JP6902197B2 - A mold for wood flow molding, a mold system for wood flow molding using the same, and a method for manufacturing a molded product made of a plant-based material. - Google Patents
A mold for wood flow molding, a mold system for wood flow molding using the same, and a method for manufacturing a molded product made of a plant-based material. Download PDFInfo
- Publication number
- JP6902197B2 JP6902197B2 JP2018552451A JP2018552451A JP6902197B2 JP 6902197 B2 JP6902197 B2 JP 6902197B2 JP 2018552451 A JP2018552451 A JP 2018552451A JP 2018552451 A JP2018552451 A JP 2018552451A JP 6902197 B2 JP6902197 B2 JP 6902197B2
- Authority
- JP
- Japan
- Prior art keywords
- wood
- mold
- molding
- plant
- flow molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002023 wood Substances 0.000 title claims description 98
- 239000000463 material Substances 0.000 title claims description 80
- 238000000465 moulding Methods 0.000 title claims description 78
- 238000000034 method Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000003746 surface roughness Effects 0.000 claims description 23
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 229910001315 Tool steel Inorganic materials 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 description 19
- 239000000047 product Substances 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- 239000004033 plastic Substances 0.000 description 14
- 229920003023 plastic Polymers 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 238000007493 shaping process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 4
- 235000017491 Bambusa tulda Nutrition 0.000 description 4
- 241001330002 Bambuseae Species 0.000 description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 4
- 239000011425 bamboo Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229920002522 Wood fibre Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000002025 wood fiber Substances 0.000 description 3
- 241000218691 Cupressaceae Species 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 206010058109 Hangnail Diseases 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910001214 P-type tool steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N5/00—Manufacture of non-flat articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K5/00—Treating of wood not provided for in groups B27K1/00, B27K3/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/36—Moulds for making articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Description
本発明は、木材や竹などの植物系材料の流動成形に好適に使用される金型に関するものであり、さらに詳しくは、樹脂などの添加剤が含浸された植物系材料を加熱コンテナに投入し、パンチ加圧によって10MPa以上で、かつ、100℃以上の高温・高圧を作用させて木質流動現象を生じさせ、任意のキャビティ形状を有する金型へ流動せしめ賦形する流動成形によって、精密仕上げ面と同程度の表面精度を有する良好な植物成形体を得るための金型及びそれを用いた木質流動成形用金型システム並びに植物系材料の成形体の製造方法に関するものである。 The present invention relates to a mold suitably used for fluid molding of a plant-based material such as wood or bamboo, and more specifically, a plant-based material impregnated with an additive such as a resin is put into a heating container. Precisely finished surface by flow molding, which causes a wood flow phenomenon by applying high temperature and high pressure of 10 MPa or more and 100 ° C or more by punch pressurization, and flows into a mold having an arbitrary cavity shape. The present invention relates to a mold for obtaining a good plant molded product having the same surface accuracy as that of the above, a mold system for wood flow molding using the mold, and a method for producing a molded product of a plant-based material.
本発明は、従来のプラスチック用金型を用いた木質流動成形では、金型摺動箇所のかじり、変形など金型損傷が生じたりするという金型側の問題点と、バリなどにより高摩擦状態が引き起こす成形荷重の増大、キャビティ表面性状の悪化によって良好な表面性状の流動成形体が得られないという成形品側の課題の解決に加えて、上記課題・問題点の解決による成形荷重の低減、バリの抑制、複雑形状への賦形、極薄成形への賦形などの容易にする木質流動成形用金型を提供するものである。 The present invention has a problem on the mold side that mold damage such as galling and deformation of the sliding portion of the mold occurs in the conventional wood flow molding using a plastic mold, and a high friction state due to burrs and the like. In addition to solving the problem on the molded product side that a fluid molded body with good surface texture cannot be obtained due to the increase in molding load caused by the above and the deterioration of the cavity surface texture, reduction of the molding load by solving the above problems and problems, It provides a mold for wood flow molding that facilitates burrs suppression, shaping into complex shapes, shaping into ultra-thin molding, and the like.
木質流動成形は、木材や竹などの植物系材料を膨潤・軟化状態で熱及び圧力を作用させて任意の金型を用いて成形する特許文献1にある植物系材料の成形方法である。圧縮加工のように木質細胞の内腔の閉塞によって緻密化させて形状変化を与える方法と比べて、木質細胞間のすべり現象による位置変化によって変形を与えるため、より大きな変形量を与えることができる。それにより、従来の圧縮加工のみでは不可能であった任意形状の木質系材料の塑性加工を実現できるうえ、繊維状の木質細胞の損傷が抑えられるため、得られる成形体の各種物性面には繊維補強効果を持たせることができる。さらに、特許文献2にあるように、膨潤・軟化及び成形体の各種物性向上のために各種添加剤を使用する方法なども開発されている。そのなかでも木質細胞に浸透可能で、溶媒を用いて含浸可能な樹脂を使用した樹脂含浸木質系材料を素材にして流動成形を行う方法が実用化されている。
Woody fluid molding is a method for molding a plant-based material according to
木質流動成形は金型を用いた塑性加工の一種であり、特に、木質材はセルロース、ヘミセルロース、リグニンからなる天然高分子素材に、添加剤を用いる場合はフェノール樹脂、メラミン樹脂、ユリア樹脂などの熱硬化性樹脂やアクリル樹脂、スチレン樹脂、ウレタン樹脂などの熱可塑性樹脂が好適に用いられる。そのため、プラスチック用金型を用いて各種塑性加工法の転用がなされている。 Wood flow molding is a type of plastic processing using a mold. In particular, wood materials are natural polymer materials consisting of cellulose, hemicellulose, and lignin, and when additives are used, phenol resin, melamine resin, urea resin, etc. are used. Thermoplastic resins such as thermosetting resins, acrylic resins, styrene resins, and urethane resins are preferably used. Therefore, various plastic working methods have been diverted using plastic dies.
