JP6904070B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP6904070B2
JP6904070B2 JP2017110406A JP2017110406A JP6904070B2 JP 6904070 B2 JP6904070 B2 JP 6904070B2 JP 2017110406 A JP2017110406 A JP 2017110406A JP 2017110406 A JP2017110406 A JP 2017110406A JP 6904070 B2 JP6904070 B2 JP 6904070B2
Authority
JP
Japan
Prior art keywords
region
flow path
power conversion
peripheral end
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110406A
Other languages
Japanese (ja)
Other versions
JP2018207664A (en
Inventor
大輔 原田
大輔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017110406A priority Critical patent/JP6904070B2/en
Publication of JP2018207664A publication Critical patent/JP2018207664A/en
Application granted granted Critical
Publication of JP6904070B2 publication Critical patent/JP6904070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷媒流路を有する冷却器を備えた電力変換装置に関する。 The present invention relates to a power conversion device including a cooler having a refrigerant flow path.

インバータ等の電力変換装置に用いられる冷却器として、例えば特許文献1に開示されているものがある。特許文献1に記載の電力変換装置は、電力変換回路を収容するケースの一部が冷却器を構成している。前記電力変換装置において、ケースは、ケースの外側に向かって開口する凹部と、前記凹部を閉塞するカバーとを有する。そして、前記凹部とカバーとの間の空間が、冷媒の流通できる冷媒流路となっている。前記電力変換装置は、前記凹部とカバーとの間のシール性を確保するために、前記凹部とカバーとの間に液状ガスケット等のシール材が配されている。 As a cooler used in a power conversion device such as an inverter, for example, there is one disclosed in Patent Document 1. In the power conversion device described in Patent Document 1, a part of the case accommodating the power conversion circuit constitutes a cooler. In the power conversion device, the case has a recess that opens toward the outside of the case and a cover that closes the recess. The space between the recess and the cover is a refrigerant flow path through which the refrigerant can flow. In the power conversion device, a sealing material such as a liquid gasket is arranged between the recess and the cover in order to ensure the sealing property between the recess and the cover.

特開2015−033289号公報Japanese Unexamined Patent Publication No. 2015-033289

しかしながら、特許文献1に記載の電力変換装置においては、例えばシール材の一部が冷媒流路にはみ出るよう形成された場合、シール材における冷媒流路にはみ出た部分が冷媒の力を受けてシール材から破断され、冷媒に流されるおそれがある。かかる場合、シール材から破断したシール材の欠片が、冷媒流路に詰まり、冷媒の圧力損失が増大することが懸念される。冷媒の圧力損失が増大すると、冷媒流路における冷媒の流れが悪くなることに伴い、冷却器の冷却性能が低下するおそれがある。 However, in the power conversion device described in Patent Document 1, for example, when a part of the sealing material is formed so as to protrude into the refrigerant flow path, the portion of the sealing material that protrudes into the refrigerant flow path receives the force of the refrigerant and seals. It may be broken from the material and flowed into the refrigerant. In such a case, there is a concern that the pieces of the sealing material broken from the sealing material may clog the refrigerant flow path and increase the pressure loss of the refrigerant. If the pressure loss of the refrigerant increases, the flow of the refrigerant in the refrigerant flow path deteriorates, and the cooling performance of the cooler may deteriorate.

本発明は、かかる課題に鑑みてなされたものであり、冷媒流路を流通する冷媒の圧力損失の増大を防止しやすい電力変換装置を提供しようとするものである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a power conversion device that can easily prevent an increase in pressure loss of a refrigerant flowing through a refrigerant flow path.

本発明の一態様は、冷媒が流通可能な冷媒流路(100)と、内側に前記冷媒流路を形成する流路形成部(2)と、を有する冷却器(10)、を備え、
前記流路形成部は、互いに対向する一対のシール面(223、231)と、一対の前記シール面の対向方向(Z)において、一対の前記シール面の間を密封するシール材(3)と、を有し、
前記対向方向における一対の前記シール面の間の領域であるシール配置領域(4)は、前記冷媒流路に面する側から、前記冷却器の外部に面する側に向かう方向において、前記対向方向の大きさが異なる複数の領域を有し、
前記複数の領域には、前記冷媒流路に面する領域である内周端領域(41)と前記冷却器の外部に面する領域である外周端領域(42)と、前記内周端領域と前記外周端領域との間の領域である大間隔領域(43)と、が含まれており、
前記シール配置領域は、前記内周端領域の前記対向方向の長さ(L1)前記外周端領域の前記対向方向の長さ(L2)よりも大きく、且つ、前記大間隔領域の前記対向方向の長さ(L3)が前記内周端領域の前記対向方向の長さ及び前記外周端領域の前記対向方向の長さのいずれよりも大きくなるように構成されており、
前記シール配置領域の前記内周端領域と前記外周端領域と前記大間隔領域との全体に前記シール材が配されている、電力変換装置(1)にある。
One aspect of the present invention includes a cooler (10) having a refrigerant flow path (100) through which a refrigerant can flow and a flow path forming portion (2) forming the refrigerant flow path inside.
The flow path forming portion includes a pair of sealing surfaces (223, 231 ) facing each other and a sealing material (3) that seals between the pair of sealing surfaces in the opposite direction (Z) of the pair of sealing surfaces. Have,
The seal arrangement region (4), which is a region between the pair of seal surfaces in the facing direction, is the facing direction in the direction from the side facing the refrigerant flow path to the side facing the outside of the cooler. Has multiple regions of different sizes
Wherein the plurality of regions, the inner peripheral end region (41) is a region facing the refrigerant flow path, the cooler the outer peripheral edge area which is an area that faces the outside of the (42), the inner peripheral end region A large spacing region (43), which is a region between the outer peripheral edge region and the outer peripheral edge region, is included.
Said sealing arrangement region, the length of the opposite direction (L1) the length of the facing direction of the outer peripheral edge region of the inner peripheral edge region (L2) much larger than the, and, the opposite of the large interval area The length (L3) in the direction is configured to be larger than either the length of the inner peripheral end region in the opposite direction and the length of the outer peripheral end region in the opposite direction.
It is in the power conversion device (1) in which the seal material is arranged as a whole of the inner peripheral end region, the outer peripheral end region, and the large interval region of the seal arrangement region.

前記電力変換装置において、シール配置領域の内周端領域の前記対向方向の長さは、外周端領域の前記対向方向の長さよりも大きい。そのため、シール材は、内周端領域に配される部位が、外周端領域に配される部位よりも、前記対向方向の厚みが大きくなる。それゆえ、万一、シール材の一部が冷媒流路にはみ出るよう形成された場合であっても、シール材における冷媒流路にはみ出た部分と、シール材におけるシール配置領域に収まった部位との境界の面積は大きくなる。それゆえ、万一シール材の一部が冷媒流路にはみ出るよう形成された場合であっても、シール材の一部が破断されにくい。それゆえ、冷媒の圧力損失の増大を防止しやすい。 In the power conversion device, the length of the inner peripheral end region of the seal arrangement region in the facing direction is larger than the length of the outer peripheral end region in the facing direction. Therefore, the thickness of the portion of the sealing material arranged in the inner peripheral end region is larger than that of the portion arranged in the outer peripheral end region in the opposite direction. Therefore, even if a part of the sealing material is formed so as to protrude into the refrigerant flow path, the portion of the sealing material that protrudes into the refrigerant flow path and the portion that fits in the seal arrangement area of the sealing material. The area of the boundary becomes large. Therefore, even if a part of the sealing material is formed so as to protrude into the refrigerant flow path, the part of the sealing material is unlikely to be broken. Therefore, it is easy to prevent an increase in the pressure loss of the refrigerant.

