JP6897603B2 - Cable disconnection sign detection device - Google Patents

Cable disconnection sign detection device Download PDF

Info

Publication number
JP6897603B2
JP6897603B2 JP2018034492A JP2018034492A JP6897603B2 JP 6897603 B2 JP6897603 B2 JP 6897603B2 JP 2018034492 A JP2018034492 A JP 2018034492A JP 2018034492 A JP2018034492 A JP 2018034492A JP 6897603 B2 JP6897603 B2 JP 6897603B2
Authority
JP
Japan
Prior art keywords
current
value
cable
current path
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018034492A
Other languages
Japanese (ja)
Other versions
JP2019148546A (en
Inventor
武志 若林
武志 若林
山田 隆章
隆章 山田
創 津端
創 津端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018034492A priority Critical patent/JP6897603B2/en
Priority to PCT/JP2019/001740 priority patent/WO2019167472A1/en
Priority to TW108103635A priority patent/TWI695558B/en
Publication of JP2019148546A publication Critical patent/JP2019148546A/en
Application granted granted Critical
Publication of JP6897603B2 publication Critical patent/JP6897603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、負荷に接続されて負荷に電流を通電するケーブルの断線の検知に関する発明である。 The present invention is an invention relating to detection of disconnection of a cable connected to a load and energizing the load.

従来、何らかの負荷にケーブルを接続し、このケーブルを介して負荷に電流を通電する電気回路の構成においては、ケーブルが断線すると負荷への電力供給は当然になされない。 Conventionally, in the configuration of an electric circuit in which a cable is connected to some kind of load and a current is applied to the load through the cable, power is not naturally supplied to the load when the cable is broken.

例えば、何らかの被加熱物を加熱する加熱装置において、熱源であるヒータと電源回路や制御回路との間にケーブルが接続される。このようなケーブルが断線すると、ヒータの制御ができなくなって、所定の加熱が行えない。 For example, in a heating device that heats an object to be heated, a cable is connected between a heater that is a heat source and a power supply circuit or a control circuit. If such a cable is broken, the heater cannot be controlled and predetermined heating cannot be performed.

そこで、ケーブルの断線の予兆を検知するために、可動部に設置されるケーブルに、電圧供給用リード線(実際に必要とされる本来のリード線)と、この本来のリード線に比べて耐屈曲性が劣るダミー用のリード線とを設け、このダミー用のリード線の断線有無を検出することで、本来のリード線の断線時期が近づいていることや、断線のおそれが高いことを予知する装置が特許文献1に示されている。 Therefore, in order to detect a sign of disconnection of the cable, the cable installed in the movable part is more resistant to the voltage supply lead wire (the original lead wire actually required) and this original lead wire. By providing a dummy lead wire with inferior flexibility and detecting the presence or absence of disconnection of this dummy lead wire, it is predicted that the original lead wire disconnection time is approaching and the risk of disconnection is high. The device to be used is shown in Patent Document 1.

特開平5−340985号公報Japanese Unexamined Patent Publication No. 5-340985

特許文献1に示される装置においては、耐屈曲性が劣るダミー用のリード線を備えた特殊なケーブルを作成する必要があり、汎用性のあるケーブルを用いることができない。また、ダミー用リード線の断線有無だけで本来のリード線の断線を予知する、という二値判定であるので、ケーブルの断線の予兆を検知する感度を調整する、といったことはできない。また、負荷の断線等の異常を検知することもできない。 In the apparatus shown in Patent Document 1, it is necessary to prepare a special cable provided with a lead wire for a dummy having inferior bending resistance, and a versatile cable cannot be used. Further, since it is a binary determination that the original lead wire breakage is predicted only by the presence or absence of the dummy lead wire breakage, it is not possible to adjust the sensitivity for detecting the sign of the cable breakage. In addition, it is not possible to detect an abnormality such as a disconnection of the load.

そこで、本発明の目的は、特殊なケーブルを必要とせず、ケーブルの断線の予兆を検知する装置を提供することにある。 Therefore, an object of the present invention is to provide a device that does not require a special cable and detects a sign of disconnection of the cable.

本開示の一例としてのケーブル断線予兆検知装置は、負荷に接続されて負荷に電流を通電するケーブルの断線の予兆を検知する装置であって、電流検出部と、警報部と、を備える。ケーブルは、並列接続された複数の電流経路を含む。電流検出部は複数の電流経路のうち少なくとも一つの電流経路に流れる電流を検出する。そして、警報部は、電流検出部による検出値と閾値とを比較して、複数の電流経路の通電状態を検出することで、複数の電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する。 The cable disconnection sign detection device as an example of the present disclosure is a device that detects a sign of disconnection of a cable connected to a load and energizing the load, and includes a current detection unit and an alarm unit. The cable contains multiple current paths connected in parallel. The current detection unit detects the current flowing in at least one of the plurality of current paths. Then, the alarm unit compares the value detected by the current detection unit with the threshold value, detects the energized state of the plurality of current paths, determines the presence or absence of disconnection of the plurality of current paths, and determines that there is a disconnection. , Issue an alarm.

この構成では、耐屈曲性が劣るダミー用のリード線などは不要であり、普通のケーブルを用いることができる。また、ダミー用リード線の断線有無の二値判定ではなく、複数の電流経路のうち少なくとも一つの電流経路に流れる電流を検出して、これと閾値との比較に基づいて複数の電流経路の通電状態を検出するので、閾値の設定で、ケーブルの予兆を検知の感度を調整するといったことも可能となる。更には、負荷の断線等の異常も検知できる。 In this configuration, a lead wire for a dummy having poor bending resistance is not required, and an ordinary cable can be used. Further, instead of determining whether or not the dummy lead wire is broken, the current flowing in at least one of the plurality of current paths is detected, and the current is energized in the plurality of current paths based on the comparison between this and the threshold value. Since the state is detected, it is possible to adjust the sensitivity of detecting the sign of the cable by setting the threshold value. Furthermore, abnormalities such as load disconnection can be detected.

また、本開示の一例では、負荷に接続されて負荷に電流を通電するケーブルの断線の予兆を検知する装置であって、電流検出部と、警報部と、を備える。ケーブルは、並列接続された複数の電流経路を含む。電流検出部は複数の電流経路のうち少なくとも二つの電流経路に流れる電流の和または差を検出する。そして、警報部は、電流検出部による検出値と閾値とを比較して、複数の電流経路の通電状態を検出することで、複数の電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する。 Further, in one example of the present disclosure, it is a device for detecting a sign of disconnection of a cable connected to a load and energizing the load, and includes a current detection unit and an alarm unit. The cable contains multiple current paths connected in parallel. The current detector detects the sum or difference of the currents flowing in at least two of the plurality of current paths. Then, the alarm unit compares the value detected by the current detection unit with the threshold value, detects the energized state of the plurality of current paths, determines the presence or absence of disconnection of the plurality of current paths, and determines that there is a disconnection. , Issue an alarm.

この構成では、複数の電流経路に流れる電流の組み合わせに基づいて複数の電流経路の通電状態を検出するので、複数の電流経路の断線有無の組み合わせを検知できる。 In this configuration, since the energized state of the plurality of current paths is detected based on the combination of the currents flowing in the plurality of current paths, it is possible to detect the combination of the presence or absence of disconnection of the plurality of current paths.

