JP6908503B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP6908503B2
JP6908503B2 JP2017221809A JP2017221809A JP6908503B2 JP 6908503 B2 JP6908503 B2 JP 6908503B2 JP 2017221809 A JP2017221809 A JP 2017221809A JP 2017221809 A JP2017221809 A JP 2017221809A JP 6908503 B2 JP6908503 B2 JP 6908503B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
anode
iron
alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017221809A
Other languages
Japanese (ja)
Other versions
JP2019096638A (en
Inventor
祐司 村山
祐司 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2017221809A priority Critical patent/JP6908503B2/en
Publication of JP2019096638A publication Critical patent/JP2019096638A/en
Application granted granted Critical
Publication of JP6908503B2 publication Critical patent/JP6908503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、陽極にTiとZrの合金を用い、陽極酸化処理により酸化物からなる誘電体皮膜を形成し、液体もしくは固体の電解質を用いた電解コンデンサに関する。 The present invention relates to an electrolytic capacitor using an alloy of Ti and Zr as an anode, forming a dielectric film made of an oxide by anodizing, and using a liquid or solid electrolyte.

従来、電解コンデンサは、弁作用金属を陽極として用い、電解酸化法等により陽極表面に弁作用金属の酸化皮膜を誘電体として形成している。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムなどが知られている。特に、近年はコンデンサの更なる高容量化が求められており、酸化膜の比誘電率が高いチタンの使用が検討されている。 Conventionally, an electrolytic capacitor uses a valve acting metal as an anode, and an oxide film of the valve acting metal is formed as a dielectric on the surface of the anode by an electrolytic oxidation method or the like. As the valve action metal, aluminum, tantalum, niobium, titanium, zirconium and the like are known. In particular, in recent years, there has been a demand for even higher capacities of capacitors, and the use of titanium, which has a high relative permittivity of the oxide film, is being studied.

しかしながら、チタンを電解酸化して製造した電解コンデンサは、アルミニウムやタンタルなどの旧来の実用化された電解コンデンサと比較して、漏れ電流が大きいという問題がある。 However, the electrolytic capacitor produced by electrolytically oxidizing titanium has a problem that the leakage current is large as compared with the conventional practical electrolytic capacitors such as aluminum and tantalum.

漏れ電流特性の劣化を防止するため、特許文献1では、チタンにジルコンを加え合金化した陽極基体を用いた電解コンデンサが開示されている。ジルコンは3〜10wt%範囲で最も漏れ電流低下効果を示し、約50wt%程度まで実用上好ましい特性が得られるとされている。 In order to prevent deterioration of the leakage current characteristic, Patent Document 1 discloses an electrolytic capacitor using an anode substrate alloyed by adding zircon to titanium. Zircon shows the most leakage current reduction effect in the range of 3 to 10 wt%, and it is said that practically preferable characteristics can be obtained up to about 50 wt%.

特許文献1は陽極基体を電解液に含浸して製造した液体電解コンデンサであるが、特許文献2,3には、固体電解コンデンサ、特に電解質として導電性高分子を含む固体電解コンデンサの陽極体としてチタンとジルコニウムからなる合金を用いることを提案している。特許文献2では微量の炭素原子を添加することで誘電体の結晶化を抑制し、アモルファス構造を安定化させることで、漏れ電流の少ない誘電体が得られるとされている。特許文献3では、陽極体のチタンとジルコニウムの組成比と誘電体(陽極酸化皮膜)の膜厚との関係を特定の範囲とすることで、静電容量が大きく、漏れ電流の少ない固体電解コンデンサが提供されている。 Patent Document 1 is a liquid electrolytic capacitor manufactured by impregnating an anode substrate with an electrolytic solution, but Patent Documents 2 and 3 describe a solid electrolytic capacitor, particularly as an anode of a solid electrolytic capacitor containing a conductive polymer as an electrolyte. It is proposed to use an alloy consisting of titanium and zirconium. According to Patent Document 2, a dielectric having a small leakage current can be obtained by suppressing the crystallization of the dielectric by adding a small amount of carbon atoms and stabilizing the amorphous structure. In Patent Document 3, a solid electrolytic capacitor having a large capacitance and a small leakage current is defined by setting the relationship between the composition ratio of titanium and zirconium of the anode and the film thickness of the dielectric (anodic oxide film) within a specific range. Is provided.

特公昭43−18012号公報Special Publication No. 43-18012 特開2015−207689号公報Japanese Unexamined Patent Publication No. 2015-207689 特開2016−082126号公報Japanese Unexamined Patent Publication No. 2016-082126

本発明者らは、弁作用金属の合金、特にチタンとジルコニウムとの合金からなる陽極体を用いて電解コンデンサ、特に固体電解コンデンサを形成すると、合金の組成を一定にしても、漏れ電流がばらつくという知見を得た。したがって、本発明は、弁作用金属の合金からなる陽極体を用いた電解コンデンサにおいて、漏れ電流が低くバラツキの抑制された電解コンデンサを提供することを目的とする。 When an electrolytic capacitor, particularly a solid electrolytic capacitor, is formed by using an alloy of a valve acting metal, particularly an anode composed of an alloy of titanium and zirconium, the present inventors disperse the leakage current even if the composition of the alloy is constant. I got the finding. Therefore, an object of the present invention is to provide an electrolytic capacitor using an anode made of an alloy of a valve acting metal, which has a low leakage current and suppressed variation.

