JP6900724B2 - 学習プログラム、学習方法および学習装置 - Google Patents

学習プログラム、学習方法および学習装置 Download PDF

Info

Publication number
JP6900724B2
JP6900724B2 JP2017061412A JP2017061412A JP6900724B2 JP 6900724 B2 JP6900724 B2 JP 6900724B2 JP 2017061412 A JP2017061412 A JP 2017061412A JP 2017061412 A JP2017061412 A JP 2017061412A JP 6900724 B2 JP6900724 B2 JP 6900724B2
Authority
JP
Japan
Prior art keywords
learning
document data
feature amount
unit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017061412A
Other languages
English (en)
Other versions
JP2018163586A (ja
Inventor
直紀 高橋
直紀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017061412A priority Critical patent/JP6900724B2/ja
Priority to US15/913,408 priority patent/US20180276568A1/en
Publication of JP2018163586A publication Critical patent/JP2018163586A/ja
Application granted granted Critical
Publication of JP6900724B2 publication Critical patent/JP6900724B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • G06F16/313Selection or weighting of terms for indexing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/93Document management systems

Description

本発明は、学習プログラム、学習方法および学習装置に関する。
近年、検索等に用いられるデータベースの構築の際に、機械学習を用いることが提案されている。機械学習では、入力と対応する出力とを学習する教師有り学習が行われる前に、事前学習として入力を学習する教師無し学習が行われる場合がある。教師無し学習は、学習に用いるデータ量が多いほど学習結果がよくなる。このため、教師無し学習の入力には、例えば、インターネット上のニュースや技術的な情報、各種マニュアル等の様々なデータを用いることが多い。
特開2004−355217号公報
しかしながら、事前学習の教師無し学習に用いるデータの分野が、教師有り学習に用いる学習データの分野と異なると、機械学習のモデルに悪影響を及ぼす場合がある。このため、例えば、データベースの管理者は、教師有り学習に用いる学習データの分野と揃えるために、教師無し学習に用いるデータを選別するが、大量のデータを選別することは多くの手間がかかる。従って、機械学習のモデルに対する学習効率が低下する場合がある。
一つの側面では、学習効率を高めることができる学習プログラム、学習方法および学習装置を提供することにある。
一つの態様では、学習プログラムは、教師有り学習の事前学習として実施される教師無し学習をコンピュータに実行させる。すなわち、学習プログラムは、前記教師有り学習で用いられる教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付ける処理をコンピュータに実行させる。学習プログラムは、受け付けた前記教師データと、受け付けた前記複数の文書データそれぞれと、の相関度に基づき、前記複数の文書データのうち、いずれかの文書データを特定する処理をコンピュータに実行させる。学習プログラムは、特定した前記いずれかの文書データの特徴情報を機械学習する処理をコンピュータに実行させる。
学習効率を高めることができる。
図1は、実施例の学習装置の構成の一例を示すブロック図である。 図2は、機械学習の一例を示す図である。 図3は、文書データ記憶部の一例を示す図である。 図4は、教師データ記憶部の一例を示す図である。 図5は、第1特徴量記憶部の一例を示す図である。 図6は、第2特徴量記憶部の一例を示す図である。 図7は、フィルタ記憶部の一例を示す図である。 図8は、事前学習用文書データ記憶部の一例を示す図である。 図9は、フィルタリングの結果の一例を示す図である。 図10は、単語の出現頻度に基づくフィルタリングの一例を示す図である。 図11は、実施例の学習処理の一例を示すフローチャートである。 図12は、フィルタ生成処理の一例を示すフローチャートである。 図13は、特定処理の一例を示すフローチャートである。 図14は、学習プログラムを実行するコンピュータの一例を示す図である。
以下、図面に基づいて、本願の開示する学習プログラム、学習方法および学習装置の実施例を詳細に説明する。なお、本実施例により、開示技術が限定されるものではない。また、以下の実施例は、矛盾しない範囲で適宜組みあわせてもよい。
図1は、実施例の学習装置の構成の一例を示すブロック図である。図1に示す学習装置100は、事前学習として教師無し学習を行ってから教師有り学習を行うことで機械学習のモデルを生成する情報処理装置の一例である。学習装置100は、例えば、据置型や可搬型のパーソナルコンピュータ、サーバ等を用いることができる。また、学習装置100には、例えば、SaaS(Software as a Service)やPaaS(Platform as a Service)等のクラウドコンピューティング技術を適用してもよい。