また、本開示の一例では、負荷の複数の接続部にそれぞれ接続されて負荷に電流を通電する複数のケーブルの断線の予兆を検知する装置であって、電流検出部と、警報部と、を備える。ケーブルは、負荷の第1接続部に接続される第1ケーブルと、負荷の第2接続部に接続される第2ケーブルと、を含む。第1ケーブルは、並列接続された複数の第1電流経路で構成され、第2ケーブルは、並列接続された複数の第2電流経路で構成される。電流検出部は、複数の第1電流経路のうち少なくとも一つの電流経路に流れる電流と、複数の第2電流経路のうち少なくとも一つの電流経路に流れる電流との和または差を検出する。そして、警報部は、電流検出部による検出値と閾値とを比較して、複数の第1電流経路の通電状態および複数の第2電流経路の通電状態を検出することで、複数の第1電流経路および複数の第2電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する。 Further, in one example of the present disclosure, the device is a device that detects a sign of disconnection of a plurality of cables that are connected to a plurality of connection portions of the load and conduct current to the load, and the current detection unit and the alarm unit are used. Be prepared. The cable includes a first cable connected to the first connection of the load and a second cable connected to the second connection of the load. The first cable is composed of a plurality of first current paths connected in parallel, and the second cable is composed of a plurality of second current paths connected in parallel. The current detection unit detects the sum or difference between the current flowing in at least one of the plurality of first current paths and the current flowing in at least one of the plurality of second current paths. Then, the alarm unit compares the value detected by the current detection unit with the threshold value, and detects the energized state of the plurality of first current paths and the energized state of the plurality of second current paths, thereby detecting a plurality of first currents. The presence or absence of disconnection of the path and the plurality of second current paths is determined, and when it is determined that there is a disconnection, an alarm is issued.

この構成では、負荷に接続される第1ケーブルと第2ケーブルについて、それぞれ複数の電流経路に流れる電流の組み合わせに基づいて複数の電流経路の通電状態を検出するので、第1ケーブルの複数の電流経路および第2ケーブルの複数の電流経路の断線有無の組み合わせを検知できる。 In this configuration, for the first cable and the second cable connected to the load, the energized state of the plurality of current paths is detected based on the combination of the currents flowing in the plurality of current paths, respectively, so that the plurality of currents of the first cable are detected. It is possible to detect a combination of a path and a plurality of current paths of the second cable with or without disconnection.

また、本開示の一例では、負荷の複数の接続部にそれぞれ接続されて負荷に電流を通電する複数のケーブルの断線の予兆を検知する装置であって、電流検出部と、警報部と、を備える。ケーブルは、負荷の第1接続部に接続される第1ケーブルと、負荷の第2接続部に接続される第2ケーブルと、を含む。第1ケーブルは、並列接続された複数の第1電流経路で構成され、第2ケーブルは、並列接続された複数の第2電流経路で構成される。電流検出部は、第1電流経路のうち少なくとも二つの電流経路に流れる電流の和または差に対する、第2電流経路のうち少なくとも一つの電流経路に流れる電流の和または差を検出する。そして、警報部は、電流検出部による検出値と閾値とを比較して、複数の第1電流経路の通電状態および複数の第2電流経路の通電状態を検出することで、複数の第1電流経路および複数の第2電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する。 Further, in one example of the present disclosure, the device is a device that detects a sign of disconnection of a plurality of cables that are connected to a plurality of connection portions of the load and conduct current to the load, and the current detection unit and the alarm unit are used. Be prepared. The cable includes a first cable connected to the first connection of the load and a second cable connected to the second connection of the load. The first cable is composed of a plurality of first current paths connected in parallel, and the second cable is composed of a plurality of second current paths connected in parallel. The current detection unit detects the sum or difference of the currents flowing in at least one of the second current paths with respect to the sum or difference of the currents flowing in at least two current paths in the first current path. Then, the alarm unit compares the value detected by the current detection unit with the threshold value, and detects the energized state of the plurality of first current paths and the energized state of the plurality of second current paths, thereby detecting a plurality of first currents. The presence or absence of disconnection of the path and the plurality of second current paths is determined, and when it is determined that there is a disconnection, an alarm is issued.

この構成では、負荷に接続される第1ケーブルと第2ケーブルについて、それぞれ複数の電流経路に流れる電流の組み合わせに基づいて複数の電流経路の通電状態を検出するので、第1ケーブルの複数の電流経路および第2ケーブルの複数の電流経路の断線有無の組み合わせを検知できる。 In this configuration, for the first cable and the second cable connected to the load, the energized state of the plurality of current paths is detected based on the combination of the currents flowing in the plurality of current paths, respectively, so that the plurality of currents of the first cable are detected. It is possible to detect a combination of a path and a plurality of current paths of the second cable with or without disconnection.

また、本開示の一例では、前記閾値は、初期状態における電流検出部による検出値に基づいて定められたものである。 Further, in one example of the present disclosure, the threshold value is determined based on the value detected by the current detection unit in the initial state.

この構成では、初期状態からの変化量で断線の検知を行うことになり、より正確な判定による断線予兆検知が可能となる。 In this configuration, the disconnection is detected by the amount of change from the initial state, and it is possible to detect the disconnection sign by more accurate determination.

本発明によれば、特殊なケーブルを必要とせず、ケーブルの断線の予兆を検知できる。 According to the present invention, a sign of cable disconnection can be detected without the need for a special cable.

図1は本発明の実施形態に係るケーブル断線予兆検知装置を含む加熱装置全体の構成を示す図である。FIG. 1 is a diagram showing the configuration of the entire heating device including the cable disconnection sign detection device according to the embodiment of the present invention. 図2は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 2 is a diagram showing the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. 図3は閾値と計測電流値との関係を示す図である。FIG. 3 is a diagram showing the relationship between the threshold value and the measured current value. 図4は、図1に示した制御部20の処理内容を示すフローチャートである。FIG. 4 is a flowchart showing the processing contents of the control unit 20 shown in FIG. 図5は、図1に示した加熱装置とは、電流検出部4が検出する電流経路の構成が異なる加熱装置の回路図である。FIG. 5 is a circuit diagram of a heating device having a configuration of a current path different from that of the heating device shown in FIG. 1 and detected by the current detection unit 4. 図6は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 6 is a diagram showing the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. 図7は、図1に示した加熱装置とは、ケーブル31の構成が異なる加熱装置の回路図である。FIG. 7 is a circuit diagram of a heating device having a different configuration of the cable 31 from the heating device shown in FIG. 図8は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 8 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. 図9は、図7に示した例とは電流検出部の構成が異なる加熱装置の回路図である。FIG. 9 is a circuit diagram of a heating device having a different configuration of the current detection unit from the example shown in FIG. 7. 図10は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 10 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. 図11は、ケーブル31を構成する三つの電流経路CA11,CA12,CA13に流れる電流を電流検出部4が検出する加熱装置の回路図である。FIG. 11 is a circuit diagram of a heating device in which the current detection unit 4 detects currents flowing through the three current paths CA11, CA12, and CA13 constituting the cable 31. 図12は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 12 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. 図13は、図1に示した例とは異なる加熱装置の回路図である。FIG. 13 is a circuit diagram of a heating device different from the example shown in FIG. 図14は、所定箇所での断線状態における、電流経路CA11,CA12,CA2に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 14 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, and CA2 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. 図15は、図1に示した例とは異なる加熱装置の回路図である。FIG. 15 is a circuit diagram of a heating device different from the example shown in FIG. 図16は、所定箇所での断線状態における、電流経路CA11,CA12,CA2に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 16 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, and CA2 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. 図17は、図1に示した例とは異なる加熱装置の回路図である。FIG. 17 is a circuit diagram of a heating device different from the example shown in FIG. 図18は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 18 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnection state at a predetermined location. 図19は、図1に示した例とは異なる加熱装置の回路図である。FIG. 19 is a circuit diagram of a heating device different from the example shown in FIG. 図20は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 20 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. 図21は、図1に示した例とは異なる加熱装置の回路図である。FIG. 21 is a circuit diagram of a heating device different from the example shown in FIG. 図22は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。FIG. 22 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnection state at a predetermined location. 図23は、図1に示した例とは異なる加熱装置の回路図である。FIG. 23 is a circuit diagram of a heating device different from the example shown in FIG. 図24は三相交流負荷であるヒータ2にケーブルを介して三相交流電源が接続された装置の例である。FIG. 24 is an example of a device in which a three-phase AC power supply is connected to the heater 2, which is a three-phase AC load, via a cable. 図25は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22,CA31,CA32に流れる電流、および電流検出部CT1,CT2,CT3の検出結果の関係を示す図である。FIG. 25 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, CA22, CA31, and CA32 and the detection results of the current detection units CT1, CT2, and CT3 in the disconnected state at a predetermined location.