すなわち、本発明は、陽極体としてチタンとジルコニウムからなる合金と、誘電体として前記陽極体を陽極酸化して得られる酸化皮膜と、電解質とを含む電解コンデンサであって、陽極体の合金における鉄、ニッケル、クロムの総量の濃度が100ppm以下であることを特徴とする電解コンデンサに関する。 That is, the present invention is an electrolytic capacitor containing an alloy composed of titanium and zirconium as an anode, an oxide film obtained by anodizing the anode as a dielectric, and an electrolyte, and iron in the alloy of the anode. The present invention relates to an electrolytic capacitor, characterized in that the total concentration of nickel and chromium is 100 ppm or less.

本発明によれば、チタンとジルコニウムとの合金に含まれる鉄、ニッケル、クロムの総量の濃度を100ppm以下とすることで、合金組成のバラツキが少なく、漏れ電流特性に優れた電解コンデンサを提供することができる。 According to the present invention, by setting the total concentration of iron, nickel, and chromium contained in the alloy of titanium and zirconium to 100 ppm or less, an electrolytic capacitor having little variation in alloy composition and excellent leakage current characteristics is provided. be able to.

本発明の一実施形態に係る固体電解コンデンサの概略断面図である。It is the schematic sectional drawing of the solid electrolytic capacitor which concerns on one Embodiment of this invention.

以下、本発明の実施形態を掲げて説明するが、本発明はこの実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to this embodiment.

チタン(Ti)とジルコニウム(Zr)からなる合金を陽極体として、電解液中で陽極酸化処理を行うことにより、陽極表面に誘電体である酸化皮膜が形成される。この上に電解質層を形成させる。
本発明では、弁作用金属の中から、酸化膜の比誘電率に優れるチタンを選択し、さらにチタンと同族のジルコニウムとの合金が、鉄などの不純物の存在比を低減することで合金組成のバラツキが少なく、優れた漏れ電流特性を達成できることを見出した。
An oxide film, which is a dielectric, is formed on the surface of the anode by performing anodizing treatment in an electrolytic solution using an alloy composed of titanium (Ti) and zirconium (Zr) as an anode. An electrolyte layer is formed on this.
In the present invention, titanium having an excellent relative permittivity of the oxide film is selected from the valve acting metals, and the alloy of titanium and zirconium of the same family reduces the abundance ratio of impurities such as iron to form the alloy composition. It was found that there is little variation and excellent leakage current characteristics can be achieved.

陽極体を構成するTiとZrからなる合金は、それぞれの単体金属を所定の比で混合して合金化する。合金化の過程で単体金属に含まれる鉄、ニッケル、クロム(以下、鉄系金属)が濃縮、分離して、合金中の鉄系金属の総量は、単体金属中の鉄系金属の総量よりも減少することがある。しかしながら、単体金属に含まれる鉄系金属は、工業的に得られる2N5(純度99.5%程度)材では少なくとも鉄が100ppm以上含まれており、このような材料を用いて合金化しても、鉄系金属の総量が100ppm以下まで低減することはない。そこで、本発明では3N(純度99.9%)以上、好ましくは4N(純度99.99%)以上の高純度チタンと高純度ジルコニウムを含む合金塊を作製し、得られた合金塊を鉄系金属に汚染されることなく粉末にして加圧成形した後、高真空、高温下に熱処理して陽極体を作製する方法が好ましい。なお、本明細書において、高純度チタンおよび高純度ジルコニウムとは、鉄系金属の総量が100ppm未満のものをいう。高純度チタンと高純度ジルコニウムの作製方法に特に指定はないが、例えば、ヨウ化物熱分解法、溶融塩電解精製法、水素プラズマ熔解法、電子ビーム熔解法などが使用できる。なお、原料金属の純度が高くなればなるほど、価格が上昇し、陽極体乃至電解コンデンサのコストが増加することになる。本発明では合金として鉄系金属の総濃度が100ppm以下となれば良いため、TiとZrの一方が高純度品であれば、組成比によっては他方が高純度品でないもの(鉄の濃度が100ppm以上のもの)と組み合わせることもできる。それによって、陽極体の製造コストの上昇を抑えることができる。また、製造過程での鉄系金属汚染を防止するためには、鉄系金属を主として含む装置と接触しての混合などを避けることが挙げられる。なお、6N(純度99.9999%)の超高純度品でも、規格上は最大1ppmの鉄を含み得ることから、本発明における鉄系金属の総量の下限値は1ppmと便宜上定義する。なお、この下限値1ppmは、実際に使用する測定装置の検出限界以下である場合がある。
陽極体としてのTi−Zr合金中の鉄系金属の総量は、50ppm以下であることがより好ましい。
The alloy composed of Ti and Zr constituting the anode body is alloyed by mixing each elemental metal in a predetermined ratio. In the process of alloying, iron, nickel, and chromium (hereinafter referred to as iron-based metals) contained in the single metal are concentrated and separated, and the total amount of iron-based metals in the alloy is larger than the total amount of iron-based metals in the single metal. May decrease. However, the iron-based metal contained in the elemental metal contains at least 100 ppm or more of iron in the industrially obtained 2N5 (purity of about 99.5%) material, and even if alloyed using such a material, it may be alloyed. The total amount of iron-based metal is not reduced to 100 ppm or less. Therefore, in the present invention, an alloy ingot containing high-purity titanium and high-purity zirconium of 3N (purity 99.9%) or more, preferably 4N (purity 99.99%) or more is produced, and the obtained alloy ingot is iron-based. A method of producing an anode body by powdering it without being contaminated with metal, forming it under pressure, and then heat-treating it under high vacuum and high temperature is preferable. In addition, in this specification, high-purity titanium and high-purity zirconium refer to those having a total amount of iron-based metals of less than 100 ppm. The method for producing high-purity titanium and high-purity zirconium is not particularly specified, but for example, an iodide thermal decomposition method, a molten salt electrolysis purification method, a hydrogen plasma melting method, an electron beam melting method and the like can be used. The higher the purity of the raw material metal, the higher the price and the higher the cost of the anode or electrolytic capacitor. In the present invention, the total concentration of iron-based metals as an alloy may be 100 ppm or less. Therefore, if one of Ti and Zr is a high-purity product, the other is not a high-purity product depending on the composition ratio (iron concentration is 100 ppm). It can also be combined with the above). As a result, it is possible to suppress an increase in the manufacturing cost of the anode body. Further, in order to prevent iron-based metal contamination in the manufacturing process, it is possible to avoid mixing in contact with an apparatus mainly containing iron-based metal. Since an ultra-high purity product of 6N (purity 99.99999%) can contain up to 1 ppm of iron in the standard, the lower limit of the total amount of iron-based metals in the present invention is defined as 1 ppm for convenience. The lower limit of 1 ppm may be equal to or lower than the detection limit of the measuring device actually used.
The total amount of iron-based metal in the Ti—Zr alloy as the anode is more preferably 50 ppm or less.

