JP6903312B2 - Capacitor charging / discharging method. - Google Patents

Capacitor charging / discharging method. Download PDF

Info

Publication number
JP6903312B2
JP6903312B2 JP2017073277A JP2017073277A JP6903312B2 JP 6903312 B2 JP6903312 B2 JP 6903312B2 JP 2017073277 A JP2017073277 A JP 2017073277A JP 2017073277 A JP2017073277 A JP 2017073277A JP 6903312 B2 JP6903312 B2 JP 6903312B2
Authority
JP
Japan
Prior art keywords
electrode
capacitor
copper
charging
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017073277A
Other languages
Japanese (ja)
Other versions
JP2018174288A (en
Inventor
星野 勝義
勝義 星野
陽輔 菅原
陽輔 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2017073277A priority Critical patent/JP6903312B2/en
Publication of JP2018174288A publication Critical patent/JP2018174288A/en
Application granted granted Critical
Publication of JP6903312B2 publication Critical patent/JP6903312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、キャパシタの充放電方法に関する。 The present invention relates to a method of charging and discharging a capacitor.

近年、環境問題に対する取り組みが重要となってきており、より環境への負担が軽く効率のよい電源が求められてきている。この要望に寄与すると期待される一つの技術として、電気化学キャパシタがある。電気化学キャパシタとは、電気化学的な作用を用いて電荷を蓄積、出力するためのデバイスであり、代表的なものとして電気二重層キャパシタ、さらに最近新たに提案されてきているものとしてレドックスキャパシタがある。 In recent years, efforts to address environmental problems have become important, and there is a demand for an efficient power source that has a lighter burden on the environment. One technology that is expected to contribute to this demand is an electrochemical capacitor. An electrochemical capacitor is a device for accumulating and outputting electric charges by using an electrochemical action, and an electric double layer capacitor is a typical example, and a redox capacitor is a newly proposed one. is there.

電気二重層キャパシタとは、一対の電極とこの一対の電極の間に配置される電解液とを有し、電解液と電極の界面において生じるイオンの吸着(非ファラデー反応)により形成される電気二重層を利用して電荷を蓄積することのできるキャパシタであり、非常に大きな比表面積を有する炭素材料等を電極として用いることで大容量化が可能であり、大きく期待されている。 An electric double-layer capacitor has a pair of electrodes and an electrolytic solution arranged between the pair of electrodes, and is formed by adsorption of ions (non-Faraday reaction) generated at the interface between the electrolytic solution and the electrodes. It is a capacitor that can store electric charges using multiple layers, and it is highly expected that the capacity can be increased by using a carbon material or the like having a very large specific surface area as an electrode.

一方、レドックスキャパシタとは、活物質の複数の連続的なレドックス(酸化還元)反応により発現する疑似容量を利用して電荷を蓄積することのできるキャパシタであり、上記の電気二重層キャパシタよりも大容量で、かつ、電池よりも瞬時充放電特性に優れているといった利点があり、より期待されてきている。 On the other hand, the redox capacitor is a capacitor capable of accumulating electric charges by utilizing the pseudo capacitance developed by a plurality of continuous redox (oxidation-reduction) reactions of the active material, and is larger than the above electric double layer capacitor. It has the advantages of capacity and superior instantaneous charge / discharge characteristics to batteries, and is expected to be more promising.

ところで上記キャパシタの可能性に関し、下記特許文献1には、銅ナノ構造物を有するキャパシタに関する技術提案がある。 By the way, regarding the possibility of the above-mentioned capacitor, the following Patent Document 1 has a technical proposal regarding a capacitor having a copper nanostructure.

特開2011−195865号公報Japanese Unexamined Patent Publication No. 2011-195865

しかしながら、上記特許文献に記載の技術によると、静電容量として14mAh/g程度の値に過ぎず、より大きな静電容量のキャパシタが望まれる。 However, according to the technique described in the above patent document, the capacitance is only about 14 mAh / g, and a capacitor having a larger capacitance is desired.

