JP6906265B1 - Additives for hydraulic compositions and hydraulic compositions - Google Patents

Additives for hydraulic compositions and hydraulic compositions Download PDF

Info

Publication number
JP6906265B1
JP6906265B1 JP2021011124A JP2021011124A JP6906265B1 JP 6906265 B1 JP6906265 B1 JP 6906265B1 JP 2021011124 A JP2021011124 A JP 2021011124A JP 2021011124 A JP2021011124 A JP 2021011124A JP 6906265 B1 JP6906265 B1 JP 6906265B1
Authority
JP
Japan
Prior art keywords
component
hydraulic composition
mass
additive
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021011124A
Other languages
Japanese (ja)
Other versions
JP2022114717A (en
Inventor
内藤 裕樹
裕樹 内藤
勇輝 菅沼
勇輝 菅沼
善將 田中
善將 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2021011124A priority Critical patent/JP6906265B1/en
Application granted granted Critical
Publication of JP6906265B1 publication Critical patent/JP6906265B1/en
Priority to PCT/JP2021/029062 priority patent/WO2022162980A1/en
Publication of JP2022114717A publication Critical patent/JP2022114717A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/08Fats; Fatty oils; Ester type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】水硬性組成物に添加することで、使用温度に関わらず、水硬性組成物における経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、水硬性組成物の凝結時間を過度に遅延させない水硬性組成物用添加剤を提供する。【解決手段】所定のA成分と、所定のB成分と、を含有することを特徴とする水硬性組成物用添加剤。【選択図】なしPROBLEM TO BE SOLVED: To appropriately adjust the amount of air in a hydraulic composition with little change in fluidity with time, regardless of the operating temperature, by adding the hydraulic composition. Provided is an additive for a hydraulic composition which does not excessively delay the setting time. An additive for a hydraulic composition, which comprises a predetermined A component and a predetermined B component. [Selection diagram] None

Description

本発明は、水硬性組成物用添加剤及び水硬性組成物に関する。更に詳しくは、コンクリート等の水硬性組成物に添加される水硬性組成物用添加剤及びこれが添加された水硬性組成物に関する。 The present invention relates to an additive for a hydraulic composition and a hydraulic composition. More specifically, the present invention relates to an additive for a hydraulic composition added to a hydraulic composition such as concrete, and a hydraulic composition to which the additive is added.

従来、コンクリート等の硬化物は、水硬性組成物を所定の型枠内へ充填し、その後、硬化させることによって製造されている。 Conventionally, a cured product such as concrete is produced by filling a hydraulic composition into a predetermined mold and then curing the product.

この水硬性組成物は、型枠内への充填などの作業性等の観点から十分な流動性を有することが重要となる。 It is important that this hydraulic composition has sufficient fluidity from the viewpoint of workability such as filling into a mold.

そこで、水硬性組成物の流動性を向上させるための添加剤が開発されている。具体的には、グルコン酸等の所定の凝結遅延剤と、アミノスルホン酸系等の所定の高性能AE減水剤とからなるコンクリート等の初期スランプ長時間維持剤(例えば、特許文献1参照)、セメント及びクレイに対する吸着量が所定の条件を満たすポリマーを含有するもの(例えば、特許文献2参照)などが報告されている。 Therefore, additives for improving the fluidity of the hydraulic composition have been developed. Specifically, an initial slump long-term maintenance agent such as concrete composed of a predetermined setting retarder such as gluconic acid and a predetermined high-performance AE water reducing agent such as aminosulfonic acid (see, for example, Patent Document 1). Those containing a polymer whose adsorption amount to cement and clay satisfy a predetermined condition (see, for example, Patent Document 2) have been reported.

ここで、上述の通り、型枠内への充填などの作業性等の観点から十分な流動性を有することが、水硬性組成物には重要な要素の一つであるが、一方で、充填後は所望の時間で(即ち、比較的短時間で)凝結して硬化し、強度等において十分な性能を発揮することが要求される。 Here, as described above, having sufficient fluidity from the viewpoint of workability such as filling into the mold is one of the important factors for the hydraulic composition, but on the other hand, filling After that, it is required that it condenses and hardens in a desired time (that is, in a relatively short time) and exhibits sufficient performance in terms of strength and the like.

このように流動性の保持と凝結時間を過度に遅延させないことの両方を満足することは簡単ではなく、一般的に、流動性の保持が良い水硬性組成物は、凝結時間が長く、硬化に時間が必要になることが多い。このようなことから、水硬性組成物の流動性を保持しつつ、凝結時間を過度に遅延させない添加剤の開発が行われている。 It is not easy to satisfy both the retention of fluidity and the fact that the setting time is not excessively delayed, and in general, a hydraulic composition having good fluidity retention has a long setting time and is hardened. Often time is required. For this reason, an additive that does not excessively delay the setting time while maintaining the fluidity of the hydraulic composition has been developed.

具体的には、特定のポリカルボン酸系重合体を添加剤として用いること(例えば、特許文献3参照)などが報告されている。 Specifically, it has been reported that a specific polycarboxylic acid-based polymer is used as an additive (see, for example, Patent Document 3).

特開平10−7445号公報Japanese Unexamined Patent Publication No. 10-7445 特開2014−181171号公報Japanese Unexamined Patent Publication No. 2014-181171 特開2007−270072号公報Japanese Unexamined Patent Publication No. 2007-270072

しかしながら、特許文献1〜3に記載の水硬性組成物等の添加剤は、水硬性組成物等における流動性、粘度等の状態を改善するものであるが、未だ改善の余地があり、新たな水硬性組成物用添加剤の開発が求められていた。具体的には、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させない添加剤の開発が求められていた。 However, although the additives such as the hydraulic composition described in Patent Documents 1 to 3 improve the state of fluidity, viscosity and the like in the hydraulic composition and the like, there is still room for improvement, and there is still room for improvement. The development of additives for hydraulic compositions has been sought. Specifically, there has been a demand for the development of an additive that does not excessively delay the setting time, while the change in fluidity with time is small and the amount of air can be adjusted as appropriate regardless of the operating temperature.

そこで、本発明は、上記実情に鑑み、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させない添加剤(水硬性組成物用の添加剤)の提供を課題とするものである。 Therefore, in view of the above circumstances, the present invention has an additive (water-hardness) that does not excessively delay the setting time, while the change in fluidity with time is small and the amount of air can be adjusted as appropriate regardless of the operating temperature. It is an object of the present invention to provide an additive for a composition).

本発明者らは、前記の課題を解決すべく鋭意研究した結果、所定のA成分及びB成分を配合することによって上記課題を解決できることを見出した。本発明によれば、以下の水硬性組成物用添加剤及び水硬性組成物が提供される。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by blending a predetermined A component and B component. According to the present invention, the following additives for hydraulic composition and hydraulic composition are provided.

[1] 下記A成分と、
ナフタレン環を有する単量体由来の構造を含む高分子化合物であるB成分(但し、前記A成分でカプセル化されたものを除く)と、
を含有し、
前記A成分及び前記B成分の含有割合の合計を100質量部としたとき、
前記A成分を1〜50質量部、及び前記B成分を50〜99質量部の割合で含有することを特徴とする水硬性組成物用添加剤。
<A成分>
ポリアリルアミン、ポリアリルアミン塩、ジアリルアミン重合体、ジアリルアミン塩重合体、ジアリルアミン・二酸化硫黄共重合体、ジアリルアミン塩・二酸化硫黄共重合体、及びポリビニルピロリドンから選択される少なくとも1つ。
[1] The following component A and
Component B, which is a polymer compound containing a structure derived from a monomer having a naphthalene ring (excluding those encapsulated by the component A) ,
Contains ,
When the total content ratio of the A component and the B component is 100 parts by mass,
An additive for a hydraulic composition, which comprises 1 to 50 parts by mass of the component A and 50 to 99 parts by mass of the component B.
<Component A>
Polyallylamine, polyallylamine salts, di allylamine polymer, diallylamine salt polymers, diallylamine, sulfur dioxide copolymer, diallylamine salt-sulfur dioxide copolymer, and at least one selected from polyvinyl pyrrolidone.

(削除)(Delete)

] 更に、下記一般式(1)で示される化合物であるC成分を含有する、前記[1]に記載の水硬性組成物用添加剤。 [ 2 ] Further, the additive for a hydraulic composition according to the above [1], which contains a C component which is a compound represented by the following general formula (1).

Figure 0006906265
(一般式(1)において、Rはロジンのアシル残基である。Rは、水素原子、炭素数1〜20のアルキル基、又は炭素数2〜20のアルケニル基である。AOは、炭素数2〜4のオキシアルキレン基(ただし、当該オキシアルキレン基が複数存在する場合、1種単独または2種以上とすることができる)である。mは、1〜200の整数である。)
Figure 0006906265
(In the general formula (1), R 1 is an acyl residue of rosin. R 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms. AO is a hydrogen atom. It is an oxyalkylene group having 2 to 4 carbon atoms (however, when a plurality of the oxyalkylene groups are present, it can be one kind alone or two or more kinds). M is an integer of 1 to 200).

] 前記一般式(1)における−(AO)−が、炭素数2〜4のオキシアルキレン基の構成割合の合計を100モル%とすると、
炭素数2のオキシアルキレン基を90モル%以上の割合で有するものである、前記[]に記載の水硬性組成物用添加剤。
[ 3 ] Assuming that − (AO) m − in the general formula (1) is 100 mol% in total of the constituent ratios of the oxyalkylene groups having 2 to 4 carbon atoms.
The additive for a hydraulic composition according to the above [2 ], which has an oxyalkylene group having 2 carbon atoms in a proportion of 90 mol% or more.