しかしながら、汎用のプラスチック用金型を用いて木質材や木質材に樹脂を含浸させた樹脂含浸木質系材料の流動成形を行おうとした場合、組織細胞レベルでの硬さ・強度の違いが大きいという特殊な流動成形用素材が原因と思われる金型材質の強度不足による金型の破損やキャビティの磨耗、キャビティの凹凸変形、高温・高圧で木質材から生じる酸を含む腐食性成分による金型腐食、特異な変形異方性が起因する過剰なバリの発生とそれに伴う摺動部金型のかじり、成形荷重の増大などが生じ、良好な木質流動成形体を得ることが困難となる。 However, when trying to flow-mold a wood material or a resin-impregnated wood-based material in which a wood material is impregnated with a resin using a general-purpose plastic mold, there is a large difference in hardness and strength at the tissue cell level. Mold damage and cavity wear due to insufficient strength of the mold material, which is thought to be caused by a special fluid molding material, uneven deformation of the cavity, and mold corrosion due to corrosive components including acid generated from wood materials at high temperature and high pressure. , Excessive burrs due to peculiar deformation anisotropy, galling of the sliding portion mold, increase in molding load, etc. occur, and it becomes difficult to obtain a good wood flow molded body.
本出願人等により、特許文献3、特許文献4、特許文献5では、木質流動成形による板材の製造方法及び装置、木質流動成形による長尺部材の製造方法などが提案されている。これらの木質流動成形では主にプリハードン系プラスチック金型用鋼(ロックウェル硬さHRC40程度)を用いており、上述した問題点が明らかになっている。
本発明者らは、木質流動成形の良好な実施形態を探求するべく金属の鍛造用金型を用いた鋭意研究のなかで、上述の問題の原因を突き止めた。それは、金型素地硬度の適正調整、高温・高圧下において金型表面と木質材との良好な潤滑状態を維持し、同時に耐腐食性を実現する被覆種・条件の適正調整、摺動部における適正なクリアランス量及び面粗度の設定が重要であることを見出した。In Patent Document 3, Patent Document 4, and Patent Document 5, the applicant and the like have proposed a method and apparatus for manufacturing a plate material by wood flow molding, a method for manufacturing a long member by wood flow molding, and the like. In these woody flow moldings, pre-hardened plastic mold steel (Rockwell hardness HRC40) is mainly used, and the above-mentioned problems have been clarified.
The present inventors have identified the cause of the above-mentioned problems in an earnest study using a metal forging die in order to search for a good embodiment of wood flow molding. It is the proper adjustment of the hardness of the mold base, the proper adjustment of the coating type and conditions that maintain good lubrication between the mold surface and the wood material under high temperature and high pressure, and at the same time realize the corrosion resistance, and the sliding part. It was found that it is important to set an appropriate clearance amount and surface roughness.
このような状況のなかで、本発明者は、上記従来技術に鑑みて、上記従来技術の諸問題を確実に解決し得るとともに、樹脂含浸木質系材料の木質流動成形において、温度100〜200℃で10〜400MPaの面圧下での良好な摩擦状態を維持する被膜種と被膜条件及び素地硬度、摺動部においてバリの発生を抑制するクリアランス量、キャビティの表面粗さの適正設定によって、成形性及び離型性を改善し表面精度の良好な流動成形体が繰返し製造可能で、かつ、金型及びキャビティの損傷・腐食を低減できる木質流動成形用金型の製作を実現するに至った。 Under such circumstances, the present inventor can surely solve the problems of the prior art in view of the prior art, and in the wood flow molding of the resin-impregnated wood-based material, the temperature is 100 to 200 ° C. Formability by properly setting the coating type and coating conditions and substrate hardness that maintain a good frictional state under a surface pressure of 10 to 400 MPa, the amount of clearance that suppresses the occurrence of burrs on sliding parts, and the surface roughness of the cavity. In addition, it has become possible to repeatedly manufacture a flow-molded body having improved mold releasability and good surface accuracy, and to manufacture a wood flow-molding mold capable of reducing damage and corrosion of the mold and cavity.
本発明は、良好な木質流動成形品を工業的に生産するための木質流動成形金型及びそれを用いた木質流動成形用金型システム並びに植物系材料からなる成形体の製造方法を提供することを目的とするものである。 The present invention provides a wood flow molding die for industrially producing a good wood flow molded product, a wood flow molding die system using the same, and a method for producing a molded body made of a plant-based material. Is the purpose.