以上のごとく、前記態様によれば、冷媒流路を流通する冷媒の圧力損失の増大を防止しやすい電力変換装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
As described above, according to the above aspect, it is possible to provide a power conversion device that can easily prevent an increase in pressure loss of the refrigerant flowing through the refrigerant flow path.
The reference numerals in parentheses described in the scope of claims and the means for solving the problem indicate the correspondence with the specific means described in the embodiments described later, and limit the technical scope of the present invention. It's not a thing.

実施形態1における、冷却器の斜視図。The perspective view of the cooler in Embodiment 1. 実施形態1における、冷却器の分解斜視図。An exploded perspective view of the cooler according to the first embodiment. 実施形態1における、冷却器の本体部の平面図。The plan view of the main body of a cooler according to Embodiment 1. 実施形態1における、一対のシール面の対向方向に平行であり、かつ、シール配置領域の内周端領域及び外周端領域を通る冷却器の拡大断面図。FIG. 5 is an enlarged cross-sectional view of a cooler according to the first embodiment, which is parallel to the pair of seal surfaces in the opposite direction and passes through the inner peripheral end region and the outer peripheral end region of the seal arrangement region. 実施形態1における、シール材が冷媒流路にはみ出るよう形成された様子を示す拡大断面図。FIG. 5 is an enlarged cross-sectional view showing a state in which the sealing material is formed so as to protrude into the refrigerant flow path in the first embodiment. 比較形態における、シール材が冷媒流路にはみ出るよう形成された様子を示す拡大断面図。An enlarged cross-sectional view showing a state in which the sealing material is formed so as to protrude into the refrigerant flow path in the comparative form. 比較形態における、シール材の一部が破断された様子を示す拡大断面図。An enlarged cross-sectional view showing a state in which a part of the sealing material is broken in the comparative form. 実施形態1の変形形態における、一対のシール面の対向方向に平行であり、かつ、シール配置領域の内周端領域及び外周端領域を通る冷却器の拡大断面図。FIG. 3 is an enlarged cross-sectional view of a cooler in a modified form of the first embodiment, which is parallel to a pair of seal surfaces in a facing direction and passes through an inner peripheral end region and an outer peripheral end region of a seal arrangement region. 実施形態1の別の変形形態における、一対のシール面の対向方向に平行であり、かつ、シール配置領域の内周端領域及び外周端領域を通る冷却器の拡大断面図。An enlarged cross-sectional view of a cooler in another modified embodiment of the first embodiment, which is parallel to the facing direction of the pair of seal surfaces and passes through the inner peripheral end region and the outer peripheral end region of the seal arrangement region. 実施形態1の更に別の変形形態における、一対のシール面の対向方向に平行であり、かつ、シール配置領域の内周端領域及び外周端領域を通る冷却器の拡大断面図。An enlarged cross-sectional view of a cooler in still another modification of the first embodiment, which is parallel to the facing direction of the pair of seal surfaces and passes through the inner peripheral end region and the outer peripheral end region of the seal arrangement region. 実施形態2における、電力変換装置の平面図。The plan view of the power conversion apparatus in Embodiment 2. 実施形態3における、電力変換装置の側面図。FIG. 5 is a side view of the power conversion device according to the third embodiment. 実施形態3における、積層体の平面図。The plan view of the laminated body in Embodiment 3. 実施形態3における、上下方向に直交する積層体の断面図。FIG. 3 is a cross-sectional view of a laminated body orthogonal to the vertical direction in the third embodiment. 実施形態3における、積層体の側面図。The side view of the laminated body in Embodiment 3.

(実施形態1)
電力変換装置の実施形態につき、図1〜図5を用いて説明する。
本実施形態の電力変換装置1は、図1、図2に示すごとく、冷媒が流通可能な冷媒流路100と、内側に冷媒流路100を形成する流路形成部2と、を有する冷却器10、を備える。図4に示すごとく、流路形成部2は、互いに対向する一対のシール面と、一対のシール面の対向方向Zにおいて、一対のシール面の間を密封するシール材3と、を有する。本実施形態において、一対のシール面は、側板22の上面223と、蓋板23の後述の蓋側対向面231である。本実施形態において、一対のシール面の対向方向Zを、便宜上、上下方向Zという。
(Embodiment 1)
An embodiment of the power conversion device will be described with reference to FIGS. 1 to 5.
As shown in FIGS. 1 and 2, the power conversion device 1 of the present embodiment is a cooler having a refrigerant flow path 100 through which a refrigerant can flow and a flow path forming portion 2 forming a refrigerant flow path 100 inside. 10. As shown in FIG. 4, the flow path forming portion 2 has a pair of sealing surfaces facing each other and a sealing material 3 for sealing between the pair of sealing surfaces in the opposite direction Z of the pair of sealing surfaces. In the present embodiment, the pair of sealing surfaces are the upper surface 223 of the side plate 22 and the lid-side facing surface 231 of the lid plate 23, which will be described later. In the present embodiment, the facing direction Z of the pair of sealing surfaces is referred to as the vertical direction Z for convenience.

上下方向Zにおける一対のシール面の間の領域であるシール配置領域4は、冷媒流路100に面する側から、冷却器10の外部に面する側に向かう方向において、上下方向Zの大きさが異なる複数の領域を有する。ここで、前記複数の領域のうち、冷媒流路100に面する領域を内周端領域41と定義し、冷却器10の外部に面する領域を外周端領域42と定義する。このとき、内周端領域41の上下方向Zの長さL1は、外周端領域42の上下方向Zの長さL2よりも大きい。なお、図1においては、シール材3の図示を省略している。 The seal arrangement region 4, which is a region between the pair of seal surfaces in the vertical direction Z, has a size in the vertical direction Z in the direction from the side facing the refrigerant flow path 100 to the side facing the outside of the cooler 10. Has a plurality of different regions. Here, among the plurality of regions, the region facing the refrigerant flow path 100 is defined as the inner peripheral end region 41, and the region facing the outside of the cooler 10 is defined as the outer peripheral end region 42. At this time, the length L1 of the inner peripheral end region 41 in the vertical direction Z is larger than the length L2 of the outer peripheral end region 42 in the vertical direction Z. In FIG. 1, the sealing material 3 is not shown.