] 前記A成分、前記B成分、及び前記C成分を含み、前記A成分、前記B成分、及び前記C成分の含有割合の合計を100質量部としたとき、
前記A成分を1〜50質量部、前記B成分を49〜98質量部、及び前記C成分を0.01〜10質量部の割合で含有する、前記[]または[]に記載の水硬性組成物用添加剤。
[ 4 ] When the A component, the B component, and the C component are contained, and the total content ratio of the A component, the B component, and the C component is 100 parts by mass.
The water according to [2 ] or [ 3 ], which contains 1 to 50 parts by mass of the A component, 49 to 98 parts by mass of the B component, and 0.01 to 10 parts by mass of the C component. Additives for rigid compositions.

] 前記B成分は、ナフタレンスルホン酸及びその塩から選択される少なくとも1つとホルムアルデヒドとの縮合物である、前記[1]〜[]のいずれかに記載の水硬性組成物用添加剤。 [ 5 ] The additive for a water-hard composition according to any one of [1] to [4 ] above, wherein the component B is a condensate of formaldehyde and at least one selected from naphthalene sulfonic acid and a salt thereof. ..

] 前記[1]〜[]のいずれかに記載の水硬性組成物用添加剤を含有することを特徴とする水硬性組成物。 [ 6 ] A hydraulic composition comprising the additive for a hydraulic composition according to any one of the above [1] to [ 5].

本発明の水硬性組成物用添加剤は、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させないという効果を奏するものである。 The additive for a hydraulic composition of the present invention has an effect that the change in fluidity with time is small and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the setting time is not excessively delayed. It is a thing.

本発明の水硬性組成物は、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間が過度に遅延しないという効果を奏するものである。 The hydraulic composition of the present invention has the effect that the fluidity does not change with time and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the setting time is not excessively delayed. ..

以下、本発明の実施形態について説明する。しかし、本発明は以下の実施形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良等が加えられ得ることが理解されるべきである。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. Therefore, it should be understood that the following embodiments can be appropriately modified, improved, or the like based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. In the following examples and the like, unless otherwise specified,% means mass% and parts means parts by mass.

(1)水硬性組成物用添加剤:
本発明の水硬性組成物用添加剤は、所定のA成分と、ナフタレン環を有する単量体由来の構造を含む高分子化合物であるB成分と、を含有するものである。このような水硬性組成物用添加剤は、水硬性組成物に配合することで、当該水硬性組成物は、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能となる。特に、通常は高温(例えば、30℃以上)の環境下では、経時による流動性の変化が大きく、高温下である程、早くに流動性が低下する。しかし、本発明の水硬性組成物用添加剤を添加することで、高温環境下であっても経時による流動性の変化が少なくなる。このようなことから、使用温度が高くなる、気温が30℃以上となるような気温の高い国や地域でも良好に使用することができる。
(1) Additives for hydraulic composition:
The additive for a hydraulic composition of the present invention contains a predetermined component A and a component B, which is a polymer compound containing a structure derived from a monomer having a naphthalene ring. By blending such an additive for a hydraulic composition with the hydraulic composition, the hydraulic composition has little change in fluidity with time regardless of the operating temperature, and the amount of air can be adjusted as appropriate. It becomes. In particular, normally, in an environment of high temperature (for example, 30 ° C. or higher), the change in fluidity with time is large, and the higher the temperature, the faster the fluidity decreases. However, by adding the additive for the hydraulic composition of the present invention, the change in fluidity with time is reduced even in a high temperature environment. Therefore, it can be used satisfactorily even in a country or region where the operating temperature is high and the temperature is 30 ° C. or higher.

また、一方で、水硬性組成物は、コテ等による仕上げや、型枠の脱型等の関係から、適度な時間で凝結することが求められる(即ち、凝結時間が長過ぎず適当であることが望まれる)。この点、本発明の水硬性組成物用添加剤は、使用温度に関わらず、水硬性組成物の凝結時間を過度に遅延させないという利点がある。ここで、凝結時間を過度に遅延させないとは、添加剤を配合することで、水硬性組成物の流動性が練り混ぜから数時間程度(例えば、1〜2時間程度)保持されて、凝結開始を遅延させることができるが、一方で、練り混ぜから数時間程度で、流動性が低下し凝結が開始することである。 On the other hand, the hydraulic composition is required to be condensed in an appropriate time (that is, the setting time is not too long and is appropriate) due to the finishing with a trowel or the like and the demolding of the mold. Is desired). In this respect, the additive for a hydraulic composition of the present invention has an advantage that the setting time of the hydraulic composition is not excessively delayed regardless of the operating temperature. Here, to prevent the setting time from being excessively delayed, by adding an additive, the fluidity of the hydraulic composition is maintained for about several hours (for example, about 1 to 2 hours) after kneading, and the setting starts. However, on the other hand, the fluidity decreases and condensation starts within a few hours after kneading.

具体的には、生コンクリート(水硬性組成物)の製造後、直ぐに生コンクリートの打ち込みを行うことができればよいが、通常は、生コンクリートの製造から作業現場での打ち込みまでには、生コンクリート工場から作業現場までの運搬時間や、作業現場での待機時間などの時間を要する。この生コンクリート工場から作業現場までの時間は、数時間程度であることがある。そのため、練り混ぜから数時間程度(例えば、1〜2時間程度)保持されることが望まれる。一方で、生コンクリートの打ち込み後には、凝結が開始されることが望まれる。このように、運搬等の時間を考慮して所定時間は流動性が確保され、所定時間の経過後、適切に凝結が開始することが望まれる。 Specifically, it is sufficient if the ready-mixed concrete can be driven immediately after the production of the ready-mixed concrete (hydraulic composition), but usually, from the production of the ready-mixed concrete to the driving at the work site, the ready-mixed concrete factory It takes time such as transportation time from to the work site and waiting time at the work site. The time from this ready-mixed concrete factory to the work site may be about several hours. Therefore, it is desired that the mixture be held for several hours (for example, about 1 to 2 hours) after kneading. On the other hand, it is desirable that coagulation is started after the ready-mixed concrete is poured. As described above, it is desired that the fluidity is ensured for a predetermined time in consideration of the time for transportation and the like, and that the coagulation starts appropriately after the lapse of the predetermined time.

なお、既存の遅延剤(例えば、糖類、オキシカルボン酸塩等)を多量に用いることによって、流動性をある程度保持することは可能である。しかし、その場合は、凝結が過度に遅延し硬化不良を生じるという問題がある。このような問題に対して、本発明の水硬性組成物用添加剤を用いることで、流動性を保持することができるとともに、多量に遅延剤を用いた場合のように過度な凝結遅延が生じることを防止することができる。 It is possible to maintain fluidity to some extent by using a large amount of existing retarding agents (for example, saccharides, oxycarboxylic acid salts, etc.). However, in that case, there is a problem that the condensation is excessively delayed and curing failure occurs. To solve such a problem, by using the additive for hydraulic composition of the present invention, fluidity can be maintained and excessive setting delay occurs as in the case of using a large amount of retarding agent. Can be prevented.

(1−1)A成分:
A成分は、ポリアリルアミン、ポリアリルアミン塩、ポリアルキレンイミン、ポリアルキレンイミンのアルキレンオキシド付加物、ジアリルアミン重合体、ジアリルアミン塩重合体、ジアリルアミン・二酸化硫黄共重合体、ジアリルアミン塩・二酸化硫黄共重合体、及びポリビニルピロリドンの中でも、ポリアリルアミン、ポリアリルアミン塩、ジアリルアミン重合体、ジアリルアミン塩重合体、ジアリルアミン・二酸化硫黄共重合体、ジアリルアミン塩・二酸化硫黄共重合体、及びポリビニルピロリドンから選択される少なくとも1つである。このA成分をB成分ともに配合することで、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させないという効果が発揮される。
(1-1) Component A:
Component A is polyallylamine, polyallylamine salt, polyalkyleneimine, alkylene oxide adduct of polyalkyleneimine, diallylamine polymer, diallylamine salt polymer, diallylamine / sulfur dioxide copolymer, diallylamine salt / sulfur dioxide copolymer, And polyvinylpyrrolidone, at least one selected from polyallylamine, polyallylamine salt, diallylamine polymer, diallylamine salt polymer, diallylamine / sulfur dioxide copolymer, diallylamine salt / sulfur dioxide copolymer, and polyvinylpyrrolidone. be. By blending this component A together with component B, there is little change in fluidity over time and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the effect of not excessively delaying the setting time is exhibited. Will be done.

A成分としては、ポリアリルアミン、ポリアリルアミン塩、及びポリビニルピロリドンから選択される少なくとも1つであることが好ましい。A成分としての、ポリアリルアミン、ポリアリルアミン塩、及びポリビニルピロリドンから選択される少なくとも1つは、その質量平均分子量が1,000以上で1,200,000以下であることが好ましく、1,000以上で900,000以下であることがより好ましく、1,000以上で300,000以下であることが更に好ましい。 The component A is preferably at least one selected from polyallylamine, polyallylamine salt, and polyvinylpyrrolidone. At least one selected from polyallylamine, polyallylamine salt, and polyvinylpyrrolidone as the component A has a mass average molecular weight of 1,000 or more and preferably 1,200,000 or less, preferably 1,000 or more. It is more preferably 900,000 or less, and further preferably 1,000 or more and 300,000 or less.

(1−2)B成分:
B成分は、ナフタレン環を有する単量体由来の構造を含む高分子化合物である。このB成分をA成分ともに配合することで、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させないという効果が発揮される。但し、本発明では、B成分としては、A成分でカプセル化されたものを除く。
(1-2) B component:
The B component is a polymer compound containing a structure derived from a monomer having a naphthalene ring. By blending this B component together with the A component, the change in fluidity with time is small and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the effect of not excessively delaying the setting time is exhibited. Will be done. However, in the present invention, the component B excludes those encapsulated in the component A.

ナフタレン環を有する単量体としては、特に制限はないが、例えば、ナフタレンスルホン酸、ナフタレンスルホン酸塩などを挙げることができ、B成分である高分子化合物は、このような単量体に由来する構造(単量体単位)を含むものである。 The monomer having a naphthalene ring is not particularly limited, and examples thereof include naphthalene sulfonic acid and naphthalene sulfonate, and the polymer compound as the B component is derived from such a monomer. It contains a structure (monomer unit).