上記目的を達成するため、本発明の木質流動成形用金型は、木材や竹などの植物系材料に、圧力・熱を与えて木質細胞相互の位置変化を生じせしめて変形加工を行う流動成形において用いる金型であって、基材がロックウェル硬さHRC55以上の合金工具鋼であり、成形時に植物系材料に接する表面に窒化クロム被膜を有し、その表面粗さRaが0.1μm以内の鏡面仕上げ面を有し、10〜400MPaの圧力範囲下の無潤滑状態で、軟化温度域植物系材料との摩擦係数が0.2以下であることを特徴とする。 In order to achieve the above object, the wood flow molding die of the present invention is a flow molding in which pressure and heat are applied to a plant-based material such as wood and bamboo to cause a mutual positional change of wood cells to cause deformation processing. The base material is an alloy tool steel having a Rockwell hardness of HRC55 or more, and has a chromium nitride film on the surface in contact with a plant-based material during molding, and the surface roughness Ra thereof is within 0.1 μm. It is characterized by having a mirror-finished surface of No. 1 and having a friction coefficient of 0.2 or less with a plant-based material in a softening temperature range in a non-lubricated state under a pressure range of 10 to 400 MPa.
また、上記木質流動成形用金型を用いる本発明の木質流動成形用金型システムは、木質流動成形用金型システム請求項1に記載の複数の金型の摺動部のクリアランスが0.015mm以下であることを特徴とする。
Further, in the wood flow molding mold system of the present invention using the wood flow molding mold, the clearance of the sliding portions of the plurality of molds according to
この場合において、複数の金型のうち、少なくとも一つはキャビティ金型であって、その密閉性を制御する機構を持つことを特徴とする。 In this case, at least one of the plurality of molds is a cavity mold, which is characterized by having a mechanism for controlling its hermeticity.
また、上記木質流動成形用金型システムを用いる本発明の植物系材料からなる成形体の製造方法は、上記木質流動成形用金型システムを用いて、キャビティ表面温度が100〜200℃、パンチ負荷面圧10〜400MPa、パンチ速度の最大が2mm/sの成形条件で成形する、表面粗さRaを0.025〜1.6μmの範囲の滑らかな表面性状を有する熱可塑性又は熱硬化性樹脂含有の植物系材料からなる成形体を製造することを特徴とする。 Further, in the method for producing a molded product made of the plant-based material of the present invention using the above-mentioned wood flow molding mold system, the cavity surface temperature is 100 to 200 ° C. and a punch load is obtained by using the above-mentioned wood flow molding mold system. Contains a thermoplastic or thermosetting resin having a smooth surface texture with a surface roughness Ra in the range of 0.025 to 1.6 μm, which is molded under molding conditions with a surface pressure of 10 to 400 MPa and a maximum punching speed of 2 mm / s. It is characterized by producing a molded product made of the plant-based material of.
本発明により、次のような効果が奏される。
(1)従来のプラスチック用金型を用いた木質流動成形で問題となっていた、金型摺動箇所のかじり、変形など金型損傷を防止する。
(2)植物系材料の特異な流動異方性に起因するバリなどにより高摩擦状態が引き起こす成形荷重の増大、キャビティ表面性状の悪化を防ぐことによって良好な表面性状の流動成形体を得ることができる。
(3)成形荷重の低減、バリの抑制、複雑形状への賦形、極薄成形への賦形などを容易にする木質流動成形用金型を提供することができる。
(4)金型寿命を向上させて、良好な木質流動成形品を工業的に生産することができる。
(5)本発明で使用する植物系材料は、循環型資源である植物系材料を原料としているため、資源問題、廃棄物問題に対する根本的な解決策となり得る。According to the present invention, the following effects are achieved.
(1) Prevents mold damage such as galling and deformation of the sliding portion of the mold, which has been a problem in conventional wood flow molding using a plastic mold.
(2) It is possible to obtain a fluid molded article having good surface properties by preventing an increase in molding load caused by a high friction state due to burrs caused by the peculiar flow anisotropy of plant-based materials and deterioration of cavity surface properties. it can.
(3) It is possible to provide a wood flow molding die that facilitates reduction of molding load, suppression of burrs, shaping into complex shapes, shaping into ultrathin molding, and the like.
(4) It is possible to improve the life of the mold and industrially produce a good wood fluid molded product.
(5) Since the plant-based material used in the present invention is made from a plant-based material which is a recyclable resource, it can be a fundamental solution to the resource problem and the waste problem.
木質流動成形を良好に実施するための金型条件としては、木質材特有の繊維構造とその強度の多大なバラツキ、加熱・加圧時の腐食性ガス・物質を考慮して、木質材との界面となる金型表面の適正化、その表面を保持するための適切な基材の選択、さらに、それら金型を複数個利用して配置・動作させるための相互の位置条件の適正化及びキャビティ密閉機構を金型システムとして構成したうえで、この木質流動成形用金型を用いて成形条件の最適化を行うことが重要である。 As the mold conditions for satisfactorily performing wood flow molding, considering the fiber structure peculiar to wood material, a large variation in its strength, and corrosive gases and substances during heating and pressurization, it is possible to use wood material. Optimization of the mold surface as an interface, selection of an appropriate base material for holding the surface, optimization of mutual positional conditions and cavities for arranging and operating a plurality of these molds. After configuring the sealing mechanism as a mold system, it is important to optimize the molding conditions using this wood flow molding mold.
