JP6905879B2 - Welding method and welding system - Google Patents

Welding method and welding system Download PDF

Info

Publication number
JP6905879B2
JP6905879B2 JP2017120496A JP2017120496A JP6905879B2 JP 6905879 B2 JP6905879 B2 JP 6905879B2 JP 2017120496 A JP2017120496 A JP 2017120496A JP 2017120496 A JP2017120496 A JP 2017120496A JP 6905879 B2 JP6905879 B2 JP 6905879B2
Authority
JP
Japan
Prior art keywords
welding
heat
welded
heat input
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017120496A
Other languages
Japanese (ja)
Other versions
JP2019005765A (en
Inventor
博昭 田尾
博昭 田尾
佳昭 北村
佳昭 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017120496A priority Critical patent/JP6905879B2/en
Publication of JP2019005765A publication Critical patent/JP2019005765A/en
Application granted granted Critical
Publication of JP6905879B2 publication Critical patent/JP6905879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、被溶接物の溶接部に一時的に入熱することにより被溶接物を溶接する溶接方法及び溶接システムに関する。 The present invention relates to a welding method and a welding system for welding an object to be welded by temporarily applying heat to a welded portion of the object to be welded.

相互にパルスピーク電流レベル及びパルス幅の異なるパルス波形を有する第1パルスと第2パルスとが交互に繰り返されるパルス電流を溶接電流としてアーク溶接する際に、溶接アークを安定化させ、溶滴の移行規則性を向上させ、スパッタ発生量及びヒューム発生量を大幅に低減させるパルスアーク溶接方法は知られている(例えば、特許文献1参照)。 When arc welding is performed using a pulse current in which the first pulse and the second pulse, which have pulse peak current levels and pulse widths different from each other, are alternately repeated as a welding current, the welding arc is stabilized and the droplets are formed. A pulse arc welding method that improves transition regularity and significantly reduces spatter generation amount and fume generation amount is known (see, for example, Patent Document 1).

ピーク期間中のピーク電流及びベース期間中のベース電流を1パルス周期とする溶接電流を通電して溶接するパルスアーク溶接の出力制御方法において、長期短絡の発生を判別したときは、長期短絡の解除後の溶接電圧が定常状態に収束するまでの過渡期間中は、ピーク電流の減少及びベース電流の増加を行うパルスアーク溶接の出力制御方法も知られている(例えば、特許文献2参照)。 When the occurrence of a long-term short circuit is determined in the output control method of pulse arc welding in which the peak current during the peak period and the welding current with the base current during the base period as one pulse cycle are energized and welded, the long-term short circuit is released. A method of controlling the output of pulse arc welding that reduces the peak current and increases the base current during the transitional period until the subsequent welding voltage converges to a steady state is also known (see, for example, Patent Document 2).

短絡期間とアーク期間を繰り返して短絡アーク溶接を行うアーク溶接制御方法であって、アークスタート時における短絡を開放するための初期短絡電流のピーク電流の値またはピーク電流値の出力時間を、溶接電流値またはワイヤ送給速度または溶接ワイヤの先端の形状または入熱状態を調整する制御パラメータに応じて変更するアーク溶接制御方法も知られている(例えば、特許文献3参照)。 This is an arc welding control method in which short-circuit arc welding is performed by repeating a short-circuit period and an arc period, and the peak current value of the initial short-circuit current or the output time of the peak current value for opening the short circuit at the start of the arc is set as the welding current. Also known is an arc welding control method that changes according to a value or a control parameter that adjusts the wire feed rate or the shape or heat input state of the tip of the welding wire (see, for example, Patent Document 3).

特開2007−237270号公報JP-A-2007-237270 特開2016−128186号公報Japanese Unexamined Patent Publication No. 2016-128186 特開2016−93842号公報Japanese Unexamined Patent Publication No. 2016-93842

一般に、鋼は、凝固時の降温条件により金属組織が変化することが広く知られている。この金属組織の変化により靭性や強度等の機械特性が変化するため、目的に応じて溶接部の金属組織(この場合は凝固組織)を変化させることが重要となる。 In general, it is widely known that the metal structure of steel changes depending on the temperature lowering conditions during solidification. Since mechanical properties such as toughness and strength change due to this change in the metal structure, it is important to change the metal structure of the welded portion (in this case, the solidified structure) according to the purpose.

本発明の目的は、被溶接物の溶接部に一時的に入熱することにより被溶接物を溶接する際に、溶接部を目的の金属組織とする温度履歴を実現することにある。 An object of the present invention is to realize a temperature history in which a welded portion has a target metal structure when the welded portion is welded by temporarily applying heat to the welded portion of the workpiece.

かかる目的のもと、本発明は、被溶接物の溶接部に一時的に入熱することにより被溶接物を溶接する溶接方法において、溶接部に入熱する際の入熱量及び被溶接物の入熱される側とは反対側の温度であって、被溶接物を溶接する際に溶接部を目的の金属組織とする温度履歴を実現するための入熱量及び温度を受け付け、受け付けた入熱量で溶接部に入熱し、被溶接物の入熱される側とは反対側の温度を、受け付けた温度に調整する溶接方法を提供する。 For this purpose, the present invention is a welding method for welding a welded object by temporarily applying heat to the welded portion of the object to be welded, the amount of heat input when the heat is applied to the welded portion and the object to be welded. The temperature on the side opposite to the side to be heated, and the amount of heat input and the temperature to realize the temperature history in which the welded part is the target metal structure when welding the object to be welded are received and the received heat input amount. Provided is a welding method in which heat is input to a welded portion and the temperature on the side of the object to be welded opposite to the heat input side is adjusted to the received temperature.