ここで、図2を用いて本実施例の機械学習について説明する。図2は、機械学習の一例を示す図である。図2に示す事前学習の候補データ20は、教師無し学習に用いる文書データの候補データである。候補データは、例えば、候補A〜Dの4つの候補データがあるものとする。本番学習用データ21は、生成したい機械学習のモデルに対応する入力と対応する出力とを有する教師データの一例である。まず、学習装置100は、事前学習の候補データ20と、本番学習用データ21とに基づいて、フィルタ22を生成する(ステップS1)。次に、学習装置100は、事前学習の候補データ20の候補A〜Dの候補データに対して、フィルタ22を適用する(ステップS2)。学習装置100は、フィルタ22に合う候補B,Dを事前学習用データ23とする。学習装置100は、事前学習用データ23を用いてモデル24を生成する(ステップS3)。モデル24は、この時点で事前学習済みのモデルとなる。その後、学習装置100は、モデル24に対して本番学習用データ21を学習させると(ステップS4)、モデル24は、学習済みのモデルとなり、検索等のサービスに用いることができる。
すなわち、学習装置100は、教師有り学習の事前学習として実施される教師無し学習を実行する。つまり、学習装置100は、教師有り学習で用いられる教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付ける。学習装置100は、受け付けた教師データと、受け付けた複数の文書データそれぞれと、の相関度に基づき、複数の文書データのうち、いずれかの文書データを特定する。学習装置100は、特定したいずれかの文書データの特徴情報を機械学習する。これにより、学習装置100は、学習効率を高めることができる。
次に、学習装置100の構成について説明する。図1に示すように、学習装置100は、通信部110と、表示部111と、操作部112と、記憶部120と、制御部130とを有する。なお、学習装置100は、図1に示す機能部以外にも既知のコンピュータが有する各種の機能部、例えば各種の入力デバイスや音声出力デバイス等の機能部を有することとしてもかまわない。
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。通信部110は、図示しないネットワークを介して他の情報処理装置と有線または無線で接続され、他の情報処理装置との間で情報の通信を司る通信インタフェースである。通信部110は、他の情報処理装置から複数の文書データおよび教師データ等を受信する。通信部110は、受信した複数の文書データおよび教師データ等を制御部130に出力する。
表示部111は、各種情報を表示するための表示デバイスである。表示部111は、例えば、表示デバイスとして液晶ディスプレイ等によって実現される。表示部111は、制御部130から入力された表示画面等の各種画面を表示する。
操作部112は、学習装置100の管理者から各種操作を受け付ける入力デバイスである。操作部112は、例えば、入力デバイスとして、キーボードやマウス等によって実現される。操作部112は、管理者によって入力された操作を操作情報として制御部130に出力する。なお、操作部112は、入力デバイスとして、タッチパネル等によって実現されるようにしてもよく、表示部111の表示デバイスと、操作部112の入力デバイスとは、一体化されるようにしてもよい。
記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、ハードディスクや光ディスク等の記憶装置によって実現される。記憶部120は、文書データ記憶部121と、教師データ記憶部122と、第1特徴量記憶部123と、第2特徴量記憶部124とを有する。また、記憶部120は、フィルタ記憶部125と、事前学習用文書データ記憶部126と、事前学習モデル記憶部127と、学習モデル記憶部128とを有する。さらに、記憶部120は、制御部130での処理に用いる情報を記憶する。
文書データ記憶部121は、事前学習に用いる文書データの候補となる文書データを記憶する。図3は、文書データ記憶部の一例を示す図である。図3に示すように、文書データ記憶部121は、「文書ID(Identifier)」、「文書データ」といった項目を有する。文書データ記憶部121は、例えば、文書IDごとに1レコードとして記憶する。
「文書ID」は、事前学習の候補の文書データを識別する識別子である。「文書データ」は、事前学習の候補の文書データを示す情報である。つまり、「文書データ」は、教師無し学習用コーパス(候補コーパス)の一例である。なお、図3の例では、「文書データ」は説明のため、文書名としている。図3の1行目の例では、文書ID「C01」の文書データは「○○マニュアル」という文書であることを示す。すなわち、「文書データ」には、文書を構成する各文章、つまり複数の文章情報が含まれる。
図1の説明に戻って、教師データ記憶部122は、本番学習、つまり教師有り学習に用いる文書データである教師データを記憶する。図4は、教師データ記憶部の一例を示す図である。図4に示すように、教師データ記憶部122は、「教師文書ID」、「教師データ」といった項目を有する。教師データ記憶部122は、例えば、教師文書IDごとに1レコードとして記憶する。
「教師文書ID」は、教師有り学習の教師データを識別する識別子である。「教師データ」は、教師有り学習の教師データを示す情報である。つまり、「教師データ」は、教師有り学習用コーパスの一例である。なお、図4の例では、「教師データ」は説明のため、文書名としている。
図1の説明に戻って、第1特徴量記憶部123は、受け付けた全ての文書データ、つまり全ての事前学習用の文書データにおける単語の出現回数と特徴量とを対応付けて記憶する。図5は、第1特徴量記憶部の一例を示す図である。図5に示すように、第1特徴量記憶部123は、「単語」、「出現回数」、「特徴量」といった項目を有する。第1特徴量記憶部123は、例えば、単語ごとに1レコードとして記憶する。
「単語」は、全ての事前学習用の文書データから、例えば、形態素解析等によって抽出した名詞や動詞等を示す情報である。「出現回数」は、全ての事前学習用の文書データにおける単語ごとの出現回数の合計値を示す情報である。「特徴量」は、全ての事前学習用の文書データにおける単語の出現回数に基づく出現頻度を正規化した第1特徴量を示す情報である。図5の5行目の例では、単語「サーバ」は全ての事前学習用の文書データにおいて「60」回出現し、特徴量が「0.2」であることを示す。
図1の説明に戻って、第2特徴量記憶部124は、教師データにおける単語の出現回数と特徴量とを対応付けて記憶する。図6は、第2特徴量記憶部の一例を示す図である。図6に示すように、第2特徴量記憶部124は、「単語」、「出現回数」、「特徴量」といった項目を有する。第2特徴量記憶部124は、例えば、単語ごとに1レコードとして記憶する。