以下、本発明を実施するための形態について、幾つかの図を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to some figures.

・適用例
先ず、図1を参照しながら、本発明が適用される一例について説明する。図1は本発明の実施形態に係るケーブル断線予兆検知装置を含む加熱装置全体の構成を示す図である。
-Application example First, an example to which the present invention is applied will be described with reference to FIG. FIG. 1 is a diagram showing the configuration of the entire heating device including the cable disconnection sign detection device according to the embodiment of the present invention.

図1に示すように、本実施形態に係るケーブル断線予兆検知装置201は、負荷であるヒータ2に接続されて、このヒータ2に電流を通電するケーブル31,32の断線の予兆を検知する装置である。図1に示す例では、ケーブル31は、並列接続された複数の電流経路CA11,CA12を含む。ケーブル断線予兆検知装置201は、複数の電流経路CA11,CA12のうち一つの電流経路CA12に流れる電流を検出する電流検出部4と、この電流検出部4による検出値と閾値とを比較して、複数の電流経路CA11,CA12の通電状態を検出することで、複数の電流経路CA11,CA12の断線有無を判定し、断線有りと判定したとき、警報を出力する警報部10と、を備える。 As shown in FIG. 1, the cable disconnection sign detection device 201 according to the present embodiment is a device that is connected to a heater 2 which is a load and detects a sign of disconnection of cables 31 and 32 that apply a current to the heater 2. Is. In the example shown in FIG. 1, the cable 31 includes a plurality of current paths CA11 and CA12 connected in parallel. The cable disconnection sign detection device 201 compares the current detection unit 4 that detects the current flowing through one of the plurality of current paths CA11 and CA12 with the current detection unit 4 and the threshold value detected by the current detection unit 4. By detecting the energized state of the plurality of current paths CA11 and CA12, it is determined whether or not the plurality of current paths CA11 and CA12 are disconnected, and when it is determined that the current paths are disconnected, an alarm unit 10 is provided to output an alarm.

・構成例
次に、本発明の実施形態に係る加熱装置の構成について、図を参照して説明する。上述のように、図1は本発明の実施形態に係るケーブル断線予兆検知装置を含む加熱装置全体の構成を示す図である。
• Configuration Example Next, the configuration of the heating device according to the embodiment of the present invention will be described with reference to the drawings. As described above, FIG. 1 is a diagram showing the configuration of the entire heating device including the cable disconnection sign detection device according to the embodiment of the present invention.

図1に表れているように、加熱装置101は、電源1、ヒータ2、ケーブル31,32、電流検出部4および開閉部5を備える。ヒータ2は本発明に係る「負荷」に相当する。ヒータ2はケーブル31,32を介して電源1に接続される。ケーブル31,32は電源1とヒータ2との間を繋ぐ電流経路である。この例では、電源1は単相交流電源であり、ヒータ2は2端子の負荷である。ケーブル31には直列に開閉部5が挿入されている。また、ケーブル31は二つの電流経路CA11,CA12を含む。電流検出部4は電流経路CA12に流れる電流を検出する。この電流検出部4は例えば変流器(カレントトランス)であり、二次側に抵抗器が接続されて、検出電流に比例する電圧を出力する。 As shown in FIG. 1, the heating device 101 includes a power supply 1, a heater 2, cables 31, 32, a current detection unit 4, and an opening / closing unit 5. The heater 2 corresponds to the "load" according to the present invention. The heater 2 is connected to the power supply 1 via cables 31 and 32. The cables 31 and 32 are current paths connecting the power supply 1 and the heater 2. In this example, the power supply 1 is a single-phase AC power supply, and the heater 2 is a load of two terminals. An opening / closing portion 5 is inserted in series with the cable 31. Further, the cable 31 includes two current paths CA11 and CA12. The current detection unit 4 detects the current flowing through the current path CA12. The current detection unit 4 is, for example, a current transformer, and a resistor is connected to the secondary side to output a voltage proportional to the detected current.

制御部20は開閉部5の制御およびケーブルの断線予兆検知に関する制御を行う。 The control unit 20 controls the opening / closing unit 5 and controls for detecting a sign of disconnection of the cable.

開閉部5は例えばソリッドステートスイッチであり、出力部16の出力信号で開閉される。 The opening / closing unit 5 is, for example, a solid state switch, and is opened / closed by the output signal of the output unit 16.

設定部12は外部からの手入力また通信による設定値を入力して、その値を記憶部13に記憶する。電流計測部11は電流検出部4の検出値を基に電流を計測する。判定部14は記憶部13に記憶された値と電流計測部11で計測された値とを基にして、異常状態であるか否かを判定する。判定部14が異常状態と判定したとき、異常出力部15は、リレー出力やインジケータの発光、通信フラグの設定等によって警報を発する。 The setting unit 12 inputs a set value manually or by communication from the outside, and stores the value in the storage unit 13. The current measuring unit 11 measures the current based on the detected value of the current detecting unit 4. The determination unit 14 determines whether or not it is in an abnormal state based on the value stored in the storage unit 13 and the value measured by the current measurement unit 11. When the determination unit 14 determines that it is in an abnormal state, the abnormality output unit 15 issues an alarm by relay output, light emission of an indicator, setting of a communication flag, or the like.

図2は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、および電流検出部4の計測結果の関係を示す図である。図2において、i11は第1電流経路CA11に流れる電流、i12は第2電流経路CA12に流れる電流、iCTは電流検出部4の検出値(電流計測部11の計測値)である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 2 is a diagram showing the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. In FIG. 2, i11 is a current flowing through the first current path CA11, i12 is a current flowing through the second current path CA12, and iCT is a detected value of the current detecting unit 4 (measured value of the current measuring unit 11). Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、計測電流値は0.5である。第1電流経路CA11が断線したとき、ヒータ2に流れる電流は第2電流経路CA12だけを流れるので、第2電流経路CA12に流れる電流は1.0となる。第2電流経路CA12が断線したとき、計測電流値は0となる。ヒータ自体が断線したときも計測電流値は0となる。 If there is no disconnection in any of the current paths, the measured current value is 0.5. When the first current path CA11 is disconnected, the current flowing through the heater 2 flows only through the second current path CA12, so that the current flowing through the second current path CA12 is 1.0. When the second current path CA12 is disconnected, the measured current value becomes 0. The measured current value becomes 0 even when the heater itself is disconnected.

図1に示した設定部12は、記憶部13に、上下限値、例えば0.25と0.75を予め記憶させておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。図3は閾値と計測電流値との関係を示す図である。計測電流値が0.25を超え、0.75未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.75以上であれば、第1電流経路CA11が断線したものと見なす。また、計測電流値が0.25未満であれば、第2電流経路CA12が断線したものと見なす。つまり、これを、ケーブル31が断線する予兆として検知する。 The setting unit 12 shown in FIG. 1 stores the upper and lower limit values, for example, 0.25 and 0.75, in advance in the storage unit 13. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. FIG. 3 is a diagram showing the relationship between the threshold value and the measured current value. If the measured current value exceeds 0.25 and is less than 0.75, it is considered normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 0.75 or more, it is considered that the first current path CA11 is disconnected. If the measured current value is less than 0.25, it is considered that the second current path CA12 is disconnected. That is, this is detected as a sign that the cable 31 is broken.

なお、ヒータ2が断線したときも計測電流値は0.25未満となるので、本実施形態では、第2電流経路CA12の断線とヒータ2の断線とは区別がつかない。 Since the measured current value is less than 0.25 even when the heater 2 is disconnected, the disconnection of the second current path CA12 and the disconnection of the heater 2 are indistinguishable in the present embodiment.