ここで、入熱は、アーク放電により実現される、ものであってよい。また、入熱量は、パルスにより構成された入熱パターンで与えられる、ものであってよい。更に、入熱量は、溶接部に1回目に一時的に入熱する際の第1の入熱量と、溶接部に2回目に一時的に入熱する際の第2の入熱量とを含む、ものであってよい。 Here, the heat input may be realized by arc discharge. Further, the amount of heat input may be given by a heat input pattern composed of pulses. Further, the heat input amount includes a first heat input amount when the welded portion is temporarily heated for the first time and a second heat input amount when the welded portion is temporarily heated for the second time. It may be a thing.

また、本発明は、溶接電流を供給する溶接電源と、被溶接物の溶接部に一時的に入熱することにより被溶接物を溶接する溶接手段と、被溶接物の入熱される側とは反対側の温度を調整する調整手段とを備え、溶接電源は、溶接部に入熱する際の入熱量及び被溶接物の入熱される側とは反対側の温度であって、被溶接物を溶接する際に溶接部を目的の金属組織とする温度履歴を実現するための入熱量及び温度を受け付け、受け付けた入熱量で溶接部に入熱するように溶接手段を制御し、被溶接物の入熱される側とは反対側の温度を受け付けた温度に調整するように調整手段を制御する溶接システムも提供する。 Further, in the present invention, a welding power source that supplies a welding current, a welding means that welds the work to be welded by temporarily applying heat to the welded portion of the work to be welded, and a side that receives heat from the work to be welded are used. The welding power supply is provided with an adjusting means for adjusting the temperature on the opposite side, and the welding power source is the amount of heat input when the welded portion is heated and the temperature on the side opposite to the heat input side of the work piece to be welded. When welding, it accepts the amount of heat input and temperature to realize the temperature history that makes the welded part the target metal structure, controls the welding means so that the received heat input amount enters the welded part, and controls the welded object. Welding systems that control the adjusting means to adjust the temperature on the side opposite to the heat input side to the accepted temperature are also provided.

ここで、溶接手段は、被溶接物に沿って前方を移動する第1の溶接手段と、被溶接物に沿って後方を移動する第2の溶接手段とを備え、溶接電源は、入熱量として、溶接部に1回目に一時的に入熱する際の第1の入熱量と、溶接部に2回目に一時的に入熱する際の第2の入熱量とを受け付け、第1の入熱量で溶接部に入熱するように第1の溶接手段を制御し、第2の入熱量で溶接部に入熱するように第2の溶接手段を制御する、ものであってよい。 Here, the welding means includes a first welding means that moves forward along the object to be welded and a second welding means that moves backward along the object to be welded, and the welding power source is used as a heat input amount. , The first heat input amount when temporarily inputting heat to the welded portion for the first time and the second heat input amount when temporarily inputting heat to the welded portion for the second time are accepted, and the first heat input amount is received. The first welding means may be controlled so as to enter heat into the welded portion, and the second welding means may be controlled so as to enter heat into the welded portion with the second amount of heat input.

本発明によれば、被溶接物の溶接部に一時的に入熱することにより被溶接物を溶接する際に、溶接部を目的の金属組織とする温度履歴を実現することができる。 According to the present invention, when the welded object is welded by temporarily applying heat to the welded portion of the workpiece, it is possible to realize a temperature history in which the welded portion has a target metal structure.

本発明の第1の実施の形態(実施例1)に係る溶接システムの概略構成例を示す図である。It is a figure which shows the schematic structure example of the welding system which concerns on 1st Embodiment (Example 1) of this invention. (a)は、実施例1における目標温度履歴、この目標温度履歴に対する最適化された入熱量及び下面温度で入熱した場合の温度履歴、並びに比較例における温度履歴を示した図であり、(b)は、実施例1及び比較例の入熱量及び下面温度に対する評価関数値を示した図である。(A) is a diagram showing the target temperature history in Example 1, the temperature history when heat is input at the optimized heat input amount and the bottom surface temperature for this target temperature history, and the temperature history in the comparative example. b) is a figure which showed the evaluation function value with respect to the heat input amount and the bottom surface temperature of Example 1 and Comparative Example. 本発明の第2の実施の形態(実施例2)に係る溶接システムの概略構成例を示す図である。It is a figure which shows the schematic structure example of the welding system which concerns on 2nd Embodiment (Example 2) of this invention. (a)は、実施例1における目標温度履歴、実施例2における目標温度履歴、並びにこれらの目標温度履歴に対する最適化された入熱量及び下面温度で入熱した場合の温度履歴を示した図であり、(b)は、実施例1及び実施例2の入熱量及び下面温度に対する評価関数値を示した図である。(A) is a diagram showing a target temperature history in Example 1, a target temperature history in Example 2, and a temperature history when heat is input at an optimized heat input amount and bottom surface temperature for these target temperature histories. Yes, (b) is a figure which showed the evaluation function value with respect to the heat input amount and the bottom surface temperature of Example 1 and Example 2. 最適化された入熱量及び1周期あたりの熱量をこれと等しくしたパルスの例を示した図である。It is a figure which showed the example of the pulse which made the optimized heat input amount and the heat amount per cycle equal to this.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の実施の形態は、ライン溶接において、溶接部への入熱量及び被溶接物の下面温度を決めることにより、溶接施工時の金属組織を目的に応じて作り分けるための溶接部の温度履歴を実現するものである。ここで、ライン溶接とは、被溶接物に対して移動しながら溶接部に入熱することにより行う溶接である。これは、溶接部から見れば、溶接部に少なくとも1回一時的に入熱することにより行う溶接と捉えることもできる。 In the embodiment of the present invention, in line welding, the temperature history of the welded portion for forming the metal structure at the time of welding according to the purpose by determining the amount of heat input to the welded portion and the temperature of the lower surface of the object to be welded. Is to be realized. Here, the line welding is welding performed by applying heat to the welded portion while moving with respect to the object to be welded. From the viewpoint of the welded portion, this can be regarded as welding performed by temporarily applying heat to the welded portion at least once.