「単語」は、教師データから、例えば、形態素解析等によって抽出した名詞や動詞等を示す情報である。「出現回数」は、教師データにおける単語ごとの出現回数の合計値を示す情報である。「特徴量」は、教師データにおける単語の出現回数に基づく出現頻度を正規化した第2特徴量を示す情報である。図6の5行目の例では、単語「サーバ」は教師データにおいて「6」回出現し、特徴量が「2」であることを示す。
図1の説明に戻って、フィルタ記憶部125は、フィルタとして用いる単語と特徴量とを対応付けて記憶する。図7は、フィルタ記憶部の一例を示す図である。図7に示すように、フィルタ記憶部125は、「単語」、「特徴量」といった項目を有する。フィルタ記憶部125は、例えば、単語ごとに1レコードとして記憶する。
「単語」は、第2特徴量記憶部124に記憶される単語のうち、フィルタとして用いる単語を示す情報である。「特徴量」は、フィルタとして用いる単語に対応する第2特徴量を示す情報である。すなわち、フィルタ記憶部125は、教師データに基づく第2特徴量のうち、教師データの特徴を表す単語に対応する第2特徴量を、当該単語とともに記憶する。図7の例では、単語「OS」の特徴量「1」と、単語「サーバ」の特徴量「2」とが教師データの特徴を表すフィルタとして記憶されている。
図1の説明に戻って、事前学習用文書データ記憶部126は、全ての事前学習用の文書データ、つまり候補の文書データのうち、フィルタリングの結果、事前学習に用いる文書データを記憶する。図8は、事前学習用文書データ記憶部の一例を示す図である。図8に示すように、事前学習用文書データ記憶部126は、「文書ID」、「文書データ」といった項目を有する。事前学習用文書データ記憶部126は、例えば、文書IDごとに1レコードとして記憶する。
「文書ID」は、事前学習用の文書データを識別する識別子である。「文書データ」は、事前学習用の文書データを示す情報である。つまり、「文書データ」は、教師無し学習用コーパスの一例である。なお、図8の例では、図3と同様に「文書データ」は説明のため、文書名としている。図8の例では、図3の各文書データのうち、文書ID「C02」および「C04」の文書データが事前学習用の文書データとして記憶されている。なお、図3と同様に、「文書データ」には、文書を構成する各文章、つまり複数の文章情報が含まれる。
図1の説明に戻って、事前学習モデル記憶部127は、事前学習用の文書データを用いて機械学習が実行されて生成された事前学習済みのモデルを記憶する。つまり、事前学習モデル記憶部127は、事前学習用の文書データを機械学習した事前学習モデルを記憶する。
学習モデル記憶部128は、事前学習モデルおよび教師データを用いて機械学習が実行されて生成された学習済みのモデルを記憶する。つまり、学習モデル記憶部128は、事前学習済みのモデルに対して、本番学習用の教師データを機械学習した学習モデルを記憶する。
制御部130は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、内部の記憶装置に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。また、制御部130は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されるようにしてもよい。制御部130は、受付部131と、生成部132と、特定部133と、学習部134とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130の内部構成は、図1に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
受付部131は、通信部110を介して、例えば、図示しない他の情報処理装置から複数の文書データおよび教師データを受信して受け付ける。すなわち、受付部131は、教師有り学習で用いられる教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付ける。受付部131は、受け付けた複数の文書データを、それぞれ文書IDを付与して文書データ記憶部121に記憶する。また、受付部131は、受け付けた教師データを、教師文書IDを付与して教師データ記憶部122に記憶する。なお、教師データは、複数であってもよい。受付部131は、複数の文書データを文書データ記憶部121に記憶し、教師データを教師データ記憶部122に記憶すると、フィルタ生成指示を生成部132に出力する。
生成部132は、受付部131からフィルタ生成指示が入力されると、フィルタ生成処理を実行してフィルタを生成する。生成部132は、文書データ記憶部121を参照し、例えば形態素解析を用いて、全ての事前学習用の文書データにおける単語を抽出し、抽出した単語ごとに出現回数を算出する。生成部132は、単語ごとの出現回数を算出すると、単語ごとに出現回数に基づく出現頻度を正規化した第1特徴量を算出する。生成部132は、算出した第1特徴量を単語および出現回数と対応付けて、第1特徴量記憶部123に記憶する。なお、第1特徴量は、例えば、第1特徴量=(x−μ)/σといった式で求めることができる。ここで、xは出現回数(頻度)、μは出現回数の平均値、σは分散を表す。
生成部132は、教師データ記憶部122を参照し、例えば形態素解析を用いて、教師データにおける単語を抽出し、抽出した単語ごとに出現回数を算出する。生成部132は、単語ごとの出現回数を算出すると、単語ごとに出現回数に基づく出現頻度を正規化した第2特徴量を算出する。生成部132は、算出した第2特徴量を単語および出現回数と対応付けて、第2特徴量記憶部124に記憶する。なお、第2特徴量についても、第1特徴量と同様の式を用いて求めることができる。
生成部132は、第1特徴量および第2特徴量に基づいて、フィルタとして用いる単語を抽出する。生成部132は、例えば、第1特徴量が「0.5」以下の単語のうち、第2特徴量が「1」以上の単語を、フィルタとして用いる単語として抽出する。生成部132は、抽出した単語、および、対応する第2特徴量、つまりフィルタをフィルタ記憶部125に記憶する。生成部132は、フィルタをフィルタ記憶部125に記憶すると、特定指示を特定部133に出力する。