本発明における金型とは、木質系材料の供給部となるコンテナ部、木質系材料に荷重を加えるパンチ、流動した木質系材料の形状を整えるダイス、流動した木質系材料を最終製品形状へと賦形するキャビティなどを指す。
そして、代表的な木質流動成形方法、具体的には、例えば、前方押出し、後方押出し、側方押出し、射出成形・トランスファー成形、密閉鍛造に基づく金型構成を図1に示すが、通常、木質流動成形は、素材となる樹脂含浸木質材を供給するコンテナ部2、その木質材に圧力を加えるパンチ1、そして、所要形状を持つダイス3、キャビティ部4から構成される金型を用いて行われる。これらの金型構成において、それぞれの金型を組み合わせる場合には境界が生じることになり、また、相対的な位置変化(移動)がある場合には斜線部で示す摺動面が生じる。プラスチックや金属を素材とする場合には、摺動部でのクリアランスは、パンチ径、コンテナ内径に応じて設定する(0.5〜1.0%)。この値は、コンテナに充填した素材に対して、コンテナ内径がパンチ外径と良好な摺動を保ちつつガイド機能を果たし、良好な負荷を与えることのできるものであり、クリアランスが小さくなる場合に摺動領域で焼き付きなどが生じる、金型破損に至る。さらに、図1(e)及び図1(f)のようにキャビティを有する場合において、キャビティを完全密閉状態にした場合には、過剰なキャビティ内圧による金型破損、流動成形時の木質材からの揮発成分の発生などが原因となる表面粗化や未充填、物性低下を引き起こす。一方で、密閉状態を回避するために逃がし穴などを設けた場合、その断面積が過剰な場合では、多くのバリが発生することに加えて、成形体は背圧不足による材料充填不良が生じる。The mold in the present invention includes a container part that supplies wood-based materials, a punch that applies a load to the wood-based material, a die that adjusts the shape of the fluid wood-based material, and a fluid wood-based material into the final product shape. Refers to a cavity to be shaped.
A typical wood flow molding method, specifically, for example, a mold configuration based on forward extrusion, backward extrusion, lateral extrusion, injection molding / transfer molding, and closed forging is shown in FIG. The flow molding is carried out using a mold composed of a
本発明は、熱処理により硬度を調整された合金工具鋼に窒化クロムのコーティングを施し鏡面仕上げされたコンテナ内表面、パンチ表面、キャビティから構成することにより得られる木質流動成形用金型である。
また、合金工具鋼はSKD11相当でロックウェル硬さはHRC55以上であることが好ましい。
また、窒化クロム被膜のビッカース硬さは1600以上であることが好ましい。
また、窒化クロム被膜の表面粗さはRa0.1μm以内であることが好ましい。
また、窒化クロム被膜の厚さは2μm以上であることが好ましい。
また、窒化クロム被膜表面と木質材の成形条件下での摩擦係数が0.2以下であることが好ましい。
また、金型を構成するコンテナ、パンチ、キャビティ相互の摺動面及び木質材との接触が生じる箇所に上述の窒化クロム被膜を設けることが好ましい。
また、摺動部となるコンテナとパンチなどのクリアランス量は、0.015mm以下であることが好ましい。
キャビティには、密閉状態を制御する機構を設けることが好ましい。The present invention is a wood flow forming die obtained by forming a mirror-finished inner surface of a container, a punch surface, and a cavity by applying a chromium nitride coating to an alloy tool steel whose hardness has been adjusted by heat treatment.
Further, it is preferable that the alloy tool steel is equivalent to SKD11 and the Rockwell hardness is HRC55 or more.
The Vickers hardness of the chromium nitride film is preferably 1600 or more.
Further, the surface roughness of the chromium nitride film is preferably Ra 0.1 μm or less.
The thickness of the chromium nitride film is preferably 2 μm or more.
Further, it is preferable that the friction coefficient between the surface of the chromium nitride film and the wood material under the molding conditions is 0.2 or less.
Further, it is preferable to provide the above-mentioned chromium nitride film on the container, the punch, the sliding surface between the cavities, and the place where the contact with the wood material occurs, which constitutes the mold.
Further, the clearance amount between the container serving as the sliding portion and the punch or the like is preferably 0.015 mm or less.
It is preferable that the cavity is provided with a mechanism for controlling the closed state.
本発明によれば、例えば、流動成形時における成形荷重を低減させること、用いる木質材の含浸樹脂量を低減させること、より複雑な形状やより薄い木質流動成形体を製造すること、キャビティなどの破損や磨耗や腐食を防止し、金型の寿命を向上させることが可能となる。 According to the present invention, for example, reducing the molding load during flow molding, reducing the amount of impregnated resin of the wood material used, producing a more complicated shape or thinner wood flow molded body, cavities, etc. It is possible to prevent breakage, wear and corrosion and improve the life of the mold.
ここで、植物系材料からなる成形体の製造に当たっては、木質流動成形用金型システムを用いて、キャビティ表面温度が100〜200℃、パンチ負荷面圧10〜400MPa、パンチ速度の最大が2mm/sの成形条件で成形することができる。
これにより、表面粗さRaを0.025〜1.6μmの範囲の滑らかな表面性状を有する熱可塑性又は熱硬化性樹脂含有の植物系材料からなる成形体を製造することができる。Here, in the production of a molded product made of a plant-based material, a cavity surface temperature of 100 to 200 ° C., a punch load surface pressure of 10 to 400 MPa, and a maximum punch speed of 2 mm / It can be molded under the molding conditions of s.
