, or the like. It is the current from the rotating generator (motor).
If the output current from this motor is alternating current, the conversion unit 12 may include both a converter that converts alternating current into direct current and an inverter that converts this direct current into direct current, and the output current is direct current. If there is, the conversion unit 12 need only include the inverter device, but the case where the direct current flows into the conversion unit 12 like the solar cell 11 will be described below.

<送電側プラント3、送電力P3、太陽光発電プラント3’>
図1、2に示すように、送電側プラント3は、上述した発電装置2からの電力を電力系統Gへ送電する(売電するとも言える)プラントであり、送電側プラント3から電力系統Gに送電される電力の値を送電力P3と言う。
送電側プラント3は、送電する電力系統Gに応じた電圧に変圧して送電する必要があり、上述した変換部12からの交流電流の電圧を変圧するトランス13と、このトランス13からの交流電流を電力系統Gへ送電する送電部14を備えていても良い。
<Transmission side plant 3, power transmission P3, photovoltaic power plant 3'>
As shown in FIGS. 1 and 2, the power transmission side plant 3 is a plant that transmits (can be said to sell) the power from the power generation device 2 described above to the power system G, and from the power transmission side plant 3 to the power system G. The value of the transmitted power is called the power transmission P3.
The power transmission side plant 3 needs to be transformed into a voltage corresponding to the power system G to be transmitted and transmitted, and the transformer 13 that transforms the voltage of the AC current from the conversion unit 12 described above and the AC current from the transformer 13 May be provided with a power transmission unit 14 that transmits power to the power system G.

この場合、送電側プラント3は、上述した発電装置2の他に、トランス13と送電部14も備えることなり、特に、発電装置2が太陽光発電装置2’(太陽電池11と変換部12)であれば、送電側プラント3は、太陽光発電プラント3’であると言える。
そこで、以下は、太陽光発電プラント3’におけるトランス13や送電部14について主に述べる。
In this case, the power transmission side plant 3 also includes a transformer 13 and a power transmission unit 14 in addition to the power generation device 2 described above. In particular, the power generation device 2 is a photovoltaic power generation device 2'(solar cell 11 and conversion unit 12). If so, it can be said that the power transmission side plant 3 is a photovoltaic power generation plant 3'.
Therefore, the transformer 13 and the power transmission unit 14 in the photovoltaic power plant 3'will be mainly described below.

<トランス13>
図1、2に示したように、トランス13は、所謂、変圧器であって、上述した変換部12からの交流電流を、送電する電力系統Gに適した電圧の交流電流に変換する。
尚、トランスとは、トランスフォーマーの略である。
<Trance 13>
As shown in FIGS. 1 and 2, the transformer 13 is a so-called transformer, and converts the alternating current from the conversion unit 12 described above into an alternating current having a voltage suitable for the power system G to be transmitted.
The transformer is an abbreviation for a transformer.

ここで、電力系統Gへの送電に適した交流電流の電圧(100〜1000V等)は、送電ロスをふまえ、変換部12からの交流電流の電圧よりも高圧(6600Vや22000Vなど)であることから、変換部12からの交流電流は、低圧交流電流Lであり、この低圧交流電流Lをトランス13にて変圧(昇圧)した交流電流は、高圧交流電流Hであると言える。
又、トランス13は、上述した等価負荷率の2乗に比例したロス(負荷損や銅損とも言う)や無負荷損(鉄損)が生じ、これらを合わせたトランス13におけるロスの他、太陽電池11などの接続ケーブルや接続箱22、変換部12、エアコンなどにおけるロスも含めた全てのロスに基づいて、図3や表1、2で示したロス率が算出される。
Here, the voltage of the AC current suitable for transmission to the power system G (100 to 1000 V, etc.) is higher than the voltage of the AC current from the conversion unit 12 (6600 V, 22000 V, etc.) based on the transmission loss. Therefore, it can be said that the AC current from the conversion unit 12 is the low-voltage AC current L, and the AC current obtained by transforming (boosting) the low-voltage AC current L with the transformer 13 is the high-voltage AC current H.
Further, the transformer 13 causes a loss (also referred to as a load loss or a copper loss) proportional to the square of the equivalent load factor described above and a no-load loss (iron loss), and in addition to the loss in the transformer 13 in which these are combined, the sun The loss rate shown in FIGS. 3 and 1 and 2 is calculated based on all the losses including the loss in the connection cable such as the battery 11, the junction box 22, the conversion unit 12, the air conditioner, and the like.

<送電部14>
図1、2に示したように、送電部14は、上述したトランス13からの交流電流(高圧交流電流H)を電力系統Gへ送電するものであって、真空遮断機(VCB)や、避雷器(SAR)などを備えていても良い。
尚、送電部14は、特別高圧な電力(例えば、22000V等)を電力系統Gに送電する場合には、特高部とも言え、トランスミッターとも言える。
<Power transmission unit 14>
As shown in FIGS. 1 and 2, the power transmission unit 14 transmits the alternating current (high voltage alternating current H) from the transformer 13 described above to the power system G, and is a vacuum breaker (VCB) or a lightning arrester. (SAR) and the like may be provided.
When the power transmission unit 14 transmits extra high voltage power (for example, 22000V or the like) to the power system G, it can be said to be an extra high voltage unit and a transmitter.