特定部133は、生成部132から特定指示が入力されると、特定処理を実行して事前学習用の文書データを選別し、事前学習に用いる文書データを特定する。特定部133は、文書データ記憶部121を参照し、事前学習の候補の文書データを1つ選択する。特定部133は、選択した文書データにおける単語を抽出し、抽出した単語ごとに出現回数を算出する。特定部133は、単語ごとの出現回数を算出すると、選択した文書データの単語ごとの出現回数に基づく出現頻度を正規化した第3特徴量を算出する。
特定部133は、第3特徴量を算出すると、フィルタ記憶部125を参照し、算出した第3特徴量およびフィルタに基づいて、フィルタと類似度を比較する単語の第3特徴量を抽出する。特定部133は、抽出した単語の第3特徴量と、フィルタの第2特徴量との類似度を算出する。特定部133は、第3特徴量と第2特徴量との類似度として、例えば、cos類似度やユークリッド距離を用いることができる。
特定部133は、算出した類似度が閾値以上であるか否かを判定する。なお、閾値は、任意に決定することができる。特定部133は、類似度が閾値以上であると判定した場合には、選択した文書データを事前学習用に採用し、選択した文書データを事前学習用文書データ記憶部126に記憶する。特定部133は、類似度が閾値未満であると判定した場合には、選択した文書データを事前学習用に採用しないと決定する。
特定部133は、選択した文書データについて、類似度の判定に関する処理が完了すると、文書データ記憶部121を参照し、類似度の判定が未判定である候補の文書データがあるか否かを判定する。特定部133は、類似度の判定が未判定である候補の文書データがあると判定した場合には、次の事前学習の候補の文書データを1つ選択して類似度の判定、つまり事前学習用に採用するか否かの判定を繰り返す。特定部133は、類似度の判定が未判定である候補の文書データがないと判定した場合には、事前学習指示を学習部134に出力し、特定処理を終了する。
言い換えると、特定部133は、受け付けた教師データと、受け付けた複数の文書データそれぞれと、の相関度に基づき、複数の文書データのうち、いずれかの文書データを特定する。例えば、特定部133は、教師データに含まれる単語の出現頻度と、複数の文書データそれぞれに含まれる単語の出現頻度との類似度に基づき、いずれかの文書データを特定する。例えば、特定部133は、教師データに含まれる単語の出現頻度の特徴量と、複数の文書データそれぞれに含まれる単語の出現頻度の特徴量とに基づいて、類似度の判定に用いる単語の特徴量を抽出する。特定部133は、抽出した単語の特徴量に基づき、複数の文書データのうち、いずれかの文書データを特定する。例えば、特定部133は、抽出した単語の特徴量と、複数の文書データそれぞれに含まれる単語の出現頻度の特徴量のうち、抽出した単語の特徴量に対応する単語の特徴量との類似度に基づき、複数の文書データのうち、いずれかの文書データを特定する。
ここで、図9および図10を用いてフィルタリングについて説明する。図9は、フィルタリングの結果の一例を示す図である。図9に示す表41は、ある選択した文書データの第3特徴量を単語および出現回数と対応付けた表である。表41aは、フィルタとして、例えばフィルタ記憶部125のフィルタを用いた場合に、フィルタと類似度を比較する抽出された単語の第3特徴量を示す。表41aには、単語「OS」の第3特徴量「2」と、単語「サーバ」の第3特徴量「1」とが含まれる。ここで、類似度としてcos類似度を用いると、表41aとフィルタとのcos類似度は、下記の式(1)となる。また、フィルタリングに用いる類似度の閾値は、例えば「0.2」であるとする。
cos類似度((1,2),(2,1))
=(2+2)/(√5×√5)=0.8 ・・・(1)
表41aの場合は、式(1)よりcos類似度が「0.8」であり、閾値の「0.2」以上であるので、表41の文書データは、事前学習用に採用される。
一方、表42は、表41と異なる選択した文書データの第3特徴量を単語および出現回数と対応付けた表である。表42aは、フィルタとして、例えばフィルタ記憶部125のフィルタを用いた場合に、フィルタと類似度を比較する抽出された単語の第3特徴量を示す。表42aには、単語「OS」の第3特徴量「0.4」と、単語「サーバ」の第3特徴量「−9」とが含まれる。表41aと同様に、cos類似度を求めると、表42aとフィルタとのcos類似度は、下記の式(2)となる。
cos類似度((1,2),(0.4,−9))
=(0.4−18)/(√5×√81.16)=−0.9 ・・・(2)
表42aの場合は、式(2)よりcos類似度が「−0.9」であり、閾値の「0.2」未満であるので、表42の文書データは、事前学習用に採用されない。
図10は、単語の出現頻度に基づくフィルタリングの一例を示す図である。なお、図10では、上述の説明をより一般化するとともに、類似度の判定について閾値の代わりに許容される頻度(特徴量)の範囲を用いた場合について説明する。図10に示すように、生成部132は、一般的なコーパス31における名詞および動詞等について正規化した出現頻度の特徴量31aを算出する。一般的なコーパス31は、上述の全ての事前学習用の文書データに相当し、特徴量31aは、第1特徴量に相当する。次に、生成部132は、教師有り学習用コーパス32における名詞および動詞等について正規化した出現頻度の特徴量32aを算出する。教師有り学習用コーパス32は、上述の教師データに相当し、特徴量32aは、第2特徴量に相当する。
生成部132は、特徴量31aと特徴量32aとに基づいて、特徴となる単語と頻度(特徴量)とを抽出し、フィルタ33を生成する。すなわち、図10の例では、単語「プログラム」の特徴量「2.2」と、単語「プロキシー」の特徴量「2.9」とがフィルタとなる。特定部133は、特徴量の類似度、つまり許容される頻度34として、誤差εを含む範囲を設定する。誤差εを含む範囲は、上述の類似度を判定する閾値に相当する。すなわち、特定部133は、閾値に代えて、誤差εを含む範囲を類似度の判定に用いてもよい。図10の例では、許容される頻度34は、判定対象の頻度(特徴量)をx’とすると、単語「プログラム」が「2.2−ε<x’<2.2+ε」、単語「プロキシー」が「2.9−ε<x’<2.9+ε」と表すことができる。