電力変換装置1は、直流電力と交流電力との間で電力変換を行う。電力変換装置1は、直流電源と三相交流回転電機との間において電力変換を行うよう構成される。本実施形態において、電力変換装置1は、電気自動車、ハイブリッド自動車等の車両に搭載して用いられる。冷却器10は、例えばリアクトル等の電力変換装置1の構成部品を冷却するために用いられる。図示は省略しているが、冷却器10には、リアクトル等が熱接触するよう配置される。 The power conversion device 1 performs power conversion between DC power and AC power. The power conversion device 1 is configured to perform power conversion between a DC power supply and a three-phase AC rotary electric machine. In the present embodiment, the power conversion device 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle. The cooler 10 is used to cool the components of the power conversion device 1 such as a reactor. Although not shown, the cooler 10 is arranged so that a reactor or the like is in thermal contact with the cooler 10.

図2に示すごとく、冷却器10の流路形成部2は、底板21、及び底板21の周縁から上下方向Zの一方側に立設された側板22を有する本体部20と、本体部20の開口を閉塞する蓋板23とを有する。そして、流路形成部2の内側の領域が、冷媒流路100である。なお、以後、上下方向Zにおいて、底板21から側板22が立設した側を上側、その反対側を下側という。また、図2において、側板22の上面223の詳細な形状は省略しており、上面223におけるシール材3が配される領域にハッチングを施している。 As shown in FIG. 2, the flow path forming portion 2 of the cooler 10 is a main body portion 20 having a bottom plate 21 and a side plate 22 erected on one side in the vertical direction Z from the peripheral edge of the bottom plate 21, and the main body portion 20. It has a lid plate 23 that closes the opening. The region inside the flow path forming portion 2 is the refrigerant flow path 100. Hereinafter, in the vertical direction Z, the side on which the side plate 22 is erected from the bottom plate 21 is referred to as the upper side, and the opposite side thereof is referred to as the lower side. Further, in FIG. 2, the detailed shape of the upper surface 223 of the side plate 22 is omitted, and the region of the upper surface 223 where the sealing material 3 is arranged is hatched.

図2、図3に示すごとく、本体部20の底板21は、矩形板状を呈している。側板22は、底板21の周縁の4辺から上側に立設されている。側板22は、上下方向Zに直交する縦方向Xに対向する一対の第一側板221と、上下方向Z及び縦方向Xの双方に直交する横方向Yに対向する一対の第二側板222とを有する。一対の第一側板221のそれぞれには、縦方向Xに貫通する貫通穴が形成されている。そして、一対の第一側板221の一方には、冷却器10の外部から内部に冷媒を導入するための導入管24が接続されており、他方には、冷却器10の内部から外部に冷媒を排出するための排出管25が接続されている。すなわち、冷却器10は、冷媒が縦方向Xの導入管24側から排出管25側に向かって流れるよう構成されている。 As shown in FIGS. 2 and 3, the bottom plate 21 of the main body 20 has a rectangular plate shape. The side plate 22 is erected on the upper side from the four sides of the peripheral edge of the bottom plate 21. The side plates 22 include a pair of first side plates 221 facing the vertical direction X orthogonal to the vertical direction Z, and a pair of second side plates 222 facing the horizontal direction Y orthogonal to both the vertical direction Z and the vertical direction X. Have. Each of the pair of first side plates 221 is formed with a through hole penetrating in the vertical direction X. An introduction pipe 24 for introducing the refrigerant from the outside to the inside of the cooler 10 is connected to one of the pair of first side plates 221 and the refrigerant is introduced from the inside to the outside of the cooler 10 to the other. A discharge pipe 25 for discharging is connected. That is, the cooler 10 is configured so that the refrigerant flows from the introduction pipe 24 side in the vertical direction X toward the discharge pipe 25 side.

図1、図2に示すごとく、蓋板23は、矩形板状を呈している。蓋板23は、本体部20の上側の開口を閉塞している。図4に示すごとく、蓋板23は、4つの側板22の上面223の全体を上側から覆うよう配されている。すなわち、蓋板23は、4つの側板22の上面223の全体と上下方向Zに対向する蓋側対向面231を有する。 As shown in FIGS. 1 and 2, the lid plate 23 has a rectangular plate shape. The lid plate 23 closes the opening on the upper side of the main body 20. As shown in FIG. 4, the lid plate 23 is arranged so as to cover the entire upper surface 223 of the four side plates 22 from above. That is, the lid plate 23 has a lid-side facing surface 231 facing the entire upper surface 223 of the four side plates 22 in the vertical direction Z.

上下方向Zにおける側板22の上面223と蓋板23の蓋側対向面231との間の領域が、前述のシール配置領域4である。そして、このシール配置領域4の全体にシール材3が配されている。シール材3は、側板22の上面223全体と蓋側対向面231全体との双方に密着し、これらの間を密封するよう配されている。本実施形態において、シール材3は液状ガスケットである。 The region between the upper surface 223 of the side plate 22 and the lid-side facing surface 231 of the lid plate 23 in the vertical direction Z is the seal arrangement region 4 described above. Then, the seal material 3 is arranged in the entire seal arrangement area 4. The sealing material 3 is arranged so as to be in close contact with both the entire upper surface 223 of the side plate 22 and the entire lid-side facing surface 231 and seal between them. In this embodiment, the sealing material 3 is a liquid gasket.

一対のシール面のうち、一方が平面形状を有し、他方が凹凸形状を有する。本実施形態においては、蓋板23の蓋側対向面231が上下方向Zに直交する平面形状を有し、側板22の上面223が凹凸形状を有する。図4に示すごとく、側板22の上面223は、互いに上下方向Zの位置が異なる内周上面223a、中間上面223c、及び外周上面223bの3つの面を有する。図3に示すごとく、内周上面223aは、側板22の上面223における内周端部において、側板22の上面223の全周にわたって連続的に形成されている。また、外周上面223bは、側板22の上面223における外周端部において、側板22の上面223の全周にわたって連続的に形成されている。そして、中間上面223cは、上下方向Zから見たとき、内周上面223aと外周上面223bとの間において、側板22の上面223の全周にわたって連続的に形成されている。内周上面223a、中間上面223c、及び外周上面223bのそれぞれは、上下方向Zに直交する平面状に形成されている。 Of the pair of sealing surfaces, one has a planar shape and the other has an uneven shape. In the present embodiment, the lid-side facing surface 231 of the lid plate 23 has a planar shape orthogonal to the vertical direction Z, and the upper surface 223 of the side plate 22 has an uneven shape. As shown in FIG. 4, the upper surface 223 of the side plate 22 has three surfaces, an inner peripheral upper surface 223a, an intermediate upper surface 223c, and an outer peripheral upper surface 223b, which are positioned differently from each other in the vertical direction Z. As shown in FIG. 3, the inner peripheral upper surface 223a is continuously formed over the entire circumference of the upper surface 223 of the side plate 22 at the inner peripheral end portion of the upper surface 223 of the side plate 22. Further, the outer peripheral upper surface 223b is continuously formed at the outer peripheral end portion of the upper surface 223 of the side plate 22 over the entire circumference of the upper surface 223 of the side plate 22. When viewed from the vertical direction Z, the intermediate upper surface 223c is continuously formed between the inner peripheral upper surface 223a and the outer peripheral upper surface 223b over the entire circumference of the upper surface 223 of the side plate 22. Each of the inner peripheral upper surface 223a, the intermediate upper surface 223c, and the outer peripheral upper surface 223b is formed in a plane shape orthogonal to the vertical direction Z.