<受電側プラント4>
図1、2に示したように、受電側プラント4は、上述した電力系統Gから電力を受電する(買電するとも言える)プラントであり、後述する電力使用機器6や、電力貯蔵装置7を備えていても良い。
又、受電側プラント4は、電力系統Gさえ介していれば、送電側プラント3からの距離は問わず、遠隔地に設けられていても良い。
そこで、以下は、これら電力使用機器6や電力貯蔵装置7について主に述べる。
<Power receiving side plant 4>
As shown in FIGS. 1 and 2, the power receiving side plant 4 is a plant that receives (can be said to purchase) power from the power system G described above, and includes a power using device 6 and a power storage device 7 described later. You may have it.
Further, the power receiving side plant 4 may be provided in a remote place regardless of the distance from the power transmitting side plant 3 as long as the power system G is used.
Therefore, the following mainly describes these power-using devices 6 and power storage devices 7.

<電力使用機器6>
図1に示したように、電力使用機器6は、電力系統Gから受電した電力(受電力P4)などを使用する機器であって、「負荷6」であるとも言える。
電力使用機器6は、具体的には、工場・作業所における電気・電子機器などの電力を使用する機器であり、工場・作業所そのものを意味しても良い。
又、電力使用機器6は、会社等の法人・団体や個人、官公署・組合などの事務所、住宅、店舗、倉庫・車庫・駐車場・駐輪場、校舎・講堂・体育館、研究施設、病院・診療所、旅館・ホテル、劇場・映画館・競技場・野球場などにおける電気・電子機器などの電力を使用する機器や、会社などの事務所等そのものを意味しても良く、これらが組み合わさったものでも構わない。
<Power-using equipment 6>
As shown in FIG. 1, the power-using device 6 is a device that uses the power received from the power system G (power received P4) and the like, and can be said to be a “load 6”.
Specifically, the power-using device 6 is a device that uses electric power such as an electric / electronic device in a factory / work place, and may mean the factory / work place itself.
In addition, the power-using equipment 6 includes corporations / organizations such as companies, individuals, offices such as public offices / unions, houses, stores, warehouses / garages / parking lots / bicycle parking lots, school buildings / lecture halls / gymnasiums, research facilities, hospitals / hospitals / It may mean equipment that uses electricity such as electric / electronic equipment in clinics, inns / hotels, theaters / movie theaters / stadiums / baseball fields, or offices such as companies, and these are combined. It doesn't matter if it's a new one.

<電力貯蔵装置7>
図1に示したように、電力貯蔵装置7は、電力系統Gから受電した電力(受電力P4)などを貯蔵する装置である。
電力貯蔵装置7は、具体的には、鉛蓄電池やリチウムイオン蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池などの蓄電池(バッテリ)であったり、受電力P4等を用いた水の電気分解等により生成した水素を貯蔵し、必要なときに燃料電池等にて電力を取り出す他、フライホール等にて運動エネルギーとしての貯蔵や、揚水にて位置エネルギーとしての貯蔵、キャパシタ等にてそのまま電気エネルギーとしての貯蔵などをする装置であっても構わない。
尚、上述した送電側プラント3からの売電単価(単位発電量当たりの売電額)が、受電側プラント4での買電単価(単位電力量当たりの買電額)より高ければ差益が生じるとも言える。
<Power storage device 7>
As shown in FIG. 1, the power storage device 7 is a device that stores power (received power P4) or the like received from the power system G.
Specifically, the power storage device 7 is a storage battery (battery) such as a lead storage battery, a lithium ion storage battery, a nickel / hydrogen storage battery, a nickel / cadmium storage battery, or an electric decomposition of water using a power receiving power P4 or the like. In addition to storing the generated hydrogen and extracting power with a fuel cell when necessary, it can be stored as kinetic energy in a fly hole, etc., stored as position energy in pumping water, or used as electrical energy in a capacitor, etc. It may be a device for storing energy.
If the unit price of power sold from the power transmitting side plant 3 (the amount of power sold per unit power generation) is higher than the unit price of power purchased at the power receiving side plant 4 (the amount of power purchased per unit power generation), a profit is generated. It can be said that.