特定部133は、候補コーパス35,36について、それぞれ特徴量35a,36aを算出する。つまり、候補コーパス35,36は、上述の候補の文書データに相当し、特徴量35a,36aは、上述の第3特徴量に相当する。特定部133は、特徴量35a,36aのうち、フィルタ33を用いて抽出された単語の頻度(特徴量)について、許容される頻度34と比較する。このとき、例えばεを「1」とすると、許容される頻度34は、単語「プログラム」が「1.2<x’<3.2」、単語「プロキシー」が「1.9<x’<3.9」となる。特徴量35aの単語「プログラム」は、頻度(特徴量)「1.9」、単語「プロキシー」は、頻度(特徴量)「2.2」であるので、許容される頻度34の範囲内である。これに対し、特徴量36aの単語「プログラム」は、頻度(特徴量)「0.4」、単語「プロキシー」は、頻度(特徴量)「0.6」であるので、許容される頻度34の範囲外である。このため、特定部133は、候補コーパス35を事前学習に用い、候補コーパス36は事前学習に用いない。なお、許容される頻度34の範囲は、複数の単語のうち所定の割合が範囲内であれば、当該候補コーパスを事前学習に用いるようにしてもよい。所定の割合は、例えば50%とすることができる。
図1の説明に戻って、学習部134は、特定部133から事前学習指示が入力されると、事前学習を実行する。学習部134は、事前学習用文書データ記憶部126を参照し、事前学習用の文書データを用いて機械学習を実行して事前学習モデルを生成する。学習部134は、生成した事前学習モデルを事前学習モデル記憶部127に記憶する。すなわち、学習部134は、特定したいずれかの文書データの特徴情報を機械学習する。なお、特徴情報は、事前学習用の文書データに含まれる文章である文章情報における、単語の意味(品詞)や単語間の関係(係り受け)等を示す情報である。
学習部134は、事前学習モデルを生成すると、教師データ記憶部122を参照し、生成した事前学習モデルおよび教師データを用いて機械学習を実行して学習モデルを生成する。学習部134は、生成した学習モデルを学習モデル記憶部128に記憶する。
次に、実施例の学習装置100の動作について説明する。図11は、実施例の学習処理の一例を示すフローチャートである。
受付部131は、例えば、図示しない他の情報処理装置から複数の文書データおよび教師データを受信して受け付ける(ステップS11)。受付部131は、受け付けた複数の文書データを、それぞれ文書IDを付与して文書データ記憶部121に記憶する。また、受付部131は、受け付けた教師データを、教師文書IDを付与して教師データ記憶部122に記憶する。受付部131は、フィルタ生成指示を生成部132に出力する。
生成部132は、受付部131からフィルタ生成指示が入力されると、フィルタ生成処理を実行する(ステップS12)。ここで、図12を用いてフィルタ生成処理を説明する。図12は、フィルタ生成処理の一例を示すフローチャートである。
生成部132は、文書データ記憶部121を参照し、全ての事前学習用の文書データにおける単語ごとの出現回数を算出する(ステップS121)。生成部132は、単語ごとの出現回数を算出すると、単語ごとに出現回数に基づく出現頻度を正規化した第1特徴量を算出する(ステップS122)。生成部132は、算出した第1特徴量を単語および出現回数と対応付けて、第1特徴量記憶部123に記憶する。
生成部132は、教師データ記憶部122を参照し、教師データにおける単語ごとの出現回数を算出する(ステップS123)。生成部132は、教師データの単語ごとの出現回数に基づく出現頻度を正規化した第2特徴量を算出する(ステップS124)。生成部132は、算出した第2特徴量を単語および出現回数と対応付けて、第2特徴量記憶部124に記憶する。
生成部132は、第1特徴量および第2特徴量に基づいて、フィルタとして用いる単語を抽出する(ステップS125)。生成部132は、抽出した単語、および、対応する第2特徴量をフィルタ記憶部125に記憶する(ステップS126)。生成部132は、特定指示を特定部133に出力してフィルタ生成処理を終了し、元の処理に戻る。
図11の説明に戻って、特定部133は、生成部132から特定指示が入力されると、特定処理を実行する(ステップS13)。ここで、図13を用いて特定処理を説明する。図13は、特定処理の一例を示すフローチャートである。
特定部133は、文書データ記憶部121を参照し、事前学習の候補の文書データを1つ選択する(ステップS131)。特定部133は、選択した文書データにおける単語ごとの出現回数を算出する(ステップS132)。特定部133は、選択した文書データの単語ごとの出現回数に基づく出現頻度を正規化した第3特徴量を算出する(ステップS133)。
特定部133は、フィルタ記憶部125を参照し、算出した第3特徴量およびフィルタに基づいて、フィルタと類似度を比較する単語の第3特徴量を抽出する(ステップS134)。特定部133は、抽出した単語の第3特徴量と、フィルタの第2特徴量との類似度を算出する(ステップS135)。
特定部133は、算出した類似度が閾値以上であるか否かを判定する(ステップS136)。特定部133は、類似度が閾値以上であると判定した場合には(ステップS136:肯定)、選択した文書データを事前学習用に採用し、選択した文書データを事前学習用文書データ記憶部126に記憶して(ステップS137)、ステップS139に進む。特定部133は、類似度が閾値未満であると判定した場合には(ステップS136:否定)、選択した文書データを事前学習用に採用しないと決定し(ステップS138)、ステップS139に進む。
特定部133は、類似度の判定が未判定である候補の文書データがあるか否かを判定する(ステップS139)。特定部133は、類似度の判定が未判定である候補の文書データがあると判定した場合には(ステップS139:肯定)、ステップS131に戻る。特定部133は、類似度の判定が未判定である候補の文書データがないと判定した場合には(ステップS139:否定)、事前学習指示を学習部134に出力して特定処理を終了し、元の処理に戻る。
図11の説明に戻って、学習部134は、特定部133から事前学習指示が入力されると、事前学習用文書データ記憶部126を参照して、事前学習用の文書データを用いて機械学習を実行し、事前学習モデルを生成する(ステップS14)。学習部134は、生成した事前学習モデルを事前学習モデル記憶部127に記憶する。学習部134は、教師データ記憶部122を参照して、生成した事前学習モデルおよび教師データを用いて機械学習を実行し、学習モデルを生成する(ステップS15)。学習部134は、生成した学習モデルを学習モデル記憶部128に記憶して、学習処理を終了する。これにより、学習装置100は、学習効率を高めることができる。また、学習装置100は、本番学習用のデータ、つまり教師データのみで学習を行うよりも良好な学習結果を得ることができる。