シール配置領域4は、上下方向Zにおける内周上面223aと蓋側対向面231との間に内周端領域41を有する。また、シール配置領域4は、上下方向Zにおける外周上面223bと蓋側対向面231との間に外周端領域42を有する。また、シール配置領域4は、上下方向Zにおける中間上面223cと蓋側対向面231との間に、後述の大間隔領域43を有する。 The seal arrangement region 4 has an inner peripheral end region 41 between the inner peripheral upper surface 223a and the lid-side facing surface 231 in the vertical direction Z. Further, the seal arrangement region 4 has an outer peripheral end region 42 between the outer peripheral upper surface 223b and the lid side facing surface 231 in the vertical direction Z. Further, the seal arrangement region 4 has a large spacing region 43 described later between the intermediate upper surface 223c and the lid side facing surface 231 in the vertical direction Z.

図4に示すごとく、内周上面223aは、外周上面223bよりも下側に位置している。これにより、上下方向Zの内周端領域41の長さL1が、上下方向Zの外周端領域42の長さL2よりも大きくなっている。 As shown in FIG. 4, the inner peripheral upper surface 223a is located below the outer peripheral upper surface 223b. As a result, the length L1 of the inner peripheral end region 41 in the vertical direction Z is larger than the length L2 of the outer peripheral end region 42 in the vertical direction Z.

また、シール配置領域4は、内周端領域41と外周端領域42との間の領域の少なくとも一部に、内周端領域41の上下方向Zの長さL1及び外周端領域42の上下方向Zの長さL2のいずれよりも大きい上下方向Zの長さL3を有する大間隔領域43を有する。前述のごとく、本実施形態においては、上下方向Zにおける中間上面223cと蓋側対向面231との間の領域が大間隔領域43である。中間上面223cは、内周上面223a及び外周上面223bのいずれよりも下側に位置している。これにより、大間隔領域43の上下方向Zの長さL3は、内周端領域41の上下方向Zの長さL1、及び、外周端領域42の上下方向Zの長さL2のいずれよりも大きくなっている。 Further, the seal arrangement region 4 covers at least a part of the region between the inner peripheral end region 41 and the outer peripheral end region 42, the length L1 in the vertical direction Z of the inner peripheral end region 41 and the vertical direction of the outer peripheral end region 42. It has a large spacing region 43 having a length L3 in the vertical direction Z that is larger than any of the length L2 of Z. As described above, in the present embodiment, the region between the intermediate upper surface 223c and the lid-side facing surface 231 in the vertical direction Z is the large spacing region 43. The intermediate upper surface 223c is located below both the inner peripheral upper surface 223a and the outer peripheral upper surface 223b. As a result, the length L3 in the vertical direction Z of the large interval region 43 is larger than both the length L1 in the vertical direction Z of the inner peripheral end region 41 and the length L2 in the vertical direction Z of the outer peripheral end region 42. It has become.

シール材3は、シール配置領域4と略同形状を有する。シール材3は、シール配置領域4の内周端領域41に配された部位の上下方向Zの長さが、外周端領域42に配された部位の上下方向Zの長さよりも大きい。また、シール材3は、大間隔領域43に配された部位の上下方向Zの長さが、外周端領域42に配された部位の上下方向Zの長さ、及び内周端領域41に配された部位の上下方向Zの長さ、のいずれよりも大きい。 The seal material 3 has substantially the same shape as the seal arrangement area 4. In the sealing material 3, the length of the portion arranged in the inner peripheral end region 41 of the seal arrangement region 4 in the vertical direction Z is larger than the length of the portion arranged in the outer peripheral end region 42 in the vertical direction Z. Further, in the sealing material 3, the length of the portion arranged in the large interval region 43 in the vertical direction Z is the length of the portion arranged in the outer peripheral end region 42 in the vertical direction Z, and the length of the portion arranged in the outer peripheral end region 42 is arranged in the inner peripheral end region 41. It is larger than any of the vertical Z lengths of the formed parts.

次に、本実施形態の作用効果につき説明する。
電力変換装置1において、シール配置領域4の内周端領域41の上下方向Zの長さは、外周端領域42の上下方向Zの長さよりも大きい。そのため、シール材3は、内周端領域41に配される部位が、外周端領域42に配される部位よりも、上下方向Zの厚みが大きくなる。それゆえ、図5に示すごとく、万一、シール材3の一部が冷媒流路100にはみ出るよう形成された場合であっても、シール材3における冷媒流路100にはみ出た部分34と、シール材3におけるシール配置領域4に収まった部位との境界35の面積は大きくなる。それゆえ、万一シール材3の一部が冷媒流路100にはみ出るよう形成された場合であっても、シール材3の一部が破断されにくい。
Next, the action and effect of this embodiment will be described.
In the power conversion device 1, the length of the inner peripheral end region 41 of the seal arrangement region 4 in the vertical direction Z is larger than the length of the outer peripheral end region 42 in the vertical direction Z. Therefore, in the sealing material 3, the portion arranged in the inner peripheral end region 41 is thicker in the vertical direction Z than the portion arranged in the outer peripheral end region 42. Therefore, as shown in FIG. 5, even if a part of the sealing material 3 is formed so as to protrude into the refrigerant flow path 100, the portion 34 of the sealing material 3 protruding into the refrigerant flow path 100 and the portion 34. The area of the boundary 35 with the portion of the sealing material 3 that fits in the seal arrangement area 4 becomes large. Therefore, even if a part of the sealing material 3 is formed so as to protrude into the refrigerant flow path 100, the part of the sealing material 3 is unlikely to be broken.

ここで、図6に示すごとく、シール配置領域4の全体の上下方向Zの長さを、本実施形態で示した外周端領域42の上下方向Zの長さと同じ程度に小さくした場合を考える。この場合において、シール材3の一部が冷媒流路100にはみ出るよう形成されたとき、シール材3における冷媒流路100にはみ出た部分93と、シール材3におけるシール配置領域4に収まった部位との境界95の面積は小さい。それゆえ、シール材3の前記はみ出た部分93は、シール材3におけるシール配置領域4内に収まった部分との結合力が弱い。それゆえ、図7に示すごとく、シール材3の前記はみ出た部分93は、シール材3におけるシール配置領域4内に収まった部分から破断され、冷媒に流されることが懸念される。 Here, as shown in FIG. 6, consider a case where the length of the entire seal arrangement region 4 in the vertical direction Z is reduced to the same extent as the length of the outer peripheral end region 42 shown in the present embodiment in the vertical direction Z. In this case, when a part of the sealing material 3 is formed so as to protrude into the refrigerant flow path 100, the portion 93 protruding into the refrigerant flow path 100 in the sealing material 3 and the portion housed in the seal arrangement area 4 in the sealing material 3. The area of the boundary 95 with is small. Therefore, the protruding portion 93 of the sealing material 3 has a weak bonding force with the portion of the sealing material 3 that fits within the seal arrangement region 4. Therefore, as shown in FIG. 7, there is a concern that the protruding portion 93 of the sealing material 3 may be broken from the portion of the sealing material 3 that fits within the seal arrangement region 4 and flow into the refrigerant.