<送受電のタイミング、受電力P4>
このような受電側プラント4は、上述した送電側プラント3が電力系統Gへの送電を開始する以前に又は送電をしつつ、電力系統Gからの受電をすることとなる。
尚、「送電側プラント3が送電を開始する以前」とは、送電の開始と同時である場合と、送電の開始予定時の所定時間前である場合の両方を含み、この所定時間とは、秒単位(1秒前や2秒前、数秒前、10数秒前など)であったり、分単位(1分前や2分前、数分前、10数分前など)であっても良い。
又、「受電側プラント4が電力系統Gからの受電をする」とは、送電側プラント3が送電を開始する以前又は送電をしている時からも電力系統Gからの受電をしており、引き続き受電をしつつ、その受電力P4を所定の送電力P3に応じた値とする場合や、元々は電力系統Gからの受電をしておらず、送電側プラント3が送電を開始する以前等に、電力系統Gからの受電を開始する場合などを含む。
<Timing of power transmission / reception, power reception P4>
Such a power receiving side plant 4 receives power from the power system G before or while the power transmission side plant 3 starts transmitting power to the power system G.
The term "before the power transmission side plant 3 starts power transmission" includes both the case where the power transmission is started at the same time and the case where the power transmission is scheduled to start before the predetermined time. It may be in seconds (1 second, 2 seconds, seconds, 10 seconds, etc.) or minutes (1 minute, 2 minutes, minutes, 10 minutes, etc.).
Further, "the power receiving side plant 4 receives power from the power system G" means that the power transmitting side plant 3 receives power from the power system G even before the power transmission starts or even when the power transmission side is transmitting power. When the received power P4 is set to a value corresponding to the predetermined power transmission P3 while continuing to receive power, or when the power is not originally received from the power system G and before the power transmission side plant 3 starts power transmission, etc. Including the case where power reception from the power system G is started.

受電側プラント4が電力系統Gからの受電をする際、その受電力P4は、送電側プラント3が電力系統Gへ送電する所定の送電力P3と同じ又はより大きい。
尚、「受電力P4が所定の送電力P3と同じ又はより大きい」とは、元々は電力系統Gからの受電をしておらず、新たに電力系統Gから受電を開始する受電力P4の全体が、所定の送電力P3と同じ又はより大きい場合や、送電側プラント3が送電を開始する以前等からも電力系統Gからの受電をしており、引き続き受電をする際の受電力P4が、従前からの受電力P4の値に、所定の送電力P3と同じ又はより大きい分を加える(つまり、所定の送電力P3又はそれ以上分だけ、受電力P4を増加させる)場合なども含む。
又、受電側プラント4の受電力P4の値は、送電側プラント3が送電を開始する以前に又送電をしつつ決めることとなるため、ここでいう所定の送電力P3とは、送電力P3の一部若しくは全部であり、電力系統Gからオーバーフローし得る電力分であるとも言え、電力系統Gにおけるオーバーフロー(停電発生など)発生の可能性を低減するための値であるとも言える。
このような所定の送電力P3の基となる値は、上述した日射計15にて測定した日射強度R等から予想した送電力(予想送電力)P3’や、リアルタイムで実際に送電側プラント3から送電されている送電力P3の値などであっても良い。
When the power receiving side plant 4 receives power from the power system G, the power receiving P4 is the same as or larger than the predetermined power transmission P3 transmitted by the power transmitting side plant 3 to the power system G.
In addition, "the received power P4 is the same as or larger than the predetermined power transmission P3" means that the entire power received P4 that originally did not receive power from the power system G and newly starts receiving power from the power system G. However, when the power is the same as or larger than the predetermined power transmission P3, or even before the power transmission side plant 3 starts power transmission, the power reception P4 receives power from the power system G and continues to receive power. It also includes a case where the same or larger amount as the predetermined power transmission P3 is added to the value of the conventional power reception P4 (that is, the power reception P4 is increased by the predetermined power transmission P3 or more).
Further, since the value of the received power P4 of the power receiving side plant 4 is determined while transmitting the power again before the power transmitting side plant 3 starts the power transmission, the predetermined power transmission P3 referred to here is the power transmission P3. It can be said that it is a part or all of the above, and it can be said that it is the amount of power that can overflow from the power system G, and it can be said that it is a value for reducing the possibility of overflow (power failure occurrence, etc.) in the power system G.
The value that is the basis of such a predetermined power transmission P3 is the power transmission (expected power transmission) P3'expected from the solar radiation intensity R or the like measured by the pyranometer 15 described above, or the actual power transmission side plant 3 in real time. It may be the value of the transmission power P3 transmitted from.

「受電力P4が所定の送電力P3より大きい」とは、受電力P4−所定の送電力P3(受電力P4と所定の送電力P3との差)が0kWより大きくなることを意味し、例えば、数kWであったり、数10kW、100kW等であっても良い。
このような受電力P4は、上述した電力使用機器6と電力貯蔵装置7の少なくとも一方にて、使用・貯蔵される。
尚、受電側プラント4は、ネットワークNを介して、送電側プラント3からその送電力P3等の値が通知され、通知された送電力P3等の値に基づいて、その都度の受電力P4を決めても良い。
“The received power P4 is larger than the predetermined power transmission P3” means that the received power P4-predetermined power transmission P3 (difference between the received power P4 and the predetermined power transmission P3) becomes larger than 0 kW, for example. , Several kW, several tens of kW, 100 kW, etc. may be used.
Such a power receiving P4 is used and stored in at least one of the power-using device 6 and the power storage device 7 described above.
The power receiving side plant 4 is notified of the value of the transmitted power P3 or the like from the power transmitting side plant 3 via the network N, and based on the notified value of the transmitted power P3 or the like, receives the power P4 each time. You may decide.