このように、学習装置100は、教師有り学習の事前学習として実施される教師無し学習を実行する。すなわち、学習装置100は、教師有り学習で用いられる教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付ける。また、学習装置100は、受け付けた教師データと、受け付けた複数の文書データそれぞれと、の相関度に基づき、複数の文書データのうち、いずれかの文書データを特定する。また、学習装置100は、特定したいずれかの文書データの特徴情報を機械学習する。その結果、学習装置100は、学習効率を高めることができる。
また、学習装置100は、教師データに含まれる単語の出現頻度と、複数の文書データそれぞれに含まれる単語の出現頻度と、の類似度に基づき、いずれかの文書データを特定する。その結果、学習装置100は、教師データと分野の近い文書データを用いて事前学習するので、学習効率を高めることができる。
また、学習装置100は、教師データに含まれる単語の出現頻度の特徴量と、複数の文書データそれぞれに含まれる単語の出現頻度の特徴量とに基づいて、類似度の判定に用いる単語の特徴量を抽出する。また、学習装置100は、抽出した単語の特徴量に基づき、複数の文書データのうち、いずれかの文書データを特定する。その結果、学習装置100は、より学習効率を高めることができる。
また、学習装置100は、抽出した単語の特徴量と、複数の文書データそれぞれに含まれる単語の出現頻度の特徴量のうち、抽出した単語の特徴量に対応する単語の特徴量との類似度に基づき、複数の文書データのうち、いずれかの文書データを特定する。その結果、学習装置100は、より学習効率を高めることができる。
なお、上記実施例では、教師データと複数の文書データそれぞれとの相関度として、単語の出現頻度に基づく類似度を用いたが、これに限定されない。例えば、教師データと複数の文書データそれぞれとについて、文書自体をベクトル化して類似度を判定するようにしてもよい。文書自体をベクトル化する方法としては、例えばDoc2Vecを用いる方法が挙げられる。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、生成部132と特定部133とを統合してもよい。また、図示した各処理は、上記の順番に限定されるものでなく、処理内容を矛盾させない範囲において、同時に実施してもよく、順序を入れ替えて実施してもよい。
さらに、各装置で行われる各種処理機能は、CPU(またはMPU、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部または任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(またはMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、またはワイヤードロジックによるハードウェア上で、その全部または任意の一部を実行するようにしてもよいことは言うまでもない。
ところで、上記の実施例で説明した各種の処理は、予め用意されたプログラムをコンピュータで実行することで実現できる。そこで、以下では、上記の実施例と同様の機能を有するプログラムを実行するコンピュータの一例を説明する。図14は、学習プログラムを実行するコンピュータの一例を示す図である。
図14に示すように、コンピュータ200は、各種演算処理を実行するCPU201と、データ入力を受け付ける入力装置202と、モニタ203とを有する。また、コンピュータ200は、記憶媒体からプログラム等を読み取る媒体読取装置204と、各種装置と接続するためのインタフェース装置205と、他の情報処理装置等と有線または無線により接続するための通信装置206とを有する。また、コンピュータ200は、各種情報を一時記憶するRAM207と、ハードディスク装置208とを有する。また、各装置201〜208は、バス209に接続される。
ハードディスク装置208には、図1に示した受付部131、生成部132、特定部133および学習部134の各処理部と同様の機能を有する学習プログラムが記憶される。また、ハードディスク装置208には、文書データ記憶部121、教師データ記憶部122、第1特徴量記憶部123、および、第2特徴量記憶部124が記憶される。また、ハードディスク装置208には、フィルタ記憶部125、事前学習用文書データ記憶部126、事前学習モデル記憶部127、学習モデル記憶部128、および、学習プログラムを実現するための各種データが記憶される。入力装置202は、例えば、コンピュータ200の管理者から操作情報等の各種情報の入力を受け付ける。モニタ203は、例えば、コンピュータ200の管理者に対して表示画面等の各種画面を表示する。インタフェース装置205は、例えば印刷装置等が接続される。通信装置206は、例えば、図1に示した通信部110と同様の機能を有し図示しないネットワークと接続され、他の情報処理装置等と各種情報をやりとりする。
CPU201は、ハードディスク装置208に記憶された各プログラムを読み出して、RAM207に展開して実行することで、各種の処理を行う。また、これらのプログラムは、コンピュータ200を図1に示した受付部131、生成部132、特定部133および学習部134として機能させることができる。
なお、上記の学習プログラムは、必ずしもハードディスク装置208に記憶されている必要はない。例えば、コンピュータ200が読み取り可能な記憶媒体に記憶されたプログラムを、コンピュータ200が読み出して実行するようにしてもよい。コンピュータ200が読み取り可能な記憶媒体は、例えば、CD−ROMやDVDディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置にこの学習プログラムを記憶させておき、コンピュータ200がこれらから学習プログラムを読み出して実行するようにしてもよい。
100 学習装置
110 通信部
111 表示部
112 操作部
120 記憶部
121 文書データ記憶部
122 教師データ記憶部
123 第1特徴量記憶部
124 第2特徴量記憶部
125 フィルタ記憶部
126 事前学習用文書データ記憶部
127 事前学習モデル記憶部
128 学習モデル記憶部
130 制御部
131 受付部
132 生成部
133 特定部
134 学習部