一方、図5に示すごとく、本実施形態の電力変換装置1は、前述のごとく、シール材3の一部が冷媒流路100にはみ出るよう形成された場合であっても、シール材3における冷媒流路100にはみ出た部分と、シール材3におけるシール配置領域4に収まった部位との面積が大きくなるため、冷媒に流されにくい。それゆえ、本実施形態の電力変換装置1は、冷媒の圧力損失の増大を防止しやすい。また、冷媒の圧力損失の増大を防止することにより、冷却器10における冷媒の流れを良好にでき、冷却器10の冷却性能を向上させやすい。さらに、冷却器10の冷却性能を充分に確保しつつ、冷却器10を小型化させやすい。これに伴って、電力変換装置1全体の小型化を図ることもできる。 On the other hand, as shown in FIG. 5, in the power conversion device 1 of the present embodiment, as described above, even when a part of the sealing material 3 is formed so as to protrude into the refrigerant flow path 100, the refrigerant in the sealing material 3 Since the area of the portion protruding into the flow path 100 and the portion of the sealing material 3 that fits in the seal arrangement region 4 becomes large, it is difficult for the refrigerant to flow. Therefore, the power conversion device 1 of the present embodiment can easily prevent an increase in the pressure loss of the refrigerant. Further, by preventing the pressure loss of the refrigerant from increasing, the flow of the refrigerant in the cooler 10 can be improved, and the cooling performance of the cooler 10 can be easily improved. Further, it is easy to miniaturize the cooler 10 while sufficiently ensuring the cooling performance of the cooler 10. Along with this, the power conversion device 1 as a whole can be miniaturized.

また、シール配置領域4は、内周端領域41と外周端領域42との間の領域の少なくとも一部に、内周端領域41の上下方向Zの長さL1及び外周端領域42の上下方向Zの長さL2のいずれよりも大きい上下方向Zの長さL3を有する大間隔領域43を有する。それゆえ、万一、シール材3が、外周端領域42から大間隔領域43までの領域(例えば、大間隔領域43と外周端領域42との境界部)において破断された場合であっても、破断されたシール材3は、大間隔領域43と内周端領域41とにおいて流路形成部2に引っ掛かるため、冷媒流路100を流通する冷媒に流されることはない。 Further, the seal arrangement region 4 covers at least a part of the region between the inner peripheral end region 41 and the outer peripheral end region 42, the length L1 in the vertical direction Z of the inner peripheral end region 41 and the vertical direction of the outer peripheral end region 42. It has a large spacing region 43 having a length L3 in the vertical direction Z that is larger than any of the length L2 of Z. Therefore, even if the sealing material 3 is broken in the region from the outer peripheral end region 42 to the large spacing region 43 (for example, the boundary portion between the large spacing region 43 and the outer peripheral end region 42), even if the sealing material 3 is broken. Since the broken sealing material 3 is caught by the flow path forming portion 2 in the large interval region 43 and the inner peripheral end region 41, it is not flowed by the refrigerant flowing through the refrigerant flow path 100.

また、一対のシール面のうち、一方が平面形状を有し、他方が凹凸形状を有する。それゆえ、一方のシール面(本実施形態においては側板22の上面223)を加工することにより、他方のシール面(本実施形態においては蓋側対向面231)を加工しなくても、本実施形態の形状を有するシール配置領域4を容易に形成することができる。 Further, of the pair of sealing surfaces, one has a planar shape and the other has an uneven shape. Therefore, by processing one sealing surface (upper surface 223 of the side plate 22 in this embodiment), the present embodiment does not require processing of the other sealing surface (cover side facing surface 231 in this embodiment). The seal arrangement region 4 having a shape can be easily formed.

また、シール材3は、液状ガスケットである。それゆえ、流路形成部2における一対のシール面間に、シール材3を容易に配しやすい。それゆえ、電力変換装置1の生産性を向上させやすい。 The sealing material 3 is a liquid gasket. Therefore, the sealing material 3 can be easily arranged between the pair of sealing surfaces in the flow path forming portion 2. Therefore, it is easy to improve the productivity of the power conversion device 1.

また、電力変換装置1は、車両に搭載して用いられる。前述のごとく、本実施形態の電力変換装置1は小型化を図ることができるため、車両内における電力変換装置1の配置の自由度を向上させやすい。 Further, the power conversion device 1 is mounted on a vehicle and used. As described above, since the power conversion device 1 of the present embodiment can be miniaturized, it is easy to improve the degree of freedom in arranging the power conversion device 1 in the vehicle.

以上のごとく、本実施形態によれば、冷媒流路を流通する冷媒の圧力損失の増大を防止しやすい電力変換装置を提供することができる。 As described above, according to the present embodiment, it is possible to provide a power conversion device that can easily prevent an increase in pressure loss of the refrigerant flowing through the refrigerant flow path.

なお、本実施形態においては、一対のシール面のうち一方が平面形状を有し、他方が凹凸形状を有する形態を示したが、図8に示すごとく、一対のシール面の双方に凹凸形状を設けることにより、実施形態1で示したシール配置領域4を形成することも可能である。図8に示す電力変換装置1においては、蓋板23の蓋側対向面231の外周端部に下側に突出する凸面231aを有し、側板22の上面223の内周端部に上側に突出する凸面223dを有する。 In the present embodiment, one of the pair of sealing surfaces has a planar shape and the other has an uneven shape. However, as shown in FIG. 8, both of the pair of sealing surfaces have an uneven shape. By providing it, it is also possible to form the seal arrangement region 4 shown in the first embodiment. The power conversion device 1 shown in FIG. 8 has a convex surface 231a projecting downward at the outer peripheral end of the lid-side facing surface 231 of the lid plate 23, and projects upward to the inner peripheral end of the upper surface 223 of the side plate 22. It has a convex surface 223d.

また、本実施形態においては、1つの冷媒流路100を形成する流路形成部2に形成された一対のシール面にシール材3を配した形態を示したが、これに限られず、例えば、図9に示すごとく、2つの冷媒流路100a、100bを連結する2つの流路形成部2a、2bにおいて、2つの流路形成部2a、2bにおける互いに対向する面のそれぞれをシール面とし、これらの間の領域を実施形態1で示したシール配置領域4としてもよい。 Further, in the present embodiment, the sealing material 3 is arranged on the pair of sealing surfaces formed in the flow path forming portion 2 forming one refrigerant flow path 100, but the present invention is not limited to this, and for example, As shown in FIG. 9, in the two flow path forming portions 2a and 2b connecting the two refrigerant flow paths 100a and 100b, the surfaces of the two flow path forming portions 2a and 2b facing each other are designated as sealing surfaces. The region between them may be the seal arrangement region 4 shown in the first embodiment.