尚、本発明における「ネットワークN」とは、個々のコンピュータネットワーク(ローカルエリアネットワーク(LAN))を接続して、データのやりとりにTCP/IPというプロトコルを用いて、世界的規模で通信サービスを行えるようにしたローカルエリアネットワーク(LAN)の集合体である「インターネット」(オープンネットワーク)をはじめ、各「ローカルエリアネットワーク(LAN)」や、「メトロポリタンエリアネットワーク(MAN)」、「ワイドエリアネットワーク(WAN)」など、何れのコンピュータネットワークであっても構わない。
又、本発明における「ローカルエリアネットワーク(LAN)」とは、JIS−X−0009:1997で規定された「利用者の構内に設置され、地理的に限られた範囲のコンピュータネットワーク」を言い、クローズドネットワークであるとも言える。
更に、本発明における「メトロポリタンエリアネットワーク(MAN)」も、JIS−X−0009:1997で規定された「同じ都市内のローカルエリアネットワークを接続するための網」を言い、本発明における「ワイドエリアネットワーク(WAN)」は、JIS−X−0009:1997の規定による「ローカルエリアネットワーク又はメトロポリタンネットワークよりも広域に通信サービスを提供するネットワーク」を言う。
このようなネットワークNへの接続は、無線・有線の何れであっても良い。
The "network N" in the present invention can be connected to individual computer networks (local area network (LAN)) and can provide communication services on a global scale by using a protocol called TCP / IP for exchanging data. Including the "Internet" (open network), which is a collection of local area networks (LAN), each "local area network (LAN)", "metropolitan area network (MAN)", and "wide area network (WAN)" ) ”, Etc., any computer network may be used.
Further, the "local area network (LAN)" in the present invention means a "computer network installed in a user's premises and having a geographically limited range" defined in JIS-X-0009: 1997. It can be said that it is a closed network.
Further, the "metropolitan area network (MAN)" in the present invention also refers to the "network for connecting local area networks in the same city" defined in JIS-X-0009: 1997, and the "wide area" in the present invention. "Network (WAN)" refers to "a network that provides communication services over a wider area than a local area network or metropolitan network" as defined in JIS-X-0009: 1997.
The connection to such a network N may be either wireless or wired.

<制御装置5、制限値C’、制限命令C>
図1、2に示したように、制御装置5は、送電側プラント3からの送電力P3を制限値C’以下とする制限命令Cを、当該送電側プラント3に通知する装置である。
ここで、制限値C’とは、例えば、変換部12の定格電力T12より小さい制限電力値CT’であったり、変換部12の力率最大値Fmaxより小さい制限力率値CF’などを意味する。
制御装置5は、制限命令Cを送電側プラント3に通知した際には、送電側プラント3による送電を開始する以前に又は送電をしつつ、受電側プラント4に、送電力P3のうち、上述した制限値C’を越える送電力P3と同じ又はより大きい受電力P4を受電させる。
<Control device 5, limit value C', limit command C>
As shown in FIGS. 1 and 2, the control device 5 is a device that notifies the power transmission side plant 3 of a limit command C for setting the power transmission P3 from the power transmission side plant 3 to the limit value C'or less.
Here, the limit value C'means, for example, a limit power value CT'that is smaller than the rated power T12 of the conversion unit 12, a power factor value CF' that is smaller than the maximum power factor value Fmax of the conversion unit 12. do.
When the control device 5 notifies the transmission side plant 3 of the restriction command C, the control device 5 sends the power transmission side plant 4 to the power reception side plant 4 before the start of power transmission by the power transmission side plant 3 or while transmitting power, among the power transmission P3 described above. The received power P4 equal to or larger than the transmitted power P3 exceeding the set limit value C'is received.

制御装置5は、送電側プラント3と受電側プラント4の何れかの側に設けられていたり、両方に亘って設けられていても良く、上述したネットワークNを介して、送電側プラント3に制限命令Cの通知をしたり、受電側プラント4に受電をさせても構わない。
尚、この制限命令Cによって通知される制限値C’は、上述した変換部12における力率Fであったり、具体的な送電力P3の値などであるが、このような力率Fの値等は、電力会社からの指示や、電力制御システム1の使用者が自発的に決めたものであっても良い。
The control device 5 may be provided on either side of the power transmission side plant 3 and the power reception side plant 4, or may be provided over both of them, and is limited to the power transmission side plant 3 via the network N described above. The command C may be notified, or the power receiving side plant 4 may be made to receive power.
The limit value C'notified by the limit command C is the power factor F in the conversion unit 12 described above, a specific value of the power transmission P3, or the like, and the value of such a power factor F. Etc. may be instructions from the electric power company or voluntarily determined by the user of the electric power control system 1.