ナフタレン環を有する単量体由来の構造を含む高分子化合物としては、具体的には、ナフタレンスルホン酸及びその塩から選択される少なくとも1つとホルムアルデヒドとの縮合物であることが好ましい。 The polymer compound containing a structure derived from a monomer having a naphthalene ring is preferably a condensate of formaldehyde and at least one selected from naphthalene sulfonic acid and a salt thereof.

ナフタレン環を有する単量体由来の構造を含む高分子化合物は、その質量平均分子量を200,000以下とすることができ、100,000以下とすることが好ましく、80,000以下とすることが更に好ましく、50,000以下とすることが特に好ましく、30,000以下とすることが最も好ましい。また、上記高分子化合物の質量平均分子量は、1,000以上であることが好ましく、3,000以上であることが更に好ましく、4,000以上であることが特に好ましく、5,000以上であることが最も好ましい。 The mass average molecular weight of the polymer compound containing a structure derived from a monomer having a naphthalene ring can be 200,000 or less, preferably 100,000 or less, and preferably 80,000 or less. More preferably, it is particularly preferably 50,000 or less, and most preferably 30,000 or less. The mass average molecular weight of the polymer compound is preferably 1,000 or more, more preferably 3,000 or more, particularly preferably 4,000 or more, and 5,000 or more. Is most preferable.

ナフタレン環を有する単量体由来の構造を含む高分子化合物の質量平均分子量は、下記の条件にてゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
[GPC条件]
カラム:G4000SWXL+G2000SWXL(東ソー社製)
溶離液:50mM CHCOONa/CHCN=6/4
流量:0.7mL/分
検出:UV280nm
サンプル濃度:0.2mg/mL
標準物質:PEG/PEO(アジレント・テクノロジー社製)
The mass average molecular weight of the polymer compound containing the structure derived from the monomer having a naphthalene ring can be measured by gel permeation chromatography (GPC) under the following conditions.
[GPC conditions]
Column: G4000SWXL + G2000SWXL (manufactured by Tosoh)
Eluent: 50 mM CH 3 COONa / CH 3 CN = 6/4
Flow rate: 0.7 mL / min Detection: UV280 nm
Sample concentration: 0.2 mg / mL
Standard substance: PEG / PEO (manufactured by Agilent Technologies)

なお、B成分のうちのナフタレンスルホン酸及びその塩から選択される少なくとも1つとホルムアルデヒドとの縮合物は、性能を損なわない範囲内で、フェノール、クレゾール、及びこれらの誘導体等の、共縮合可能な芳香環構造を有する化合物と共縮合していても良い。 The condensate of at least one selected from naphthalene sulfonic acid and its salt among the B components and formaldehyde can be co-condensed with phenol, cresol, and derivatives thereof within a range that does not impair the performance. It may be co-condensed with a compound having an aromatic ring structure.

B成分としては、より具体的には、ナフタレンスルホン酸ナトリウムホルムアルデヒド縮合物(即ち、ナフタレンスルホン酸ナトリウムとホルムアルデヒドとの縮合物)などを挙げることができる。 More specifically, the B component may include a sodium formaldehyde condensate of sodium naphthalene sulfonate (that is, a condensate of sodium naphthalene sulfonate and formaldehyde).

更に、B成分のうちのナフタレンスルホン酸及びその塩から選択される少なくとも1つとホルムアルデヒドとの縮合物は、市販品を使用することもできる。このようなナフタレンスルホン酸及びナフタレンスルホン酸塩の少なくとも一方とホルムアルデヒドとの縮合物の市販品としては、例えば、ポールファイン510−AN(竹本油脂社製)、マイテイ150(花王社製)、セルフロー110P(第一工業製薬社製)等が挙げられる。 Further, as a condensate of formaldehyde and at least one selected from naphthalene sulfonic acid and a salt thereof among the B components, a commercially available product can also be used. Commercially available products of condensates of at least one of such naphthalene sulfonic acid and naphthalene sulfonate and formaldehyde include, for example, Paul Fein 510-AN (manufactured by Takemoto Yushi Co., Ltd.), Mighty 150 (manufactured by Kao Co., Ltd.), and Cellflow 110P. (Manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and the like.

(1−3)C成分:
本発明の水硬性組成物用添加剤は、更に、下記一般式(1)で示される化合物であるC成分を含有することが好ましい。このC成分を更に配合することで、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間を過度に遅延させないという効果が発揮される。
(1-3) C component:
The additive for a hydraulic composition of the present invention preferably further contains a C component which is a compound represented by the following general formula (1). By further blending this C component, the change in fluidity with time is small and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the effect of not excessively delaying the setting time is exhibited. ..

Figure 0006906265
(一般式(1)において、Rはロジンのアシル残基である。Rは、水素原子、炭素数1〜20のアルキル基、又は炭素数2〜20のアルケニル基である。AOは、炭素数2〜4のオキシアルキレン基(ただし、当該オキシアルキレン基が複数存在する場合、1種単独または2種以上とすることができる)である。mは、1〜200の整数である。)
Figure 0006906265
(In the general formula (1), R 1 is an acyl residue of rosin. R 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms. AO is a hydrogen atom. It is an oxyalkylene group having 2 to 4 carbon atoms (however, when a plurality of the oxyalkylene groups are present, it can be one kind alone or two or more kinds). M is an integer of 1 to 200).

一般式(1)におけるRは、ロジンのアシル残基である。ここで、ロジンとは、樹脂酸(ロジン酸)と称されるジテルペン系化合物をいう。このようなロジンとして、例えば、天然ロジン、変性ロジン、重合ロジンなどが挙げられる。 R 1 in the general formula (1) is an acyl residue of rosin. Here, rosin refers to a diterpene compound called a resin acid (loginic acid). Examples of such rosins include natural rosins, modified rosins, and polymerized rosins.

天然ロジンは、マツ科植物から得られる樹脂油から、精油等の揮発性物質を留去した残留物中に存在する樹脂酸の混合物であり、製造方法により、ガムロジン、ウッドロジン、トール油ロジンに分類される。 Natural rosin is a mixture of resin acids present in the residue obtained by distilling volatile substances such as essential oils from resin oil obtained from Pinaceae plants, and is classified into gum rosin, wood rosin, and tall oil rosin according to the production method. Will be done.

ガムロジンは、松の木に切り傷をつけ、そこから流出する生松脂をろ過精製し、水蒸気蒸留によりテレビン油を除去して得られる。ウッドロジンは、松の切株のチップを溶剤抽出して得られる。トール油ロジンは、松材からクラフトパルプ法でパルプを製造する工程で副生する粗トール油を蒸留精製して得られる。 Gumrosin is obtained by cutting a pine tree, filtering and refining the raw pine fat flowing out of the pine tree, and removing turpentine oil by steam distillation. Wood rosin is obtained by solvent-extracting pine stump chips. Tall oil rosin is obtained by distilling and refining crude tall oil produced as a by-product in the process of producing pulp from pine wood by the kraft pulp method.

ロジンは、主成分の樹脂酸として、アビエチン酸を含み、その他の成分の樹脂酸として、ネオアビエチン酸、デヒドロアビエチン酸、テトラヒドロアビエチン酸、パラストリン酸、ピマール酸、イソピマール酸、サンダラコピマール酸、レボピマール酸等を含む。 Login contains abietic acid as the main component resin acid, and neo-avietic acid, dehydroabietic acid, tetrahydroabietic acid, palastolic acid, pimalic acid, isopimalic acid, sandalacopimaric acid, levopimal as the resin acids of other components. Contains acids and the like.

変性ロジンとは、天然ロジンを変性したものをいい、例えば、天然ロジンを高圧化でニッケル触媒、白金触媒、パラジウム触媒等の貴金属触媒等を使用して水素添加して、分子内の二重結合を消失若しくは減少させた水添ロジン、天然ロジンを貴金属触媒又はハロゲン触媒の存在下に高温加熱することにより分子内の不安定な共役二重結合を消失させた不均化ロジンが挙げられる。 The modified rosin refers to a modified natural rosin. For example, the natural rosin is hydrogenated using a noble metal catalyst such as a nickel catalyst, a platinum catalyst, or a palladium catalyst at high pressure to form a double bond in the molecule. Examples thereof include hydrogenated rosin in which hydrogenated rosin is eliminated or reduced, and disproportionated rosin in which unstable conjugated double bonds in the molecule are eliminated by heating natural rosin at a high temperature in the presence of a noble metal catalyst or a halogen catalyst.

重合ロジンとは、天然ロジン又は変性ロジン同士を反応させたものであり、これらの2量化物、3量化物をいう。 The polymerized rosin is a reaction between natural rosins or modified rosins, and refers to these dimers and trimers.

なお、このようなロジンとして、入手の容易さの観点から、天然ロジンが好ましい。このような天然ロジンとしては、より好ましくは、ガムロジンである。ロジンは、様々な化合物の混合物として扱うことが一般的であり、カルボン酸量については、酸価を測定することで定量化される。酸価は、日本工業規格JIS K 0070(1992)により測定することで求められる。 As such rosin, natural rosin is preferable from the viewpoint of easy availability. As such a natural rosin, gum rosin is more preferable. Rosin is generally treated as a mixture of various compounds, and the amount of carboxylic acid is quantified by measuring the acid value. The acid value is determined by measuring according to the Japanese Industrial Standards JIS K 0070 (1992).