This makes it possible to produce a molded product made of a plant-based material containing a thermoplastic or thermosetting resin having a smooth surface texture with a surface roughness Ra in the range of 0.025 to 1.6 μm.
ここで、本発明に記載のロックウェル硬さはJIS Z 2245に、表面粗さはJIS B 0601にそれぞれ基づいて、室温で測定した。 Here, the Rockwell hardness described in the present invention was measured at room temperature based on JIS Z 2245, and the surface roughness was measured based on JIS B 0601.
次に、本発明について根拠を示す実施例に基づいてさらに詳細に説明する。 Next, the present invention will be described in more detail based on examples showing the basis.
(金型基材)
樹脂を含浸した木質材の流動成形に好ましい金型基材を明らかにするため、プラスチック用金型用基材(アルミ合金 A5052P、大同特殊鋼製NAK 55)、金属材料成形用基材 ダイス鋼(SKD 11)からなる平板工具を用いて、樹脂含浸木質系材料としてフェノール樹脂含浸ヒノキ単板(重量増加率WPG:40%=樹脂含有率28.5%、φ13.2mm×厚さ4mm)、工材温度:140℃、最終プレス荷重110kN(面力:210MPa)の条件下でプレスした前後の工具表面を観察した。図2にその結果を示す。プラスチック用金型基材として汎用使用されるアルミ合金においては、プレス後に平板工具表面に樹脂含浸木質系材料の形状に沿った凹みが生じた。アルミ合金よりも硬度の高いNAK55においても、アルミ合金基材に比べると領域は小さいものの、流動変形を生じた樹脂含浸木質系材料の繊維細胞などの硬質部分に沿った凹みが生じた。これは、流動成形においては局所的な面圧の増大が生じることを想定した対策が必要であることがわかった。熱処理によって硬さを調整したダイス鋼の場合、HRC55以上において、プラスチック用金型基材で見られた工具表面の凹みは観察されなかった。(Mold base material)
In order to clarify the preferred mold base material for fluid molding of wood materials impregnated with resin, a base material for molds for plastics (aluminum alloy A5052P, NAK 55 made by Daido Special Steel), a base material for forming metal materials, die steel ( Using a flat plate tool made of SKD 11), a single plate of phenolic resin-impregnated hinoki as a resin-impregnated wood-based material (weight increase rate WPG: 40% = resin content 28.5%, φ13.2 mm x thickness 4 mm), The surface of the tool before and after pressing was observed under the conditions of a material temperature: 140 ° C. and a final press load of 110 kN (surface force: 210 MPa). The result is shown in FIG. In aluminum alloys, which are widely used as base materials for plastic dies, dents along the shape of resin-impregnated wood-based materials were formed on the surface of flat plate tools after pressing. Even in NAK55, which has a higher hardness than the aluminum alloy, although the region is smaller than that of the aluminum alloy base material, dents are formed along the hard parts such as fiber cells of the resin-impregnated wood-based material that has undergone flow deformation. It was found that this requires measures assuming that a local increase in surface pressure will occur in flow molding. In the case of die steel whose hardness was adjusted by heat treatment, dents on the tool surface seen in the plastic mold base material were not observed at HRC55 and above.
(被膜種類の影響)
木質流動成形用金型におけるコーティング被膜の種類の影響を検討するために、平板加熱圧縮試験後の離型性を、木質流動成形を想定した平板プレス試験における工具表面処理の違いによる離型性によって評価した。離型性の良し悪しは、解圧後の加熱状態でそのまま離れる場合を〇、圧縮後に工具冷却を行い熱膨張率の差によって離れる場合を△、冷却を行っても離れない場合を×とした。その結果を表1に示す。(Effect of film type)
In order to examine the influence of the type of coating film on the wood flow molding die, the releasability after the flat plate heat compression test is determined by the releasability due to the difference in the tool surface treatment in the flat plate press test assuming wood flow molding. evaluated. The good or bad of the releasability is 〇 when it leaves as it is in the heated state after decompression, Δ when it separates due to the difference in the coefficient of thermal expansion after cooling the tool after compression, and × when it does not separate even after cooling. .. The results are shown in Table 1.
表1に示すように、コーティング被膜の無い場合では、加熱圧縮によって流動した木質材が工具に張り付き、冷却後も離型することが困難であった。一方、コーティング被膜を設けた場合には、離型性は改善されたが、なかでも、加熱状態でそのまま離型した被膜は、窒化クロムであり、非常に良好な結果を示した。なお、この被膜は、耐熱性、耐摩耗性、耐久性の観点から、金属薄板のプレス用金型やプラスチック用金型として用いられる場合もあるが、木質流動成形においては、金属用、プラスチック用で好適とされるその他のDLCやTiCN被膜に対しては、離型性の面で良好な結果を得ることができなかった。 As shown in Table 1, in the absence of the coating film, the wood material that flowed by heating and compressing adhered to the tool, and it was difficult to release the mold even after cooling. On the other hand, when the coating film was provided, the releasability was improved, but among them, the film released as it was in the heated state was chromium nitride, which showed very good results. From the viewpoint of heat resistance, abrasion resistance, and durability, this coating may be used as a die for pressing a thin metal plate or a die for plastic, but in wood flow molding, it is used for metal and plastic. Good results could not be obtained in terms of mold releasability with respect to other DLC and TiCN coatings suitable for.