制御装置5が通知する制限命令Cは、電力系統G(例えれば、水槽)がオーバーフローする瞬間がないようにするためのものであって、送電力P3に出力抑制がかかった間中、制御装置5は、送電側プラント3に制限命令Cを所定時間おきに(例えば、1分や5分、1時間おき等に)出し続けても良い。
又、一回の制限命令Cに、いつからいつまで制限すれば良いか(太陽光発電装置2’(又は太陽光発電プラント3’)であれば、ある一日における何時から何時までなど)を含めて、制限命令Cとしても良い。
尚、制御装置5は、上述した変換部12や日射計15などの出力を監視可能な構成であっても良い。
The restriction instruction C notified by the control device 5 is for preventing the moment when the power system G (for example, the water tank) overflows, and the control device 5 is used to suppress the output of the power transmission P3. 5 may continue to issue the restriction command C to the power transmission side plant 3 at predetermined time intervals (for example, every 1 minute, 5 minutes, 1 hour, etc.).
In addition, one restriction command C includes from when to when to limit (in the case of photovoltaic power generation device 2'(or photovoltaic power plant 3'), from what time to what time in a certain day, etc.). , May be a restriction command C.
The control device 5 may have a configuration capable of monitoring the output of the conversion unit 12 and the pyranometer 15 described above.

<電力制御システム1の制御>
このような制御装置5によって行われる電力制御プログラム、電力制御方法は、受電側プラント4に、送電側プラント3が電力系統Gへの送電を開始する以前に又は送電をしつつ、電力系統Gからの受電をさせ、受電側プラント4に、受電側プラント4が電力系統Gから受電する受電力を、送電側プラント3が電力系統Gへ送電する所定の送電力P3と同じに又はより大きくさせるものであって、主に受電側プラント4に対する制御だけで、「発電した電力の有効活用」などが実現し得ると共に、後述するステップS1〜S3で表現されていても良い。
図4には、その電力制御システム1の制御処理のフローチャート図が示されている。
<Control of power control system 1>
The power control program and power control method performed by such a control device 5 are transmitted from the power system G to the power receiving side plant 4 before or while the power transmitting side plant 3 starts power transmission to the power system G. To make the power receiving side plant 4 receive the power received from the power system G by the power receiving side plant 4 to be the same as or larger than the predetermined power transmission P3 transmitted by the power transmitting side plant 3 to the power system G. Therefore, "effective utilization of the generated power" and the like can be realized mainly only by controlling the power receiving side plant 4, and may be expressed in steps S1 to S3 described later.
FIG. 4 shows a flowchart of the control process of the power control system 1.

ステップS1では、送電側プラント3に制限命令Cが通知されていれば、後述のステップS2に移り、制限命令Cが通知されていなければ、この電力制御システム1の制御は終了する。
ステップS2では、その都度の送電力P3(又は、日射強度R等から予想される予想送電力P3’)を送電側プラント3から受電側プラント4へ通知する。
ステップS3では、ステップS2で所定の送電力P3を通知された受電側プラント4は、その所定の送電力P3又は予想送電力P3’より大きい受電力P4の受電をし、ステップS1に戻る。
In step S1, if the limit command C is notified to the power transmission side plant 3, the process proceeds to step S2 described later, and if the limit command C is not notified, the control of the power control system 1 ends.
In step S2, the power transmission side plant 3 notifies the power reception side plant 4 of the power transmission P3 (or the expected power transmission P3'expected from the solar radiation intensity R or the like) each time.
In step S3, the power receiving side plant 4 notified of the predetermined power transmission P3 in step S2 receives the power reception P4 larger than the predetermined power transmission P3 or the expected power transmission P3', and returns to step S1.

ここまでの処理(ステップS1〜S3)は、所定時間おき(例えば、1分おき等)に繰り返される。
又、この所定時間は、常に同じ時間間隔でなくても良く、日中で、日射強度Rが安定している時間帯は、もう少し長い所定時間おき(例えば、5分や1時間おき等)に繰り返し、朝夕など、日射強度Rの変化が大きい時間帯には、短い所定時間ごとに処理を行うこととしても良い。
The processes up to this point (steps S1 to S3) are repeated at predetermined time intervals (for example, every 1 minute, etc.).
Further, the predetermined time does not have to be the same time interval all the time, and the time zone in which the solar radiation intensity R is stable during the daytime is at a slightly longer predetermined time interval (for example, every 5 minutes or 1 hour). In a time zone where the change in solar radiation intensity R is large, such as repeated morning and evening, the treatment may be performed at short predetermined time intervals.