合金中の鉄系金属の量は、例えば、ICP(高周波誘導結合プラズマ)発光分光分析により測定することができる。ICP発光分光分析は非常に高感度であり、理論上、検出下限は大半の元素に対して10ppb以下である場合がある。実際に使用する装置ではppmオーダーの測定が可能な装置であればよい。例えば、検出下限が10ppmの装置でも規定する100ppm以下、特に50ppm以下であることが確認できる。測定は、合金を適当な酸に溶解して溶液として、それを霧化した状態でプラズマ中に導入し、励起発光させることで行う。
なお、合金中の鉄系金属としては、鉄の含有量が最も多く、鉄の含有量が鉄系金属の総量となることがある。
The amount of iron-based metal in the alloy can be measured, for example, by ICP (radio frequency inductively coupled plasma) emission spectroscopy. ICP emission spectroscopic analysis is very sensitive and, in theory, the lower limit of detection may be 10 ppb or less for most elements. The device actually used may be any device capable of measuring on the order of ppm. For example, it can be confirmed that the detection lower limit is 100 ppm or less, particularly 50 ppm or less, which is specified even in an apparatus of 10 ppm. The measurement is carried out by dissolving the alloy in an appropriate acid to prepare a solution, introducing it into plasma in an atomized state, and causing it to emit light by excitation.
The iron-based metal in the alloy has the highest iron content, and the iron content may be the total amount of the iron-based metal.

TiとZrは同族元素であり全率固溶体となるため、任意組成で均一合金を得られる利点があるが、Zrが原子比率で20%以上では、電解質層形成後に漏れ電流が低くなり、コンデンサ特性が良好になる。また、Zrの原子比率が90%以下であれば、静電容量がTaを陽極体として用いた電解コンデンサよりも良好な値を示す。さらには、Zrの原子比率が20%以上、70%以下であれば、陽極酸化して得られる誘電体がアモルファス構造となることで、コンデンサの耐熱特性が向上するためより好ましい。つまり、本発明に係る陽極体は、チタンとジルコニウムの原子比がTi:Zrで80:20〜10:90である合金であることが好ましく、Ti:Zrが80:20〜30:70であることがより好ましい。 Since Ti and Zr are homologous elements and become a solid solution at all rates, there is an advantage that a uniform alloy can be obtained with an arbitrary composition. However, when Zr has an atomic ratio of 20% or more, the leakage current becomes low after the electrolyte layer is formed, and the capacitor characteristics. Becomes good. Further, when the atomic ratio of Zr is 90% or less, the capacitance shows a better value than that of an electrolytic capacitor using Ta as an anode. Further, when the atomic ratio of Zr is 20% or more and 70% or less, the dielectric obtained by anodizing has an amorphous structure, which is more preferable because the heat resistance characteristics of the capacitor are improved. That is, the anode according to the present invention is preferably an alloy in which the atomic ratio of titanium and zirconium is 80:20 to 10:90 in Ti: Zr, and Ti: Zr is 80:20 to 30:70. Is more preferable.