そこで、本発明は、上記課題に鑑み、より高容量のキャパシタの充放電方法を提供する。 Therefore, in view of the above problems, the present invention provides a method for charging / discharging a capacitor having a higher capacity.

上記課題について、本発明者らが鋭意検討を行っていたところ、動作電極に対し負の電位範囲を含ませることで、上記キャパシタにおいて飛躍的に静電容量が高まる活用が可能であることを発見し、本発明を完成させるに至った。 As a result of diligent studies by the present inventors on the above-mentioned problems, it was discovered that by including a negative potential range for the operating electrode, it is possible to utilize the above-mentioned capacitor in which the capacitance is dramatically increased. However, the present invention has been completed.

すなわち、本発明の一観点に係るキャパシタの充放電方法は、動作電極と、この動作電極に対向して配置される対向電極と、動作電極と対向電極の間に充填される電解液と、を含むキャパシタの充電方法であって、動作電極は、表面に銅ナノ構造物を備えたものであり、動作電極に対し、負の電位範囲を含んで充放電を行うものである。 That is, in the method of charging / discharging a capacitor according to one aspect of the present invention, an operating electrode, a counter electrode arranged to face the operating electrode, and an electrolytic solution filled between the operating electrode and the counter electrode are used. In the method of charging the including capacitor, the operating electrode is provided with a copper nanostructure on the surface, and charges and discharges the operating electrode including a negative potential range.

以上、本発明によって、より高容量のキャパシタの充放電方法を提供することが可能となる。 As described above, the present invention makes it possible to provide a method for charging / discharging a capacitor having a higher capacity.

実施形態に係るキャパシタの断面概略図である。It is sectional drawing of the capacitor which concerns on embodiment. 実施例に係るキャパシタのサイクリックボルタメトリーの結果を示す図である。It is a figure which shows the result of cyclic voltammetry of the capacitor which concerns on Example. 実施例に係るキャパシタの充放電特性(電位と時間の関係)を示す図である。It is a figure which shows the charge / discharge characteristic (relationship between potential and time) of the capacitor which concerns on Example. 実施例に係るキャパシタの充放電特性(電位と時間の関係)を示す図である。It is a figure which shows the charge / discharge characteristic (relationship between potential and time) of the capacitor which concerns on Example. 実施例に係るキャパシタの充放電特性(電位と時間の関係)を示す図である。It is a figure which shows the charge / discharge characteristic (relationship between potential and time) of the capacitor which concerns on Example.

以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例における具体的な例示にのみ限定されるわけではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different embodiments, and is not limited to the specific examples in the embodiments and examples shown below.

(キャパシタ)
図1は、本実施形態に係るキャパシタ(以下「本キャパシタ」という。)1の構造の断面概略図である。本キャパシタ1は、いわゆる電気化学キャパシタであり、対向して配置される一対の電極2a、2bと、この一対の電極に形成される銅ナノ構造物3と、この一対の電極間に配置される電解質層4と、を有する。一対の電極2a、2bの一方は動作電極であり、他方はこれに対向して配置される対向電極となる。
(Capacitor)
FIG. 1 is a schematic cross-sectional view of the structure of a capacitor (hereinafter referred to as “the present capacitor”) 1 according to the present embodiment. The present capacitor 1 is a so-called electrochemical capacitor, and is arranged between a pair of electrodes 2a and 2b arranged to face each other, a copper nanostructure 3 formed on the pair of electrodes, and the pair of electrodes. It has an electrolyte layer 4. One of the pair of electrodes 2a and 2b is an operating electrode, and the other is a counter electrode arranged so as to face the operating electrode.