[第1の実施の形態]
図1は、本発明の第1の実施の形態(実施例1)に係る溶接システム1の概略構成例を示す図である。この溶接システム1は、消耗電極式(溶極式)のガスシールドアーク溶接法によって、被溶接物200の溶接を行うものである。
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration example of a welding system 1 according to the first embodiment (Example 1) of the present invention. This welding system 1 welds the object to be welded 200 by a consumable electrode type (welding electrode type) gas shielded arc welding method.

この溶接システム1は、溶接ワイヤ100を用いて被溶接物200を溶接する溶接手段の一例としての溶接トーチ10と、溶接トーチ10を保持すると共に溶接トーチ10の位置や姿勢を設定するロボットアーム20とを備えている。また、溶接システム1は、溶接トーチ10に溶接ワイヤ100を送給するワイヤ送給装置30と、溶接トーチ10にシールドガス(例えば炭酸ガス)を供給するシールドガス供給装置40とを備えている。更に、溶接システム1は、溶接トーチ10を介して溶接ワイヤ100及び被溶接物200に直流の溶接電流の供給を行うと共に溶接電流を制御する溶接電源の一例としての溶接用電源装置50と、ロボットアーム20を制御するロボット制御装置60とを備えている。尚、ここでは詳細な説明を行わないが、溶接用電源装置50は、溶接電流の他に、溶接速度や溶接ワイヤ100の送給速度等の制御も行っている。また、溶接用電源装置50は、決められた入熱量で入熱がなされるよう、溶接ワイヤ100への溶接電流の供給を制御する。更に、被溶接物200の下面には調整手段の一例としての金属板300が取り付けられ、溶接用電源装置50は、被溶接物200の下面温度が決められた温度となるよう、金属板300の温度の制御も行う。 This welding system 1 has a welding torch 10 as an example of welding means for welding an object to be welded 200 using a welding wire 100, and a robot arm 20 that holds the welding torch 10 and sets the position and orientation of the welding torch 10. And have. Further, the welding system 1 includes a wire feeding device 30 for feeding the welding wire 100 to the welding torch 10 and a shield gas supply device 40 for supplying a shield gas (for example, carbon dioxide gas) to the welding torch 10. Further, the welding system 1 is a welding power supply device 50 as an example of a welding power source that supplies a DC welding current to the welding wire 100 and the object to be welded 200 via the welding torch 10 and controls the welding current, and a robot. It includes a robot control device 60 that controls the arm 20. Although not described in detail here, the welding power supply device 50 also controls the welding speed, the feeding speed of the welding wire 100, and the like in addition to the welding current. Further, the welding power supply device 50 controls the supply of the welding current to the welding wire 100 so that the heat is input at a predetermined amount of heat input. Further, a metal plate 300 as an example of the adjusting means is attached to the lower surface of the object to be welded 200, and the power supply device 50 for welding of the metal plate 300 so that the temperature of the lower surface of the object to be welded 200 becomes a determined temperature. It also controls the temperature.

図2(a)に、実施例1における被溶接物200上の任意の点の目標温度履歴を太い実線で示す。図示するように、この目標温度履歴では、鋼の融点近傍の1500℃からγ−α変態が開始する800℃まで175℃/sの速度で降温される。この温度域を急速な冷却とすることで、凝固開始時から成長を始めるデンドライトの粗大化及びγの粗大化を抑制している。また、800℃以下は、20℃/sで冷却することとした。この冷却速度としてベイナイトを析出させることで、引っ張り強度と靭性のバランスの取れた組織を得ることができる。 FIG. 2A shows the target temperature history of an arbitrary point on the object to be welded 200 in Example 1 with a thick solid line. As shown in the figure, in this target temperature history, the temperature is lowered at a rate of 175 ° C./s from 1500 ° C. near the melting point of the steel to 800 ° C. at which the γ-α transformation starts. By rapidly cooling this temperature range, the coarsening of dendrites and the coarsening of γ, which start to grow from the start of solidification, are suppressed. Further, it was decided to cool at 20 ° C./s below 800 ° C. By precipitating bainite at this cooling rate, a structure having a good balance between tensile strength and toughness can be obtained.

この目標温度履歴を実現する入熱量を決めるために、差分法による三次元熱伝導シミュレーションを行った。このシミュレーションで用いる被溶接物200の形状は150mm×30mm×30mmの直方体とし、全ての方向について3mm間隔で分割することにより、直方体をメッシュ分割した。時間刻みは0.5秒とし、溶接速度は5mm/sとした。また、物性値は鋼を仮定して熱伝導率を20W/(mK)、密度を7870kg/m、比熱を435J/(kgK)とした。更に、初期条件として被溶接物200の全てのメッシュにおける交点(メッシュ点)を20℃に設定した。境界条件としては、上面下面以外の4つの面については、断熱条件とした。上面については、外気温度を20℃、熱伝達係数を15W/(mK)として強制対流熱伝達による大気との熱の交換を行うこととした。アークによる被溶接物200への入熱は、上面のメッシュ点(x,y)=(60mm,15mm)、及び、上面内でこのメッシュ点に隣接する4つのメッシュ点に熱流束として与えた。そして、下面温度を300℃一定の条件とし、熱流束を最適化パラメータとし、共役勾配法を用いて入熱量を最適化した。即ち、目標温度履歴を実現する入熱量に最も近い入熱量を求めた。 In order to determine the amount of heat input that realizes this target temperature history, a three-dimensional heat conduction simulation by the finite difference method was performed. The shape of the object to be welded 200 used in this simulation was a rectangular parallelepiped of 150 mm × 30 mm × 30 mm, and the rectangular parallelepiped was divided into meshes by dividing the rectangular parallelepiped at intervals of 3 mm in all directions. The time step was 0.5 seconds, and the welding speed was 5 mm / s. As for the physical properties, assuming steel, the thermal conductivity was 20 W / (mK), the density was 7870 kg / m 3 , and the specific heat was 435 J / (kgK). Further, as an initial condition, the intersections (mesh points) in all the meshes of the object to be welded 200 were set to 20 ° C. As the boundary conditions, the four surfaces other than the upper surface and the lower surface were set as heat insulating conditions. Regarding the upper surface, it was decided to exchange heat with the atmosphere by forced convection heat transfer with an outside air temperature of 20 ° C. and a heat transfer coefficient of 15 W / (m 2 K). The heat input to the work piece 200 by the arc was applied as a heat flux to the mesh points (x, y) = (60 mm, 15 mm) on the upper surface and the four mesh points adjacent to the mesh points in the upper surface. Then, the bottom surface temperature was set to a constant condition of 300 ° C., the heat flux was used as an optimization parameter, and the amount of heat input was optimized using the conjugate gradient method. That is, the heat input amount closest to the heat input amount that realizes the target temperature history was obtained.