一般式(1)におけるRは、水素原子、炭素数1〜20のアルキル基、又は炭素数2〜20のアルケニル基である。この炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等の直鎖又は分岐アルキル基が挙げられる。炭素数2〜20のアルケニル基としては、エテニル基、n−プロペニル基、n−ブテニル基、n−ペンテニル基、n−ヘキセニル基、n−ヘプテニル基、n−オクテニル基、n−ノネル基、n−デセニル基、n−ウンデセニル基、n−ドデセニル基、n−トリデセニル基、n−テトラデセニル基、n−ペンタデセニル基、n−ヘキサデセニル基、n−ヘプタデセニル基、n−オクタデセニル基、n−ノナデセニル基、n−イコセニル基等が挙げられる。これらの中でも、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基等の炭素数1〜5のアルキル基、エテニル基、n−プロペニル基、n−ブテニル基、n−ペンテニル基等の炭素数2〜5のアルケニル基が好ましい。 R 2 in the general formula (1) is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms. Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group and an n-hexyl group. , N-octyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group, icosyl group and other linear or branched alkyl groups. Examples of the alkenyl group having 2 to 20 carbon atoms include an ethenyl group, an n-propenyl group, an n-butenyl group, an n-pentenyl group, an n-hexenyl group, an n-heptenyl group, an n-octenyl group, an n-nonel group and n. -Desenyl group, n-undecenyl group, n-dodecenyl group, n-tridecenyl group, n-tetradecenyl group, n-pentadecenyl group, n-hexadecenyl group, n-heptadecenyl group, n-octadecenyl group, n-nonadesenyl group, n -Icosenyl group and the like can be mentioned. Among these, alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and n-pentyl group, ethenyl group, n Alkyl groups having 2 to 5 carbon atoms such as −propenyl group, n-butenyl group and n-pentenyl group are preferable.

一般式(1)におけるAOは、炭素数2〜4のオキシアルキレン基(ただし、当該オキシアルキレン基が複数存在する場合、1種単独または2種以上とすることができる)であり、炭素数2〜4のオキシアルキレン基としては、例えば、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。 The AO in the general formula (1) is an oxyalkylene group having 2 to 4 carbon atoms (however, when a plurality of the oxyalkylene groups are present, one kind alone or two or more kinds can be used), and the AO has two carbon atoms. Examples of the oxyalkylene group of ~ 4 include an oxyethylene group, an oxypropylene group, and an oxybutylene group.

AOが2種類以上の場合は、ランダム付加体、ブロック付加体、交互付加体のいずれの形態であってもよい。 When there are two or more types of AO, it may be in any form of a random adduct, a block adduct, and an alternate adduct.

一般式(1)におけるmは、1〜200の整数であり、1〜150の整数であることが好ましく、5〜100の整数であることが更に好ましい。 M in the general formula (1) is an integer of 1 to 200, preferably an integer of 1 to 150, and more preferably an integer of 5 to 100.

C成分は、一般式(1)における−(AO)−が、炭素数2〜4のオキシアルキレン基の構成割合の合計を100モル%とするとき、炭素数2のオキシアルキレン基を90モル%以上の割合で有するものであることが好ましい。 The C component contains 90 mol of an oxyalkylene group having 2 carbon atoms, where − (AO) m − in the general formula (1) is 100 mol% in total of the constituent ratios of the oxyalkylene groups having 2 to 4 carbon atoms. It is preferable to have a ratio of% or more.

一般式(1)で表される化合物の製造方法は特に限定されない。例えば、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸、テトラヒドロアビエチン酸、パラストリン酸、ピマール酸、イソピマール酸、サンダラコピマール酸、レボピマール酸等の樹脂酸の混合物であるロジンに、触媒等を用いることで常法によりアルキレンオキサイドを付加させて、一般式(1)で表されるロジンポリオキシアルキレン付加物を製造する方法や、Rに相当するアルコールに、予め、触媒等を用いることで常法によりアルキレンオキシドを付加し、その後ロジンとエステル化させることにより、一般式(1)で表される化合物を製造する方法等が挙げられる。 The method for producing the compound represented by the general formula (1) is not particularly limited. For example, by using a catalyst or the like for rosin, which is a mixture of resin acids such as abietic acid, neoavietic acid, dehydroabietic acid, tetrahydroabietic acid, palastolic acid, pimaric acid, isopimalic acid, sandaracopimalic acid, and levopimalic acid By a method of adding an alkylene oxide by a conventional method to produce a rosin polyoxyalkylene adduct represented by the general formula (1), or by using a catalyst or the like in advance for an alcohol corresponding to R 2 by a conventional method. Examples thereof include a method for producing a compound represented by the general formula (1) by adding an alkylene oxide and then esterifying it with rosin.

(1−4)各成分の配合割合:
本発明では、A成分、及びB成分を含み(但し、C成分は含まない場合)、A成分及びB成分の含有割合の合計を100質量部としたとき、A成分を1〜50質量部、及びB成分を50〜99質量部の割合で含有する。このような範囲とすると、使用温度に関わらず、経時による流動性の変化が更に少なくなる。
(1-4) Mixing ratio of each component:
In the present invention, when the A component and the B component are contained (provided that the C component is not contained) and the total content ratio of the A component and the B component is 100 parts by mass, the A component is 1 to 50 parts by mass. and B components you contained in a ratio of 50 to 99 parts by weight. Within such a range, the change in fluidity with time is further reduced regardless of the operating temperature.

A成分、B成分、及びC成分を含み、A成分、B成分、及びC成分の含有割合の合計を100質量部としたとき、A成分を1〜50質量部、B成分を49〜98質量部、及びC成分を0.01〜10質量部の割合で含有することが好ましい。このような範囲とすると、使用温度に関わらず、経時による流動性の変化が更に少なくなる。 When the total content of the A component, the B component, and the C component is 100 parts by mass, the A component is 1 to 50 parts by mass and the B component is 49 to 98 parts by mass. It is preferable that the portion and the C component are contained in a ratio of 0.01 to 10 parts by mass. Within such a range, the change in fluidity with time is further reduced regardless of the operating temperature.

(1−5)その他の成分:
本発明の水硬性組成物用添加剤は、A成分〜C成分以外に、効果が損なわれない範囲内で、その他の成分を更に含有していてもよい。このようなその他の成分としては、例えば、糖類や、オキシカルボン酸塩等からなる凝結遅延成分、リグニンスルホン酸ナトリウム等からなる分散作用を有する成分、陰イオン界面活性剤等からなるAE剤、オキシアルキレン系化合物等からなる消泡剤、アルカノールアミン等からなる硬化促進剤、ポリオキシアルキレンアルキルエーテル等からなる収縮低減剤、セルロースエーテル系化合物等からなる増粘剤、イソチアゾリン系化合物等からなる防腐剤、亜硝酸塩等からなる防錆剤などを挙げることができる。
(1-5) Other ingredients:
The additive for a hydraulic composition of the present invention may further contain other components in addition to the components A to C as long as the effect is not impaired. Examples of such other components include saccharides, a setting retarding component made of oxycarboxylate and the like, a component having a dispersing action made of sodium lignin sulfonate and the like, an AE agent made of an anionic surfactant and the like, and oxy. Antifoaming agent made of alkylene compounds, curing accelerator made of alkanolamine, shrinkage reducing agent made of polyoxyalkylene alkyl ether, thickener made of cellulose ether compound, preservative made of isothiazolin compound, etc. , A rust preventive composed of nitrite and the like.

その他の成分の含有割合としては、例えば、本発明の水硬性組成物用添加剤全体の0〜20質量%とすることができる。 The content ratio of the other components may be, for example, 0 to 20% by mass of the total additive for the hydraulic composition of the present invention.

更に、本発明の水硬性組成物用添加剤は、水や溶剤で希釈された形態で使用してもよい。 Further, the additive for a hydraulic composition of the present invention may be used in a form diluted with water or a solvent.

(2)水硬性組成物:
本発明の水硬性組成物は、本発明の水硬性組成物用添加剤を含有するものである。このような水硬性組成物は、使用温度に関わらず、経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、凝結時間が過度に遅延しないものである。
(2) Hydraulic composition:
The hydraulic composition of the present invention contains the additive for the hydraulic composition of the present invention. In such a hydraulic composition, the fluidity does not change with time and the amount of air can be adjusted as appropriate regardless of the operating temperature, while the setting time is not excessively delayed.

本発明の水硬性組成物は、本発明の水硬性組成物用添加剤の含有割合は特に制限はなく適宜設定することができるが、例えば、結合材に対し、固形分換算で0.001〜4.0質量%が好適であり、さらには0.01〜4.0質量%がより好適である。 In the water-hard composition of the present invention, the content ratio of the additive for the water-hard composition of the present invention is not particularly limited and can be appropriately set. For example, 0.001 to 0.001 to the binder in terms of solid content. 4.0% by mass is preferable, and 0.01 to 4.0% by mass is more preferable.

本発明の水硬性組成物は、従来公知の水硬性組成物と同様に、結合材、水、細骨材、及び粗骨材を含むものとすることができる。 The hydraulic composition of the present invention may contain a binder, water, fine aggregate, and coarse aggregate in the same manner as the conventionally known hydraulic composition.

結合材としては、例えば、普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、早強ポルトランドセメント、耐硫酸塩ポルトランドセメントなどの各種ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカフュームセメントなどの各種のセメントを挙げることができる。 Examples of the binder include various Portland cements such as ordinary Portland cement, moderate heat Portland cement, low heat Portland cement, early strength Portland cement, and sulfate resistant Portland cement, and various cements such as blast furnace cement, fly ash cement, and silica fume cement. Can be mentioned.

更に、結合材は、フライアッシュ、高炉スラグ微粉末、石灰石微粉末、石粉、シリカフューム、膨張材などの各種混和材を上述した各種セメントと併用してもよい。 Further, as the binder, various admixtures such as fly ash, blast furnace slag fine powder, limestone fine powder, stone powder, silica fume, and expansion material may be used in combination with the above-mentioned various cements.

細骨材としては、例えば、川砂、山砂、陸砂、海砂、珪砂、砕砂、各種スラグ細骨材などが挙げられる。 Examples of the fine aggregate include river sand, mountain sand, land sand, sea sand, silica sand, crushed sand, and various slag fine aggregates.

粗骨材としては、例えば、川砂利、山砂利、陸砂利、砕石、各種スラグ粗骨材、軽量骨材などが挙げられる。 Examples of the coarse aggregate include river gravel, mountain gravel, land gravel, crushed stone, various slag coarse aggregates, and lightweight aggregates.