本キャパシタ1における一対の電極2a、2bは、導電性を有し、電解液を保持する機能を有するものであり、材質としては限定されるわけではないが、導電性の板や絶縁性の板の上に導電性の膜を配置したものを例示することができる。導電性の板の例としては、例えば金属板、カーボン板を例示することができ、絶縁性の板の上に導電性の膜を配置したものとしては、ガラス、ポリエステルフィルム、ポリカーボネートフィルム等の絶縁性の板の上に、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)、FTO(フッ素ドープ酸化スズ)、ATO(アルミニウムドープ酸化スズ)、GTO(ガリウムドープ酸化スズ)等の導電性の膜を配置したものを例示することができる。なお、生産性、機械的強度、価格、軽量性の観点からは、金属板又はITOであることが好ましい。 The pair of electrodes 2a and 2b in the capacitor 1 have conductivity and have a function of holding an electrolytic solution, and the material is not limited, but a conductive plate or an insulating plate is used. An example in which a conductive film is arranged on the surface can be exemplified. Examples of the conductive plate include, for example, a metal plate and a carbon plate, and examples of the conductive plate having the conductive film arranged on the insulating plate include insulation of glass, polyester film, polycarbonate film, and the like. Conductive film such as ITO (indium tin oxide), IZO (indium zinc oxide), FTO (fluorine-doped tin oxide), ATO (aluminum-doped tin oxide), GTO (gallium-doped tin oxide), etc. Can be illustrated by arranging. From the viewpoint of productivity, mechanical strength, price, and light weight, a metal plate or ITO is preferable.

また一対の電極2a、2bの間の距離は、充放電反応が可能である限りにおいて限定されるわけではないが、10μm以上5cm以下であることが好ましく、100μm以上1cm以下であることがより好ましい。10μm以上とすることで充放電の電気化学反応を生じさせるための電気二重層の十分な成長を行わせることができ、5cm以下とすることで軽量・コンパクト化が可能となる。 The distance between the pair of electrodes 2a and 2b is not limited as long as the charge / discharge reaction is possible, but is preferably 10 μm or more and 5 cm or less, and more preferably 100 μm or more and 1 cm or less. .. When the thickness is 10 μm or more, the electric double layer can be sufficiently grown to cause an electrochemical reaction of charge and discharge, and when the thickness is 5 cm or less, the weight and size can be reduced.

本キャパシタ1における銅ナノ構造物3は、実電極面積を拡大することができるよう形成されるものである。銅ナノ構造物としては、電極面積を拡大できる限りにおいて限定されるわけではないが、銅ナノワイヤー、銅ナノデンドライト、ポーラス銅、銅ナノ・マイクロビーズ等を例示することができ、より大きな実表面積を形成できる観点から銅ナノワイヤーであることがより好ましい。銅ナノ構造物の形成される量としては、十分な実表面積が得られる限りにおいて限定されず、例えば10μg/cm以上1g/cm以下であることが好ましく、より好ましくは50μg/cm以上500mg/cm以下である。 The copper nanostructure 3 in the present capacitor 1 is formed so that the actual electrode area can be expanded. The copper nanostructure is not limited as long as the electrode area can be expanded, but copper nanowires, copper nanodendrites, porous copper, copper nano / microbeads and the like can be exemplified, and a larger actual surface area can be exemplified. It is more preferable to use copper nanowires from the viewpoint of forming the above. The amount of the copper nanostructure formed is not limited as long as a sufficient actual surface area can be obtained , and is preferably, for example, 10 μg / cm 2 or more and 1 g / cm 2 or less, and more preferably 50 μg / cm 2 or more. It is 500 mg / cm 2 or less.

また、本キャパシタ1における銅ナノ構造物は、一方の電極にのみ形成されていてもよいが、両方の電極上に形成されていても良い。 Further, the copper nanostructure in the present capacitor 1 may be formed on only one electrode, but may be formed on both electrodes.

また本キャパシタ1における電解液は、イオン伝導による電流が流れる媒体であって、限定されるわけではないが、少なくとも溶媒と支持電解質から成る液体電解質、ゲル電解質又は固体電解質である。 The electrolytic solution in the present capacitor 1 is a medium through which a current flows due to ionic conduction, and is not limited, but is a liquid electrolyte, a gel electrolyte, or a solid electrolyte composed of at least a solvent and a supporting electrolyte.

また本キャパシタ1の電解液における溶媒としては、支持電解質を保持し、かつイオンに解離することができるものであり、この限りにおいて限定されるわけではないが、例えば水、有機溶媒、ゲル状物質、固体電解質を例示することができ、作動電圧の拡大、従ってエネルギー密度の向上の観点からはアセトニトリル、プロピレンカーボネート、N―メチルピロリドン、γ―ブチロラクトン等の有機溶媒であることがより好ましい。 The solvent in the electrolytic solution of the present capacitor 1 can retain the supporting electrolyte and dissociate into ions, and is not limited to this, but is, for example, water, an organic solvent, or a gel-like substance. , Solid electrolyte can be exemplified, and organic solvents such as acetonitrile, propylene carbonate, N-methylpyrrolidone, and γ-butyrolactone are more preferable from the viewpoint of expanding the operating voltage and therefore improving the energy density.

また本キャパシタ1における電解液の支持電解質は、媒体中でイオンに解離しイオン伝導を発現することができるものであり、この限り限定されるわけではないが、例えば溶媒として水を用いた場合、LiCl、LiBr、LiSO、LiOH、LiClO、NaCl、NaBr、NaSO、NaOH、NaClO、KCl、KBr、KSO、KOH、KClO、(CNOHを挙げることができ、溶媒として有機溶媒を用いた場合、(CNClO、(CNBF、(CNPF、(CNClO、(CNBF、(CNPF、LiClO、NaClO、KClO、(CNOHを挙げることができる。銅ナノ構造物と水系の溶媒を組み合わせたキャパシタを形成する場合、銅ナノ構造物の化学的安定性の観点からはLiOH、NaOH、KOH、(CNOH及び(CNOHであることが好ましい。支持電解質の含まれる量としては、上記機能を奏することができる限りにおいて限定されるわけではないが、溶媒の重量を100重量部とした場合に、0.0002重量部以上300重量部以下であることが好ましく、0.002重量部以上40重量部以下であることがより好ましい。0.0002重量部以上とすることで充放電電気化学反応における電気二重層の形成を十分に行うことが可能となり、300重量部以下とすることで、電解液の粘度を高くなり過ぎないようにすることができ、電解液中におけるイオンの移動をスムースに行うことができ、充放電に必要となる時間を短縮することが可能となる。 Further, the supporting electrolyte of the electrolytic solution in the present capacitor 1 is capable of dissociating into ions in a medium and exhibiting ionic conduction, and is not limited thereto, but for example, when water is used as the solvent, LiCl, LiBr, Li 2 SO 4 , LiOH, LiClO 4 , NaCl, NaBr, Na 2 SO 4 , NaOH, NaClO 4 , KCl, KBr, K 2 SO 4 , KOH, KClO 4 , (C 2 H 5 ) 4 NOH When an organic solvent is used as the solvent, (C 2 H 5 ) 4 NaClO 4 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NPF 6 , (C 4 H 9) ) 4 NClO 4 , (C 4 H 9 ) 4 NBF 4 , (C 4 H 9 ) 4 NPF 6 , LiClO 4 , NaClO 4 , KClO 4 , (C 4 H 9 ) 4 NOH. When forming a capacitor in which a copper nanostructure and an aqueous solvent are combined, LiOH, NaOH, KOH, (C 2 H 5 ) 4 NOH and (C 4 H 9) are used from the viewpoint of the chemical stability of the copper nanostructure. ) 4 NOH is preferable. The amount of the supporting electrolyte contained is not limited as long as it can perform the above functions, but is 0.0002 parts by weight or more and 300 parts by weight or less when the weight of the solvent is 100 parts by weight. It is preferably 0.002 parts by weight or more and 40 parts by weight or less. When the amount is 0.0002 parts by weight or more, the electric double layer can be sufficiently formed in the charge / discharge electrochemical reaction, and when the amount is 300 parts by weight or less, the viscosity of the electrolytic solution is not excessively increased. It is possible to smoothly move ions in the electrolytic solution, and it is possible to shorten the time required for charging and discharging.

本キャパシタ1は、電極上に銅ナノ構造物を配置することで、電極の実表面積が拡大し、かつ銅ナノ構造物表面は可逆的な電気化学的酸化反応(充電)及び還元反応(放電)を受けるために、より安定的な充放電特性を発現する、より高エネルギーかつ高出力の電気化学キャパシタとなる。本実施形態に係る電気化学キャパシタは、銅ナノ構造物表面で生じる可逆的な電気化学酸化還元反応を利用するので、レドックスキャパシタに分類される。 In this capacitor 1, by arranging the copper nanostructure on the electrode, the actual surface area of the electrode is expanded, and the surface of the copper nanostructure is reversible electrochemical oxidation reaction (charge) and reduction reaction (discharge). Therefore, it becomes a higher energy and higher output electrochemical capacitor that exhibits more stable charge / discharge characteristics. The electrochemical capacitor according to the present embodiment is classified as a redox capacitor because it utilizes a reversible electrochemical redox reaction occurring on the surface of copper nanostructures.

(充放電方法)
次に、本キャパシタの充放電方法(以下「本方法」という。)について説明する。本方法は、外部の駆動装置と接続され、一対の電極間に電圧を印加して電荷を蓄積すると共に、短絡する又は逆の電圧を印加することによって蓄積電荷を放出することができる。より具体的に、参照電極(例えば飽和カロメル電極SCE)を用いた場合で説明すると、印加する電圧としては、充電が可能であり、材料の分解電圧を越えない限りにおいて限定されるわけではないが、参照電極SCEに対し負の電位を印加することが含まれている必要があり、好ましくは−2V以上1V以下の範囲の電位とすることが好ましく、より好ましくは−1.5V以上0.75V以下の範囲の電圧とすることが好ましい。
(Charging / discharging method)
Next, a charging / discharging method (hereinafter referred to as “the method”) of the present capacitor will be described. This method is connected to an external drive device, and a voltage can be applied between a pair of electrodes to accumulate an electric charge, and a short circuit or a reverse voltage can be applied to release the accumulated electric charge. More specifically, when a reference electrode (for example, a saturated calomel electrode SCE) is used, the voltage to be applied is not limited as long as it can be charged and does not exceed the decomposition voltage of the material. , It is necessary to include applying a negative potential to the reference electrode SCE, preferably the potential is in the range of -2V or more and 1V or less, and more preferably -1.5V or more and 0.75V. The voltage is preferably in the following range.

より具体的に説明すると、後述の実験例から明らかとなるが、銅ナノ構造物を備えた電極を作製し、電位測定範囲を負の電圧範囲を含む範囲、より具体的には−1.5〜0.75と設定し、サイクリックボルタンメトリーを行ったところ、この範囲でも良好な酸化還元繰り返し特性をもち、下記式で示す酸化銅(I)から銅への還元、更には酸化銅(II)から銅への還元を行われる。すなわち、この二段階の還元によって、飛躍的により多くの電荷を蓄えることができる。

Figure 0006903312
More specifically, as will be clarified from the experimental examples described later, an electrode having a copper nanostructure is produced, and the potential measurement range is a range including a negative voltage range, more specifically -1.5. Cyclic voltammetry was performed with the value set to ~ 0.75. As a result, good redox repetition characteristics were obtained even in this range, and copper (I) oxide represented by the following formula was reduced to copper, and copper (II) oxide was further reduced. Is reduced to copper. That is, this two-step reduction can dramatically store more charge.
Figure 0006903312

以上、本発明によって、より高容量のキャパシタの充放電方法を提供することが可能となる。 As described above, the present invention makes it possible to provide a method for charging / discharging a capacitor having a higher capacity.

以下、上記実施形態において説明した電気化学キャパシタ電極について、実際に作製し、その効果を確認した。以下に説明する。 Hereinafter, the electrochemical capacitor electrodes described in the above embodiments have been actually manufactured and their effects have been confirmed. This will be described below.

3Mアンモニア水に銅アンミン錯体[Cu(NH]SOを終濃度が25mMになるように加え、導電性塩としてLiSOを終濃度が0.1Mになるように加え、銅アンミン錯体水溶液を得た。この溶液を用い、陰極としてITO、陽極として白金板、参照電極として飽和カロメル電極を使用し、溶液温度18℃、電解電位−1.45V、通電量2.0C/cmで電気分解を行い、陰極上に銅ナノ構造物として銅ナノワイヤーを形成した。 Copper ammine complex [Cu (NH 3 ) 4 ] SO 4 was added to 3M aqueous ammonia so that the final concentration was 25 mM, and Li 2 SO 4 as a conductive salt was added so that the final concentration was 0.1 M, and copper was added. An aqueous solution of ammine complex was obtained. Using this solution, using ITO as the cathode, a platinum plate as the anode, and a saturated calomel electrode as the reference electrode, electrolysis was performed at a solution temperature of 18 ° C., an electrolytic potential of -1.45 V, and an energization amount of 2.0 C / cm 2. A copper nanowire was formed as a copper nanostructure on the cathode.

次に、キャパシタ特性を評価するために電気化学アナライザー(ALS Japan Inc. Model 750A)を用いて、水酸化リチウム水溶液中での繰り返しサイクリックボルタメトリーを行った。具体的には3電極式のガラスセルを用いて、動作電極に銅ナノワイヤー電極(硫酸テトラアンミン銅25mM、電解電位−1.45V、LiSO濃度0.1M、アンモニア水濃度3Mおよび通電電気量2.0C/cmの最適条件下で作製した)を、参照電極にSCE、そして対向電極には白金板を用いた。電解液は水酸化リチウム水溶液(0.1M)を用いた。掃引範囲は−1.5V〜0.75Vとした。この結果を図2に示す。 Next, repeated cyclic voltammetry in an aqueous solution of lithium hydroxide was performed using an electrochemical analyzer (ALS Japan Inc. Model 750A) to evaluate the capacitor characteristics. Specifically, a 3-electrode glass cell is used, and a copper nanowire electrode (tetraammine sulfate 25 mM, electrolytic potential −1.45 V, Li 2 SO 4 concentration 0.1 M, ammonia water concentration 3 M, and energizing electricity are used as operating electrodes. were prepared under optimal conditions amounts 2.0C / cm 2), SCE as a reference electrode, and the counter electrode was a platinum plate. A lithium hydroxide aqueous solution (0.1 M) was used as the electrolytic solution. The sweep range was −1.5V to 0.75V. The result is shown in FIG.

次に、文献を元にこれらの酸化還元波の帰属を行った。説明の簡便のために、−0.3V付近の酸化波をA、0.4V付近のピークをBとした。この2つの反応は文献よりそれぞれ銅から酸化銅(I) 、 酸化銅(II)への酸化であることがわかっている。しかしそれぞれの銅への還元の順序は諸説あるため、その対応するピークの検討をした。なお、逆のこれらの還元波をC及びDとした。 Next, these redox waves were assigned based on the literature. For the sake of simplicity, the oxidation wave near −0.3V was designated as A, and the peak near 0.4V was designated as B. It is known from the literature that these two reactions are oxidation of copper to copper (I) oxide and copper (II) oxide, respectively. However, since there are various theories about the order of reduction to copper, the corresponding peaks were examined. The opposite reduction waves were designated as C and D.

掃引範囲を種々変えて検討を行った結果、Cの反応では酸化銅(I)から銅への還元、Dの反応では酸化銅(II)から銅への還元が行われていることがわかった。正確には上記実施形態において示した(1)及び(2)の電気化学反応式が起こっていることを確認した。すなわち、充放電の電位範囲に負の電圧範囲を含めることでこの反応を起こすことが可能であり、高い充放電を行うことのできるキャパシタの充放電方法となる。 As a result of examining various changes in the sweep range, it was found that the reduction of copper (I) oxide to copper was carried out in the reaction of C, and the reduction of copper (II) oxide to copper was carried out in the reaction of D. .. To be precise, it was confirmed that the electrochemical reaction formulas (1) and (2) shown in the above embodiment were occurring. That is, this reaction can be caused by including a negative voltage range in the charging / discharging potential range, which is a method of charging / discharging a capacitor capable of performing high charging / discharging.

次にこれら酸化反応を充電、これら還元反応を放電と見立てて、充放電試験を行った。図3に、電極面積1.0×1.0cm、一定電流5.6V/gを通電したときに得られる充放電特性(電位と時間の関係)を示す。なお、充放電試験を繰り返す度に充放電にかかる時間が減少し容量が減少したが、繰り返し回数2〜50回までと60回以降では放電曲線の形が変わっていた。放電曲線の形から初めの50回では、−1Vで酸化銅(II)と酸化銅(I)が同時に銅へ還元されていたが、60回以降の充放電では、放電過程が2段階になった。なおここで60回以降の充放電曲線を拡大したものを図4に示しておく。波形がこのように2段階になったのは、酸化銅(II)から酸化銅(I)へ、そして酸化銅(I)から銅への2段階で還元が進んでいることを示す。 Next, these oxidation reactions were charged, and these reduction reactions were regarded as discharges, and a charge / discharge test was performed. FIG. 3 shows the charge / discharge characteristics (relationship between potential and time) obtained when an electrode area of 1.0 × 1.0 cm 2 and a constant current of 5.6 V / g are applied. Each time the charge / discharge test was repeated, the time required for charge / discharge decreased and the capacity decreased, but the shape of the discharge curve changed from 2 to 50 times and after 60 times. From the shape of the discharge curve, copper (II) oxide and copper (I) oxide were reduced to copper at the same time at -1V in the first 50 times, but in the charge / discharge after 60 times, the discharge process becomes two stages. It was. Here, FIG. 4 shows an enlarged view of the charge / discharge curve after 60 times. The fact that the waveform has two stages in this way indicates that the reduction proceeds in two stages from copper (II) oxide to copper (I) oxide and from copper (I) oxide to copper.

また上記放電曲線の解析から、放電容量を求めた。少なくとも40回の充放電において300mAh/gを超え、市販されているリチウムイオン電池の100〜200mAh/gを大きく超えていることを確認した。

Figure 0006903312
Further, the discharge capacity was obtained from the analysis of the discharge curve. It was confirmed that it exceeded 300 mAh / g in at least 40 times of charging and discharging, and greatly exceeded 100 to 200 mAh / g of a commercially available lithium ion battery.
Figure 0006903312

また、充放電時の電流密度を6.25A/gに変えた場合の結果を図5、下記表に示す。この結果では、少なくとも100回、放電容量が200mAh/gを超えた値を示し、これも市販のリチウムイオン電池の放電容量を凌ぐ容量となった。

Figure 0006903312
The results when the current density during charging / discharging is changed to 6.25 A / g are shown in FIG. 5 and the table below. As a result, the discharge capacity showed a value exceeding 200 mAh / g at least 100 times, which also exceeded the discharge capacity of a commercially available lithium ion battery.
Figure 0006903312

以上、本発明の有効性について確認した。 The effectiveness of the present invention has been confirmed above.

本発明は、キャパシタの充放電方法として産業上の利用可能性がある。 The present invention has industrial applicability as a method for charging and discharging a capacitor.

Claims (4)

動作電極と、前記動作電極に対向して配置される対向電極と、前記動作電極と前記対向電極の間に充填される電解液と、を含むキャパシタの充電方法であって、
前記動作電極は、表面に銅ナノ構造物を備えたものであり、
飽和カロメル参照電極を用いて前記動作電極の電位を計測した場合に、前記飽和カロメル参照電極に対する前記動作電極の電位が前記動作電極において酸化銅の還元反応が生じる負の電位範囲を含むように充放電を行うキャパシタの充放電方法。
A method for charging a capacitor including an operating electrode, a counter electrode arranged to face the operating electrode, and an electrolytic solution filled between the operating electrode and the counter electrode.
The operating electrode has a copper nanostructure on its surface, and has a copper nanostructure on its surface.
If you measure the potential of the working electrode using a saturated calomel reference electrode, the potential of the working electrode that pairs with the saturated calomel reference electrode, including a negative potential range where the reduction reaction takes place in the copper oxide in said working electrode A method of charging and discharging a capacitor that charges and discharges so as to be used.
前記銅ナノ構造物は、銅ナノワイヤーである請求項1記載のキャパシタの充放電方法。 The method for charging / discharging a capacitor according to claim 1, wherein the copper nanostructure is a copper nanowire. 前記飽和カロメル参照電極に対し、前記動作電極の電位が−2V以上1V以下の範囲となるように充放電を行う請求項1記載のキャパシタの充放電方法。 The method for charging / discharging a capacitor according to claim 1, wherein the saturated calomel reference electrode is charged / discharged so that the potential of the operating electrode is in the range of -2 V or more and 1 V or less. 前記電解は、水酸化物イオンを含む請求項1記載のキャパシタの充放電方法。 The method for charging / discharging a capacitor according to claim 1, wherein the electrolytic solution contains hydroxide ions.
JP2017073277A 2017-03-31 2017-03-31 Capacitor charging / discharging method. Active JP6903312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073277A JP6903312B2 (en) 2017-03-31 2017-03-31 Capacitor charging / discharging method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073277A JP6903312B2 (en) 2017-03-31 2017-03-31 Capacitor charging / discharging method.

Publications (2)

Publication Number Publication Date
JP2018174288A JP2018174288A (en) 2018-11-08
JP6903312B2 true JP6903312B2 (en) 2021-07-14

Family

ID=64108754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073277A Active JP6903312B2 (en) 2017-03-31 2017-03-31 Capacitor charging / discharging method.

Country Status (1)

Country Link
JP (1) JP6903312B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503456A (en) * 2000-05-24 2004-02-05 ファインセル カンパニー リミテッド Medium porous carbon material, carbon / metal oxide composite material, and electrochemical capacitor using the material
JP5574158B2 (en) * 2010-03-18 2014-08-20 国立大学法人 千葉大学 Method for producing copper nanostructure

Also Published As

Publication number Publication date
JP2018174288A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
Sun et al. A capacity recoverable zinc-ion micro-supercapacitor
Kalinathan et al. Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities
Huskinson et al. Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage
Faisal et al. Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery
JP2013082606A5 (en)
Alzaid et al. Binary composites of nickel-manganese phosphates for supercapattery devices
JP2019516236A (en) Device and method for high voltage and solar cells
Obeidat et al. Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage
CN102176380B (en) A kind of redox reaction electrochemical capacitor
Sahin et al. A review on supercapacitor materials and developments
KR20140071603A (en) Electrolyte solution including all organic redox couples and redox flow battery using the same
CN103361698A (en) Method for preparing supercapacitor electrode material by means of coelectrodeposition
JP2008066681A (en) Electrochemical capacitor and method of manufacturing zinc electrode used in the electrochemical capacitor
Cai et al. Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect
Shi et al. Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate
Deng et al. 2.2 V wearable asymmetric supercapacitors based on Co oxide//Mn oxide electrodes and a PVA-KOH-urea-LiClO4 alkaline gel electrolyte
JP2008205485A5 (en)
Obeidat et al. Electrochemical performance of MnO2 for energy storage supercapacitors in solid-state design
CN109686595B (en) Activation method of conductive carbon cloth and application of supercapacitor of conductive carbon cloth
CN109786861B (en) Hybrid electrochemical energy storage device
JP2015088723A (en) Capacitor, and method for manufacturing the same
CN103915611A (en) Water-based aluminum ion battery positive electrode material and preparation method thereof
JP6903312B2 (en) Capacitor charging / discharging method.
Zhang et al. A novel zinc ion supercapacitor with ultrahigh capacity and ultralong cycling lives enhanced by redox electrolyte
JP5158045B2 (en) Method and apparatus for electrolysis of Group 2 element oxides

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6903312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150