得られた合金塊は前述の通り粉末状に粉砕し、該粉末を所定の陽極体の形状に加圧成形した後、高真空、高温下に熱処理して陽極体を作製する。該陽極体は、合金粉末の焼結体であり、多孔質である。以下、多孔質焼結体ともいう。
合金塊の粉末化には、公知の粉砕機が使用でき、ボールミルやビーズミル等の粉砕媒体を使用する装置が挙げられる。これらの粉砕機には、鉄系金属の汚染を抑制するため、例えば、Ti−Zr合金よりも硬度の高い、ジルコニア(ZrO)製のタンク、粉砕媒体を使用することが好ましい。得られる粉末の粒径については特に制限はないが、100μm以下が好ましく、10μm以下が好ましい。また、ナノ粒子までの粉砕は必要はなく、サブミクロン(0.1μm:100nm)までの粉砕で十分である。
多孔質焼結体作製時の高温熱処理において、チタン−ジルコニウム合金の変態温度以上の温度で熱処理すると結晶粒界部分に鉄が濃縮される。しかし、本発明のように、合金中の鉄系金属濃度を100ppm以下とすれば、鉄の結晶粒界への偏析が低減される。その結果、陽極酸化により形成された酸化皮膜の皮膜破壊が抑制され、欠陥の無い均質な酸化皮膜を形成することが可能になり、電解コンデンサの漏れ電流が改善される。
さらに、チタンまたはジルコニウムと鉄との親和性の違いにより、合金中の鉄の濃度を100ppm未満とすればチタン−ジルコニウム合金の微視的なばらつきが低減されることが判明した。これにより、電解コンデンサの静電容量のばらつきが抑制される。本発明では、チタン−ジルコニウム合金(陽極体)中のチタン組成比率の最大値と最小値の差分が10パーセントポイント(ppt)以下であることが好ましく、5ppt以下がより好ましい。当該組成比率は任意の5カ所で測定することで全体的な組成比率と見なすことができる。
合金中に含まれる鉄以外の鉄系金属(ニッケル、クロム)についても同様の効果が得られることを確認している。
The obtained alloy mass is crushed into a powder as described above, the powder is pressure-molded into a predetermined anode shape, and then heat-treated under high vacuum and high temperature to prepare an anode. The anode is a sintered body of alloy powder and is porous. Hereinafter, it is also referred to as a porous sintered body.
A known crusher can be used for pulverizing the alloy ingot, and an apparatus using a crushing medium such as a ball mill or a bead mill can be mentioned. In order to suppress contamination of iron-based metals, it is preferable to use, for example, a tank made of zirconia (ZrO 2 ) or a crushing medium having a hardness higher than that of the Ti—Zr alloy for these crushers. The particle size of the obtained powder is not particularly limited, but is preferably 100 μm or less, and preferably 10 μm or less. Further, pulverization to nanoparticles is not necessary, and pulverization to submicrons (0.1 μm: 100 nm) is sufficient.
In the high-temperature heat treatment for producing a porous sintered body, iron is concentrated at the grain boundary portion when the heat treatment is performed at a temperature equal to or higher than the transformation temperature of the titanium-zirconium alloy. However, if the iron-based metal concentration in the alloy is 100 ppm or less as in the present invention, segregation of iron into grain boundaries is reduced. As a result, the destruction of the oxide film formed by anodization is suppressed, a homogeneous oxide film without defects can be formed, and the leakage current of the electrolytic capacitor is improved.
Furthermore, it was found that the difference in affinity between titanium or zirconium and iron reduces the microscopic variation of the titanium-zirconium alloy when the concentration of iron in the alloy is less than 100 ppm. As a result, variations in the capacitance of the electrolytic capacitor are suppressed. In the present invention, the difference between the maximum value and the minimum value of the titanium composition ratio in the titanium-zirconium alloy (anode) is preferably 10 percentage points (ppt) or less, and more preferably 5 ppt or less. The composition ratio can be regarded as an overall composition ratio by measuring at any five points.
It has been confirmed that the same effect can be obtained for iron-based metals (nickel, chromium) other than iron contained in the alloy.

陽極体を構成するTiとZrからなる合金は、上記の粉末焼結法以外にも、アーク溶解法、スパッタ法、メカニカルアロイ法などで製造したものが利用できる。陽極体の形状としては、板状、箔状、線状など公知のいずれの形状であっても良い。また、適当な基体上にTiとZrからなる合金膜を形成したものでも良い。陽極体として、焼結法で形成したものは、微細な空孔を有して表面積が大きく、高い静電容量が要求される電解コンデンサに有利である。 As the alloy composed of Ti and Zr constituting the anode body, those produced by an arc melting method, a sputtering method, a mechanical alloy method or the like can be used in addition to the above powder sintering method. The shape of the anode may be any known shape such as a plate shape, a foil shape, or a linear shape. Further, an alloy film made of Ti and Zr may be formed on an appropriate substrate. The anode body formed by the sintering method is advantageous for electrolytic capacitors having fine pores, a large surface area, and a high capacitance required.