図4は、図1に示した制御部20の処理内容を示すフローチャートである。先ず、電流値記憶フラグをリセットし、出力部の状態を判定する(S1→S2)。出力部の状態がONであれば、つまり開閉器がONであれば、計測電流値を読み込む(S3)。そして、この値を基にして、閾値を決定して登録し、電流値記憶フラグをセットする(S4→S5→S6)。図3に示した例では、初期の計測電流値が0.5であれば、それに対して相対変動量0.25を加減した値(0.75,0.25)を閾値として登録する。 FIG. 4 is a flowchart showing the processing contents of the control unit 20 shown in FIG. First, the current value storage flag is reset and the state of the output unit is determined (S1 → S2). If the state of the output unit is ON, that is, if the switch is ON, the measured current value is read (S3). Then, based on this value, the threshold value is determined and registered, and the current value storage flag is set (S4 → S5 → S6). In the example shown in FIG. 3, if the initial measured current value is 0.5, a value (0.75, 0.25) obtained by adding or subtracting the relative fluctuation amount of 0.25 is registered as a threshold value.

正常時は、S7→S2→S3→S4→S7 のループを繰り返す。その後、計測電流値が異常範囲の値となれば、異常出力を行う(S7→S8)。なお、別のルーチンで電流値記憶フラグがリセットされれば、その時点での計測電流値が初期電流値として更新される。 In the normal state, the loop of S7 → S2 → S3 → S4 → S7 is repeated. After that, when the measured current value reaches a value in the abnormal range, an abnormal output is performed (S7 → S8). If the current value storage flag is reset in another routine, the measured current value at that time is updated as the initial current value.

次に、二つの電流経路に流れる電流を検出して断線予兆を検知する例を示す。 Next, an example of detecting a sign of disconnection by detecting the current flowing through the two current paths will be shown.

図5は、図1に示した加熱装置とは、電流検出部4が検出する電流経路の構成が異なる加熱装置の回路図である。この例では、電流検出部4は二つの電流経路CA11,CA12に流れる電流の差分を検出する。 FIG. 5 is a circuit diagram of a heating device having a configuration of a current path different from that of the heating device shown in FIG. 1 and detected by the current detection unit 4. In this example, the current detection unit 4 detects the difference between the currents flowing in the two current paths CA11 and CA12.

図6は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、および電流検出部4の計測結果の関係を示す図である。図6において、i11は第1電流経路CA11に流れる電流、i12は第2電流経路CA12に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 6 is a diagram showing the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. In FIG. 6, i11 is a current flowing through the first current path CA11, i12 is a current flowing through the second current path CA12, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、第1電流経路CA11、第2電流経路CA12に流れる電流は0.5であり、計測電流値は0である。第1電流経路CA11が断線したとき、ヒータ2に流れる電流は第2電流経路CA12だけを流れるので、第2電流経路CA12に流れる電流は1.0となり、計測電流値は1.0となる。第2電流経路CA12が断線したとき、ヒータ2に流れる電流は第1電流経路CA11だけを流れるので、第1電流経路CA11に流れる電流は1.0となり、計測電流値は−1.0となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the first current path CA11 and the second current path CA12 is 0.5, and the measured current value is 0. When the first current path CA11 is disconnected, the current flowing through the heater 2 flows only through the second current path CA12, so that the current flowing through the second current path CA12 is 1.0 and the measured current value is 1.0. When the second current path CA12 is disconnected, the current flowing through the heater 2 flows only through the first current path CA11, so that the current flowing through the first current path CA11 is 1.0 and the measured current value is -1.0. .. When the heater itself is disconnected, the measured current value becomes 0.

図5に示す例では、図1に示した設定部12は、記憶部13に、上下限値として例えば0.5と−0.5を予め記憶させておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が−0.5を超え、0.5未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.5以上であれば、第1電流経路CA11が断線したものと見なす。また、計測電流値が−0.5未満であれば、第2電流経路CA12が断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 5, the setting unit 12 shown in FIG. 1 stores, for example, 0.5 and −0.5 as upper and lower limit values in advance in the storage unit 13. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds −0.5 and is less than 0.5, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 0.5 or more, it is considered that the first current path CA11 is disconnected. If the measured current value is less than −0.5, it is considered that the second current path CA12 is disconnected. That is, these are detected as a sign that the cable 31 is disconnected.

次に、一つのケーブルが三つの電流経路で構成された場合の断線予兆を検知する例について示す。 Next, an example of detecting a sign of disconnection when one cable is composed of three current paths will be described.

図7は、図1に示した加熱装置とは、ケーブル31の構成が異なる加熱装置の回路図である。この例では、ケーブル31は三つの電流経路CA11,CA12,CA13で構成されている。電流検出部4は電流経路CA13に流れる電流を検出する。 FIG. 7 is a circuit diagram of a heating device having a different configuration of the cable 31 from the heating device shown in FIG. In this example, the cable 31 is composed of three current paths CA11, CA12, and CA13. The current detection unit 4 detects the current flowing through the current path CA13.

図8は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。図8において、i11は第1電流経路CA11に流れる電流、i12は第2電流経路CA12に流れる電流、i13は第3電流経路CA13に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 8 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. In FIG. 8, i11 is a current flowing through the first current path CA11, i12 is a current flowing through the second current path CA12, i13 is a current flowing through the third current path CA13, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、第1電流経路CA11、第2電流経路CA12、第3電流経路CA13に流れる電流は1/3であり、計測電流値は1/3である。第1電流経路CA11が断線したとき、ヒータ2に流れる電流は第2電流経路CA12と第3電流経路CA13を流れるので、第3電流経路CA13に流れる電流は0.5となり、計測電流値は0.5となる。第2電流経路CA12が断線したとき、ヒータ2に流れる電流は第1電流経路CA11と第3電流経路CA13を流れるので、第3電流経路CA13に流れる電流は0.5となり、計測電流値は0.5となる。第3電流経路CA13が断線したとき、第3電流経路CA13に流れる電流は0となり、計測電流値は0となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the first current path CA11, the second current path CA12, and the third current path CA13 is 1/3, and the measured current value is 1/3. When the first current path CA11 is disconnected, the current flowing through the heater 2 flows through the second current path CA12 and the third current path CA13, so that the current flowing through the third current path CA13 is 0.5 and the measured current value is 0. It becomes .5. When the second current path CA12 is disconnected, the current flowing through the heater 2 flows through the first current path CA11 and the third current path CA13, so that the current flowing through the third current path CA13 is 0.5 and the measured current value is 0. It becomes .5. When the third current path CA13 is disconnected, the current flowing through the third current path CA13 becomes 0, and the measured current value becomes 0. When the heater itself is disconnected, the measured current value becomes 0.

図7に示す例では、図1に示した設定部12は、記憶部13に、下限値として1/3と0との中間値である0.166を予め記憶しておき、上限値として0.5と1/3との中間値である0.416を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が0.166を超え、0.416未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.416以上であれば、第1電流経路CA11または第2電流経路CA12が断線したものと見なす。また、計測電流値が0.166未満であれば、第3電流経路CA13が断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 7, the setting unit 12 shown in FIG. 1 stores in advance 0.166, which is an intermediate value between 1/3 and 0, as the lower limit value in the storage unit 13, and 0 as the upper limit value. 0.416, which is an intermediate value between .5 and 1/3, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds 0.166 and is less than 0.416, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 0.416 or more, it is considered that the first current path CA11 or the second current path CA12 is disconnected. If the measured current value is less than 0.166, it is considered that the third current path CA13 is disconnected. That is, these are detected as a sign that the cable 31 is disconnected.

なお、ヒータ2が断線したときも計測電流値は0となるので、本実施形態では、第3電流経路CA13の断線とヒータ2の断線とは区別がつかない。 Since the measured current value becomes 0 even when the heater 2 is disconnected, the disconnection of the third current path CA13 and the disconnection of the heater 2 are indistinguishable in the present embodiment.