本発明の水硬性組成物は、効果が損なわれない範囲内で、適宜その他の成分を更に含有していてもよい。このようなその他の成分としては、例えば、糖類や、オキシカルボン酸塩等からなる凝結遅延成分、リグニンスルホン酸ナトリウム等からなる分散作用を有する成分、陰イオン界面活性剤等からなるAE剤、オキシアルキレン系化合物等からなる消泡剤、アルカノールアミン等からなる硬化促進剤、ポリオキシアルキレンアルキルエーテル等からなる収縮低減剤、セルロースエーテル系化合物等からなる増粘剤、イソチアゾリン系化合物等からなる防腐剤、亜硝酸塩等からなる防錆剤などを挙げることができる。 The hydraulic composition of the present invention may further contain other components as appropriate, as long as the effect is not impaired. Examples of such other components include saccharides, a setting retarding component made of oxycarboxylate and the like, a component having a dispersing action made of sodium lignin sulfonate and the like, an AE agent made of an anionic surfactant and the like, and oxy. Antifoaming agent made of alkylene compound, etc., curing accelerator made of alkanolamine, etc., shrinkage reducing agent made of polyoxyalkylene alkyl ether, etc., thickener made of cellulose ether compound, etc., preservative made of isothiazoline compound, etc. , A rust preventive composed of nitrite and the like.

その他の成分の含有割合としては、例えば、結合材に対して、固形分換算で0〜5質量%とすることができる。 The content ratio of the other components may be, for example, 0 to 5% by mass in terms of solid content with respect to the binder.

本発明の水硬性組成物は、その水と結合材の比率(水/結合材比)としては従来公知の割合を適宜採用することができる。 In the hydraulic composition of the present invention, a conventionally known ratio can be appropriately adopted as the ratio of the water to the binder (water / binder ratio).

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

まず、使用したA成分〜C成分について、以下の表1〜表3に示す。 First, the components A to C used are shown in Tables 1 to 3 below.

(A成分)
下記表1には、使用したA成分(A−1〜A−11)を示す。
(Component A)
Table 1 below shows the A components (A-1 to A-11) used.

Figure 0006906265
Figure 0006906265

(合成例1)A−8の製造方法:
表1中のA−8は、以下のようにして製造した。まず、5Lのステンレス製の耐圧容器に、A−7のテトラエチレンペンタミン2000gを仕込んだ。そして、窒素置換後、75±5℃でエチレンオキサイド930gを0.3MPa以下の条件で圧入し、そのままの温度で1時間熟成を行った。冷却後、回収し、A−8(A成分)を得た。
(Synthesis Example 1) Production method of A-8:
A-8 in Table 1 was manufactured as follows. First, 2000 g of A-7 tetraethylenepentamine was placed in a 5 L stainless steel pressure-resistant container. Then, after nitrogen substitution, 930 g of ethylene oxide was press-fitted at 75 ± 5 ° C. under the condition of 0.3 MPa or less, and aged at the same temperature for 1 hour. After cooling, it was recovered to obtain A-8 (component A).

(B成分)
下記表2には、使用したB成分(B−1〜B−2)を示す。
(B component)
Table 2 below shows the B components (B-1 to B-2) used.

Figure 0006906265
Figure 0006906265

(C成分)
下記表3には、使用したC成分(C−1〜C−5)、CR−1を示す。
(C component)
Table 3 below shows the C components (C-1 to C-5) and CR-1 used.

Figure 0006906265
Figure 0006906265

なお、表3中、「CR−1」としては、中華人民共和国産(以降、単に「中国産」と記す)の「ガムロジン」のXグレード(酸価:171mgKOH/g)を用いた。 In Table 3, as "CR-1", X grade (acid value: 171 mgKOH / g) of "gamrosin" produced in the People's Republic of China (hereinafter, simply referred to as "produced in China") was used.

また、表3中、「EO」はオキシエチレン基、「PO」はオキシプロピレン基を表す。 Further, in Table 3, "EO" represents an oxyethylene group and "PO" represents an oxypropylene group.

以下に、C成分(C−1〜C−5)の合成方法を説明する。 The method for synthesizing the C component (C-1 to C-5) will be described below.

(合成例2)C−1の合成:
2Lのステンレス製の耐圧容器に、中国産の「ガムロジン」のXグレード(酸価:171mgKOH/g)を542.2gと、水酸化カリウム2.0gを仕込み、120℃まで加熱し、撹拌しながら減圧脱水を1時間行った。窒素にて常圧に戻し、その後、150〜160℃でエチレンオキサイド1455.8gを0.4MPaの条件で圧入し、そのままの温度で1時間熟成を行った。その後、冷却し、90%酢酸を3.5g添加し、120℃にて減圧脱水の後、加圧濾過を行い、化合物(C−1)を得た。
(Synthesis Example 2) Synthesis of C-1:
In a 2 L stainless steel pressure-resistant container, 542.2 g of Chinese "Gamrosin" X grade (acid value: 171 mgKOH / g) and 2.0 g of potassium hydroxide were charged, heated to 120 ° C, and stirred. Dehydration under reduced pressure was performed for 1 hour. The pressure was returned to normal pressure with nitrogen, and then 1455.8 g of ethylene oxide was press-fitted at 150 to 160 ° C. under the condition of 0.4 MPa, and the mixture was aged at the same temperature for 1 hour. Then, the mixture was cooled, 3.5 g of 90% acetic acid was added, dehydration was performed under reduced pressure at 120 ° C., and pressure filtration was performed to obtain compound (C-1).

(合成例3)C−2の合成:
1Lのガラス製の反応容器にα−ブトキシ−ω−ヒドロキシ−ポリ−(45モル)オキシエチレン500.0gと中国産の「ガムロジン」のXグレード(酸価:171mgKOH/g)を79.8g、メタンスルホン酸7.2gを仕込み、窒素置換後、150℃、0.5kPaで減圧脱水を行い、エステル化反応を行った。エステル化率が99%以上となったところで反応を終了し、精製し、化合物C−2を得た。
(Synthesis Example 3) Synthesis of C-2:
79.8 g of α-butoxy-ω-hydroxy-poly- (45 mol) oxyethylene 500.0 g and X grade (acid value: 171 mgKOH / g) of Chinese "gamrosin" in a 1 L glass reaction vessel. 7.2 g of methanesulfonic acid was charged, and after nitrogen substitution, dehydration was carried out under reduced pressure at 150 ° C. and 0.5 kPa to carry out an esterification reaction. When the esterification rate was 99% or more, the reaction was terminated and purified to obtain compound C-2.

(合成例4)C−3の合成:
2Lのステンレス製の耐圧容器に、中国産の「ガムロジン」のXグレード(酸価:171mgKOH/g)を192.2gと、水酸化カリウム2.0gを仕込み、120℃まで加熱し、撹拌しながら減圧脱水を1時間行った。窒素にて常圧に戻し、その後、150〜160℃でエチレンオキサイド1805.8gを0.4MPaの条件で圧入し、そのままの温度で1時間熟成を行った。その後、冷却し、吸着材(協和化学工業社製:キョーワード600)を20.0g添加し、120℃にて減圧脱水の後、加圧濾過を行い、化合物(C−3)を得た。
(Synthesis Example 4) Synthesis of C-3:
In a 2 L stainless steel pressure-resistant container, 192.2 g of Chinese "Gamrosin" X grade (acid value: 171 mgKOH / g) and 2.0 g of potassium hydroxide were charged, heated to 120 ° C, and stirred. Dehydration under reduced pressure was performed for 1 hour. The pressure was returned to normal pressure with nitrogen, and then 1805.8 g of ethylene oxide was press-fitted at 150 to 160 ° C. under the condition of 0.4 MPa, and the mixture was aged at the same temperature for 1 hour. Then, the mixture was cooled, 20.0 g of an adsorbent (manufactured by Kyowa Chemical Industry Co., Ltd .: Kyoward 600) was added, dehydrated under reduced pressure at 120 ° C., and then pressure-filtered to obtain compound (C-3).

(合成例5)C−4の合成:
2Lのステンレス製の耐圧容器に、中国産の「ガムロジン」のXグレード(酸価:171mgKOH/g)を626.2gと、水酸化カリウム2.0gを仕込み、120℃まで加熱し、撹拌しながら減圧脱水を1時間行った。窒素にて常圧に戻し、その後、150〜160℃でエチレンオキサイド1260.9gを0.4MPaの条件で圧入し、続いてプロピレンオキサイド110.9gを同条件で圧入し、そのままの温度で1時間熟成を行った。その後、冷却し、吸着材(協和化学工業社製:キョーワード600)を20.0g添加し、120℃にて減圧脱水の後、加圧濾過を行い、化合物(C−4)を得た。
(Synthesis Example 5) Synthesis of C-4:
In a 2 L stainless steel pressure-resistant container, 626.2 g of Chinese "Gamrosin" X grade (acid value: 171 mgKOH / g) and 2.0 g of potassium hydroxide were charged, heated to 120 ° C, and stirred. Dehydration under reduced pressure was performed for 1 hour. After returning to normal pressure with nitrogen, 1260.9 g of ethylene oxide was press-fitted at 150 to 160 ° C. under the condition of 0.4 MPa, and then 110.9 g of propylene oxide was press-fitted under the same conditions, and the temperature was unchanged for 1 hour. Aged. Then, the mixture was cooled, 20.0 g of an adsorbent (manufactured by Kyowa Chemical Industry Co., Ltd .: Kyoward 600) was added, dehydrated under reduced pressure at 120 ° C., and then pressure-filtered to obtain compound (C-4).

(合成例6)C−5の合成:
2Lのステンレス製の耐圧容器に、中国産の「ガムロジン」のXグレード(酸価:171mgKOH/g)を966.1gと、水酸化カリウム2.0gを仕込み、120℃まで加熱し、撹拌しながら減圧脱水を1時間行った。窒素にて常圧に戻し、その後、150〜160℃でエチレンオキサイド518.8gを0.4MPaの条件で圧入し、続いてプロピレンオキサイド513.2gを同条件で圧入し、そのままの温度で1時間熟成を行った。その後、冷却し、90%酢酸を3.5g添加し、120℃にて減圧脱水の後、加圧濾過を行い、化合物(C−5)を得た。
(Synthesis Example 6) Synthesis of C-5:
In a 2 L stainless steel pressure-resistant container, 966.1 g of Chinese "Gamrosin" X grade (acid value: 171 mgKOH / g) and 2.0 g of potassium hydroxide were charged, heated to 120 ° C, and stirred. Dehydration under reduced pressure was performed for 1 hour. After returning to normal pressure with nitrogen, 518.8 g of ethylene oxide was press-fitted at 150 to 160 ° C. under the condition of 0.4 MPa, and then 513.2 g of propylene oxide was press-fitted under the same conditions, and the temperature was unchanged for 1 hour. Aged. Then, the mixture was cooled, 3.5 g of 90% acetic acid was added, dehydration was performed under reduced pressure at 120 ° C., and pressure filtration was performed to obtain compound (C-5).

(実施例1〜6、10〜15、比較例1,2、参考例7〜9,16
次に、表4に示すように、各成分を混合して水硬性組成物用添加剤を作製した。なお、表4中、「水」の質量部は、水硬性組成物用添加剤100質量部に対する質量部を示す。
(Examples 1 to 6 , 10 to 15, Comparative Examples 1 and 2, Reference Examples 7 to 9, 16)
Next, as shown in Table 4, each component was mixed to prepare an additive for a hydraulic composition. In Table 4, the mass part of "water" indicates the mass part with respect to 100 parts by mass of the additive for hydraulic composition.

Figure 0006906265
Figure 0006906265

(実施例17〜22、26〜31、比較例3〜6、参考例23〜25,32
次に、作製した水硬性組成物用添加剤を用い、表6に示す配合1を採用して、表5に示す各水硬性組成物を作製した。
(Examples 17 to 22, 26 to 31 , Comparative Examples 3 to 6 , Reference Examples 23 to 25, 32 )
Next, each hydraulic composition shown in Table 5 was prepared by using the prepared additive for hydraulic composition and adopting Formulation 1 shown in Table 6.

具体的には、以下のようにして水硬性組成物(コンクリート組成物)を調製した。まず、55Lの強制二軸ミキサーに、セメントとしての普通ポルトランドセメント(太平洋セメント社製、密度=3.16g/cm)と、フライアッシュとしての中部フライアッシュ(テクノ中部社製、密度=2.33g/cm、JIS A 6201フライアッシュII種)と、高炉スラグ微粉末としてのエスメント4000(日鉄高炉セメント社製、密度=2.89g/cm、JIS A 6206高炉スラグ微粉末4000)と、骨材としての細骨材(大井川水系産陸砂、密度=2.58g/cm)及び粗骨材(岡崎産砕石、密度=2.66g/cm)と、をそれぞれ表6に示す配合(配合1)処方で配合した。そして、これに各水硬性組成物用添加剤(F−1〜16、FR−1,2)を配合して、実施例17〜22、26〜31、比較例3〜6、参考例23〜25,32の水硬性組成物を調製した(表4参照)。 Specifically, a hydraulic composition (concrete composition) was prepared as follows. First, in a 55L forced twin-screw mixer, ordinary Portland cement as cement (manufactured by Pacific Cement, density = 3.16 g / cm 3 ) and Chubu fly ash as fly ash (manufactured by Techno Chubu, density = 2. 33 g / cm 3 , JIS A 6201 fly ash type II) and Esment 4000 as blast furnace slag fine powder (manufactured by Nittetsu Portland Cement, density = 2.89 g / cm 3 , JIS A 6206 blast furnace slag fine powder 4000) Table 6 shows fine aggregate as aggregate (land sand from Oigawa water system, density = 2.58 g / cm 3 ) and coarse aggregate (crushed stone from Okazaki, density = 2.66 g / cm 3). Formulation (Formulation 1) Formulated. Then, the additives for each hydraulic composition (F-1 to 16, FR-1, 2) are blended therein, and Examples 17 to 22, 26 to 31 , Comparative Examples 3 to 6 , and Reference Examples 23 to 23. 25 and 32 hydraulic compositions were prepared (see Table 4).

なお、実施例17〜22、26〜31、比較例3〜6、参考例23〜25,32の各水硬性組成物は、水硬性組成物用添加剤水溶液の添加量を調整して練り混ぜ直後のスランプが21.0±1.5cmの範囲内となるようにし、市販のAE剤であるAE−300(竹本油脂社製)を適宜用い、及び、消泡剤であるAFK−2(竹本油脂社製)を結合材に対して0.001質量%用いて、空気量が1.5±1.0%の範囲内となるように調整を行った。 The hydraulic compositions of Examples 17 to 22, 26 to 31 , Comparative Examples 3 to 6 , and Reference Examples 23 to 25 , 32 are kneaded by adjusting the amount of the aqueous additive solution for the hydraulic composition. Immediately after, make sure that the slump is within the range of 21.0 ± 1.5 cm, use a commercially available AE agent AE-300 (manufactured by Takemoto Yushi Co., Ltd.) as appropriate, and use an antifoaming agent AFK-2 (Takemoto). (Manufactured by Yushi) was used in an amount of 0.001% by mass based on the binder, and the amount of air was adjusted to be within the range of 1.5 ± 1.0%.

また、各水硬性組成物の調製は、20℃及び30℃環境下でそれぞれ行い、各水硬性組成物の練り上がり温度が、各環境温度の±2℃の範囲内になるように、調製前に各材料を温調した。 Further, each hydraulic composition is prepared in an environment of 20 ° C. and 30 ° C., respectively, and before preparation, the kneading temperature of each hydraulic composition is within ± 2 ° C. of each environmental temperature. The temperature of each material was adjusted.

なお、実施例17〜22、26〜31、比較例3〜6、参考例23〜25,32で採用した配合1は、水硬性粉体としてセメントを用いた配合である。 The formulation 1 adopted in Examples 17 to 22, 26 to 31 , Comparative Examples 3 to 6 , and Reference Examples 23 to 25, 32 is a formulation using cement as the hydraulic powder.

次に、作製した各水硬性組成物(コンクリート組成物)について、スランプ(cm)、空気量(容積%)、及び、コンクリート温度(℃)の測定を行った。結果を下記表5に示す。20℃環境下と30℃の環境下における各測定値を示す。表5中、「スランプ(cm)」は、練り混ぜ直後のスランプ(cm)を意味し、「空気量(%)」は、練り混ぜ直後の空気量(%)を意味し、「コンクリート温度(℃)」は、練り混ぜ直後のコンクリートの温度(℃)を意味する。 Next, the slump (cm), the amount of air (volume%), and the concrete temperature (° C.) were measured for each of the produced hydraulic composition (concrete composition). The results are shown in Table 5 below. The measured values under the environment of 20 ° C. and the environment of 30 ° C. are shown. In Table 5, "slump (cm)" means slump (cm) immediately after kneading, "air amount (%)" means air amount (%) immediately after kneading, and "concrete temperature (concrete temperature (%)". ℃) ”means the temperature (° C) of the concrete immediately after kneading.

・スランプ(cm):
コンクリート組成物について、JIS−A1101(2020)に準拠して測定した。
・ Slump (cm):
The concrete composition was measured according to JIS-A1101 (2020).

・空気量(容積%):
コンクリート組成物について、JIS−A1128(2020)に準拠して測定した。
・ Air volume (volume%):
The concrete composition was measured according to JIS-A1128 (2020).

・コンクリート温度(℃):
コンクリート組成物について、JIS−A1156(2014)に準拠して測定した。
・ Concrete temperature (℃):
The concrete composition was measured according to JIS-A1156 (2014).

Figure 0006906265
Figure 0006906265

なお、比較例5は、AE剤を使用せず、消泡剤であるAFK−2を結合材に対して0.005質量%用いても空気量が規定量以上となった。また、遅延剤水溶液は、グルコン酸ナトリウム(試薬:キシダ化学社製)400g、スクロース(試薬:キシダ化学社製)100g、及び、イオン交換水500gを混合して調製した。 In Comparative Example 5, the amount of air was equal to or more than the specified amount even when the defoaming agent AFK-2 was used in an amount of 0.005% by mass with respect to the binder without using the AE agent. The retarder aqueous solution was prepared by mixing 400 g of sodium gluconate (reagent: manufactured by Kishida Chemical Co., Ltd.), 100 g of sucrose (reagent: manufactured by Kishida Chemical Co., Ltd.), and 500 g of ion-exchanged water.

Figure 0006906265
Figure 0006906265

(評価結果)
作製した各水硬性組成物について、流動保持性の評価及び凝結時間の評価を行った。
(Evaluation results)
For each of the prepared hydraulic compositions, the flow retention was evaluated and the setting time was evaluated.

(流動保持性)
練混ぜ直後(0分後)、及び、練混ぜ直後から90分後のスランプ(cm)をそれぞれ、上記測定方法により測定し、その後、得られた測定値に基づき、「0分後と90分後のスランプ差」を算出した。そして、これらの「スランプ差」について以下の評価基準で評価を行い、これを流動保持性の評価とした。表7には、20℃環境下における流動保持性の評価結果を示し、表8には、30℃環境下における流動保持性の評価結果を示す。
(Flow retention)
Immediately after kneading (after 0 minutes) and 90 minutes after kneading, the slump (cm) was measured by the above measurement method, respectively, and then, based on the obtained measured values, "0 minutes and 90 minutes". Later slump difference "was calculated. Then, these "slump differences" were evaluated according to the following evaluation criteria, and this was used as the evaluation of flow retention. Table 7 shows the evaluation results of the flow retention in the environment of 20 ° C., and Table 8 shows the evaluation results of the flow retention in the environment of 30 ° C.