Claims (5)

  1. 教師有り学習の事前学習として実施される教師無し学習をコンピュータに実行させる学習プログラムにおいて、
    前記教師有り学習で用いられるコーパスである教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付け、
    受け付けた前記教師データと、受け付けた前記複数の文書データそれぞれと、の相関度に基づき、前記複数の文書データのうち、いずれかの文書データを特定し、
    特定した前記いずれかの文書データの特徴情報を機械学習する、
    処理をコンピュータに実行させることを特徴とする学習プログラム。
  2. 前記特定する処理は、前記教師データに含まれる単語の出現頻度と、前記複数の文書データそれぞれに含まれる単語の出現頻度と、の類似度に基づき、前記いずれかの文書データを特定する、
    ことを特徴とする請求項1に記載の学習プログラム。
  3. 前記特定する処理は、前記複数の文書データそれぞれに含まれる単語の出現頻度の特徴量が第1の所定値以下の単語のうち、前記教師データに含まれる単語の出現頻度の特徴量が第2の所定値以上の単語の出現頻度の特徴量を、前記類似度の判定に用いる単語の特徴量として抽出し、抽出した前記単語の特徴量と、前記複数の文書データそれぞれに含まれる単語の出現頻度の特徴量のうち、抽出した前記単語の特徴量に対応する単語の特徴量との類似度に基づき、前記複数の文書データのうち、いずれかの文書データを特定する、
    ことを特徴とする請求項2に記載の学習プログラム。
  4. 教師有り学習の事前学習として実施される教師無し学習をコンピュータが実行する学習方法において、
    前記教師有り学習で用いられるコーパスである教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付け、
    受け付けた前記教師データと、受け付けた前記複数の文書データそれぞれと、の相関度に基づき、前記複数の文書データのうち、いずれかの文書データを特定し、
    特定した前記いずれかの文書データの特徴情報を機械学習する、
    処理をコンピュータが実行することを特徴とする学習方法。
  5. 教師有り学習の事前学習として実施される教師無し学習を実行する学習装置において、
    前記教師有り学習で用いられるコーパスである教師データと、複数の文章情報をそれぞれが含む複数の文書データとを受け付ける受付部と、
    受け付けた前記教師データと、受け付けた前記複数の文書データそれぞれと、の相関度に基づき、前記複数の文書データのうち、いずれかの文書データを特定する特定部と、
    特定した前記いずれかの文書データの特徴情報を機械学習する学習部と、
    を有することを特徴とする学習装置。
JP2017061412A 2017-03-27 2017-03-27 学習プログラム、学習方法および学習装置 Active JP6900724B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017061412A JP6900724B2 (ja) 2017-03-27 2017-03-27 学習プログラム、学習方法および学習装置
US15/913,408 US20180276568A1 (en) 2017-03-27 2018-03-06 Machine learning method and machine learning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061412A JP6900724B2 (ja) 2017-03-27 2017-03-27 学習プログラム、学習方法および学習装置

Publications (2)

Publication Number Publication Date
JP2018163586A JP2018163586A (ja) 2018-10-18
JP6900724B2 true JP6900724B2 (ja) 2021-07-07

Family

ID=63583460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061412A Active JP6900724B2 (ja) 2017-03-27 2017-03-27 学習プログラム、学習方法および学習装置

Country Status (2)

Country Link
US (1) US20180276568A1 (ja)
JP (1) JP6900724B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847812B2 (ja) * 2017-10-25 2021-03-24 株式会社東芝 文書理解支援装置、文書理解支援方法、およびプログラム
JP2019087012A (ja) * 2017-11-07 2019-06-06 キヤノン株式会社 情報処理装置、情報処理方法、コンピュータプログラム、及び記憶媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511865B2 (ja) * 2015-03-03 2019-05-15 富士ゼロックス株式会社 情報処理装置及び情報処理プログラム
JP6611053B2 (ja) * 2015-09-17 2019-11-27 パナソニックIpマネジメント株式会社 主題推定システム、主題推定方法およびプログラム

Also Published As

Publication number Publication date
JP2018163586A (ja) 2018-10-18
US20180276568A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US10936821B2 (en) Testing and training a question-answering system
EP3779723A1 (en) Data processing model construction method and device, server and client
US20180268296A1 (en) Machine learning-based network model building method and apparatus
US8918348B2 (en) Web-scale entity relationship extraction
US10891322B2 (en) Automatic conversation creator for news
EP3227836A1 (en) Active machine learning
US10346751B2 (en) Extraction of inference rules from heterogeneous graphs
US20180068221A1 (en) System and Method of Advising Human Verification of Machine-Annotated Ground Truth - High Entropy Focus
JP6007784B2 (ja) 文書分類装置及びプログラム
WO2013125482A1 (ja) 文書評価装置、文書評価方法、及びコンピュータ読み取り可能な記録媒体
CN109241243B (zh) 候选文档排序方法及装置
US20220269939A1 (en) Graph-based labeling rule augmentation for weakly supervised training of machine-learning-based named entity recognition
CN112214584A (zh) 使用知识图利用实体关系来发现答案
JP6900724B2 (ja) 学習プログラム、学習方法および学習装置
KR102271361B1 (ko) 자동 질의응답 장치
JP6770709B2 (ja) 機械学習用モデル生成装置及びプログラム。
US10929413B2 (en) Suggestion-based differential diagnostics
CN113051910B (zh) 一种用于预测人物角色情绪的方法和装置
US10191786B2 (en) Application program interface mashup generation
US9946765B2 (en) Building a domain knowledge and term identity using crowd sourcing
WO2018066083A1 (ja) 学習プログラム、情報処理装置および学習方法
KR102269737B1 (ko) 딥러닝 기반의 정보 분류 방법 및 그 장치
US20170154281A1 (en) Switching Leader-Endorser for Classifier Decision Combination
JPWO2020021609A1 (ja) 生成方法、生成プログラムおよび情報処理装置
EP2803017A1 (en) System and method for effectively performing an image categorization procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150