(コーティング被膜の効果)
窒化クロム系の被膜は、木材加工において、従来は切削用工具、特に回転切削用チップのコーティングとして、刃先の磨耗の低減と木材切削面性状の向上に効果を発揮してきた(特許文献6、木材学会誌 Vol.54(No.5)、p.263−271)。
木質流動成形用金型におけるコーティング被膜の効果を検討するために、HRC55以上に硬度を調整した合金工具鋼 SKD11 に窒化クロム被膜を5μmの厚さで物理蒸着させた平板工具と被膜の無いSKD11基材で磨き仕上げのみを施した平板工具を用いて、フェノール樹脂含浸ヒノキ単板(重量増加率WPG:40%=樹脂含有率28.5%、φ13.2mm×厚さ4mm)、工材温度:140〜160℃、単板初期面積で計算した面力:10MPaの条件下で20回連続プレスした前後の工具表面を観察した。図3に示すように、窒化クロム被膜を施した工具については、プレス実験前後での表面性状の変化は見られないのに対して、窒化クロム被膜の無い基材表面状態のままでは、明らかな腐食箇所(黒色部分のクレーター)が生じた。(Effect of coating film)
Chromium nitride-based coatings have traditionally been effective in reducing wear on cutting edges and improving wood cutting surface properties as coatings for cutting tools, especially rotary cutting chips, in wood processing (Patent Document 6, Wood). Journal of the Society Vol.54 (No.5), p.263-271).
In order to examine the effect of the coating film on the wood flow molding die, a flat plate tool in which a chromium nitride film is physically deposited on SKD11, an alloy tool steel whose hardness is adjusted to HRC55 or higher, to a thickness of 5 μm, and 11 SKDs without a film. Using a flat plate tool that has only been polished with wood, a single plate of hinoki impregnated with phenol resin (weight increase rate WPG: 40% = resin content 28.5%, φ13.2 mm x thickness 4 mm), work material temperature: The surface of the tool before and after being continuously pressed 20 times under the condition of surface force calculated at 140 to 160 ° C. and the initial area of the single plate: 10 MPa was observed. As shown in FIG. 3, the surface texture of the tool coated with the chromium nitride coating did not change before and after the press experiment, whereas it was clear when the surface condition of the base material without the chromium nitride coating remained. Corroded parts (craters in the black part) occurred.
(表面粗さの影響)
木質流動成形用金型として好適に使用できる表面粗さの影響を調べるために、HRC55以上に硬度を調整した合金工具鋼SKD11に窒化クロム被膜を5μmの厚さで物理蒸着した工具表面について、仕上げの程度の異なる2種類の表面処理を施した平板工具(Ra:0.25、0.03)を用いて図4に示す10MPaの垂直面圧下でのフェノール樹脂含浸ヒノキ材の摺動試験を実施して摩擦係数を測定した。図5の結果に示すように、工具表面粗さによって摺動時の摩擦係数に大きな差が生じた。Raが0.25の場合は、摩擦係数は0.4程度を示しており、大きな摺動抵抗となった。一方で、Raを0.04に設定することで、摩擦係数を0.2以下に抑えることができ、摺動抵抗を下げることができる。このことは、成形時の荷重の増大を防ぐことに大きく寄与する。
(Effect of surface roughness)
In order to investigate the effect of surface roughness that can be suitably used as a mold for wood flow molding, the surface of the tool is physically vapor-deposited with a chromium nitride film to a thickness of 5 μm on alloy tool steel SKD11 whose hardness is adjusted to HRC55 or higher. A sliding test of a phenol resin impregnated hinoki material was carried out under a vertical surface pressure of 10 MPa as shown in FIG. 4 using a flat plate tool (Ra: 0.25, 0.03) subjected to two types of surface treatments having different degrees of friction. And the coefficient of friction was measured. As shown in the result of FIG. 5, there was a large difference in the coefficient of friction during sliding depending on the surface roughness of the tool. When Ra was 0.25, the coefficient of friction was about 0.4, which was a large sliding resistance. On the other hand, by setting Ra to 0.0 4 , the coefficient of friction can be suppressed to 0.2 or less, and the sliding resistance can be reduced. This greatly contributes to preventing an increase in the load during molding.
(摺動による木質材の表面性状の変化)
摺動試験後のフェノール樹脂含浸ヒノキ材の摺動部の表面性状を観察した結果を図6に示す。表面粗さRaの程度によって大きく性状が異なり、Raが0.25の工具条件で摺動されたヒノキ材の表面は木質繊維が破壊されて剥離し、ささくれた状態となった。その結果、木質材の表面粗さはRaで2.8を示した。一方で、Raが0.04の工具条件で摺動された木質材には、木質繊維の破壊、剥離はほとんど見られず良好な状態であり、Raは1.2程度(良好な機械仕上げ面相当)を示した。
(Changes in surface texture of wood due to sliding)
FIG. 6 shows the results of observing the surface texture of the sliding portion of the phenol resin-impregnated cypress material after the sliding test. The properties differed greatly depending on the degree of surface roughness Ra, and the surface of the cypress wood slid under the tool condition of Ra was 0.25, and the wood fibers were broken and peeled off, resulting in a hangnail state. As a result, the surface roughness of the wood material was 2.8 in Ra. On the other hand, Ra the slide has been wood material in 0.0 4 tool conditions, disruption of the wood fiber, delamination is a good condition hardly observed, Ra about 1.2 (good mechanical finish Surface equivalent) was shown.