<その他>
本発明は、前述した実施形態に限定されるものではない。電力制御システム1や太陽光発電プラント3’、電力制御プログラム、電力制御方法等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することが出来る。
電力制御システム1は、1つの電力系統Gに対して、<1>送電側プラント3や受電側プラント4をそれぞれ1つずつ有している場合でも良いが、<2>送電側プラント3は1つであるが受電側プラント4は複数有している場合や、<3>送電側プラント3は複数であるが受電側プラント4は1つ有している場合、<4>送電側プラント3も受電側プラント4もそれぞれ複数有している場合であっても構わない。
<Others>
The present invention is not limited to the above-described embodiments. Each configuration or overall structure, shape, dimensions, etc. of the power control system 1, the photovoltaic power plant 3', the power control program, the power control method, etc. can be appropriately changed according to the gist of the present invention.
The power control system 1 may have one <1> power transmission side plant 3 and one power reception side plant 4 for one power system G, but <2> power transmission side plant 3 is 1. However, if there are a plurality of power receiving side plants 4, or if there are a plurality of <3> power transmission side plants 3 but one power receiving side plant 4, <4> power transmission side plant 3 also has one. It does not matter if there are a plurality of power receiving side plants 4 as well.

更に、<2>の場合であれば、1つの送電側プラント3からの所定の送電力P3に対して、複数の受電側プラント4−1、4−2・・・の各受電力P4−1、P4−2・・・の合計受電力P4”が、同じ又はより大きければ良い。
同様に、<3>の場合であれば、複数の送電側プラント3−1、3−2・・・からの各送電力P3−1、P3−2・・・の所定の合計送電力P3”に対して、1つの受電側プラント4の受電力P4が、同じ又はより大きければ良く、<4>の場合であれば、複数の送電側プラント3−1、3−2・・・からの所定の各送電力P3−1、P3−2・・・の所定の合計送電力P3”に対して、複数の受電側プラント4−1、4−2・・・の各受電力P4−1、P4−2・・・の合計受電力P4”が、同じ又はより大きければ良い。
Further, in the case of <2>, for a predetermined power transmission P3 from one power transmission side plant 3, each power reception P4-1 of a plurality of power reception side plants 4-1, 4-2, ... , P4-2 ... The total received power P4 "may be the same or larger.
Similarly, in the case of <3>, a predetermined total power transmission P3 of each power transmission P3-1, P3-2 ... From a plurality of power transmission side plants 3-1, 3-2 ... " On the other hand, it suffices if the received power P4 of one power receiving side plant 4 is the same or larger, and in the case of <4>, predetermined powers from a plurality of power transmitting side plants 3-1, 3-2, ... With respect to the predetermined total power transmission P3 of each power transmission P3-1, P3-2 ... The total power received P4 "of -2 ... may be the same or larger.

送電側プラント3は、電力使用機器6や電力貯蔵装置7を備える、つまり、発電装置2(又は太陽光発電装置2’)からの電力を電力系統Gに送電するだけでなく、送電側プラント3内で使用・貯蔵しても良い。
電力使用機器6や電力貯蔵装置7は、送電側プラント3又は受電側プラント4のみに設けられる他、送電側プラント3と受電側プラント4の両方に設けられていても良い。
The power transmission side plant 3 includes a power use device 6 and a power storage device 7, that is, not only the power from the power generation device 2 (or the photovoltaic power generation device 2') is transmitted to the power system G, but also the power transmission side plant 3 It may be used and stored inside.
The power-using device 6 and the power storage device 7 may be provided only in the power transmission side plant 3 or the power reception side plant 4, or may be provided in both the power transmission side plant 3 and the power reception side plant 4.

太陽光発電プラント3’は、太陽光発電装置2’と、トランス13及び送電部14等と切り分けず、太陽電池11、変換部12、トランス13及び送電部14等をまとめてプラントとしても良い。
太陽光発電プラント3’は、変換部12を複数有していたり、それらの変換部12が、配電盤20外に設けられていても良く、又、配電盤20内に変換部12、送電部14を有していたり、トランス13を配電盤20に外側から取り付けていても構わない。
The photovoltaic power generation plant 3'may be a plant in which the solar cell 11, the conversion unit 12, the transformer 13 and the power transmission unit 14 and the like are integrated without separating the solar power generation device 2'from the transformer 13 and the power transmission unit 14 and the like.
The photovoltaic power plant 3'may have a plurality of conversion units 12, or these conversion units 12 may be provided outside the switchboard 20, and the conversion board 12 and the power transmission unit 14 may be provided inside the switchboard 20. It may be held or the transformer 13 may be attached to the switchboard 20 from the outside.