[誘電体]
誘電体は、陽極酸化処理により形成される、酸化皮膜からなる。該誘電体の膜厚は、所望の静電容量が得られるように適宜決定されるが、導電性高分子を電解質に用いる場合、5nm以上、1000nm以下のときに、電解質層形成後の漏れ電流が低くなる。酸化皮膜の膜厚は、陽極酸化の処理電圧と陽極の組成により決定されるが、Zrの原子比率が20%以上の場合には、陽極酸化処理電圧が3V以上、500V以下であるときに、数時間の処理で膜厚を5nm以上、1000nm以下とすることができる。誘電体の膜厚は、薄くなるほど静電容量が高くなり、厚くなるほど高電圧での使用が可能となる。したがって、電解コンデンサに要求される性能に応じて、上記範囲から適宜選択することができる。
また陽極酸化処理には、公知の電解液を用いることができる。例えばリン酸、硝酸、ホウ酸、クエン酸、またはそれらのナトリウム塩、アンモニウム塩などを含む水溶液、または非水溶液を使用することができる。
[Dielectric]
The dielectric is composed of an oxide film formed by anodizing. The film thickness of the dielectric is appropriately determined so as to obtain a desired capacitance, but when a conductive polymer is used as the electrolyte, the leakage current after forming the electrolyte layer is 5 nm or more and 1000 nm or less. Will be low. The film thickness of the oxide film is determined by the anodizing treatment voltage and the composition of the anode. When the atomic ratio of Zr is 20% or more, the anodizing treatment voltage is 3 V or more and 500 V or less. The film thickness can be adjusted to 5 nm or more and 1000 nm or less by processing for several hours. The thinner the film thickness of the dielectric, the higher the capacitance, and the thicker the film thickness, the higher the voltage that can be used. Therefore, it can be appropriately selected from the above range according to the performance required for the electrolytic capacitor.
Further, a known electrolytic solution can be used for the anodizing treatment. For example, an aqueous solution containing phosphoric acid, nitric acid, boric acid, citric acid, or a sodium salt or ammonium salt thereof, or a non-aqueous solution can be used.

[電解質層]
電解質層には、公知の電解質を用いることができる。具体的には、カルボン酸やアミン等の電解質を含み、グリコールやエーテル等の溶媒からなる電解液、二酸化マンガンもしくはポリチオフェン、ポリピロール等の導電高分子からなる固体電解質、またはそれらの複合物等を用いることができる。これらの中でも、導電性高分子からなる固体電解質を含む場合には、電解コンデンサの漏れ電流がより低くなるため好ましい。
酸化皮膜からなる誘電体の上に形成される導電性高分子としては、ポリピロール、ポリチオフェン、ポリアニリン、ポリシラン、またはそれらの誘導体から選択される1種以上を使用することができる。導電性高分子を含む電解質層の形成方法としては、化学酸化重合法、電解重合法、分散液または溶液の塗布乾燥法などが適用できる。電解質層は、導電性高分子に導電性を発現させるドーパントを含むことができ、さらに必要に応じてバインダーを含むことができる。ドーパントとしてはアニオン性のドーパントが挙げられ、特にポリ酸アニオンが好ましい。バインダーとしては、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、シリコン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリビニルアルコールや糖類等の水溶性樹脂等が挙げられる。
[Electrolyte layer]
A known electrolyte can be used for the electrolyte layer. Specifically, an electrolytic solution containing an electrolyte such as carboxylic acid or amine and composed of a solvent such as glycol or ether, a solid electrolyte composed of a conductive polymer such as manganese dioxide or polythiophene or polypyrrole, or a composite thereof is used. be able to. Among these, when a solid electrolyte made of a conductive polymer is contained, the leakage current of the electrolytic capacitor becomes lower, which is preferable.
As the conductive polymer formed on the dielectric composed of the oxide film, one or more selected from polypyrrole, polythiophene, polyaniline, polysilane, or derivatives thereof can be used. As a method for forming the electrolyte layer containing the conductive polymer, a chemical oxidation polymerization method, an electrolytic polymerization method, a dispersion liquid or a solution coating and drying method and the like can be applied. The electrolyte layer may contain a dopant that causes the conductive polymer to exhibit conductivity, and may further contain a binder, if necessary. Examples of the dopant include anionic dopants, and polyacid anions are particularly preferable. Examples of the binder include acrylic resin, urethane resin, epoxy resin, phenol resin, silicon resin, polyester resin, polyolefin resin, water-soluble resin such as polyvinyl alcohol and saccharides.

図1に、本実施形態に係る固体電解コンデンサの構造を示す模式的断面図を示す。この固体電解コンデンサは、陽極体1上に、誘電体層2、電解質層3がこの順に形成された構造を有している。電解質層3の外周には、グラファイト層4と銀層5形成して陰極を形成し、更に、導電性接着剤6を介して外部との接続端子となる電極7に接続される。また、陽極導体1の電解質層3を形成していない面には陽極導体1と同様の弁作用金属からなる金属リード8が設けられており、金属リード8は、陰極とは異なる接続端子の電極7に接続されている。また、全体はエポキシ樹脂等の絶縁性の外装樹脂9で覆われ、電解コンデンサが形成される。 FIG. 1 shows a schematic cross-sectional view showing the structure of the solid electrolytic capacitor according to the present embodiment. This solid electrolytic capacitor has a structure in which the dielectric layer 2 and the electrolyte layer 3 are formed in this order on the anode body 1. A graphite layer 4 and a silver layer 5 are formed on the outer periphery of the electrolyte layer 3 to form a cathode, which is further connected to an electrode 7 serving as a connection terminal to the outside via a conductive adhesive 6. Further, a metal lead 8 made of a valve acting metal similar to that of the anode conductor 1 is provided on the surface of the anode conductor 1 on which the electrolyte layer 3 is not formed, and the metal lead 8 is an electrode of a connection terminal different from the cathode. It is connected to 7. Further, the whole is covered with an insulating exterior resin 9 such as an epoxy resin, and an electrolytic capacitor is formed.