(成形荷重と成形体表面性状への影響)
木質流動成形用金型として好適に使用できる表面粗さの影響を調べるために、HRC55以上に硬度を調整した合金工具鋼SKD11に窒化クロム被膜を5μmの厚さで物理蒸着した工具表面について、仕上げの程度の異なる2種類の表面処理を施した平板工具(Ra:0.25、0.03)を用いて、フェノール樹脂含浸ヒノキ単板(重量増加率WPG:40%=樹脂含有率28.5%、φ13.2mm×厚さ4mm)について、工材温度:140℃、最大圧縮荷重110kN(初期面積で計算した面力:約800MPa)、プレス速度10mm/minの条件下で平板プレス試験を行った。図7の荷重−ストローク線図に示すように、工具表面粗さによって成形時の流動開始荷重に大きな差が生じた。流動開始荷重(図中▼の時点の荷重)は、Raが0.03の場合ではRaが0.25の場合と比べて約3分の1となり、成形荷重が大きく低下した。試験後に得られた木質流動成形体の変形状態、表面性状を観察した結果を図8に示す。成形体の面積拡大率及び厚さ変化率はRaが0.03の場合の方が、Raが0.25の場合よりも大きく、表面粗さが小さい方が良好な成形性を示した。また、得られる成形体の表面粗さは工具表面状態に影響を受けることがわかり、工具表面粗さをRa0.03に設定すれば、それにより作製された成形体の表面粗さRaは0.2程度の精密仕上げ面相当の値を示した。(Impact on molding load and surface texture of molded product)
In order to investigate the effect of surface roughness that can be suitably used as a mold for wood flow molding, the tool surface is finished by physically depositing a chromium nitride film with a thickness of 5 μm on alloy tool steel SKD11 whose hardness is adjusted to HRC55 or higher. Using a flat plate tool (Ra: 0.25, 0.03) that has been subjected to two types of surface treatment with different degrees, a single flat plate impregnated with phenol resin (weight increase rate WPG: 40% = resin content 28.5) %, Φ13.2 mm x thickness 4 mm), a flat plate press test was performed under the conditions of a work material temperature: 140 ° C., a maximum compressive load of 110 kN (surface force calculated based on the initial area: about 800 MPa), and a press speed of 10 mm / min. It was. As shown in the load-stroke diagram of FIG. 7, there was a large difference in the flow start load during molding depending on the tool surface roughness. The flow start load (load at the time point ▼ in the figure) was about one-third when Ra was 0.03 as compared with when Ra was 0.25, and the molding load was greatly reduced. FIG. 8 shows the results of observing the deformed state and surface texture of the wood flow molded product obtained after the test. The area expansion rate and the thickness change rate of the molded product were larger when Ra was 0.03 than when Ra was 0.25, and better moldability was exhibited when the surface roughness was smaller. Further, it was found that the surface roughness of the obtained molded product was affected by the tool surface condition, and if the tool surface roughness was set to Ra 0.03, the surface roughness Ra of the molded product produced thereby was 0. The value corresponding to the precision finished surface of about 2 was shown.
(クリアランス)
木質流動成形を行う場合では、通常のクリアランスの設定では、パンチ負荷時に樹脂含浸木質材がそのクリアランスに部分的・局所的に逆流するため、良好なガイド機能を果たすことができずパンチに微小の傾きが生じた状態で負荷が継続するため、図9に示すようにクリアランスが0.25mmの場合は焼き付きが生じた。一方で、より小さなクリアランスの設定により、この問題が解消されることがわかった。樹脂含浸木質材の流動単位となる木質繊維の直径と同程度かそれよりも小さい0.015mm(15μm)に設定することで、パンチ負荷時の木質材の逆流を防止し、かつ、良好なパンチ負荷を継続して行えることを見出した。(clearance)
In the case of wood flow molding, with the normal clearance setting, the resin-impregnated wood material partially or locally flows back into the clearance when the punch is loaded, so that a good guide function cannot be achieved and the punch is very small. Since the load continues in the tilted state, seizure occurred when the clearance was 0.25 mm as shown in FIG. On the other hand, it was found that setting a smaller clearance solves this problem. By setting the diameter to 0.015 mm (15 μm), which is about the same as or smaller than the diameter of the wood fiber, which is the flow unit of the resin-impregnated wood material, the backflow of the wood material under punch load is prevented and good punching is performed. We found that the load can be continued.
なお、本明細書において、「木質材」とは、特に限定されることはなく、具体的には、例えば、針葉樹、広葉樹、竹が特に好適な材料として例示される。 In the present specification, the "wood material" is not particularly limited, and specifically, for example, softwood, hardwood, and bamboo are exemplified as particularly suitable materials.