受電側プラント4は、制御装置5が制限命令Cを送電側プラント3に通知した際以外に、送電側プラント3の所定の送電力P3と同じ又はより大きい受電力P4の受電をしても良く、例えば、電力会社から出力抑制の指示等が出される前に、電力制御システム1の使用者が自発的に、受電側プラント4に、所定の送電力P3と同じ又はより大きい受電力P4を受電させたり、所定期間継続して、受電側プラント4に、所定の送電力P3と同じ又はより大きい受電力P4を受電させても良い。
制御装置5は、上述した太陽光発電プラント3’(太陽光発電装置2’)における変換部12や日射計15以外に、送電部14等とも制御可能・監視可能に接続されていても良い。
The power receiving side plant 4 may receive power of the power receiving side P4 equal to or larger than the predetermined power transmission P3 of the power transmitting side plant 3 except when the control device 5 notifies the power transmitting side plant 3 of the restriction command C. For example, before an instruction to suppress output is issued by the electric power company, the user of the electric power control system 1 voluntarily receives the electric power P4 equal to or larger than the predetermined electric power P3 to the electric power receiving side plant 4. Alternatively, the power receiving side plant 4 may be made to receive power P4 equal to or larger than the predetermined power transmission P3 for a predetermined period of time.
The control device 5 may be connected to the power transmission unit 14 and the like in a controllable and monitorable manner in addition to the conversion unit 12 and the pyranometer 15 in the above-mentioned photovoltaic power plant 3'(solar power generation device 2').

電力制御システム、電力制御プログラム、電力制御方法は、太陽光の電力制御システム以外に、風力、水力、波力等によって回転される発電機(モータ)によって発電するシステム等において使用でき、屋外・屋内を問わず利用可能である。 Power control systems, power control programs, and power control methods can be used in systems that generate electricity using generators (motors) that are rotated by wind power, hydraulic power, wave power, etc., in addition to solar power control systems, and can be used outdoors and indoors. It can be used regardless of.

1 電力制御システム
2 発電装置
2’ 太陽光発電装置
3 送電側プラント
3’ 太陽光発電プラント
4 受電側プラント
5 制御装置
6 電力使用機器
7 電力貯蔵装置
11 太陽電池
12 変換部
13 トランス
14 送電部
G 電力系統
P3 送電力
P4 受電力
C 制限命令
C’ 制限値
T11 太陽電池の定格電力
T12 変換部の定格電力
F 変換部の力率
1 Power control system 2 Power generation device 2'Solar power generation device 3 Transmission side plant 3'Solar power generation plant 4 Power reception side plant 5 Control device 6 Power use equipment 7 Power storage device 11 Solar cell 12 Conversion unit 13 Transformer 14 Transmission unit G Power system P3 Transmission power P4 Received power C Limit command C'Limit value T11 Rated power of solar cell T12 Rated power of conversion part F Power rate of conversion part

Claims (6)

発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントを有した電力制御システムであって、
前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記受電側プラントは電力系統からの受電をし、
前記受電側プラントが電力系統から受電する受電力は、前記送電側プラントが電力系統へ送電する所定の送電力と同じ又はより大きいことを特徴とする電力制御システム。
A power control system having a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system.
The power receiving plant receives power from the power system before or while the power transmitting plant starts transmitting power to the power system.
A power control system characterized in that the received power received by the power receiving plant from the power system is equal to or greater than the predetermined power transmitted by the power transmitting plant to the power system.
前記送電力を制限値以下とする制限命令を送電側プラントに通知する制御装置も有し、
この制御装置は、前記制限命令を送電側プラントに通知した際に、前記送電側プラントによる送電を開始させる以前に又は送電をさせつつ、前記受電側プラントに、前記制限値を越える送電力と同じ又はより大きい受電力の受電をさせることを特徴とする請求項1に記載の電力制御システム。
It also has a control device that notifies the power transmission side plant of a limit command to reduce the power transmission to the limit value or less.
This control device is the same as the power transmission that exceeds the limit value to the power receiving side plant before starting the power transmission by the power transmission side plant or while transmitting the power when the limit command is notified to the power transmission side plant. The power control system according to claim 1, further comprising receiving a larger amount of power.
前記受電側プラントは、前記電力系統から受電した電力を使用する電力使用機器と、前記電力系統から受電した電力を貯蔵する電力貯蔵装置を備えていることを特徴とする請求項1又は2に記載の電力制御システム。 The power receiving side plant according to claim 1 or 2, further comprising a power-using device that uses the power received from the power system and a power storage device that stores the power received from the power system. Power control system. 前記発電装置は、太陽光発電装置であり、
この太陽光発電装置は、太陽電池と、この太陽電池からの直流電流を交流電流に変換する変換部を備え、
前記太陽電池の定格電力は、前記変換部の定格電力に力率を掛けた値又は前記変換部の定格電力そのものより大きいことを特徴とする請求項1〜3の何れか1項に記載の電力制御システム。
The power generation device is a solar power generation device.
This photovoltaic power generation device includes a solar cell and a conversion unit that converts a direct current from the solar cell into an alternating current.
The power according to any one of claims 1 to 3, wherein the rated power of the solar cell is larger than the value obtained by multiplying the rated power of the conversion unit by the power factor or the rated power of the conversion unit itself. Control system.
発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントの電力制御プログラムであって、
前記受電側プラントに、前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記電力系統からの受電をさせ、
前記受電側プラントに、当該受電側プラントが電力系統から受電する受電力を、前記送電側プラントが電力系統へ送電する所定の送電力と同じに又はより大きくさせることを特徴とする電力制御プログラム。
It is a power control program of a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system.
Have the power receiving plant receive power from the power system before or while the power transmitting plant starts transmitting power to the power system.
A power control program characterized in that the power received by the power receiving plant from the power system is made to be the same as or larger than the predetermined power transmitted by the power transmitting plant to the power system.
発電装置からの電力を電力系統へ送電する送電側プラントと、前記電力系統から電力を受電する受電側プラントの電力制御方法であって、
前記受電側プラントに、前記送電側プラントが電力系統への送電を開始する以前に又は送電をしつつ、前記電力系統からの受電をさせ、
前記受電側プラントに、当該受電側プラントが電力系統から受電する受電力を、前記送電側プラントが電力系統へ送電する所定の送電力と同じに又はより大きくさせることを特徴とする電力制御方法。
It is a power control method of a power transmission side plant that transmits power from a power generation device to a power system and a power reception side plant that receives power from the power system.
Have the power receiving plant receive power from the power system before or while the power transmitting plant starts transmitting power to the power system.
A power control method characterized in that the power received by the power receiving plant from the power system is made to be the same as or larger than the predetermined power transmitted by the power transmitting plant to the power system.
JP2017082413A 2017-04-18 2017-04-18 Power control systems, photovoltaic plants, power control programs, and power control methods Active JP6908917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082413A JP6908917B2 (en) 2017-04-18 2017-04-18 Power control systems, photovoltaic plants, power control programs, and power control methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082413A JP6908917B2 (en) 2017-04-18 2017-04-18 Power control systems, photovoltaic plants, power control programs, and power control methods

Publications (2)

Publication Number Publication Date
JP2018182966A JP2018182966A (en) 2018-11-15
JP6908917B2 true JP6908917B2 (en) 2021-07-28

Family

ID=64277358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082413A Active JP6908917B2 (en) 2017-04-18 2017-04-18 Power control systems, photovoltaic plants, power control programs, and power control methods

Country Status (1)

Country Link
JP (1) JP6908917B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799228B2 (en) * 2011-06-17 2015-10-21 パナソニックIpマネジメント株式会社 Power supply system
JP2014039426A (en) * 2012-08-20 2014-02-27 Daihen Corp Method of determining optimum transformer for photovoltaic generation facility, photovoltaic generation facility and transformer for photovoltaic generation facility
JP2014166009A (en) * 2013-02-22 2014-09-08 Toshiba Corp Photovoltaic power generation system, and control method and control program for photovoltaic power generation system
JP5826803B2 (en) * 2013-08-05 2015-12-02 中国電力株式会社 Supply and demand balance control system and supply and demand balance control method
JP6404758B2 (en) * 2015-03-27 2018-10-17 京セラ株式会社 Power conversion device and power management device

Also Published As

Publication number Publication date
JP2018182966A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Badwawi et al. A review of hybrid solar PV and wind energy system
Obi et al. Trends and challenges of grid-connected photovoltaic systems–A review
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
Lim et al. Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: A case study in Malaysia
Khan et al. A reactive power compensation strategy in radial distribution network with high PV penetration
Cherif et al. Energy output estimation of hybrid Wind-Photovoltaic power system using statistical distributions
Abdalla Technical requirements for connecting medium and large solar power plants to electricity networks in Egypt
Jadeja Major technical issues with increased PV penetration on the existing electrical grid
Sangov et al. Economic efficiency of using a windmill for supplying power to remote rural consumers in the republic of Tajikistan
Giri Analysis and Designing of 1 MW SPV Gross Metering Power Plant in Odisha
JP6908917B2 (en) Power control systems, photovoltaic plants, power control programs, and power control methods
Liu et al. Analysis of load electricity consumption on a low-voltage distribution system with community energy storages
Bhatt et al. Design and cost analysis of PV System using nano solar cell
Urbanus et al. Stand-alone Solar Photo-voltaic Systems for Off-grid Electrification
Jameel et al. Impact study of integrating solar plant in an 11kV urban distribution system
Chowdhury Design & estimation of rooftop grid-tied solar photovoltaic system
Kanchikere et al. Analysis of 80 KW grid connected rooftop solar power plant using SISIFO
Phasha et al. Design strategies of an off-grid solar PV plant for office buildings: A case study of Johannesburg
Djehad et al. The sizing of the isolated photovoltaic system (Domestic self-consumption) and economic comparison between the cost of this energy (price of KWh) and different sector
Kothari et al. Design of microgrids for rural electrification
Vehe et al. Performance evaluation of the Navrongo Solar PV power plant in Ghana
Onwunta Modelling and Simulation of the Impacts of Distributed Generation integration into the smart grid
Haqqi et al. Renewable and Sustainable Energy: Solar Energy and Electrical System Design
Shrestha et al. A techno-economic analysis of utility scale photovoltaic plant (A case study of 1 MWp plant at trishuli)
Idoko Enhanced PV module efficiency to boost hybrid microgrid power and microgrid ancillary services market creation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6908917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250