ここで、入熱量を最適化する方法に特に制限はない。上記では共役勾配法を用いたが、様々な分野で広く用いられているニュートン法や遺伝的アルゴリズム等、如何なる最適化アルゴリズムを用いて最適化してもよい。 Here, there is no particular limitation on the method of optimizing the amount of heat input. In the above, the conjugate gradient method is used, but any optimization algorithm such as Newton's method or genetic algorithm widely used in various fields may be used for optimization.

図2(a)には、実施例1における最適化された入熱量及び下面温度で入熱した場合の被溶接物200上の任意の点の温度履歴を細い実線で示す。図2(a)に一点鎖線で示す比較例1は、実施例1と同様の方法で入熱量を最適化したが下面温度を20℃とした場合の温度履歴であり、図2(a)に二点鎖線で示す比較例2は、下面温度を実施例1と同じにしたが、入熱量を最適化しなかった場合の温度履歴である。 FIG. 2A shows a thin solid line showing the temperature history of an arbitrary point on the work piece 200 when heat is input at the optimized heat input amount and the bottom surface temperature in Example 1. Comparative Example 1 shown by the alternate long and short dash line in FIG. 2A is a temperature history when the amount of heat input is optimized in the same manner as in Example 1 but the bottom surface temperature is 20 ° C., and FIG. 2A shows the temperature history. Comparative Example 2 shown by the alternate long and short dash line is a temperature history when the bottom surface temperature is the same as that of Example 1, but the amount of heat input is not optimized.

また、図2(b)に、実施例1、比較例1及び比較例2の入熱量、下面温度及び評価関数値を示す。ここで、評価関数値は、各時間での目標温度からのずれを目標温度が1500℃から400℃までの時間範囲において足し合わせて得られた値である。評価関数値は、その値が小さいほど、目標温度からのずれが小さい。図2(a),(b)に示された通り、実施例1のように下面温度を適切に設定し入熱量を最適化することで、目標温度履歴に近い温度履歴を得ることができた。尚、図2(b)では、下面温度として20℃及び300℃しか示していないが、これについても、100℃、150℃、200℃等、複数の下面温度を設定した場合の評価関数値に基づき、適切な下面温度を求めてよい。 Further, FIG. 2B shows the heat input amount, the bottom surface temperature and the evaluation function value of Example 1, Comparative Example 1 and Comparative Example 2. Here, the evaluation function value is a value obtained by adding the deviations from the target temperature at each time in the time range where the target temperature is from 1500 ° C. to 400 ° C. The smaller the evaluation function value, the smaller the deviation from the target temperature. As shown in FIGS. 2A and 2B, by appropriately setting the bottom surface temperature and optimizing the amount of heat input as in Example 1, a temperature history close to the target temperature history could be obtained. .. In FIG. 2B, only 20 ° C. and 300 ° C. are shown as the bottom surface temperature, but this is also an evaluation function value when a plurality of bottom surface temperatures such as 100 ° C., 150 ° C., and 200 ° C. are set. Based on this, an appropriate bottom surface temperature may be obtained.

[第2の実施の形態]
図3は、本発明の第2の実施の形態(実施例2)に係る溶接システム2の概略構成例を示す図である。この溶接システム2も、消耗電極式(溶極式)のガスシールドアーク溶接法によって、被溶接物200の溶接を行うものである。但し、この溶接システム2は、図1に示した溶接システム1と同じ構成の溶接システム1a及び溶接システム1bを含んだものとなっている。
[Second Embodiment]
FIG. 3 is a diagram showing a schematic configuration example of the welding system 2 according to the second embodiment (Example 2) of the present invention. This welding system 2 also welds the object to be welded 200 by a consumable electrode type (welding electrode type) gas shielded arc welding method. However, this welding system 2 includes a welding system 1a and a welding system 1b having the same configuration as the welding system 1 shown in FIG.

このうち、溶接システム1aは、溶接ワイヤ100aを用いて被溶接物200を溶接する第1の溶接手段の一例としての溶接トーチ10a(以下、「先行トーチ10a」ともいう)と、溶接トーチ10aを保持すると共に溶接トーチ10aの位置や姿勢を設定するロボットアーム20aとを備えている。また、溶接システム1aは、溶接トーチ10aに溶接ワイヤ100aを送給するワイヤ送給装置30aと、溶接トーチ10aにシールドガス(例えば炭酸ガス)を供給するシールドガス供給装置40aとを備えている。更に、溶接システム1aは、溶接トーチ10aを介して溶接ワイヤ100a及び被溶接物200に直流の溶接電流の供給を行うと共に溶接電流を制御する溶接電源の一例としての溶接用電源装置50aと、ロボットアーム20aを制御するロボット制御装置60aとを備えている。尚、ここでは詳細な説明を行わないが、溶接用電源装置50aは、溶接電流の他に、溶接速度や溶接ワイヤ100aの送給速度等の制御も行っている。また、溶接用電源装置50aは、決められた入熱量で入熱がなされるよう、溶接ワイヤ100aへの溶接電流の供給を制御する。更に、被溶接物200の下面には調整手段の一例としての金属板300が取り付けられ、溶接用電源装置50aは、被溶接物200の下面温度が決められた温度となるよう、金属板300の温度の制御も行う。 Of these, the welding system 1a includes a welding torch 10a (hereinafter, also referred to as "preceding torch 10a") and a welding torch 10a as an example of a first welding means for welding an object to be welded 200 using a welding wire 100a. It is equipped with a robot arm 20a that holds and sets the position and orientation of the welding torch 10a. Further, the welding system 1a includes a wire feeding device 30a that feeds the welding wire 100a to the welding torch 10a, and a shield gas supply device 40a that supplies a shield gas (for example, carbon dioxide gas) to the welding torch 10a. Further, the welding system 1a includes a welding power supply device 50a as an example of a welding power source that supplies a DC welding current to the welding wire 100a and the object to be welded 200 via the welding torch 10a and controls the welding current, and a robot. It is provided with a robot control device 60a that controls the arm 20a. Although not described in detail here, the welding power supply device 50a also controls the welding speed, the feeding speed of the welding wire 100a, and the like in addition to the welding current. Further, the welding power supply device 50a controls the supply of the welding current to the welding wire 100a so that the heat is input at a predetermined amount of heat input. Further, a metal plate 300 as an example of the adjusting means is attached to the lower surface of the object to be welded 200, and the power supply device 50a for welding of the metal plate 300 so that the temperature of the lower surface of the object to be welded 200 becomes a determined temperature. It also controls the temperature.

また、溶接システム1bは、溶接ワイヤ100bを用いて被溶接物200を溶接する第2の溶接手段の一例としての溶接トーチ10b(以下、「後行トーチ10b」ともいう)等を備えている。溶接システム1bのロボットアーム20b、ワイヤ送給装置30b、シールドガス供給装置40b、溶接用電源装置50b及びロボット制御装置60bを含む部分は、溶接システム1aのロボットアーム20a、ワイヤ送給装置30a、シールドガス供給装置40a、溶接用電源装置50a及びロボット制御装置60aを含む部分と同様なので、図示を省略している。 Further, the welding system 1b includes a welding torch 10b (hereinafter, also referred to as "following torch 10b") as an example of a second welding means for welding the object to be welded 200 using the welding wire 100b. The portion of the welding system 1b including the robot arm 20b, the wire feeding device 30b, the shield gas supply device 40b, the welding power supply device 50b, and the robot control device 60b is the robot arm 20a, the wire feeding device 30a, and the shield of the welding system 1a. Since it is the same as the part including the gas supply device 40a, the welding power supply device 50a, and the robot control device 60a, the illustration is omitted.

図4(a)に、実施例2における被溶接物200上の任意の点の目標温度履歴を太い実線で示す。図4(a)には、比較のために、実施例1における被溶接物200上の任意の点の目標温度履歴も太い破線で示している。尚、実施例2における目標温度履歴は、実施例1における目標温度履歴と開始点が異なるのみで、降温条件等は同じである。 FIG. 4A shows the target temperature history of an arbitrary point on the object to be welded 200 in Example 2 with a thick solid line. In FIG. 4A, for comparison, the target temperature history of an arbitrary point on the work piece 200 in Example 1 is also shown by a thick broken line. The target temperature history in Example 2 is different from the target temperature history in Example 1 only in the starting point, and the temperature lowering conditions and the like are the same.

この目標温度履歴を実現する入熱量を決めるために、差分法による三次元熱伝導シミュレーションを行った。実施例2では、実施例1よりも更に目標温度に近付けるため、図3に示したように、先行トーチ10aと後行トーチ10bとを用いて、温度制御を行った。先行トーチ10aと後行トーチ10bとは、互いの中心点が102mm離れるように配置した。また、後行トーチ10bによる入熱は、上面のメッシュ点(x,y)=(60mm,15mm)、及び、このメッシュ点の周囲の12点に熱流束として与えた。後行トーチ10bに関するもの以外の条件は、全て実施例1と同じである。 In order to determine the amount of heat input that realizes this target temperature history, a three-dimensional heat conduction simulation by the finite difference method was performed. In Example 2, in order to bring the temperature closer to the target temperature than in Example 1, temperature control was performed using the preceding torch 10a and the trailing torch 10b as shown in FIG. The leading torch 10a and the trailing torch 10b were arranged so that their center points were 102 mm apart from each other. Further, the heat input by the trailing torch 10b was applied as a heat flux to the mesh points (x, y) = (60 mm, 15 mm) on the upper surface and 12 points around the mesh points. All the conditions other than those relating to the trailing torch 10b are the same as those in the first embodiment.

図4(a)には、実施例2における最適化された入熱量及び下面温度で入熱した場合の被溶接物200上の任意の点の温度履歴を細い実線で示す。図4(a)には、実施例1における最適化された入熱量及び下面温度で入熱した場合の被溶接物200上の任意の点の温度履歴も細い破線で示している。 FIG. 4A shows a thin solid line showing the temperature history of an arbitrary point on the work piece 200 when heat is input at the optimized heat input amount and the bottom surface temperature in Example 2. In FIG. 4A, the temperature history of an arbitrary point on the work piece 200 when heat is input at the optimized heat input amount and the bottom surface temperature in Example 1 is also shown by a thin broken line.

また、図4(b)に、実施例1の入熱量、下面温度及び評価関数値と、実施例2の第1入熱量、第2入熱量、下面温度及び評価関数値とを示す。ここで、実施例2の第1入熱量は、先行トーチ10aによる入熱量であり、溶接部から見れば、溶接部に1回目に一時的に入熱する際の入熱量である。また、実施例2の第2入熱量は、後行トーチ10bによる入熱量であり、溶接部から見れば、溶接部に2回目に一時的に入熱する際の入熱量である。評価関数値は、その値が小さいほど、目標温度からのずれが小さい。図4(b)に示すように、実施例2の評価関数値は、実施例1の評価関数値の1/3以下となっており、先行トーチ10aと後行トーチ10bの2つの溶接トーチを用いてその入熱量を適切に制御する場合の方が、1つの溶接トーチの入熱量を制御する場合よりも目標温度に近付けることができた。 Further, FIG. 4B shows the heat input amount, the bottom surface temperature and the evaluation function value of Example 1, and the first heat input amount, the second heat input amount, the bottom surface temperature and the evaluation function value of Example 2. Here, the first heat input amount of the second embodiment is the heat input amount by the preceding torch 10a, and is the heat input amount at the time of temporarily inputting heat to the welded portion for the first time when viewed from the welded portion. Further, the second heat input amount of the second embodiment is the heat input amount by the trailing torch 10b, and is the heat input amount at the time of temporarily inputting heat to the welded portion for the second time when viewed from the welded portion. The smaller the evaluation function value, the smaller the deviation from the target temperature. As shown in FIG. 4B, the evaluation function value of Example 2 is 1/3 or less of the evaluation function value of Example 1, and two welding torch, a leading torch 10a and a trailing torch 10b, are used. When the heat input amount was appropriately controlled by using the welding torch, the target temperature could be approached more than when the heat input amount of one welding torch was controlled.

[変形例]
消耗電極を溶融する先行トーチ10aからのアークをパルスにして溶滴移行を促すことで、アークの安定化及びスパッタの抑制等の溶接品質の向上を行うことができる。その際、パルスの単位時間(例えば1周期)に作られる熱量は、最適化方法によって決められた一定入熱での熱量と単位時間で同等となるようにしてもよい。
[Modification example]
By pulsing the arc from the preceding torch 10a that melts the consumable electrode and promoting the droplet transfer, it is possible to improve the welding quality such as stabilizing the arc and suppressing spatter. At that time, the amount of heat generated in the unit time of the pulse (for example, one cycle) may be equal to the amount of heat generated at a constant heat input determined by the optimization method in the unit time.

図5は、最適化された入熱量及び1周期あたりの熱量をこれと等しくしたパルスの例を示した図である。図では、パルスの1周期あたりの熱量が、1周期に対応する時間における最適化された入熱量と等しくなるように、ピーク値Q、ピーク幅t、ベース値Q、ベース幅tが調整されている。これにより、短い時間に着目すると溶滴の移行を促すようになっており、長い時間に着目すると溶接部を目標とする温度履歴に合わせるようになっている。 FIG. 5 is a diagram showing an example of a pulse in which the optimized amount of heat input and the amount of heat per cycle are equal to this. In the figure, the peak value Q P , the peak width t P , the base value Q B , and the base width t B so that the amount of heat per cycle of the pulse is equal to the optimized amount of heat input in the time corresponding to one cycle. Has been adjusted. As a result, when focusing on a short time, the transfer of droplets is promoted, and when focusing on a long time, the temperature history of the welded portion is adjusted to the target.

その際、ベース値は、アークを維持できる程度の熱量であることが好ましい。パルスの周期に制限はないが、溶滴移行を促進させるためには1msから500ms程度が好ましく、更には、急激に低下する温度履歴を実現するために、1msから数十ms程度が好ましい。また、1周期内に作られるパルスの数には制限がない。1周期内に1つのパルスを作ってもよいし、溶滴成長及び溶滴離脱をそれぞれ促進させる2つのパルスを作って組み合わせてもよいし、3つ以上のパルスを作って組み合わせてもよい。 At that time, the base value is preferably a calorific value that can maintain the arc. Although the period of the pulse is not limited, it is preferably about 1 ms to 500 ms in order to promote the droplet transfer, and more preferably about 1 ms to several tens of ms in order to realize a rapidly decreasing temperature history. In addition, there is no limit to the number of pulses created in one cycle. One pulse may be formed in one cycle, two pulses for promoting droplet growth and droplet detachment may be formed and combined, or three or more pulses may be formed and combined.

上記では、パルスの単位時間あたりの熱量を、最適化された入熱パターンの単位時間あたりの熱量に等しくするものとして説明したが、これには限らない。前者の熱量を後者の熱量に完全に等しくする必要はなく、略等しくするものであってよい。即ち、パルスの単位時間あたりの熱量を、最適化された入熱パターンの単位時間あたりの熱量に合致させるものであればよい。 In the above description, the amount of heat per unit time of the pulse is described as equal to the amount of heat per unit time of the optimized heat input pattern, but the present invention is not limited to this. The amount of heat of the former does not have to be completely equal to the amount of heat of the latter, but may be substantially equal. That is, the amount of heat per unit time of the pulse may be matched with the amount of heat per unit time of the optimized heat input pattern.

尚、本実施の形態において、溶接トーチ10(溶接トーチ10a,10b)は、溶接用電源装置50(溶接用電源装置50a,50b)に接続され、被溶接物200の上部、下部又は横に設けられて、被溶接物200に熱を与える装置の一例として設けた。ここで、被溶接物200に熱を与える態様は特に限定されない。上述したようにアーク放電による加熱であってもよいし、レーザ加熱や、抵抗加熱等であってもよい。 In the present embodiment, the welding torch 10 (welding torch 10a, 10b) is connected to the welding power supply device 50 (welding power supply device 50a, 50b) and is provided above, below, or beside the object to be welded 200. This is provided as an example of a device for applying heat to the object to be welded 200. Here, the mode in which heat is applied to the object to be welded 200 is not particularly limited. As described above, heating may be performed by arc discharge, laser heating, resistance heating, or the like.

また、第2の実施の形態のように2つの溶接トーチを用いる場合、先行トーチ10aと後行トーチ10bとの間隔は、溶接部材や溶接速度に応じて適切に離すことが好ましい。一例として、溶接速度5mm/sで鋼を溶接する場合、後行トーチ10bは先行トーチ10aよりも50mmから150mm程度後方に配するとよい。また、溶接ライン上での温度履歴の均一性を保つために、各溶接トーチの移動速度は溶接中一定で、常に一定間隔離れた配置とするのがよい。 Further, when two welding torches are used as in the second embodiment, it is preferable that the distance between the leading torch 10a and the trailing torch 10b is appropriately separated according to the welding member and the welding speed. As an example, when welding steel at a welding speed of 5 mm / s, the trailing torch 10b may be arranged about 50 mm to 150 mm behind the leading torch 10a. Further, in order to maintain the uniformity of the temperature history on the welding line, the moving speed of each welding torch is constant during welding, and it is preferable that the torches are always arranged at regular intervals.

更に、後行トーチ10bの後方に別の溶接トーチを設けてもよい。その際も、溶接部材や溶接速度に応じて溶接トーチの間隔を適切に離すことが好ましい。後方に配する溶接トーチの数を増やして適切に入熱量を決めることで、目標温度履歴からのずれをより小さくすることができる。 Further, another welding torch may be provided behind the trailing torch 10b. Also in that case, it is preferable to appropriately separate the welding torches according to the welding member and the welding speed. By increasing the number of welding torches arranged at the rear and appropriately determining the amount of heat input, the deviation from the target temperature history can be further reduced.

また、本実施の形態では、被溶接物200の下面温度を制御するために、被溶接物200に金属板300を取り付けたが、これには限らない。例えば、金属板300に代えてハロゲンヒータを設け、溶接用電源装置50(溶接用電源装置50a,50b)がハロゲンヒータによる熱量を制御してもよい。 Further, in the present embodiment, the metal plate 300 is attached to the object to be welded 200 in order to control the temperature of the lower surface of the object to be welded 200, but the present invention is not limited to this. For example, a halogen heater may be provided instead of the metal plate 300, and the welding power supply device 50 (welding power supply devices 50a, 50b) may control the amount of heat generated by the halogen heater.

更に、本実施の形態では、金属板300の温度やハロゲンヒータの熱量を溶接用電源装置50(溶接用電源装置50a,50b)が制御するようにしたが、これには限らない。溶接用電源装置50(溶接用電源装置50a,50b)とは別の制御装置がこのような制御を行うようにしてもよい。 Further, in the present embodiment, the welding power supply device 50 (welding power supply devices 50a and 50b) controls the temperature of the metal plate 300 and the amount of heat of the halogen heater, but the present invention is not limited to this. A control device other than the welding power supply device 50 (welding power supply devices 50a and 50b) may perform such control.

[本実施の形態の効果]
第1の実施の形態及び第2の実施の形態では、比較例よりも目標温度履歴に近い温度履歴を再現することができる。つまり、本実施の形態に係る入熱量と下面温度の最適化方法及び最適化された入熱量と下面温度は、溶接部の組織を制御する効果がある。
[Effect of this embodiment]
In the first embodiment and the second embodiment, the temperature history closer to the target temperature history than that of the comparative example can be reproduced. That is, the method for optimizing the heat input amount and the bottom surface temperature and the optimized heat input amount and the bottom surface temperature according to the present embodiment have an effect of controlling the structure of the welded portion.

1a,1b,2…溶接システム、10a…溶接トーチ(先行トーチ)、10b…溶接トーチ(後行トーチ)、20a,20b…ロボットアーム、30a,30b…ワイヤ送給装置、40a,40b…シールドガス供給装置、50a,50b…溶接用電源装置、60a,60b…ロボット制御装置、100a,100b…溶接ワイヤ、200…被溶接物、300…金属板 1a, 1b, 2 ... Welding system, 10a ... Welding torch (preceding torch), 10b ... Welding torch (following torch), 20a, 20b ... Robot arm, 30a, 30b ... Wire feeder, 40a, 40b ... Shield gas Supply device, 50a, 50b ... Welding power supply device, 60a, 60b ... Robot control device, 100a, 100b ... Welding wire, 200 ... Welded object, 300 ... Metal plate

Claims (4)

被溶接物の溶接部に一時的に入熱することにより当該被溶接物を溶接する溶接方法において、
前記溶接部に入熱する際の入熱量及び前記被溶接物の入熱される側とは反対側の温度であって、当該被溶接物を溶接する際に当該溶接部を目的の金属組織とする温度履歴を実現するための入熱量及び温度を受け付け、
前記受け付けた入熱量で前記溶接部に入熱し、
前記被溶接物の入熱される側とは反対側の温度を、前記受け付けた温度に調整し、
前記入熱量は、前記溶接部に1回目に一時的に入熱する際の第1の入熱量と、前記溶接部に2回目に一時的に入熱する際の第2の入熱量とを含むことを特徴とする溶接方法。
In a welding method in which the welded object is welded by temporarily applying heat to the welded portion of the object to be welded.
The amount of heat input when heat is applied to the welded portion and the temperature on the side opposite to the heat input side of the work piece to be welded, and the welded part is designated as the target metal structure when the work piece to be welded is welded. Accepts the amount of heat input and temperature to realize the temperature history,
Heat is input to the welded portion with the received heat input amount, and the heat is input to the welded portion.
The temperature on the side opposite to the side where the heat is input to the work to be welded is adjusted to the received temperature.
The heat input amount includes a first heat input amount when the welded portion is temporarily heated for the first time and a second heat input amount when the welded portion is temporarily heated for the second time. A welding method characterized by that.
前記入熱は、アーク放電により実現されることを特徴とする請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the heat input is realized by an arc discharge. 前記入熱量は、パルスにより構成された入熱パターンで与えられることを特徴とする請求項1に記載の溶接方法。 The welding method according to claim 1, wherein the heat input amount is given by an heat input pattern composed of pulses. 溶接電流を供給する溶接電源と、
被溶接物の溶接部に一時的に入熱することにより当該被溶接物を溶接する溶接手段と、
前記被溶接物の入熱される側とは反対側の温度を調整する調整手段と
を備え、
前記溶接電源は、前記溶接部に入熱する際の入熱量及び前記被溶接物の入熱される側とは反対側の温度であって、当該被溶接物を溶接する際に当該溶接部を目的の金属組織とする温度履歴を実現するための入熱量及び温度を受け付け、当該受け付けた入熱量で当該溶接部に入熱するように前記溶接手段を制御し、当該被溶接物の入熱される側とは反対側の温度を当該受け付けた温度に調整するように前記調整手段を制御し、
前記溶接手段は、前記被溶接物に沿って前方を移動する第1の溶接手段と、前記被溶接物に沿って後方を移動する第2の溶接手段とを備え、
前記溶接電源は、前記入熱量として、前記溶接部に1回目に一時的に入熱する際の第1の入熱量と、前記溶接部に2回目に一時的に入熱する際の第2の入熱量とを受け付け、当該第1の入熱量で当該溶接部に入熱するように前記第1の溶接手段を制御し、当該第2の入熱量で当該溶接部に入熱するように前記第2の溶接手段を制御することを特徴とする溶接システム。
Welding power supply that supplies welding current and
Welding means for welding the work piece by temporarily applying heat to the welded part of the work piece, and
It is provided with an adjusting means for adjusting the temperature on the side opposite to the side where the heat is input to the object to be welded.
The welding power source has a heat input amount when heat is input to the welded portion and a temperature on the side opposite to the heat input side of the welded object, and aims at the welded portion when welding the welded object. The welding means is controlled so as to receive the heat input amount and temperature for realizing the temperature history of the metal structure of the above, and to input heat to the welded portion with the received heat input amount, and the side to which the heat is input to the object to be welded. The adjusting means is controlled so as to adjust the temperature on the opposite side to the received temperature .
The welding means includes a first welding means that moves forward along the work piece and a second welding means that moves backward along the work piece.
The welding power supply has, as the heat input amount, a first heat input amount when temporarily inputting heat to the welded portion for the first time and a second heat input amount when temporarily inputting heat to the welded portion for the second time. The first welding means is controlled so that the first heat input amount receives heat and the first heat input amount enters the welded portion, and the second heat input amount receives heat into the welded portion. A welding system characterized by controlling the welding means of 2.
JP2017120496A 2017-06-20 2017-06-20 Welding method and welding system Active JP6905879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120496A JP6905879B2 (en) 2017-06-20 2017-06-20 Welding method and welding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120496A JP6905879B2 (en) 2017-06-20 2017-06-20 Welding method and welding system

Publications (2)

Publication Number Publication Date
JP2019005765A JP2019005765A (en) 2019-01-17
JP6905879B2 true JP6905879B2 (en) 2021-07-21

Family

ID=65025594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120496A Active JP6905879B2 (en) 2017-06-20 2017-06-20 Welding method and welding system

Country Status (1)

Country Link
JP (1) JP6905879B2 (en)

Also Published As

Publication number Publication date
JP2019005765A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
EP3380265B1 (en) System and method for single crystal growth with additive manufacturing
US10888944B2 (en) Method and system of using consumable with weld puddle
JP6211156B2 (en) System for constructing metal object by three-dimensional free-form fabrication method and method for producing three-dimensional object of metal material by three-dimensional free-form fabrication method
JP3203668U (en) Tandem hot wire system
KR100979836B1 (en) Method of vertical-position welding
CN110035862B (en) System and method for short arc welding
Wang et al. Wire based plasma arc and laser hybrid additive manufacture of Ti-6Al-4V
US20100193480A1 (en) Deposition of materials with low ductility using solid free-form fabrication
CN111050967B (en) System and method for adaptively controlling preheating of welding wire
WO2014006491A1 (en) Hot-wire consumable incapable of sustaining an arc
CN105722629A (en) System and method for automatic height adjustment of a torch
CN109014498A (en) A kind of titanium alloy thick plate welding method
JP6905879B2 (en) Welding method and welding system
US20210237191A1 (en) Arc welding method comprising a consumable welding wire
CN112996624A (en) Additive manufacturing
JP6905878B2 (en) Welding method and welding system
SE511463C2 (en) Method of arc welding with melting electrode
AU2017294025B2 (en) Fluid-cooled contact tip assembly for metal welding
JP2022185732A (en) Weld wire feeding device and arc-welding system comprising the same
JP4393969B2 (en) Consumable electrode arc welding method and apparatus
Shcherbakov et al. Peculiarities of Control over Electron-Beam Additive Form Manufacturing
JPS61276775A (en) Wire feeding device for tig arc welding
JP2017035703A (en) Thermal-cutting processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6905879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150