以上詳述したように、本発明は、従来のプラスチック用金型を用いた木質流動成形で問題となっていた、金型摺動箇所のかじり、変形など金型損傷を防止、植物系材料の特異な流動異方性に起因するバリなどにより高摩擦状態が引き起こす成形荷重の増大、キャビティ表面性状の悪化を防ぐことによって良好な表面性状の流動成形体を得ることができる。さらに、成形荷重の低減、バリの抑制、複雑形状への賦形、極薄成形への賦形などを容易にする木質流動成形用金型を提供することができるため、金型寿命を向上させて、良好な木質流動成形品を工業的に生産することができる。そして、循環型資源である植物系材料を原料としている流動成形の工業的利用によって、資源問題、廃棄物問題に対する根本的な解決策を与えることができる。 As described in detail above, the present invention prevents mold damage such as galling and deformation of the sliding portion of the mold, which has been a problem in wood flow molding using a conventional plastic mold, and is a plant-based material. A flow-molded article having good surface properties can be obtained by preventing an increase in molding load and deterioration of cavity surface properties caused by a high friction state due to burrs and the like caused by peculiar flow anisotropy. Furthermore, since it is possible to provide a mold for wood flow molding that facilitates reduction of molding load, suppression of burrs, shaping to complex shapes, shaping to ultra-thin molding, etc., the life of the mold is improved. Therefore, good wood flow molded products can be industrially produced. Then, the industrial use of fluid molding using plant-based materials, which are recyclable resources, as a raw material can provide a fundamental solution to the resource problem and the waste problem.
1 パンチ
2 コンテナ部
3 ダイス
4 キャビティ部1
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016226616 | 2016-11-22 | ||
JP2016226616 | 2016-11-22 | ||
PCT/JP2017/036867 WO2018096820A1 (en) | 2016-11-22 | 2017-10-11 | Wood-based flow-molding die, wood-based flow-molding-die system using same, and method for producing molded article that is made of plant-based material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018096820A1 JPWO2018096820A1 (en) | 2019-06-24 |
JP6902197B2 true JP6902197B2 (en) | 2021-07-14 |
Family
ID=62195002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018552451A Active JP6902197B2 (en) | 2016-11-22 | 2017-10-11 | A mold for wood flow molding, a mold system for wood flow molding using the same, and a method for manufacturing a molded product made of a plant-based material. |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6902197B2 (en) |
WO (1) | WO2018096820A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11922A (en) * | 1997-06-11 | 1999-01-06 | Toshiba Mach Co Ltd | Precision molding die and manufacture thereof |
JP2002234064A (en) * | 2001-02-13 | 2002-08-20 | Sekisui Chem Co Ltd | Method for manufacturing composite material molding |
JP2006231843A (en) * | 2005-02-28 | 2006-09-07 | Matsushita Electric Ind Co Ltd | Molding die for sealing resin, and its surface treating method |
JP4849609B2 (en) * | 2006-08-04 | 2012-01-11 | 独立行政法人産業技術総合研究所 | Plant material molding method and molded body thereof |
JP5327791B2 (en) * | 2008-12-26 | 2013-10-30 | 独立行政法人産業技術総合研究所 | Method for producing molded body of plant material and molded body obtained by the method |
KR101455142B1 (en) * | 2010-03-31 | 2014-10-27 | 히타치 긴조쿠 가부시키가이샤 | Process for production of coated article having excellent corrosion resistance, and coated article |
-
2017
- 2017-10-11 JP JP2018552451A patent/JP6902197B2/en active Active
- 2017-10-11 WO PCT/JP2017/036867 patent/WO2018096820A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2018096820A1 (en) | 2019-06-24 |
WO2018096820A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210341059A1 (en) | Sealing element and method for producing a sealing element | |
US20170072592A1 (en) | System and method for manufacturing an article | |
TWI620848B (en) | Pulp molding method and paper-shaped object made thereby | |
JP5162364B2 (en) | Multilayer molded article manufacturing method and multilayer molded article | |
CN101932422A (en) | In-mold molded product coating mold and in-mold molded product coating forming method | |
JP6923049B2 (en) | Molding mold, molding equipment and manufacturing method of fiber reinforced composite material molded product | |
JP2009061465A (en) | Metallic mold for cold forging and its manufacturing method | |
JP6902197B2 (en) | A mold for wood flow molding, a mold system for wood flow molding using the same, and a method for manufacturing a molded product made of a plant-based material. | |
EP1979635A1 (en) | Shaped composites and method of making thereof | |
Karohika et al. | Gasket Process Parameter in Metal Forming | |
US9511518B2 (en) | Formed ligneous body, and method of producing the same | |
JPWO2019189582A5 (en) | ||
JP2009073185A (en) | Mold for thin plate molded article | |
CN105415456A (en) | Mechanical ecological board and manufacturing method thereof | |
US20190283104A1 (en) | Method for producing a metal machining tool and metal machining tool produced thereby | |
JP5105613B2 (en) | Injection compression mold | |
JP5725595B2 (en) | Molding method of compacted wood composite molded product | |
JP2017013260A (en) | Resin injection molding die, resin injection molding device, and method for producing fiber-reinforced resin using the same | |
JP6270794B2 (en) | Stamping mold structure and molded product manufactured using the same | |
TW200823041A (en) | Method for manufacturing mold for molding optical element | |
JP2005342922A (en) | Mold having diamond like carbon film and molding method using it | |
Seki et al. | Deformability of bamboo impregnated with thermosetting resin in upset forging | |
US20210170625A1 (en) | Method of molding plant-based material and molded body | |
CN104786520A (en) | Molding method of bamboo fiber composite material | |
CN109747128B (en) | Pull or push rod or lock nut for forming machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200410 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200608 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6902197 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |