JP6898720B2 - Skin internal structure evaluation method - Google Patents

Skin internal structure evaluation method Download PDF

Info

Publication number
JP6898720B2
JP6898720B2 JP2016202590A JP2016202590A JP6898720B2 JP 6898720 B2 JP6898720 B2 JP 6898720B2 JP 2016202590 A JP2016202590 A JP 2016202590A JP 2016202590 A JP2016202590 A JP 2016202590A JP 6898720 B2 JP6898720 B2 JP 6898720B2
Authority
JP
Japan
Prior art keywords
skin
internal structure
fibrillin
tissue
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202590A
Other languages
Japanese (ja)
Other versions
JP2018063216A (en
Inventor
健 東ヶ▲崎▼
健 東ヶ▲崎▼
奈帆子 大石
奈帆子 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
Original Assignee
Fancl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp filed Critical Fancl Corp
Priority to JP2016202590A priority Critical patent/JP6898720B2/en
Publication of JP2018063216A publication Critical patent/JP2018063216A/en
Application granted granted Critical
Publication of JP6898720B2 publication Critical patent/JP6898720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、皮膚内部構造の評価方法に関する。 The present invention relates to a method for evaluating the internal structure of the skin.

皮膚内部の線維構造は、皮膚弾力性に大きく関わっている。皮膚内部の線維構造を評価する方法として、in vivo共焦点レーザー顕微鏡で評価する方法、免疫染色した皮膚組織の切片を光学顕微鏡で評価する方法、電子顕微鏡で評価する方法が用いられている。しかし、これらの手法では、皮膚内部の線維構造を三次元的かつタンパク特異的に評価することは困難である。 The fibrous structure inside the skin is greatly involved in skin elasticity. As a method for evaluating the fibrous structure inside the skin, a method for evaluating with an in vivo confocal laser scanning microscope, a method for evaluating a section of immunostained skin tissue with an optical microscope, and a method for evaluating with an electron microscope are used. However, with these methods, it is difficult to evaluate the fibrous structure inside the skin three-dimensionally and protein-specifically.

特許文献1には、組織を透明化し、蛍光標識し、蛍光顕微鏡などで観察する方法が記載されている。特許文献1には、皮膚、皮下組織を対象臓器とすることは記載されているが、観察した結果を解析・評価する手法については何ら開示されていない。 Patent Document 1 describes a method of making a tissue transparent, fluorescently labeling it, and observing it with a fluorescence microscope or the like. Patent Document 1 describes that the skin and subcutaneous tissue are the target organs, but does not disclose any method for analyzing and evaluating the observed results.

国際公開第2014/115206号International Publication No. 2014/115206

本発明は、皮膚内部の線維構造の状態を正確に把握し、皮膚内部構造を正しく評価することを課題とする。 An object of the present invention is to accurately grasp the state of the fibrous structure inside the skin and correctly evaluate the internal structure of the skin.

本発明は、上記課題を解決するために鋭意検討した結果、蛍光標識し、透明化した皮膚組織により皮膚内部の線維構造を三次元的かつタンパク特異的に観察することができ、フィブリリン構造により皮膚内部構造を正確に評価できることを見出してなされたものである。 As a result of diligent studies to solve the above problems, the present invention can observe the fibrous structure inside the skin three-dimensionally and protein-specifically by the fluorescently labeled and transparent skin tissue, and the skin by the fibrillin structure. It was made by finding that the internal structure can be evaluated accurately.

本発明は、具体的には次の事項を要旨とする。
1.皮膚組織透明化と免疫蛍光染色法を組み合わせることにより得られる皮膚内部構造の三次元画像を画像解析し、皮膚組織内のフィブリリン構造を数値化することを特徴とする皮膚内部構造評価方法。
2.前記フィブリリン構造の長さ、径、直線性のいずれか1以上を数値化することを特徴とする1.に記載の皮膚内部構造評価方法。
3.前記数値化された値を、皮膚線維の老化度の指標とすることを特徴とする1.または2.に記載の皮膚内部構造評価方法。
Specifically, the gist of the present invention is as follows.
1. 1. A method for evaluating the internal structure of the skin, which comprises analyzing a three-dimensional image of the internal structure of the skin obtained by combining the clearing of the skin tissue and the immunofluorescence staining method and quantifying the fibrilline structure in the skin tissue.
2. 1. It is characterized in that any one or more of the length, diameter, and linearity of the fibrillin structure is quantified. The method for evaluating the internal structure of the skin according to.
3. 3. 1. The quantified value is used as an index of the degree of aging of skin fibers. Or 2. The method for evaluating the internal structure of the skin according to.

本発明の皮膚内部構造評価方法は、皮膚組織透明化と免疫蛍光染色法を組み合わせることにより、皮膚内部の線維構造を三次元的かつタンパク特異的に観察することができる。皮膚真皮内部の線維構造としては、膠原線維、弾性線維が知られ、膠原線維は、I型コラーゲンを主成分とし、弾性線維は、骨格線維としてのマイクロフィブリル、フィブリリン、均質物質としてエラスチンから構成され、さらに細胞外基質として、フィブロネクチンなどの糖タンパクやプロテオグリカンを主成分とする基質が存在する。これらの中で、フィブリリン構造を画像処理、数値化して得られる変数により、皮膚内部構造を正しく評価することができる。フィブリリン構造は、長さ、径、直線性について、年齢による差異が認められるため、フィブリリン構造を老化度、肌年齢の指標とすることができる。 In the skin internal structure evaluation method of the present invention, the fibrous structure inside the skin can be observed three-dimensionally and protein-specifically by combining skin tissue clearing and immunofluorescence staining. Collagen fibers and elastic fibers are known as the fibrous structures inside the dermis of the skin. Collagen fibers are mainly composed of type I collagen, and elastic fibers are composed of microfibrils and fibrils as skeletal fibers and elastin as a homogeneous substance. Furthermore, as extracellular matrix, there are substrates containing glycoproteins such as fibrillintin and proteoglycan as main components. Among these, the internal structure of the skin can be correctly evaluated by the variables obtained by image processing and quantifying the fibrillin structure. Since the fibrillin structure has a difference in length, diameter, and linearity depending on the age, the fibrillin structure can be used as an index of aging degree and skin age.

20代女性から採取した検体の皮膚内部構造の三次元画像。A three-dimensional image of the internal structure of the skin of a sample collected from a woman in her twenties. 60代女性から採取した検体の皮膚内部構造の三次元画像。A three-dimensional image of the internal structure of the skin of a sample collected from a woman in her 60s. フィブリリン構造の解析結果。Analysis result of fibrillin structure.

本発明は、皮膚組織透明化と免疫蛍光染色法を組み合わせることにより得られる皮膚内部構造の三次元画像を画像解析し、皮膚組織内のフィブリリン構造を数値化し、この数値に基づいて皮膚内部構造を評価する方法に関する。 The present invention analyzes a three-dimensional image of the internal skin structure obtained by combining skin tissue clearing and immunofluorescence staining, quantifies the fibrilline structure in the skin tissue, and determines the internal skin structure based on this numerical value. Regarding the method of evaluation.

皮膚組織は、表面から順に表皮、真皮、皮下組織により構成される。真皮は、柔軟性と弾性に富んだ組織であり、場所によって異なるが1〜2mmの厚さを有する。真皮は、主に細胞と細胞外マトリックス(線維と基質)とから構成される。細胞外マトリックスの主成分は膠原線維であり、その他に弾性線維、フィブロネクチンなどの糖タンパクやプロテオグリカンを主成分とする基質等が含まれる。 The skin tissue is composed of epidermis, dermis, and subcutaneous tissue in this order from the surface. The dermis is a flexible and elastic tissue with a thickness of 1-2 mm, depending on the location. The dermis is mainly composed of cells and extracellular matrix (fibers and substrates). The main component of the extracellular matrix is collagen fibers, and in addition, elastic fibers, glycoproteins such as fibronectin, and substrates containing proteoglycan as the main component are included.

フィブリリンは、弾性繊維の骨格を形成するタンパク質であり、弾性繊維の構造を形成する。
本発明の皮膚内部構造評価方法は、フィブリリン構造を数値化して得られる変数により、皮膚内部構造を評価することを特徴とする。
Fibrillin is a protein that forms the skeleton of elastic fibers and forms the structure of elastic fibers.
The skin internal structure evaluation method of the present invention is characterized in that the skin internal structure is evaluated by a variable obtained by quantifying the fibrillin structure.

<タンパク特異的蛍光染色>
皮膚組織内部の線維構造を特異的に可視化する手法として、皮膚弾力性線維を構成するタンパク質であるフィブリリンを抗原特異的に結合する1次抗体および1次抗体と結合し蛍光ラベル化された2次抗体を用い、抗原抗体反応による免疫蛍光染色法を用いる。
<Protein-specific fluorescent staining>
As a method for specifically visualizing the fibrous structure inside the skin tissue, a primary antibody that specifically binds fibrillin, which is a protein constituting skin elastic fibers, and a secondary antibody that binds to the primary antibody and are fluorescently labeled. An antibody is used, and an immunofluorescent staining method based on an antigen-antibody reaction is used.

<皮膚組織の透明化>
通常、皮膚組織は、メラニンや血液中の赤色色素を代表とする色素や脂質による吸光や組織表面および内部での散乱が発生するため、光が深部まで透過せず、皮膚内部構造の三次元的蛍光画像を取得することは困難である。そこで、光を皮膚深部まで透過させるため、透明化試薬を用いて、これらの生体色素の脱色、脂質の除去、および屈折率の均一化を行うことにより光の透過性を向上させ、皮膚組織内部の線維構造の三次元画像を取得する。
<Transparency of skin tissue>
Normally, skin tissue undergoes absorption by pigments and lipids such as melanin and red pigments in blood and scattering on the surface and inside of the tissue, so light does not penetrate deeply and the internal structure of the skin is three-dimensional. It is difficult to obtain a fluorescent image. Therefore, in order to allow light to pass deep into the skin, a clearing reagent is used to decolorize these biopigments, remove lipids, and homogenize the refractive index to improve light transmission and inside the skin tissue. Acquire a three-dimensional image of the fibrous structure of.

<蛍光染色された組織の評価方法>
皮膚内部の三次元画像について、画像解析ソフトウェアを用いて、2値化及び細線化処理を行い、フィブリリン構造の長さ、径、直線性を数値化し、得られた変数により皮膚内部構造を評価する。
<Evaluation method for fluorescently stained tissue>
The three-dimensional image inside the skin is binarized and thinned using image analysis software, the length, diameter, and linearity of the fibrilline structure are quantified, and the skin internal structure is evaluated using the obtained variables. ..

<検体>
20代女性3名(23、24、28歳)、60代女性3名(61、61、64歳)の腹部皮膚を採取し、検体とした。
検体のサイズは表皮面積がタテ約10mm、ヨコ約10mmで、厚さは約1mmである。
<Sample>
The abdominal skin of 3 women in their 20s (23, 24, 28 years old) and 3 women in their 60s (61, 61, 64 years old) was collected and used as samples.
The size of the sample has an epidermis area of about 10 mm in length and about 10 mm in width, and a thickness of about 1 mm.

<真皮内の蛍光染色>
エラスチン抗体、フィブリリン−1抗体を含む水溶液に検体を浸漬して、タンパク特異的に標識した後、Alexa488、594(Thermo Fisher Scientific社)を2次抗体として蛍光標識した。さらに各種細胞の位置を認識するため、蛍光プローブDAPI(Thermo Fisher Scientific社)を用いて、細胞核の染色を行った。
<Fluorescent staining in the dermis>
The sample was immersed in an aqueous solution containing an elastin antibody and a fibrillin-1 antibody, labeled in a protein-specific manner, and then fluorescently labeled with Alexa488,594 (Thermo Fisher Scientific) as a secondary antibody. Furthermore, in order to recognize the positions of various cells, cell nuclei were stained using a fluorescent probe DAPI (Thermo Fisher Scientific).

<皮膚組織の透明化>
組織抗体染色した後、Rapi clear 1.49(SunJin Lab社)に検体を約30分間浸漬して組織透明化を行った。
<Transparency of skin tissue>
After staining with tissue antibody, the sample was immersed in Rapi clear 1.49 (SunJin Lab) for about 30 minutes to clear the tissue.

<画像取得>
線維構造を構成するタンパク質を蛍光染色し、皮膚組織の透明化をした検体を超解像型共焦点レーザー顕微鏡LSM−700(ZEISS社製)で観察して、三次元画像を取得した。観察方向は皮膚側面を対物レンズに垂直となるよう設置し、組織側面から、深さ70μm深部まで撮像した。なお、撮像部位を統一するため、画像取得の範囲はタテ300μm、ヨコ300μmとし、表皮の上部に約20μmの空白の画像取得領域を設けた。すなわち、表皮から真皮方向に向けて約280μmの範囲が画像取得の範囲に含まれるようにした。
励起光は、405、488、594nmのレーザー光を用い、それぞれ425〜475nm、500〜530nm、605〜645nmの蛍光を検出した。励起光405nm、検出光425〜475nmで細胞核が検出できる。励起光488nm、検出光500〜530nmでエラスチンが検出できる。励起光594nm、検出光605〜645nmでフィブリリン−1が検出できる。励起光594nm、検出光605〜645nmでフィブリリン−1を検出した23歳女性、64歳女性の皮膚内部構造の三次元画像を、それぞれ図1、2に示す。
<Image acquisition>
A three-dimensional image was acquired by observing a sample in which the proteins constituting the fibrous structure were fluorescently stained and the skin tissue was made transparent with a super-resolution confocal laser scanning microscope LSM-700 (manufactured by ZEISS). The observation direction was set so that the side surface of the skin was perpendicular to the objective lens, and images were taken from the side surface of the tissue to a depth of 70 μm. In order to unify the imaging sites, the image acquisition range was set to 300 μm in the vertical direction and 300 μm in the horizontal direction, and a blank image acquisition area of about 20 μm was provided in the upper part of the epidermis. That is, the range of about 280 μm from the epidermis to the dermis was included in the image acquisition range.
As the excitation light, laser light of 405, 488, 594 nm was used, and fluorescence of 425 to 475 nm, 500 to 530 nm, and 605 to 645 nm was detected, respectively. The cell nucleus can be detected with an excitation light of 405 nm and a detection light of 425 to 475 nm. Elastin can be detected with an excitation light of 488 nm and a detection light of 500 to 530 nm. Fibrillin-1 can be detected with an excitation light of 594 nm and a detection light of 605 to 645 nm. Three-dimensional images of the internal skin structure of a 23-year-old woman and a 64-year-old woman who detected fibrillin-1 with an excitation light of 594 nm and a detection light of 605 to 645 nm are shown in FIGS. 1 and 2, respectively.

<画像解析>
得られた画像に対し、画像解析ソフトウェアImaris(ZEISS社製)を用いて2値化及び細線化処理を行い以下の解析変数を数値化した。
長さ
定義:1画像内における細線化した線維の長さの総和

定義:1画像内における線維の半径の平均値
直線性
定義:線維始点と線維末端との間の直線距離/細線化した線維の長さ
<Image analysis>
The obtained image was binarized and thinned using image analysis software Imaris (manufactured by ZEISS), and the following analysis variables were quantified.
Length definition: Sum of the lengths of thinned fibers in one image
Diameter definition: Average fiber radius in one image
Linear definition: Linear distance between fiber start point and fiber end / length of thinned fiber

<解析結果>
フィブリリン構造の長さ、径、直線性に年代差が認められた。結果を図3に示す。20代の皮膚組織のフィブリリン構造は、60代と比べて、長く、細く、直線性が高かった。一方、フィブリリン構造の分岐の角度、体積、表面積、数、分岐の数についても画像解析ソフトウェアを用いて数値化したところ、これらについては、年代差は認められなかった。
<Analysis result>
Age differences were observed in the length, diameter, and linearity of the fibrillin structure. The results are shown in FIG. The fibrillin structure of the skin tissue in the 20s was longer, thinner and more linear than in the 60s. On the other hand, when the angle, volume, surface area, number, and number of branches of the fibrillin structure were also quantified using image analysis software, no age difference was observed for these.

<まとめ>
フィブリリン構造の長さ、径、直線性は、年齢による差異が認められ、これらの値が皮膚内部構造の評価に有用であることが確かめられた。フィブリリン構造の長さ、径、直線性を数値化して得られた値は、肌年齢、老化度等の指標とすることができる。また、皮膚内部構造を正確に評価することにより、個人ごとに適したスキンケアを提供することができる。
<Summary>
The length, diameter, and linearity of the fibrillin structure differed with age, confirming that these values are useful for evaluating the internal structure of the skin. The values obtained by quantifying the length, diameter, and linearity of the fibrillin structure can be used as an index of skin age, aging degree, and the like. In addition, by accurately evaluating the internal structure of the skin, it is possible to provide skin care suitable for each individual.

Claims (3)

表皮と真皮を含む皮膚組織に対し、皮膚組織透明化と、エラスチンとフィブリリン−1の蛍光染色と細胞核を染色する免疫蛍光染色法を組み合わせることにより得られる透明化検体を、共焦点レーザー顕微鏡で組織側面から撮像し、前記エラスチンと前記フィブリリン−1と前記細胞核について、表皮表面から真皮に向けて0μm〜280μm、組織側面から深さ700μmの範囲が画像取得の範囲に含まれるようにして取得した皮膚内部構造の三次元画像を2値化及び細線化処理による画像解析し、皮膚組織内のフィブリリン構造の径を数値化することを特徴とする皮膚内部構造評価方法。 For the skin tissue including the epidermis and dermis, a clear sample obtained by combining skin tissue clearing, fluorescent staining of elastin and fibrillin-1 and immunofluorescent staining method for staining the cell nucleus is examined with a confocal laser microscope. Skin acquired by imaging from the side surface so that the range of 0 μm to 280 μm from the surface of the epidermis toward the dermis and 700 μm in depth from the side surface of the tissue is included in the image acquisition range for the elastin, the fibrillin-1 and the cell nucleus. A method for evaluating the internal structure of the skin, which comprises analyzing a three-dimensional image of the internal structure by binarization and thinning, and quantifying the diameter of the fibrilline structure in the skin tissue. さらに、前記フィブリリン構造の長さ、直線性のいずれか1以上を数値化することを特徴とする請求項1に記載の皮膚内部構造評価方法。 The skin internal structure evaluation method according to claim 1, further comprising quantifying any one or more of the length and the linearity of the fibrillin structure. 前記数値化された値を、皮膚線維の老化度の指標とすることを特徴とする請求項1または2に記載の皮膚内部構造評価方法。 The method for evaluating the internal structure of skin according to claim 1 or 2, wherein the quantified value is used as an index of the degree of aging of skin fibers.
JP2016202590A 2016-10-14 2016-10-14 Skin internal structure evaluation method Active JP6898720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202590A JP6898720B2 (en) 2016-10-14 2016-10-14 Skin internal structure evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202590A JP6898720B2 (en) 2016-10-14 2016-10-14 Skin internal structure evaluation method

Publications (2)

Publication Number Publication Date
JP2018063216A JP2018063216A (en) 2018-04-19
JP6898720B2 true JP6898720B2 (en) 2021-07-07

Family

ID=61967703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202590A Active JP6898720B2 (en) 2016-10-14 2016-10-14 Skin internal structure evaluation method

Country Status (1)

Country Link
JP (1) JP6898720B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526971B2 (en) * 2005-02-14 2010-08-18 株式会社資生堂 Evaluation method of skin aging condition using fibulin-5 as an index
JP2009080108A (en) * 2007-09-05 2009-04-16 Shiseido Co Ltd Method of producing sem sample from biological tissue thin stripe, sem sample, and method of evaluating state of skin
WO2010129270A2 (en) * 2009-04-27 2010-11-11 Shriners Hospitals For Children Profiling fragments of elastic fibers and microfibrils as biomarkers for disease
CN104350372B (en) * 2012-08-09 2018-03-02 斯坦福大学托管董事会 For preparing the method and composition of the biological specimen for microscopic analysis
EP2950077B1 (en) * 2013-01-28 2018-07-25 Japan Science and Technology Agency Method for rendering tissue transparent, reagent for rendering tissue transparent, and tissue observation method
US9778154B2 (en) * 2013-09-20 2017-10-03 California Institute Of Technology Methods for phenotyping of intact whole tissues

Also Published As

Publication number Publication date
JP2018063216A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
Graf et al. Imaging and analysis of three-dimensional cell culture models
Santi Light sheet fluorescence microscopy: a review
Schenke-Layland et al. Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy
Schlosser et al. Fluorescence confocal endomicroscopy of the cervix: pilot study on the potential and limitations for clinical implementation
Kirkbride et al. The application of laser scanning confocal microscopy to the examination of hairs and textile fibers: An initial investigation
Takahashi et al. Visualizing dynamics of angiogenic sprouting from a three-dimensional microvasculature model using stage-top optical coherence tomography
Kang et al. Rapid tissue histology using multichannel confocal fluorescence microscopy with focus tracking
Li et al. Label-free assessment of collagenase digestion on bovine pericardium properties by fluorescence lifetime imaging
Martin et al. A novel approach for assessing cardiac fibrosis using label-free second harmonic generation
Li et al. Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast histological imaging
Ghosh et al. Viewing life without labels under optical microscopes
Dong et al. Performances of high numerical aperture water and oil immersion objective in deep‐tissue, multi‐photon microscopic imaging of excised human skin
Harms et al. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology
JP6898720B2 (en) Skin internal structure evaluation method
Tan et al. Imaging cellular responses to mechanical stimuli within three‐dimensional tissue constructs
Xiong et al. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation
De Leeuw et al. Full-field OCT for fast diagnostic of head and neck cancer
Tolstik et al. Cardiac multiscale bioimaging: from nano-through micro-to mesoscales
Zhang et al. Structured illumination-based super-resolution optical microscopy for hemato-and cyto-pathology applications
RU2584922C1 (en) Multichannel fibre-optic neural interface for multimodal microscopy of animal brain
Xie et al. Three‐Dimensional Second‐Harmonic Generation Imaging of Fibrillar Collagen in Biological Tissues
CN100516841C (en) Method for producing light field or wide field fluorescence light section
KR101986658B1 (en) Method of acquiring an image of a biological sample
Wingert et al. Signal efficiency in gradient index lens based two photon microscopy
Alhiyari et al. Prognostic fluorescence lifetime measurements with DOCI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210412

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210611

R150 Certificate of patent or registration of utility model

Ref document number: 6898720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150