以下、実施例を挙げて本発明を具体的に説明するが本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

<実施例1>
原料として、ヨウ化物熱分解法により作製した高純度チタン(Ti)と同じくヨウ化物熱分解法により作製した高純度ジルコニウム(Zr)を、原子比40:60の組成で秤量した後、アークボタン溶解法により合金塊を作製した。作製した高純度チタン、高純度ジルコニウムのいずれも鉄系金属の総量は100ppm未満であった。この合金塊をジルコニアタンクのボールミルとビーズミルを用いて、平均粒径(D50)=2μmの合金粉末とした。得られた合金粉末を金型に充填し加圧成型することにより、外形2.2mm×1.7mm×1.2mmの成型体を作製した。次に、この成型体を800℃の高温真空中で焼結し、多孔質焼結体を得た。このとき多孔質焼結体中に含まれる濃度をICP発光分光分析したところ、鉄濃度と鉄、ニッケル、クロムの総量の濃度はいずれも10ppm未満であった。また、多孔質焼結体を透過電子顕微鏡により組成分析した結果を表1に示す。組成分析は得られた多孔質焼結体の任意の5箇所に行い、チタン組成比率の最大値と最小値の差分(パーセントポイント:ppt)を記載した。得られた多孔質焼結体を陽極体とし、0.05質量%のリン酸と50質量%のエチレングリコールと水を含む電解液を用い、25℃で100Vの陽極酸化処理を2時間行うことにより、誘電体である酸化皮膜を形成した。続いて、導電性高分子であるポリチオフェンの分散液を酸化皮膜の上に塗布した後、溶媒を乾燥させて、電解質層を形成した。さらに、グラファイトペーストと、銀ペーストを塗布し、硬化させることにより、陰極引き出し層を形成させ、固体電解コンデンサを得た。得られた固体電解コンデンサについて、5Vの直流電圧を印加し、5分後の漏れ電流を測定した。結果を表1に示す。
<Example 1>
As a raw material, high-purity titanium (Ti) produced by the iodide pyrolysis method and high-purity zirconium (Zr) produced by the iodide pyrolysis method are weighed at an atomic ratio of 40:60 and then melted by arc button. An alloy ingot was prepared by the method. The total amount of iron-based metals in both the produced high-purity titanium and high-purity zirconium was less than 100 ppm. This alloy mass was made into an alloy powder having an average particle size (D50) = 2 μm by using a ball mill and a bead mill of a zirconia tank. The obtained alloy powder was filled in a mold and pressure-molded to prepare a molded body having an outer diameter of 2.2 mm × 1.7 mm × 1.2 mm. Next, this molded body was sintered in a high temperature vacuum at 800 ° C. to obtain a porous sintered body. At this time, when the concentration contained in the porous sintered body was analyzed by ICP emission spectroscopy, the iron concentration and the total concentration of iron, nickel, and chromium were all less than 10 ppm. Table 1 shows the results of composition analysis of the porous sintered body with a transmission electron microscope. The composition analysis was performed at any 5 points of the obtained porous sintered body, and the difference (percent point: ppt) between the maximum value and the minimum value of the titanium composition ratio was described. Using the obtained porous sintered body as an anode, an electrolytic solution containing 0.05% by mass of phosphoric acid, 50% by mass of ethylene glycol and water is used to perform anodizing treatment at 25 ° C. for 2 hours at 100 V. To form an oxide film which is a dielectric. Subsequently, a dispersion liquid of polythiophene, which is a conductive polymer, was applied onto the oxide film, and then the solvent was dried to form an electrolyte layer. Further, a graphite paste and a silver paste were applied and cured to form a cathode extraction layer to obtain a solid electrolytic capacitor. A DC voltage of 5 V was applied to the obtained solid electrolytic capacitor, and the leakage current after 5 minutes was measured. The results are shown in Table 1.

<実施例2>
原料として、未精製のスポンジチタン(鉄系金属の総量約300ppm)と実施例1と同様にヨウ化物熱分解法により作製した高純度ジルコニウムを用いた以外は実施例1と同じ方法で、多孔質焼結体を得た。このとき多孔質焼結体中に含まれる濃度をICP発光分光分析したところ、鉄濃度と鉄、ニッケル、クロムの総量の濃度はいずれも50ppmであった。また、多孔質焼結体を透過電子顕微鏡により組成分析した結果を表1に示す。得られた多孔質焼結体を陽極体とし、実施例1と同じ方法で固体電解コンデンサを得た。得られた固体電解コンデンサについて、5Vの直流電圧を印加し、5分後の漏れ電流を測定した。結果を表1に示す
<Example 2>
Porous by the same method as in Example 1 except that unrefined titanium sponge (total amount of iron-based metal: about 300 ppm) and high-purity zirconium prepared by the iodide pyrolysis method as in Example 1 were used as raw materials. A sintered body was obtained. At this time, when the concentration contained in the porous sintered body was analyzed by ICP emission spectroscopy, the iron concentration and the total concentration of iron, nickel, and chromium were all 50 ppm. Table 1 shows the results of composition analysis of the porous sintered body with a transmission electron microscope. Using the obtained porous sintered body as an anode body, a solid electrolytic capacitor was obtained by the same method as in Example 1. A DC voltage of 5 V was applied to the obtained solid electrolytic capacitor, and the leakage current after 5 minutes was measured. The results are shown in Table 1.