また、本実施形態においては、シール配置領域4に大間隔領域43を形成したが、シール配置領域4に大間隔領域43を形成しなくてもよい。例えば、図4に示すごとく、実施形態1においては、側板22の中間上面223cを、内周上面223aよりも下側に位置させたが、実施形態1において示した中間上面223c及び内周上面223aを、図10に示すごとく面一に形成した構成を採用することも可能である。 Further, in the present embodiment, the large interval region 43 is formed in the seal arrangement region 4, but the large interval region 43 may not be formed in the seal arrangement region 4. For example, as shown in FIG. 4, in the first embodiment, the intermediate upper surface 223c of the side plate 22 is located below the inner peripheral upper surface 223a, but the intermediate upper surface 223c and the inner peripheral upper surface 223a shown in the first embodiment are located. It is also possible to adopt a configuration formed flush with each other as shown in FIG.

(実施形態2)
本実施形態は、図11に示すごとく、実施形態1で示した冷媒流路100における冷媒の流通方向の下流側に、冷却器10が冷却する部品とは異なる部品を冷却する下流側冷却部5が配されている実施形態である。なお、図11において、冷媒の流れる向きを矢印にて表している。下流側冷却部5は、冷媒流路100に連通する下流側流路50を備える。下流側冷却部5が冷却する被冷却部品は、半導体素子を内蔵してなる半導体モジュールである。半導体素子は、IGBT(すなわち絶縁ゲートバイポーラトランジスタ)や、MOSFET(MOS型電界効果トランジスタ)等のスイッチング素子とすることができる。半導体モジュールは、半導体素子を樹脂モールドしてなる。半導体モジュールは、三相交流回転電機のU相電極、V相電極、W相電極のそれぞれに接続されるものである。下流側冷却部5は、実施形態1で示した冷却器10と同様の構成を有していることが好ましいが、有していなくてもよい。
(Embodiment 2)
In this embodiment, as shown in FIG. 11, a downstream cooling unit 5 that cools a component different from the component cooled by the cooler 10 on the downstream side in the refrigerant flow direction in the refrigerant flow path 100 shown in the first embodiment. Is an embodiment in which is arranged. In FIG. 11, the direction in which the refrigerant flows is indicated by an arrow. The downstream cooling unit 5 includes a downstream flow path 50 communicating with the refrigerant flow path 100. The component to be cooled that the downstream cooling unit 5 cools is a semiconductor module having a built-in semiconductor element. The semiconductor element can be a switching element such as an IGBT (that is, an insulated gate bipolar transistor) or a MOSFET (MOS type field effect transistor). The semiconductor module is made by molding a semiconductor element with a resin. The semiconductor module is connected to each of the U-phase electrode, the V-phase electrode, and the W-phase electrode of the three-phase AC rotary electric machine. The downstream cooling unit 5 preferably has the same configuration as the cooler 10 shown in the first embodiment, but may not have the same configuration.

その他は、実施形態1と同様である。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
Others are the same as in the first embodiment.
In addition, among the codes used in the second and subsequent embodiments, the same codes as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.

本実施形態においては、冷却器10の下流側に配された下流側冷却部5を有する。前述のごとく、冷却器10は、シール材3の破片が下流側に流れることを防止しやすいため、冷却器10の下流側に配された下流側冷却部5に、冷却器10のシール材3の破片が詰まることを防止できる。それゆえ、下流側冷却部5の冷却性能も向上させることができる。 In the present embodiment, it has a downstream cooling unit 5 arranged on the downstream side of the cooler 10. As described above, since the cooler 10 can easily prevent the fragments of the sealing material 3 from flowing to the downstream side, the sealing material 3 of the cooler 10 is attached to the downstream cooling unit 5 arranged on the downstream side of the cooler 10. It is possible to prevent the debris from being clogged. Therefore, the cooling performance of the downstream cooling unit 5 can also be improved.

また、下流側冷却部5が冷却する被冷却部品は、半導体素子を内蔵してなる半導体モジュールである。本実施形態においては、前述のごとく下流側冷却部5の冷却性能を向上させることもできるため、下流側冷却部5に比較的発熱が大きい半導体モジュールを配置しても、効率的に半導体モジュールを冷却することができる。
その他、実施形態1と同様の作用効果を有する。
The component to be cooled that the downstream cooling unit 5 cools is a semiconductor module having a built-in semiconductor element. In the present embodiment, as described above, the cooling performance of the downstream cooling unit 5 can be improved. Therefore, even if a semiconductor module that generates a relatively large amount of heat is arranged in the downstream cooling unit 5, the semiconductor module can be efficiently installed. Can be cooled.
In addition, it has the same effect as that of the first embodiment.

(実施形態3)
本実施形態は、図12〜図15に示すごとく、下流側冷却部5が後述の積層体6を構成している実施形態である。図13〜図15に示すごとく、下流側冷却部5は、内側に冷媒が流通できる冷却管61を複数有する。そして、複数の冷却管61と下流側冷却部5が冷却する被冷却部品とは、冷却管61が被冷却部品を挟持するように積層配置されて積層体6を構成している。被冷却部品は、半導体モジュール65である。半導体モジュール65は、実施形態2で示した構成と同様であるため、重複する説明を省略する。なお、図12〜図14において、冷媒の流れる向きを矢印にて表している。
(Embodiment 3)
As shown in FIGS. 12 to 15, the present embodiment is an embodiment in which the downstream cooling unit 5 constitutes the laminate 6 described later. As shown in FIGS. 13 to 15, the downstream cooling unit 5 has a plurality of cooling pipes 61 through which the refrigerant can flow. The plurality of cooling pipes 61 and the parts to be cooled that the downstream cooling unit 5 cools are arranged in a laminated manner so that the cooling pipes 61 sandwich the parts to be cooled to form the laminated body 6. The component to be cooled is the semiconductor module 65. Since the semiconductor module 65 has the same configuration as that shown in the second embodiment, redundant description will be omitted. In addition, in FIGS. 12 to 14, the direction in which the refrigerant flows is indicated by an arrow.

図13に示すごとく、冷却管61は、横方向Yに長尺な形状を有する。複数の冷却管61は、互いの間に間隔を設けつつ、冷却管61の厚み方向である縦方向Xに積層されている。縦方向Xに隣り合う冷却管61は、横方向Yの両端部において連結管62によって互いに連結されている。連結管62は、縦方向Xに変形可能に構成されている。また、縦方向Xの一端に配された冷却管61には、下流側冷却部5に冷媒を導入するための導入突出管63と、下流側冷却部5から冷媒を排出するための排出突出管64が接続されている。 As shown in FIG. 13, the cooling pipe 61 has an elongated shape in the lateral direction Y. The plurality of cooling pipes 61 are laminated in the vertical direction X, which is the thickness direction of the cooling pipes 61, with a gap between them. The cooling pipes 61 adjacent to each other in the vertical direction X are connected to each other by connecting pipes 62 at both ends in the horizontal direction Y. The connecting pipe 62 is configured to be deformable in the vertical direction X. Further, in the cooling pipe 61 arranged at one end in the vertical direction X, an introduction protruding pipe 63 for introducing the refrigerant into the downstream cooling unit 5 and a discharge protruding pipe for discharging the refrigerant from the downstream cooling unit 5 64 are connected.