・0分後と90分後のスランプ差
S:差が4.0cm以下
A:差が4.0cm超、7.0cm以下
B:差が7.0cm超、10.0cm以下
C:差が10.0cm超、13.0cm以下
D:差が13.0cm超、16.0cm以下
E:差が16.0cm超
-Slump difference between 0 minutes and 90 minutes S: Difference 4.0 cm or less A: Difference more than 4.0 cm, 7.0 cm or less B: Difference more than 7.0 cm, 10.0 cm or less C: Difference 10 More than 0.0 cm, less than 13.0 cm D: Difference more than 13.0 cm, 16.0 cm or less E: Difference more than 16.0 cm

(凝結時間)
作製した各水硬性組成物(コンクリート組成物)について、以下のようにして凝結始発時間を測定し、その後、凝結時間の評価を行った。表7には、20℃の環境下における凝結始発時間の評価結果を示し、表8には、30℃の環境下における凝結始発時間の評価結果を示す。
(Condensation time)
For each hydraulic composition (concrete composition) produced, the settling start time was measured as follows, and then the settling time was evaluated. Table 7 shows the evaluation results of the settling start time in an environment of 20 ° C., and Table 8 shows the evaluation results of the settling start time in an environment of 30 ° C.

・凝結始発時間:
練り混ぜ直後のコンクリート組成物を用いて、JIS−A1147(2019)に準拠して凝結始発時間を測定した。
・ Condensation start time:
Using the concrete composition immediately after kneading, the settling start time was measured according to JIS-A1147 (2019).

20℃環境下と30℃環境下における凝結始発時間の評価の評価基準を以下に示す。 The evaluation criteria for the evaluation of the onset time of condensation under the environment of 20 ° C. and 30 ° C. are shown below.

・凝結時間(20℃環境下)
A:凝結の始発時間が6時間半以内
B:凝結の始発時間が6時間半超、7時間半以内
C:凝結の始発時間が7時間半超
・ Condensation time (under 20 ℃ environment)
A: Condensation start time is within 6 and a half hours B: Condensation start time is over 6 and a half hours, 7 and a half hours C: Condensation start time is over 7 and a half hours

・凝結時間(30℃環境下)
A:凝結の始発時間が6時間以内
B:凝結の始発時間が6時間超、7時間以内
C:凝結の始発時間が7時間超
・ Condensation time (under 30 ° C environment)
A: Condensation start time is within 6 hours B: Condensation start time is over 6 hours, 7 hours or less C: Condensation start time is over 7 hours

なお、比較例4に示すように、A成分を含まないような水硬性組成物用添加剤である場合、20℃環境下と30℃環境下を比較すると、高温である30℃環境下の方が、スランプ差が大きくなり、高温環境下において流動性が大きく低下することが分かる。また、比較例5は、上述の通り、AE剤を使用せず、消泡剤であるAFK−2を結合材に対して0.005質量%用いても空気量が規定量以上となり、空気量が過多のために調整が不可であったことから、表7及び表8中、「−」を記載している。 As shown in Comparative Example 4, in the case of an additive for a hydraulic composition that does not contain the component A, a comparison between a 20 ° C. environment and a 30 ° C. environment shows that the temperature is 30 ° C. However, it can be seen that the slump difference becomes large and the fluidity greatly decreases in a high temperature environment. Further, in Comparative Example 5, as described above, even if the defoaming agent AFK-2 was used in an amount of 0.005% by mass with respect to the binder without using the AE agent, the amount of air became equal to or more than the specified amount, and the amount of air In Tables 7 and 8, "-" is shown because the adjustment was not possible due to the excess.

Figure 0006906265
Figure 0006906265

Figure 0006906265
Figure 0006906265

(実施例33、比較例7,8)
次に、作製した水硬性組成物用添加剤を用い、表10に示す配合2を採用して、上述した配合1と同様の水硬性組成物の調製方法と、同様のスランプ、及び、空気量の調整方法を用いて、表9に示す各水硬性組成物を作製した。なお、実施例33、比較例7,8で採用した配合2は、水硬性粉体としてセメント、フライアッシュ、及び、高炉スラグ微粉末を用いた配合である。
(Example 33, Comparative Examples 7 and 8)
Next, using the prepared additive for the hydraulic composition, the formulation 2 shown in Table 10 was adopted, the same method for preparing the hydraulic composition as the above-mentioned formulation 1, the same slump, and the amount of air. Each hydraulic composition shown in Table 9 was prepared using the adjustment method of. The formulation 2 adopted in Example 33 and Comparative Examples 7 and 8 is a formulation using cement, fly ash, and blast furnace slag fine powder as the hydraulic powder.

次に、作製した各水硬性組成物(コンクリート組成物)について、上述した配合1と同様の測定方法を採用して、スランプ(cm)、空気量(容積%)、及び、コンクリート温度(℃)の測定を行った。結果を下記表9に示す。20℃環境下と30℃の環境下における各測定値を示す。表9中、「スランプ(cm)」は、練り混ぜ直後のスランプ(cm)を意味し、「空気量(%)」は、練り混ぜ直後の空気量(%)を意味し、「コンクリート温度(℃)」は、練り混ぜ直後のコンクリートの温度(℃)を意味する。 Next, for each of the prepared hydraulic compositions (concrete composition), the same measurement method as in Formulation 1 described above was adopted, and the slump (cm), the amount of air (volume%), and the concrete temperature (° C.) Was measured. The results are shown in Table 9 below. The measured values under the environment of 20 ° C. and the environment of 30 ° C. are shown. In Table 9, "slump (cm)" means slump (cm) immediately after kneading, "air amount (%)" means air amount (%) immediately after kneading, and "concrete temperature (concrete temperature (%)". ℃) ”means the temperature (° C) of the concrete immediately after kneading.

Figure 0006906265
Figure 0006906265

表9中、遅延剤水溶液は、グルコン酸ナトリウム(試薬:キシダ化学社製)400gとスクロース(試薬:キシダ化学社製)100gとイオン交換水500gを混合して調製した。 In Table 9, the retarder aqueous solution was prepared by mixing 400 g of sodium gluconate (reagent: manufactured by Kishida Chemical Co., Ltd.), 100 g of sucrose (reagent: manufactured by Kishida Chemical Co., Ltd.), and 500 g of ion-exchanged water.

Figure 0006906265
Figure 0006906265

(評価結果)
作製した各水硬性組成物について、流動保持性の評価及び凝結時間の評価を行った。
(Evaluation results)
For each of the prepared hydraulic compositions, the flow retention was evaluated and the setting time was evaluated.

(流動保持性)
練混ぜ直後(0分後)、及び、練混ぜ直後から90分後のスランプ(cm)をそれぞれ、上記測定方法により測定し、その後、得られた測定値に基づき、「0分後と90分後のスランプ差」を算出した。そして、これらの「スランプ差」について以下の評価基準で評価を行い、これを流動保持性の評価とした。表11には、20℃環境下における流動保持性の評価結果を示し、表12には、30℃環境下における流動保持性の評価結果を示す。
(Flow retention)
Immediately after kneading (after 0 minutes) and 90 minutes after kneading, the slump (cm) was measured by the above measurement method, respectively, and then, based on the obtained measured values, "0 minutes and 90 minutes". Later slump difference "was calculated. Then, these "slump differences" were evaluated according to the following evaluation criteria, and this was used as the evaluation of flow retention. Table 11 shows the evaluation results of the flow retention in the environment of 20 ° C., and Table 12 shows the evaluation results of the flow retention in the environment of 30 ° C.

・0分後と90分後のスランプ差
S:差が3.0cm以下
A:差が3.0cm超、6.0cm以下
B:差が6.0cm超、9.0cm以下
C:差が9.0cm超、12.0cm以下
D:差が12.0cm超
-Slump difference between 0 minutes and 90 minutes S: Difference 3.0 cm or less A: Difference more than 3.0 cm, 6.0 cm or less B: Difference more than 6.0 cm, 9.0 cm or less C: Difference 9 More than 0.0 cm and less than 12.0 cm D: Difference is more than 12.0 cm

(凝結時間)
作製した各水硬性組成物(コンクリート組成物)について、以下のようにして凝結始発時間を測定し、その後、凝結時間の評価を行った。表11には、20℃の環境下における凝結始発時間の評価結果を示し、表12には、30℃の環境下における凝結始発時間の評価結果を示す。
(Condensation time)
For each hydraulic composition (concrete composition) produced, the settling start time was measured as follows, and then the settling time was evaluated. Table 11 shows the evaluation results of the settling start time in an environment of 20 ° C., and Table 12 shows the evaluation results of the settling start time in an environment of 30 ° C.

・凝結始発時間:
練り混ぜ直後のコンクリート組成物を用いて、上述した配合1と同様の測定方法を採用して、凝結始発時間を測定した。
・ Condensation start time:
Using the concrete composition immediately after kneading, the coagulation start time was measured by adopting the same measuring method as in Formulation 1 described above.

20℃環境下と30℃環境下における凝結始発時間の評価の評価基準を以下に示す。 The evaluation criteria for the evaluation of the onset time of condensation under the environment of 20 ° C. and 30 ° C. are shown below.

・凝結時間(20℃環境下)
A:凝結の始発時間が7時間半以内
B:凝結の始発時間が7時間半超、8時間半以内
C:凝結の始発時間が8時間半超
・ Condensation time (under 20 ℃ environment)
A: Condensation start time is within 7 and a half hours B: Condensation start time is over 7 and a half hours, 8 and a half hours C: Condensation start time is over 8 and a half hours

・凝結時間(30℃環境下)
A:凝結の始発時間が7時間以内
B:凝結の始発時間が7時間超、8時間以内
C:凝結の始発時間が8時間超
・ Condensation time (under 30 ° C environment)
A: Condensation start time is within 7 hours B: Condensation start time is over 7 hours, 8 hours or less C: Condensation start time is over 8 hours

Figure 0006906265
Figure 0006906265

Figure 0006906265
Figure 0006906265

(結果)
表7,表8、表11,表12に示されるように、本発明の水硬性組成物用添加剤を水硬性組成物に配合することで、使用時の環境温度に関わらず、水硬性組成物における経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、水硬性組成物の凝結時間を過度に遅延させない水硬性組成物が得られることが確認された。また、本発明の水硬性組成物は、本発明の水硬性組成物用添加剤を配合することで、使用時の環境温度に関わらず、水硬性組成物における経時による流動性の変化が少なく空気量の調整が適宜可能であり、一方で、その凝結時間が過度に遅延しないことが確認された。
(result)
As shown in Tables 7, 8, 11, and 12, the hydraulic composition of the present invention is blended with the hydraulic composition, regardless of the environmental temperature at the time of use. It was confirmed that a hydraulic composition can be obtained in which the change in fluidity of the product with time is small and the amount of air can be adjusted as appropriate, while the setting time of the hydraulic composition is not excessively delayed. Further, the hydraulic composition of the present invention contains the additive for the hydraulic composition of the present invention, so that the fluidity of the hydraulic composition does not change with time regardless of the environmental temperature at the time of use and air. It was confirmed that the amount can be adjusted as appropriate, while the setting time is not excessively delayed.

本発明の水硬性組成物用添加剤は、コンクリート等の水硬性組成物に添加される添加剤として利用することができる。また、本発明の水硬性組成物は、コンクリート等の硬化物を作製するものとして利用することができる。 The additive for a hydraulic composition of the present invention can be used as an additive added to a hydraulic composition such as concrete. Further, the hydraulic composition of the present invention can be used for producing a cured product such as concrete.

Claims (6)

下記A成分と、
ナフタレン環を有する単量体由来の構造を含む高分子化合物であるB成分(但し、前記A成分でカプセル化されたものを除く)と、
を含有し、
前記A成分及び前記B成分の含有割合の合計を100質量部としたとき、
前記A成分を1〜50質量部、及び前記B成分を50〜99質量部の割合で含有することを特徴とする水硬性組成物用添加剤。
<A成分>
ポリアリルアミン、ポリアリルアミン塩、ジアリルアミン重合体、ジアリルアミン塩重合体、ジアリルアミン・二酸化硫黄共重合体、ジアリルアミン塩・二酸化硫黄共重合体、及びポリビニルピロリドンから選択される少なくとも1つ。
The following A component and
Component B, which is a polymer compound containing a structure derived from a monomer having a naphthalene ring (excluding those encapsulated by the component A) ,
Contains ,
When the total content ratio of the A component and the B component is 100 parts by mass,
An additive for a hydraulic composition, which comprises 1 to 50 parts by mass of the component A and 50 to 99 parts by mass of the component B.
<Component A>
Polyallylamine, polyallylamine salts, di allylamine polymer, diallylamine salt polymers, diallylamine, sulfur dioxide copolymer, diallylamine salt-sulfur dioxide copolymer, and at least one selected from polyvinyl pyrrolidone.
更に、下記一般式(1)で示される化合物であるC成分を含有する、請求項1に記載の水硬性組成物用添加剤。
Figure 0006906265
(一般式(1)において、Rはロジンのアシル残基である。Rは、水素原子、炭素数1〜20のアルキル基、又は炭素数2〜20のアルケニル基である。AOは、炭素数2〜4のオキシアルキレン基(ただし、当該オキシアルキレン基が複数存在する場合、1種単独または2種以上とすることができる)である。mは、1〜200の整数である。)
The additive for a hydraulic composition according to claim 1, further containing a C component which is a compound represented by the following general formula (1).
Figure 0006906265
(In the general formula (1), R 1 is an acyl residue of rosin. R 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms. AO is a hydrogen atom. It is an oxyalkylene group having 2 to 4 carbon atoms (however, when a plurality of the oxyalkylene groups are present, it can be one kind alone or two or more kinds). M is an integer of 1 to 200).
前記一般式(1)における−(AO)−が、炭素数2〜4のオキシアルキレン基の構成割合の合計を100モル%とすると、
炭素数2のオキシアルキレン基を90モル%以上の割合で有するものである、請求項に記載の水硬性組成物用添加剤。
Assuming that − (AO) m − in the general formula (1) is 100 mol% in total of the constituent ratios of the oxyalkylene groups having 2 to 4 carbon atoms.
The additive for a hydraulic composition according to claim 2 , which has an oxyalkylene group having 2 carbon atoms in a proportion of 90 mol% or more.
前記A成分、前記B成分、及び前記C成分を含み、前記A成分、前記B成分、及び前記C成分の含有割合の合計を100質量部としたとき、
前記A成分を1〜50質量部、前記B成分を49〜98質量部、及び前記C成分を0.01〜10質量部の割合で含有する、請求項またはに記載の水硬性組成物用添加剤。
When the A component, the B component, and the C component are contained, and the total content ratio of the A component, the B component, and the C component is 100 parts by mass.
The hydraulic composition according to claim 2 or 3 , which contains 1 to 50 parts by mass of the A component, 49 to 98 parts by mass of the B component, and 0.01 to 10 parts by mass of the C component. Additives for.
前記B成分は、ナフタレンスルホン酸及びその塩から選択される少なくとも1つとホルムアルデヒドとの縮合物である、請求項1〜のいずれか一項に記載の水硬性組成物用添加剤。 The additive for a water-hard composition according to any one of claims 1 to 4 , wherein the component B is a condensate of formaldehyde and at least one selected from naphthalene sulfonic acid and a salt thereof. 請求項1〜のいずれか一項に記載の水硬性組成物用添加剤を含有することを特徴とする水硬性組成物。
A hydraulic composition comprising the additive for a hydraulic composition according to any one of claims 1 to 5.
JP2021011124A 2021-01-27 2021-01-27 Additives for hydraulic compositions and hydraulic compositions Active JP6906265B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021011124A JP6906265B1 (en) 2021-01-27 2021-01-27 Additives for hydraulic compositions and hydraulic compositions
PCT/JP2021/029062 WO2022162980A1 (en) 2021-01-27 2021-08-05 Additive for hydraulic compositions, and hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021011124A JP6906265B1 (en) 2021-01-27 2021-01-27 Additives for hydraulic compositions and hydraulic compositions

Publications (2)

Publication Number Publication Date
JP6906265B1 true JP6906265B1 (en) 2021-07-21
JP2022114717A JP2022114717A (en) 2022-08-08

Family

ID=76918273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011124A Active JP6906265B1 (en) 2021-01-27 2021-01-27 Additives for hydraulic compositions and hydraulic compositions

Country Status (2)

Country Link
JP (1) JP6906265B1 (en)
WO (1) WO2022162980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049814A (en) * 2023-08-15 2023-11-14 阿克苏市恒泰新型建材有限公司 Preparation method of concrete air entraining agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992961A (en) * 1982-09-28 1984-05-29 ダイヤモンド、シヤムロック、ケミカルズ カンパニ− Cement fixation retardant composition
JPH01219052A (en) * 1988-02-27 1989-09-01 Toho Chem Ind Co Ltd Dispersant composition for cement
JP2008094708A (en) * 2006-09-11 2008-04-24 Nippon Shokubai Co Ltd Cement admixture and cement composition
JP2017537863A (en) * 2014-10-23 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrophobizing concrete

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217294A (en) * 1985-05-09 1987-01-26 エシル コーポレーション Fluid loss control in chute cement slurry
JP4381923B2 (en) * 2004-08-05 2009-12-09 花王株式会社 Additive for hydraulic composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992961A (en) * 1982-09-28 1984-05-29 ダイヤモンド、シヤムロック、ケミカルズ カンパニ− Cement fixation retardant composition
JPH01219052A (en) * 1988-02-27 1989-09-01 Toho Chem Ind Co Ltd Dispersant composition for cement
JP2008094708A (en) * 2006-09-11 2008-04-24 Nippon Shokubai Co Ltd Cement admixture and cement composition
JP2017537863A (en) * 2014-10-23 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrophobizing concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049814A (en) * 2023-08-15 2023-11-14 阿克苏市恒泰新型建材有限公司 Preparation method of concrete air entraining agent
CN117049814B (en) * 2023-08-15 2024-03-19 阿克苏市恒泰新型建材有限公司 Preparation method of concrete air entraining agent

Also Published As

Publication number Publication date
JP2022114717A (en) 2022-08-08
WO2022162980A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
TWI714615B (en) Polycondensation product containing phenolic copolymer and dispersant for hydraulic composition containing the same
JP4987533B2 (en) Cement admixture
JP6906265B1 (en) Additives for hydraulic compositions and hydraulic compositions
TW200517355A (en) Cement admixture
US20190330109A1 (en) Preparation of water-reducing composition, water-reducing composition and hydraulic composition
JP6388310B2 (en) Cement additive
JP5333754B2 (en) Method for producing concrete with excellent shrinkage reduction and frost damage resistance
JPH0118028B2 (en)
EP0780348B1 (en) Cement dispersant
JP6493869B2 (en) Lignin derivative
EP0020771B1 (en) Method for improving the workability of concrete mortar
US5651817A (en) Cement dispersant
JP6918330B1 (en) Additives for hydraulic compositions and hydraulic compositions
JP5473997B2 (en) Cement admixture
JP3202398B2 (en) Admixture for high fluidity concrete
JP7456685B2 (en) Additives for hydraulic compositions
JP7027105B2 (en) Cement composition
JP2021109785A (en) Cement composition
JP4425581B2 (en) Additive for poor blended concrete
JP6650262B2 (en) Surface aesthetic improver composition for hydraulic composition
JP6446753B2 (en) Cement additive
JP7256572B1 (en) ADDITIVE FOR HYDRAULIC COMPOSITION AND HYDRAULIC COMPOSITION
JP7272719B1 (en) Additive for hydraulic composition, method for producing the same, and method for producing hydraulic composition
JP7277317B2 (en) Cement additives, cement admixtures, and cement compositions
JP7282623B2 (en) Strength improving agent for cement, additive for cement, cement composition, and method for improving cement strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6906265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250