<実施例3>
原料として、実施例1と同様にヨウ化物熱分解法により作製した高純度チタンと未精製のスポンジジルコニウム(鉄系金属の総量約500ppm)を用いた以外は実施例1と同じ方法で、多孔質焼結体を得た。このとき多孔質焼結体中に含まれる濃度をICP発光分光分析したところ、鉄濃度と鉄、ニッケル、クロムの総量の濃度はいずれも90ppmであった。また、多孔質焼結体を透過電子顕微鏡により組成分析した結果を表1に示す。得られた多孔質焼結体を陽極体とし、実施例1と同じ方法で固体電解コンデンサを得た。得られた固体電解コンデンサについて、5Vの直流電圧を印加し、5分後の漏れ電流を測定した。結果を表1に示す
<Example 3>
Porous by the same method as in Example 1 except that high-purity titanium prepared by the iodide pyrolysis method and unrefined zirconium sponge (total amount of iron-based metal: about 500 ppm) were used as raw materials. A sintered body was obtained. At this time, when the concentration contained in the porous sintered body was analyzed by ICP emission spectroscopy, the iron concentration and the total concentration of iron, nickel, and chromium were all 90 ppm. Table 1 shows the results of composition analysis of the porous sintered body with a transmission electron microscope. Using the obtained porous sintered body as an anode body, a solid electrolytic capacitor was obtained by the same method as in Example 1. A DC voltage of 5 V was applied to the obtained solid electrolytic capacitor, and the leakage current after 5 minutes was measured. The results are shown in Table 1.

<比較例1>
原料として、実施例2で使用の未精製のスポンジチタンと実施例3で使用の未精製のスポンジジルコニウムを用いた以外は実施例1と同じ方法で、多孔質焼結体を得た。このとき多孔質焼結体中に含まれる濃度をICP発光分光分析したところ、鉄濃度と鉄、ニッケル、クロムの総量の濃度はいずれも140ppmであった。また、多孔質焼結体を透過電子顕微鏡により組成分析した結果を表1に示す。得られた多孔質焼結体を陽極体とし、実施例1と同じ方法で固体電解コンデンサを得た。得られた固体電解コンデンサについて、5Vの直流電圧を印加し、5分後の漏れ電流を測定した。結果を表1に示す
<Comparative example 1>
A porous sintered body was obtained by the same method as in Example 1 except that the unrefined titanium sponge used in Example 2 and the unrefined zirconium sponge used in Example 3 were used as raw materials. At this time, when the concentration contained in the porous sintered body was analyzed by ICP emission spectroscopy, the iron concentration and the total concentration of iron, nickel, and chromium were all 140 ppm. Table 1 shows the results of composition analysis of the porous sintered body with a transmission electron microscope. Using the obtained porous sintered body as an anode body, a solid electrolytic capacitor was obtained by the same method as in Example 1. A DC voltage of 5 V was applied to the obtained solid electrolytic capacitor, and the leakage current after 5 minutes was measured. The results are shown in Table 1.

<比較例2>
ステンレスタンクのボールミルとビーズミルを用いた以外は実施例1と同じ方法で多孔質焼結体を得た。このとき多孔質焼結体中に含まれる濃度をICP発光分光分析したところ、鉄濃度が80ppm、鉄、ニッケル、クロムの総量の濃度は110ppmであった。また、多孔質焼結体を透過電子顕微鏡により組成分析した結果を表1に示す。得られた多孔質焼結体を陽極体とし、実施例1と同じ方法で固体電解コンデンサを得た。得られた固体電解コンデンサについて、5Vの直流電圧を印加し、5分後の漏れ電流を測定した。結果を表1に示す
<Comparative example 2>
A porous sintered body was obtained by the same method as in Example 1 except that a ball mill and a bead mill in a stainless steel tank were used. At this time, when the concentration contained in the porous sintered body was analyzed by ICP emission spectroscopy, the iron concentration was 80 ppm, and the total concentration of iron, nickel and chromium was 110 ppm. Table 1 shows the results of composition analysis of the porous sintered body with a transmission electron microscope. Using the obtained porous sintered body as an anode body, a solid electrolytic capacitor was obtained by the same method as in Example 1. A DC voltage of 5 V was applied to the obtained solid electrolytic capacitor, and the leakage current after 5 minutes was measured. The results are shown in Table 1.

Figure 0006908503
Figure 0006908503

表1より、陽極体中の鉄系金属(鉄、ニッケル、クロム)の総量濃度が100ppm以下である実施例1〜3の場合に、陽極体中の組成ばらつきが減少し、電解コンデンサの漏れ電流が低くなることが分かった。 From Table 1, when the total concentration of iron-based metals (iron, nickel, chromium) in the anode is 100 ppm or less, the composition variation in the anode is reduced and the leakage current of the electrolytic capacitor is reduced. Was found to be low.

1:陽極体(TiZr合金)
2:誘電体層
3:電解質層(導電性高分子)
4:グラファイト層
5:銀層
6:導電性接着剤
7:電極
8:金属リード
9:外装樹脂
1: Anode body (TiZr alloy)
2: Dielectric layer 3: Electrolyte layer (conductive polymer)
4: Graphite layer 5: Silver layer 6: Conductive adhesive 7: Electrode 8: Metal reed 9: Exterior resin

Claims (7)

陽極体としてチタンとジルコニウムからなる合金と、誘電体として前記陽極体を陽極酸化して得られる酸化皮膜と、電解質とを含む電解コンデンサであって、陽極体の合金における鉄、ニッケル、クロムの総量の濃度が100ppm以下であり、前記陽極体は、任意の5カ所で測定したチタン組成比率の最大値と最小値の差が10パーセントポイント以下であることを特徴とする電解コンデンサ。 An electrolytic capacitor containing an alloy composed of titanium and zirconium as an anode, an oxide film obtained by anodizing the anode as a dielectric, and an electrolyte, and the total amount of iron, nickel, and chromium in the alloy of the anode. der concentration 100ppm following is, the anode body is an electrolytic capacitor, characterized in that the difference between the maximum and minimum values of the titanium composition ratio measured at any five points is less than 10 percentage points. 前記陽極体は、多孔質体である請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the anode is a porous body. 前記電解質は、固体電解質である請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2 , wherein the electrolyte is a solid electrolyte. 前記固体電解質は、導電性高分子を含む請求項に記載の電解コンデンサ。 The electrolytic capacitor according to claim 3 , wherein the solid electrolyte contains a conductive polymer. 請求項1〜のいずれか1項に記載の電解コンデンサの製造方法であって、単体チタンと単体ジルコニウムを混合し、合金化した合金塊を得る工程と、該合金塊を粉砕して粉末を得る工程と、該粉末を真空焼結して多孔質の陽極体を得る工程を含むことを特徴とする電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to any one of claims 1 to 4 , wherein a step of mixing a single titanium and a single zirconium to obtain an alloyed alloy ingot, and a step of crushing the alloy ingot to produce a powder. A method for producing an electrolytic capacitor, which comprises a step of obtaining the powder and a step of vacuum-sintering the powder to obtain a porous anode. 前記単体チタンと単体ジルコニウムの一方は鉄、ニッケル、クロムの総量の濃度が100ppm未満の高純度品であり、他方は前記総量が100ppmを越える材料である請求項に記載の電解コンデンサの製造方法。 The method for producing an electrolytic capacitor according to claim 5 , wherein one of the simple substance titanium and the simple substance zirconium is a high-purity product having a total concentration of iron, nickel and chromium of less than 100 ppm, and the other is a material having a total amount of more than 100 ppm. .. 前記粉末を得る工程は、前記合金塊を鉄系金属と接触しない装置を用いて粉末化したものである請求項5又は6に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 5 or 6 , wherein the step of obtaining the powder is a powder of the alloy ingot using an apparatus that does not come into contact with an iron-based metal.
JP2017221809A 2017-11-17 2017-11-17 Electrolytic capacitor Active JP6908503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221809A JP6908503B2 (en) 2017-11-17 2017-11-17 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221809A JP6908503B2 (en) 2017-11-17 2017-11-17 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2019096638A JP2019096638A (en) 2019-06-20
JP6908503B2 true JP6908503B2 (en) 2021-07-28

Family

ID=66971965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221809A Active JP6908503B2 (en) 2017-11-17 2017-11-17 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP6908503B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420568B2 (en) * 1999-02-16 2010-02-24 昭和電工株式会社 Niobium powder, niobium sintered body, capacitor using the sintered body, and method for manufacturing the capacitor
JP6223542B2 (en) * 2013-03-13 2017-11-01 ケメット エレクトロニクス コーポレーション Low energy grinding to produce flake powder
DE102013206603A1 (en) * 2013-04-12 2014-10-16 H.C. Starck Gmbh Process for the preparation of oxygen-poor high surface area valve metal sintered bodies
JP2015207689A (en) * 2014-04-22 2015-11-19 Necトーキン株式会社 Dielectric and manufacturing method thereof, and electrolytic capacitor
JP6585891B2 (en) * 2014-10-20 2019-10-02 株式会社トーキン Solid electrolytic capacitor
JP2017022281A (en) * 2015-07-13 2017-01-26 Necトーキン株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JP2019096638A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP4592034B2 (en) Niobium powder, niobium sintered body, capacitor using the sintered body, and method for manufacturing the capacitor
EP1137021B1 (en) Sinter of niobium for capacitor, and method of manufacture thereof
US6821314B1 (en) Capacitor powder
US6824586B2 (en) Powder for capacitor, sintered body thereof and capacitor using the sintered body
EP1275124B1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
AU2002218510A1 (en) Powder for capacitor, sintered body thereof and capacitor using the sintered body
US6755884B2 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JP6908503B2 (en) Electrolytic capacitor
JP4683512B2 (en) Capacitor powder, sintered body using the same, and capacitor using the same
JP2017022281A (en) Electrolytic capacitor
JP4521849B2 (en) Niobium powder for capacitor, sintered body using the niobium powder, and capacitor using the sintered body
EP1918950B1 (en) Niobium sintered body for an electrode of a capacitor, capacitor and production method of the capacitor
EP1328952B1 (en) Powder for capacitor, sintered body and capacitor using the sintered body
EP3139393A1 (en) Method for manufacturing tungsten-based capacitor element
JP4647744B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
JP2010265549A (en) Niobium powder for capacitor
Störmer et al. MICROSTRUCTURE DEVELOPMENT OF OXIDE LAYERS ANODICALLY GROWN ON SINTERED PELLETS OF NEWLY DEVELOPED CAPACITOR-GRADE NIOBIUM POWDERS
JP2010261106A (en) Production method of niobium sintered body for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210701

R150 Certificate of patent or registration of utility model

Ref document number: 6908503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150