積層体6は、複数の冷却管61の間に設けられた複数の隙間に、半導体モジュール65を配設してなる。複数の半導体モジュール65は、厚み方向を縦方向Xとした姿勢で配されている。半導体モジュール65は、縦方向Xに隣接する冷却管61によって挟持されている。なお、図示は省略するが、積層体6は、例えば板バネ等の弾性力によって、縦方向Xに弾性的に圧縮された状態で保持されている。 The laminate 6 is formed by disposing the semiconductor module 65 in a plurality of gaps provided between the plurality of cooling pipes 61. The plurality of semiconductor modules 65 are arranged in a posture in which the thickness direction is the vertical direction X. The semiconductor module 65 is sandwiched by a cooling pipe 61 adjacent to the vertical direction X. Although not shown, the laminated body 6 is held in a state of being elastically compressed in the vertical direction X by an elastic force such as a leaf spring.

図12に示すごとく、冷却器10及び下流側冷却部5は、電力変換装置1のケース7内に収容されている。ケース7は、冷却器10を収容する下側ケース71と、下側ケース71の上側に形成され、下流側冷却部5を収容する上側ケース72とを有する。なお、図12において、ケース7は、横方向Yから見たときの外形を模式的に表している。 As shown in FIG. 12, the cooler 10 and the downstream cooling unit 5 are housed in the case 7 of the power conversion device 1. The case 7 has a lower case 71 for accommodating the cooler 10, and an upper case 72 formed on the upper side of the lower case 71 and accommodating the downstream cooling unit 5. In FIG. 12, the case 7 schematically represents the outer shape when viewed from the lateral direction Y.

冷却器10と下流側冷却部5とは、それぞれ、ケース7外に配された連結部材8に連通している。これにより、冷却器10から排出される冷媒は、ケース7外の連結部材8の内側に流れ込み、その後、再度ケース7内に戻り、下流側冷却部5に流入される。 The cooler 10 and the downstream cooling unit 5 communicate with a connecting member 8 arranged outside the case 7, respectively. As a result, the refrigerant discharged from the cooler 10 flows into the connecting member 8 outside the case 7, then returns to the case 7 again, and flows into the downstream cooling unit 5.

図14に示すごとく、導入突出管63から下流側冷却部5に導入された冷媒は、適宜連結管62を介して複数の冷却管61に分配されて冷却管61を横方向Yに流通する。この間に、冷媒は半導体モジュール65と熱交換をする。半導体モジュール65から半導体素子60の熱を受熱した冷媒は、連結管62及び排出突出管64を介して冷却器10から排出される。このようにして、半導体モジュール65は冷却される。
その他は、実施形態2と同様である。
As shown in FIG. 14, the refrigerant introduced from the introduction protruding pipe 63 into the downstream cooling unit 5 is appropriately distributed to the plurality of cooling pipes 61 via the connecting pipe 62 and flows through the cooling pipe 61 in the lateral direction Y. During this time, the refrigerant exchanges heat with the semiconductor module 65. The refrigerant that has received the heat of the semiconductor element 60 from the semiconductor module 65 is discharged from the cooler 10 via the connecting pipe 62 and the discharge protruding pipe 64. In this way, the semiconductor module 65 is cooled.
Others are the same as in the second embodiment.

本実施形態においては、下流側冷却部5は、積層体6を構成している。前述のごとく、下流側冷却部5の上流側には、シール材3の破片が破断されにくい冷却器10が配されているため、下流側冷却部5の冷却性能を向上させることができる。本実施形態においては、下流側冷却部5が積層体6を構成しており、半導体モジュール65を両側から冷却している。それゆえ、下流側冷却部5の冷却性能を一層向上させることができる。これに伴い、下流側冷却部5の冷却性能を充分に確保しつつ、下流側冷却部5の小型化を図りやすい。
その他、実形態2と同様の作用効果を有する。
In the present embodiment, the downstream cooling unit 5 constitutes the laminated body 6. As described above, since the cooler 10 in which the fragments of the sealing material 3 are not easily broken is arranged on the upstream side of the downstream cooling unit 5, the cooling performance of the downstream cooling unit 5 can be improved. In the present embodiment, the downstream cooling unit 5 constitutes the laminated body 6 and cools the semiconductor module 65 from both sides. Therefore, the cooling performance of the downstream cooling unit 5 can be further improved. Along with this, it is easy to reduce the size of the downstream cooling unit 5 while sufficiently ensuring the cooling performance of the downstream cooling unit 5.
In addition, it has the same action and effect as the actual form 2.

本発明は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、前記各実施形態において、シール材を液状ガスケットとしたが、接着剤等の別のシール材を用いてもよい。また、冷却器や、下流側冷却部には、内部に冷却性を向上させるためのフィンを設けてもよい。 The present invention is not limited to each of the above-described embodiments, and can be applied to various embodiments without departing from the gist thereof. For example, in each of the above embodiments, the sealing material is a liquid gasket, but another sealing material such as an adhesive may be used. Further, the cooler and the downstream cooling unit may be provided with fins for improving the cooling property inside.

1 電力変換装置
10 冷却器
100 冷媒流路
2 流路形成部
223、231 一対のシール面
3 シール材
4 シール配置領域
41 内周端領域
42 外周端領域
Z 一対のシール面の対向方向
1 Power converter 10 Cooler 100 Refrigerant flow path 2 Flow path forming part 223, 231 Pair of sealing surfaces 3 Sealing material 4 Seal arrangement area 41 Inner peripheral end area 42 Outer peripheral end area Z Opposing direction of pair of sealing surfaces

Claims (7)

冷媒が流通可能な冷媒流路(100)と、内側に前記冷媒流路を形成する流路形成部(2)と、を有する冷却器(10)、を備え、
前記流路形成部は、互いに対向する一対のシール面(223、231)と、一対の前記シール面の対向方向(Z)において、一対の前記シール面の間を密封するシール材(3)と、を有し、
前記対向方向における一対の前記シール面の間の領域であるシール配置領域(4)は、前記冷媒流路に面する側から、前記冷却器の外部に面する側に向かう方向において、前記対向方向の大きさが異なる複数の領域を有し、
前記複数の領域には、前記冷媒流路に面する領域である内周端領域(41)と前記冷却器の外部に面する領域である外周端領域(42)と、前記内周端領域と前記外周端領域との間の領域である大間隔領域(43)と、が含まれており、
前記シール配置領域は、前記内周端領域の前記対向方向の長さ(L1)前記外周端領域の前記対向方向の長さ(L2)よりも大きく、且つ、前記大間隔領域の前記対向方向の長さ(L3)が前記内周端領域の前記対向方向の長さ及び前記外周端領域の前記対向方向の長さのいずれよりも大きくなるように構成されており、
前記シール配置領域の前記内周端領域と前記外周端領域と前記大間隔領域との全体に前記シール材が配されている、電力変換装置(1)。
A cooler (10) having a refrigerant flow path (100) through which a refrigerant can flow and a flow path forming portion (2) forming the refrigerant flow path inside is provided.
The flow path forming portion includes a pair of sealing surfaces (223, 231 ) facing each other and a sealing material (3) that seals between the pair of sealing surfaces in the opposite direction (Z) of the pair of sealing surfaces. Have,
The seal arrangement region (4), which is a region between the pair of seal surfaces in the facing direction, is the facing direction in the direction from the side facing the refrigerant flow path to the side facing the outside of the cooler. Has multiple regions of different sizes
Wherein the plurality of regions, the inner peripheral end region (41) is a region facing the refrigerant flow path, the cooler the outer peripheral edge area which is an area that faces the outside of the (42), the inner peripheral end region A large spacing region (43), which is a region between the outer peripheral edge region and the outer peripheral edge region, is included.
Said sealing arrangement region, the length of the opposite direction (L1) the length of the facing direction of the outer peripheral edge region of the inner peripheral edge region (L2) much larger than the, and, the opposite of the large interval area The length (L3) in the direction is configured to be larger than either the length of the inner peripheral end region in the opposite direction and the length of the outer peripheral end region in the opposite direction.
The power conversion device (1) , wherein the seal material is arranged on the entire inner peripheral end region, the outer peripheral end region, and the large interval region of the seal arrangement region.
一対の前記シール面のうち、一方が平面形状を有し、他方が凹凸形状を有する、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein one of the pair of sealing surfaces has a planar shape and the other has an uneven shape. 前記シール材は、液状ガスケットである、請求項1または2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the sealing material is a liquid gasket. 前記冷媒流路における冷媒の流通方向の下流側には、前記冷却器が冷却する部品とは異なる部品を冷却するとともに、前記冷媒流路に連通する下流側流路(50)を備える下流側冷却部(5)が配されている、請求項1〜のいずれか一項に記載の電力変換装置。 On the downstream side of the refrigerant flow path in the flow direction of the refrigerant, a component different from the component cooled by the cooler is cooled, and a downstream side flow path (50) communicating with the refrigerant flow path is provided for downstream cooling. The power conversion device according to any one of claims 1 to 3 , wherein the part (5) is arranged. 前記下流側冷却部は、内側に冷媒が流通できる冷却管(61)を複数有し、複数の前記冷却管と、前記下流側冷却部が冷却する被冷却部品とは、前記冷却管が前記被冷却部品を挟持するように積層配置されて積層体(6)を構成している、請求項に記載の電力変換装置。 The downstream cooling unit has a plurality of cooling pipes (61) through which a refrigerant can flow, and the plurality of cooling pipes and the parts to be cooled that the downstream cooling unit cools are such that the cooling pipe is covered. The power conversion device according to claim 4 , wherein the laminated body (6) is formed by being laminated so as to sandwich the cooling component. 前記下流側冷却部が冷却する被冷却部品は、半導体素子(60)を内蔵してなる半導体モジュール(65)である、請求項又はに記載の電力変換装置。 The power conversion device according to claim 4 or 5 , wherein the component to be cooled to be cooled by the downstream cooling unit is a semiconductor module (65) including a semiconductor element (60). 前記電力変換装置は、車両に搭載して用いられる、請求項1〜のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 6 , wherein the power conversion device is mounted on a vehicle and used.
JP2017110406A 2017-06-02 2017-06-02 Power converter Active JP6904070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110406A JP6904070B2 (en) 2017-06-02 2017-06-02 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110406A JP6904070B2 (en) 2017-06-02 2017-06-02 Power converter

Publications (2)

Publication Number Publication Date
JP2018207664A JP2018207664A (en) 2018-12-27
JP6904070B2 true JP6904070B2 (en) 2021-07-14

Family

ID=64958433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110406A Active JP6904070B2 (en) 2017-06-02 2017-06-02 Power converter

Country Status (1)

Country Link
JP (1) JP6904070B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003828B2 (en) * 2018-04-26 2022-01-21 株式会社デンソー Cooler
JP7052531B2 (en) 2018-04-26 2022-04-12 株式会社デンソー Power converter
JP7024592B2 (en) 2018-05-11 2022-02-24 株式会社デンソー Power converter
JP7081511B2 (en) * 2019-01-25 2022-06-07 株式会社豊田自動織機 Power converter
JP6964734B1 (en) 2020-09-08 2021-11-10 三菱電機株式会社 Rotating machine
JP7250087B1 (en) 2021-09-16 2023-03-31 三菱電機株式会社 Rotating electric machine and its manufacturing method
WO2023063087A1 (en) * 2021-10-15 2023-04-20 株式会社デンソー Power conversion device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310381A (en) * 2005-04-26 2006-11-09 Toyota Industries Corp Electronic apparatus
JP5236838B2 (en) * 2010-10-27 2013-07-17 本田技研工業株式会社 Cooling structure
JP2012233497A (en) * 2011-04-28 2012-11-29 Denso Corp Power conversion device, and method of manufacturing the same
US9666504B2 (en) * 2011-06-30 2017-05-30 Vestas Wind Systems A/S Heat sink for cooling of power semiconductor modules
CN104904008A (en) * 2013-02-14 2015-09-09 富士电机株式会社 Cooling structure, and power conversion device
US10249553B2 (en) * 2013-04-16 2019-04-02 Nissan Motor Co., Ltd. Cooling apparatus for a heat-generating element
JP6308109B2 (en) * 2014-11-18 2018-04-11 株式会社デンソー Power converter

Also Published As

Publication number Publication date
JP2018207664A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6904070B2 (en) Power converter
US10321613B2 (en) Inverter power module packaging with cold plate
US10873269B2 (en) Electric power conversion apparatus
JP6384609B2 (en) Power semiconductor module and cooler
US9818673B2 (en) Cooler
US10410953B2 (en) Power conversion device including semiconductor module provided with laminated structure
JP5699995B2 (en) Power converter
KR102131684B1 (en) Vehicle-mounted power converter
CN106997872B (en) Semiconductor device
US8879256B2 (en) Electric power conversion apparatus
US20120250252A1 (en) Electric power conversion apparatus
US9961807B2 (en) Electric power convertor
US20210050277A1 (en) Semiconductor apparatus
JP6422592B2 (en) Power converter
KR102256906B1 (en) Cold plate assembly for electrical cabinet
US20210329815A1 (en) Electric power module and inverter apparatus having the same
JP5678490B2 (en) Power converter
JP7160216B2 (en) semiconductor equipment
JP2017112215A (en) Semiconductor device
JP2015065310A (en) Seal member, cooler and semiconductor device
KR20190031650A (en) Double side water cooler
JP6398889B2 (en) Power converter
JP2019062077A (en) Cooling device
JP6984375B2 (en) Power converter
JP2013051274A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151