図9は、図7に示した例とは電流検出部の構成が異なる加熱装置の回路図である。この例では、ケーブル31は三つの電流経路CA11,CA12,CA13で構成されている。電流検出部4は、電流経路CA12に流れる電流と電流経路CA13に流れる電流との加算値を検出する。 FIG. 9 is a circuit diagram of a heating device having a different configuration of the current detection unit from the example shown in FIG. 7. In this example, the cable 31 is composed of three current paths CA11, CA12, and CA13. The current detection unit 4 detects the sum of the current flowing in the current path CA12 and the current flowing in the current path CA13.

図10は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。図10において、i11は第1電流経路CA11に流れる電流、i12は第2電流経路CA12に流れる電流、i13は第3電流経路CA13に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 10 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. In FIG. 10, i11 is a current flowing through the first current path CA11, i12 is a current flowing through the second current path CA12, i13 is a current flowing through the third current path CA13, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、第1電流経路CA11、第2電流経路CA12、第3電流経路CA13に流れる電流は1/3であり、計測電流値は2/3である。第1電流経路CA11が断線したとき、ヒータ2に流れる電流は第2電流経路CA12と第3電流経路CA13を流れるので、計測電流値は1.0となる。第2電流経路CA12が断線したとき、ヒータ2に流れる電流は第1電流経路CA11と第3電流経路CA13を流れるので、計測電流値は0.5となる。第3電流経路CA13が断線したとき、ヒータ2に流れる電流は第1電流経路CA11と第2電流経路CA12を流れるので、計測電流値は0.5となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the first current path CA11, the second current path CA12, and the third current path CA13 is 1/3, and the measured current value is 2/3. When the first current path CA11 is disconnected, the current flowing through the heater 2 flows through the second current path CA12 and the third current path CA13, so that the measured current value is 1.0. When the second current path CA12 is disconnected, the current flowing through the heater 2 flows through the first current path CA11 and the third current path CA13, so that the measured current value is 0.5. When the third current path CA13 is disconnected, the current flowing through the heater 2 flows through the first current path CA11 and the second current path CA12, so that the measured current value is 0.5. When the heater itself is disconnected, the measured current value becomes 0.

図9に示す例では、図1に示した設定部12は、記憶部13に、下限値として2/3と0.5との中間値である0.583を予め記憶しておき、上限値として1.0と2/3との中間値である0.833を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が0.583を超え、0.833未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.833以上であれば、第1電流経路CA11が断線したものと見なす。また、計測電流値が0.583未満であれば、第2電流経路CA12または第3電流経路CA13が断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 9, the setting unit 12 shown in FIG. 1 stores in advance 0.583, which is an intermediate value between 2/3 and 0.5, as a lower limit value in the storage unit 13, and stores an upper limit value. 0.833, which is an intermediate value between 1.0 and 2/3, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds 0.583 and is less than 0.833, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 0.833 or more, it is considered that the first current path CA11 is disconnected. If the measured current value is less than 0.583, it is considered that the second current path CA12 or the third current path CA13 is disconnected. That is, these are detected as a sign that the cable 31 is disconnected.

図11は、ケーブル31を構成する三つの電流経路CA11,CA12,CA13に流れる電流を電流検出部4が検出する加熱装置の回路図である。この例では、ケーブル31は三つの電流経路CA11,CA12,CA13で構成されている。電流検出部4は、電流経路CA12に流れる電流と電流経路CA13に流れる電流の加算値から、電流経路CA11に流れる電流を差し引いた値を検出する。 FIG. 11 is a circuit diagram of a heating device in which the current detection unit 4 detects currents flowing through the three current paths CA11, CA12, and CA13 constituting the cable 31. In this example, the cable 31 is composed of three current paths CA11, CA12, and CA13. The current detection unit 4 detects a value obtained by subtracting the current flowing through the current path CA11 from the added value of the current flowing through the current path CA12 and the current flowing through the current path CA13.

図12は、所定箇所での断線状態における、第1電流経路CA11に流れる電流、第2電流経路CA12に流れる電流、第3電流経路CA13に流れる電流、および電流検出部4の計測結果の関係を示す図である。図12において、i11は第1電流経路CA11に流れる電流、i12は第2電流経路CA12に流れる電流、i13は第3電流経路CA13に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 12 shows the relationship between the current flowing in the first current path CA11, the current flowing in the second current path CA12, the current flowing in the third current path CA13, and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. It is a figure which shows. In FIG. 12, i11 is a current flowing through the first current path CA11, i12 is a current flowing through the second current path CA12, i13 is a current flowing through the third current path CA13, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、第1電流経路CA11、第2電流経路CA12、第3電流経路CA13に流れる電流は1/3であり、計測電流値は1/3である。第1電流経路CA11が断線したとき、ヒータ2に流れる電流は第2電流経路CA12と第3電流経路CA13を流れるので、計測電流値は1.0となる。第2電流経路CA12が断線したとき、ヒータ2に流れる電流は第1電流経路CA11と第3電流経路CA13を流れるので、計測電流値は0となる。第3電流経路CA13が断線したとき、ヒータ2に流れる電流は第1電流経路CA11と第2電流経路CA12を流れるので、計測電流値は0となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the first current path CA11, the second current path CA12, and the third current path CA13 is 1/3, and the measured current value is 1/3. When the first current path CA11 is disconnected, the current flowing through the heater 2 flows through the second current path CA12 and the third current path CA13, so that the measured current value is 1.0. When the second current path CA12 is disconnected, the current flowing through the heater 2 flows through the first current path CA11 and the third current path CA13, so that the measured current value becomes 0. When the third current path CA13 is disconnected, the current flowing through the heater 2 flows through the first current path CA11 and the second current path CA12, so that the measured current value becomes 0. When the heater itself is disconnected, the measured current value becomes 0.

図11に示す例では、図1に示した設定部12は、記憶部13に、下限値として1/3と0との中間値である0.166を予め記憶しておき、上限値として1.0と1/3との中間値である0.666を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が0.166を超え、0.666未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.666以上であれば、第1電流経路CA11が断線したものと見なす。また、計測電流値が0.166未満であれば、第2電流経路CA12または第3電流経路CA13が断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 11, the setting unit 12 shown in FIG. 1 stores in advance 0.166, which is an intermediate value between 1/3 and 0, as the lower limit value in the storage unit 13, and 1 as the upper limit value. 0.666, which is an intermediate value between .0 and 1/3, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds 0.166 and is less than 0.666, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 0.666 or more, it is considered that the first current path CA11 is disconnected. If the measured current value is less than 0.166, it is considered that the second current path CA12 or the third current path CA13 is disconnected. That is, these are detected as a sign that the cable 31 is disconnected.

図13は、図1に示した例とは異なる加熱装置の回路図である。この例では、電流検出部4は、第1ケーブル31を構成する二つの電流経路CA11,CA12のうち電流経路CA12に流れる電流と、第2ケーブルを構成する電流経路CA2に流れる電流との差を検出する。 FIG. 13 is a circuit diagram of a heating device different from the example shown in FIG. In this example, the current detection unit 4 determines the difference between the current flowing in the current path CA12 of the two current paths CA11 and CA12 constituting the first cable 31 and the current flowing in the current path CA2 forming the second cable. To detect.

図14は、所定箇所での断線状態における、電流経路CA11,CA12,CA2に流れる電流、および電流検出部4の計測結果の関係を示す図である。図14において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i2は電流経路CA2に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 14 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, and CA2 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. In FIG. 14, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i2 is a current flowing through the current path CA2, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、電流経路CA11,CA12に流れる電流は0.5であり、電流経路CA2に流れる電流は1.0であるので、計測電流値は−0.5である。電流経路CA11が断線したとき、ヒータ2に流れる電流は電流経路CA12と電流経路CA2を流れるので、計測電流値は0となる。電流経路CA12が断線したとき、ヒータ2に流れる電流は電流経路CA11と電流経路CA2を流れるので、計測電流値は−1.0となる。電流経路CA2が断線したとき、計測電流値は0となる。ヒータ自体が断線したときも、計測電流値は0となる。 If there is no disconnection in any of the current paths, the current flowing in the current paths CA11 and CA12 is 0.5, and the current flowing in the current path CA2 is 1.0, so that the measured current value is -0.5. .. When the current path CA11 is disconnected, the current flowing through the heater 2 flows through the current path CA12 and the current path CA2, so that the measured current value becomes 0. When the current path CA12 is disconnected, the current flowing through the heater 2 flows through the current path CA11 and the current path CA2, so that the measured current value is −1.0. When the current path CA2 is disconnected, the measured current value becomes 0. Even when the heater itself is disconnected, the measured current value becomes 0.

図13に示す例では、図1に示した設定部12は、記憶部13に、上限値として−0.5と0との中間値である−0.25を予め記憶しておく。また、下限値として−0.5と−1.0との中間値である−0.75を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が−0.75以上−0.25未満の値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が−0.25以上であれば、電流経路CA11,CA2のいずれかが断線したものと見なす。また、計測電流値が−0.75未満であれは、電流経路CA12が断線したものと見なす。これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 13, the setting unit 12 shown in FIG. 1 stores in advance in the storage unit 13, −0.25, which is an intermediate value between −0.5 and 0, as an upper limit value. Further, as the lower limit value, -0.75, which is an intermediate value between -0.5 and -1.0, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value is −0.75 or more and less than −0.25, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is -0.25 or more, it is considered that one of the current paths CA11 and CA2 is broken. Further, if the measured current value is less than −0.75, it is considered that the current path CA12 is disconnected. These are detected as a sign that the cable 31 is broken.

図15は、図1に示した例とは異なる加熱装置の回路図である。この例では、電流検出部4は、第1ケーブル31を構成する二つの電流経路CA11,CA12のうち電流経路CA12に流れる電流と、第2ケーブルを構成する電流経路CA2に流れる電流との和を検出する。 FIG. 15 is a circuit diagram of a heating device different from the example shown in FIG. In this example, the current detection unit 4 sums the current flowing in the current path CA12 of the two current paths CA11 and CA12 constituting the first cable 31 and the current flowing in the current path CA2 forming the second cable 31. To detect.

図16は、所定箇所での断線状態における、電流経路CA11,CA12,CA2に流れる電流、および電流検出部4の計測結果の関係を示す図である。図16において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i2は電流経路CA2に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 16 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, and CA2 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. In FIG. 16, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i2 is a current flowing through the current path CA2, and iCT is a detected value of the current detection unit 4. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、電流経路CA11,CA12に流れる電流はいずれも0.5であり、電流経路CA2に流れる電流は1.0であるので、計測電流値は1.5である。電流経路CA11が断線したとき、ヒータ2に流れる電流は電流経路CA12と電流経路CA2を流れるので、計測電流値は2.0となる。電流経路CA12が断線したとき、ヒータ2に流れる電流は電流経路CA11と電流経路CA2を流れるので、計測電流値は1.0となる。電流経路CA2が断線したとき、計測電流値は0となる。ヒータ自体が断線したときも、計測電流値は0となる。 If there is no disconnection in any of the current paths, the current flowing in the current paths CA11 and CA12 is 0.5, and the current flowing in the current path CA2 is 1.0, so the measured current value is 1.5. is there. When the current path CA11 is disconnected, the current flowing through the heater 2 flows through the current path CA12 and the current path CA2, so that the measured current value is 2.0. When the current path CA12 is disconnected, the current flowing through the heater 2 flows through the current path CA11 and the current path CA2, so that the measured current value is 1.0. When the current path CA2 is disconnected, the measured current value becomes 0. Even when the heater itself is disconnected, the measured current value becomes 0.

図15に示す例では、図1に示した設定部12は、記憶部13に、下限値として1.5と1との中間値である1.25を予め記憶しておき、上限値として2.0と1.5との中間値である1.75を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が1.25以上、1.75未満であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が1.75以上であれば、電流経路CA11が断線したものと見なす。また、計測電流値が1.25未満であれば、電流経路CA12または電流経路CA2が断線したものと見なすつまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 15, the setting unit 12 shown in FIG. 1 stores 1.25, which is an intermediate value between 1.5 and 1 as a lower limit value, in advance in the storage unit 13, and sets 2 as an upper limit value. 1.75, which is an intermediate value between .0 and 1.5, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value is 1.25 or more and less than 1.75, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is 1.75 or more, it is considered that the current path CA11 is broken. If the measured current value is less than 1.25, it is considered that the current path CA12 or the current path CA2 is disconnected, that is, these are detected as a sign that the cable 31 is disconnected.

図17は、図1に示した例とは異なる加熱装置の回路図である。この例では、電流検出部4は、第1ケーブル31を構成する二つの電流経路CA11,CA12のうち電流経路CA12に流れる電流と、第2ケーブル32を構成する二つの電流経路CA21,CA22のうち電流経路CA22に流れる電流との和を検出する。 FIG. 17 is a circuit diagram of a heating device different from the example shown in FIG. In this example, the current detection unit 4 includes the current flowing through the current path CA12 among the two current paths CA11 and CA12 constituting the first cable 31 and the two current paths CA21 and CA22 constituting the second cable 32. The sum with the current flowing in the current path CA22 is detected.

図18は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。図18において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i21は電流経路CA21に流れる電流、i22は電流経路CA22に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 18 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnection state at a predetermined location. In FIG. 18, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i21 is a current flowing through the current path CA21, i22 is a current flowing through the current path CA22, and iCT is a value detected by the current detection unit 4. is there. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、電流経路CA11,CA12,CA21,CA22に流れる電流はいずれも0.5であるので、計測電流値は1.0である。電流経路CA11が断線したとき、ヒータ2に流れる電流は電流経路CA12を流れるので、計測電流値は1.5となる。電流経路CA12が断線したとき、ヒータ2に流れる電流は電流経路CA11を流れるので、計測電流値は0.5となる。電流経路CA21が断線したとき、ヒータ2を流れる電流は電流経路CA22を流れるので、計測電流値は1.5となる。電流経路CA22が断線したとき、計測電流値は0.5となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the current paths CA11, CA12, CA21, and CA22 is 0.5, so the measured current value is 1.0. When the current path CA11 is disconnected, the current flowing through the heater 2 flows through the current path CA12, so that the measured current value is 1.5. When the current path CA12 is disconnected, the current flowing through the heater 2 flows through the current path CA11, so that the measured current value is 0.5. When the current path CA21 is disconnected, the current flowing through the heater 2 flows through the current path CA22, so that the measured current value is 1.5. When the current path CA22 is disconnected, the measured current value becomes 0.5. When the heater itself is disconnected, the measured current value becomes 0.

図17に示す例では、図1に示した設定部12は、記憶部13に、下限値として1.0と0.5との中間値である0.75を予め記憶しておき、上限値として1.0と1.5との中間値である1.25を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が0.75を超え、1.25未満である値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.75未満であれば、電流経路CA12,CA22のいずれかが断線したものと見なす。また、計測電流値が1.25以上であれば、電流経路CA11,CA21のいずれかが断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 17, the setting unit 12 shown in FIG. 1 stores in advance 0.75, which is an intermediate value between 1.0 and 0.5, as a lower limit value in the storage unit 13, and stores an upper limit value. 1.25, which is an intermediate value between 1.0 and 1.5, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds 0.75 and is less than 1.25, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is less than 0.75, it is considered that one of the current paths CA12 and CA22 is broken. If the measured current value is 1.25 or more, it is considered that one of the current paths CA11 and CA21 is disconnected. That is, these are detected as a sign that the cable 31 is disconnected.

図19は、図1に示した例とは異なる加熱装置の回路図である。この例では、電流検出部4は、第1ケーブル31を構成する二つの電流経路CA11,CA12のうち電流経路CA12に流れる電流と、第2ケーブル32を構成する二つの電流経路CA21,CA22のうち電流経路CA22に流れる電流との差を検出する。 FIG. 19 is a circuit diagram of a heating device different from the example shown in FIG. In this example, the current detection unit 4 includes the current flowing through the current path CA12 among the two current paths CA11 and CA12 constituting the first cable 31 and the two current paths CA21 and CA22 constituting the second cable 32. The difference from the current flowing in the current path CA22 is detected.

図20は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。図20において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i21は電流経路CA21に流れる電流、i22は電流経路CA22に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 20 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnected state at a predetermined position. In FIG. 20, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i21 is a current flowing through the current path CA21, i22 is a current flowing through the current path CA22, and iCT is a value detected by the current detection unit 4. is there. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、電流経路CA11,CA12,CA21,CA22に流れる電流はいずれも0.5であるので、計測電流値は0である。電流経路CA11が断線したとき、ヒータ2に流れる電流は電流経路CA12を流れるので、計測電流値は0.5となる。電流経路CA12が断線したとき、ヒータ2に流れる電流は電流経路CA11を流れるので、計測電流値は−0.5となる。電流経路CA21が断線したとき、ヒータ2を流れる電流は電流経路CA22を流れるので、計測電流値は−0.5となる。電流経路CA22が断線したとき、計測電流値は0.5となる。ヒータ自体が断線したときは、計測電流値は0となる。 If there is no disconnection in any of the current paths, the current flowing through the current paths CA11, CA12, CA21, and CA22 is 0.5, so the measured current value is 0. When the current path CA11 is disconnected, the current flowing through the heater 2 flows through the current path CA12, so that the measured current value is 0.5. When the current path CA12 is disconnected, the current flowing through the heater 2 flows through the current path CA11, so that the measured current value is −0.5. When the current path CA21 is disconnected, the current flowing through the heater 2 flows through the current path CA22, so that the measured current value is −0.5. When the current path CA22 is disconnected, the measured current value becomes 0.5. When the heater itself is disconnected, the measured current value becomes 0.

図19に示す例では、図1に示した設定部12は、記憶部13に、下限値として0と−0.5との中間値である−0.25を予め記憶しておき、上限値として0と0.5との中間値である0.25を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が−0.25を超え、0.25未満である値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が−0.25未満であれば、電流経路CA12,CA21のいずれかが断線したものと見なす。また、計測電流値が0.25以上であれば、電流経路CA11,CA22のいずれかが断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 19, the setting unit 12 shown in FIG. 1 previously stores -0.25, which is an intermediate value between 0 and -0.5, as the lower limit value in the storage unit 13, and stores the upper limit value. 0.25, which is an intermediate value between 0 and 0.5, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds −0.25 and is less than 0.25, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is less than -0.25, it is considered that one of the current paths CA12 and CA21 is broken. If the measured current value is 0.25 or more, it is considered that one of the current paths CA11 and CA22 is broken. That is, these are detected as a sign that the cable 31 is disconnected.

図21は、図1に示した例とは異なる加熱装置の回路図である。この例では、電流検出部4は、第1ケーブル31を構成する二つの電流経路CA11,CA12に流れる電流の差と、第2ケーブル32を構成する二つの電流経路CA21,CA22のうち電流経路CA22に流れる電流との差を検出する。 FIG. 21 is a circuit diagram of a heating device different from the example shown in FIG. In this example, the current detection unit 4 has the difference between the currents flowing through the two current paths CA11 and CA12 constituting the first cable 31 and the current path CA22 of the two current paths CA21 and CA22 constituting the second cable 32. Detects the difference from the current flowing through.

図22は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22に流れる電流、および電流検出部4の計測結果の関係を示す図である。図22において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i21は電流経路CA21に流れる電流、i22は電流経路CA22に流れる電流、iCTは電流検出部4の検出値である。いずれも、ヒータ2に流れる電流を1.0としたときの相対値である。 FIG. 22 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, and CA22 and the measurement result of the current detection unit 4 in the disconnection state at a predetermined location. In FIG. 22, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i21 is a current flowing through the current path CA21, i22 is a current flowing through the current path CA22, and iCT is a value detected by the current detection unit 4. is there. Both are relative values when the current flowing through the heater 2 is 1.0.

いずれの電流経路にも断線が無い場合、電流経路CA11,CA12,CA21,CA22に流れる電流はいずれも0.5であるので、計測電流値は0.5である。電流経路CA11が断線したとき、ヒータ2に流れる電流は電流経路CA12を流れるので、計測電流値は1.5となる。電流経路CA12が断線したとき、ヒータ2に流れる電流は電流経路CA11を流れるので、計測電流値は−0.5となる。電流経路CA21が断線したとき、ヒータ2を流れる電流は電流経路CA22を流れるので、計測電流値は1.0となる。電流経路CA22が断線したとき、計測電流値は0となる。ヒータ自体が断線したときは、計測電流値は0となる。 When there is no disconnection in any of the current paths, the current flowing through the current paths CA11, CA12, CA21, and CA22 is 0.5, so the measured current value is 0.5. When the current path CA11 is disconnected, the current flowing through the heater 2 flows through the current path CA12, so that the measured current value is 1.5. When the current path CA12 is disconnected, the current flowing through the heater 2 flows through the current path CA11, so that the measured current value is −0.5. When the current path CA21 is disconnected, the current flowing through the heater 2 flows through the current path CA22, so that the measured current value is 1.0. When the current path CA22 is disconnected, the measured current value becomes 0. When the heater itself is disconnected, the measured current value becomes 0.

図21に示す例では、図1に示した設定部12は、記憶部13に、下限値として0と0.5との中間値である0.25を予め記憶しておき、上限値として0.5と1.0との中間値である0.75を予め記憶しておく。判定部14はこの記憶部13の値を閾値とし、計測電流値との大小関係を判定する。そして、計測電流値が0.25を超え、0.75未満である値であれば、正常であると見なす。つまり、電流経路の断線は無いものと判定する。計測電流値が0.25未満であれば、電流経路CA12,CA22のいずれかが断線したものと見なす。また、計測電流値が0.75以上であれば、電流経路CA11,CA21のいずれかが断線したものと見なす。つまり、これらを、ケーブル31が断線する予兆として検知する。 In the example shown in FIG. 21, the setting unit 12 shown in FIG. 1 stores 0.25, which is an intermediate value between 0 and 0.5, as a lower limit value in advance in the storage unit 13, and 0 as an upper limit value. 0.75, which is an intermediate value between .5 and 1.0, is stored in advance. The determination unit 14 uses the value of the storage unit 13 as a threshold value and determines the magnitude relationship with the measured current value. Then, if the measured current value exceeds 0.25 and is less than 0.75, it is considered to be normal. That is, it is determined that there is no disconnection in the current path. If the measured current value is less than 0.25, it is considered that one of the current paths CA12 and CA22 is broken. If the measured current value is 0.75 or more, it is considered that one of the current paths CA11 and CA21 is broken. That is, these are detected as a sign that the cable 31 is disconnected.

図23は、図1に示した例とは異なる加熱装置の回路図である。この例は、図1に示した第1ケーブル31側だけでなく、第2ケーブル32側にも電流検出部を設け、この二つの電流検出部の検出結果から、ケーブルの断線の予兆を検知するものである。この加熱装置では、図1に示した例と同様の原理により、第2ケーブル32の電流経路CA21,CA22の断線有無を検出でき、そのことで、第2ケーブル32の断線についても予兆を検知できる。 FIG. 23 is a circuit diagram of a heating device different from the example shown in FIG. In this example, a current detection unit is provided not only on the first cable 31 side shown in FIG. 1 but also on the second cable 32 side, and a sign of cable disconnection is detected from the detection results of these two current detection units. It is a thing. In this heating device, the presence or absence of disconnection of the current paths CA21 and CA22 of the second cable 32 can be detected by the same principle as the example shown in FIG. 1, and thereby, a sign of disconnection of the second cable 32 can also be detected. ..

同様にして、図5、図7、図9、図11、図13、図15、図17、図19、図21等に示した電流検出部の構成を第2ケーブル32側に設けて、この二つの電流検出部の検出結果から、ケーブルの断線の予兆を検知することもできる。 Similarly, the configuration of the current detection unit shown in FIGS. 5, 7, 9, 11, 13, 13, 15, 17, 19, 21, 21 and the like is provided on the second cable 32 side. From the detection results of the two current detectors, it is possible to detect a sign of cable disconnection.

以上に示した例は、二つの端子を有する負荷に二つのケーブルが接続された装置について示したが、三つ以上の端子を有する負荷にケーブルが接続された装置についても同様に適用できる。例えば、図24は三相交流負荷であるヒータ2にケーブルを介して三相交流電源が接続された装置の例である。この例では、三相交流電源の各ラインにそれぞれ二つの電流経路を介してヒータ2が接続されている。そして、各相の二つの電流経路の一方に電流検出部CT1,CT2,CT3がそれぞれ接続されている。 The examples shown above have shown a device in which two cables are connected to a load having two terminals, but the same can be applied to a device in which cables are connected to a load having three or more terminals. For example, FIG. 24 is an example of a device in which a three-phase AC power supply is connected to a heater 2, which is a three-phase AC load, via a cable. In this example, the heater 2 is connected to each line of the three-phase AC power supply via two current paths. Then, the current detection units CT1, CT2, and CT3 are connected to one of the two current paths of each phase, respectively.

図25は、所定箇所での断線状態における、電流経路CA11,CA12,CA21,CA22,CA31,CA32に流れる電流、および電流検出部CT1,CT2,CT3の検出結果の関係を示す図である。図24において、i11は電流経路CA11に流れる電流、i12は電流経路CA12に流れる電流、i21は電流経路CA21に流れる電流、i22は電流経路CA22に流れる電流、i31は電流経路CA31に流れる電流、i32は電流経路CA32に流れる電流、iCT1は電流検出部CT1の検出値、iCT2は電流検出部CT2の検出値、iCT3は電流検出部CT3の検出値である。いずれも、ヒータ2に流れる相電流を1.0としたときの相対値である。 FIG. 25 is a diagram showing the relationship between the current flowing through the current paths CA11, CA12, CA21, CA22, CA31, and CA32 and the detection results of the current detection units CT1, CT2, and CT3 in the disconnected state at a predetermined location. In FIG. 24, i11 is a current flowing through the current path CA11, i12 is a current flowing through the current path CA12, i21 is a current flowing through the current path CA21, i22 is a current flowing through the current path CA22, i31 is a current flowing through the current path CA31, and i32. Is the current flowing through the current path CA32, iCT1 is the detection value of the current detection unit CT1, iCT2 is the detection value of the current detection unit CT2, and iCT3 is the detection value of the current detection unit CT3. Both are relative values when the phase current flowing through the heater 2 is 1.0.

図1、図2に示した例と同様に、電流検出部CT1の検出値と比較する下限の閾値を0.25、上限の閾値を0.75として定めておく。電流検出部CT2,CT3についても同様である。このようにして、三つの電流検出部CT1,CT2,CT3の検出結果から、ケーブル31,32,33の断線の予兆を検知できる。 Similar to the examples shown in FIGS. 1 and 2, the lower limit threshold value to be compared with the detection value of the current detection unit CT1 is set to 0.25, and the upper limit threshold value is set to 0.75. The same applies to the current detection units CT2 and CT3. In this way, the signs of disconnection of the cables 31, 32, and 33 can be detected from the detection results of the three current detection units CT1, CT2, and CT3.

最後に、上述の発明を実施するための形態の説明は、改めて述べるまでもなく、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。 Finally, the description of the embodiments for carrying out the above invention is, needless to say, exemplary in all respects and not restrictive. Modifications and changes can be made as appropriate for those skilled in the art.

例えば、ケーブルを複数の電流経路に分岐させる部分にケーブルカシメ部が設けられるが、このケーブルカシメ部の接触抵抗が均等でない場合、複数の電流経路への分流比は等分比とならない。その場合には、複数の電流経路への実際の分流比に応じて閾値を定めればよい。 For example, a cable caulking portion is provided at a portion where the cable is branched into a plurality of current paths, but if the contact resistance of the cable caulking portion is not equal, the distribution ratio to the plurality of current paths is not equal. In that case, the threshold value may be set according to the actual diversion ratio to the plurality of current paths.

また、図4では、計測した初期電流値に基づいて閾値を決定する例を示したが、負荷、ケーブル、ケーブルの接続部等の経年変化によって、正常時の電流値は変化する場合があるので、所定のタイミングで、計測した電流値に基づいて閾値を再設定するように構成してもよい。 Further, in FIG. 4, an example in which the threshold value is determined based on the measured initial current value is shown, but the normal current value may change due to aging of the load, cable, cable connection, etc. , The threshold value may be reset based on the measured current value at a predetermined timing.

また、以上に示した実施形態では、ヒータを負荷とする加熱装置について例示したが、モータや電磁石を負荷とする装置等についても同様に適用できる。 Further, in the above-described embodiment, the heating device using a heater as a load has been illustrated, but the same can be applied to a device using a motor or an electromagnet as a load.

また、以上に示した各実施形態では、変流器(カレントトランス)を電流検出部に用いたが、その他に、例えば電流検出用抵抗素子を各電流経路に挿入し、その降下電圧を基にして、その電流経路に流れる電流を検出してもよい。この場合、電流のピーク値を求める整流回路と、正弦波の極性を判定する極性判定部と、複数の電流経路について求めたピーク値を極性を考慮して加減算する演算部とを設ければよい。 Further, in each of the above-described embodiments, a current transformer (current transformer) is used for the current detection unit, but in addition, for example, a current detection resistor element is inserted into each current path, and the voltage drop is used as a base. Then, the current flowing in the current path may be detected. In this case, a rectifier circuit for determining the peak value of the current, a polarity determining unit for determining the polarity of the sine wave, and an arithmetic unit for adding or subtracting the peak values obtained for a plurality of current paths in consideration of the polarity may be provided. ..

CA11…第1電流経路
CA12…第2電流経路
CA13…第3電流経路
CA2…電流経路
CA21,CA22…電流経路
CA31,CA32…電流経路
CT1,CT2,CT3…電流検出部
1…電源
2…ヒータ
4…電流検出部
5…開閉部
10…警報部
11…電流計測部
12…設定部
13…記憶部
14…判定部
15…異常出力部
16…出力部
20…制御部
31…第1ケーブル
32…第2ケーブル
33…ケーブル
101…加熱装置
201…ケーブル断線予兆検知装置
CA11 ... 1st current path CA12 ... 2nd current path CA13 ... 3rd current path CA2 ... Current path CA21, CA22 ... Current path CA31, CA32 ... Current path CT1, CT2, CT3 ... Current detection unit 1 ... Power supply 2 ... Heater 4 ... Current detection unit 5 ... Opening / closing unit 10 ... Alarm unit 11 ... Current measurement unit 12 ... Setting unit 13 ... Storage unit 14 ... Judgment unit 15 ... Abnormal output unit 16 ... Output unit 20 ... Control unit 31 ... First cable 32 ... First 2 Cable 33 ... Cable 101 ... Heating device 201 ... Cable disconnection sign detection device

Claims (3)

負荷の複数の接続部にそれぞれ接続されて前記負荷に電流を通電する複数のケーブルの断線の予兆を検知する装置であって、
前記ケーブルは、前記負荷の複数の接続部のうち第1接続部に接続される第1ケーブルと、前記負荷の複数の接続部のうち第2接続部に接続される第2ケーブルと、を含み、
前記第1ケーブルは、並列接続された複数の第1電流経路で構成され、
前記第2ケーブルは、並列接続された複数の第2電流経路で構成され、
前記複数の第1電流経路のうち少なくとも一つの電流経路に流れる電流と、前記複数の第2電流経路のうち少なくとも一つの電流経路に流れる電流との和または差を検出する電流検出部と、
前記電流検出部による検出値と閾値とを比較して、前記複数の第1電流経路の通電状態および前記複数の第2電流経路の通電状態を検出することで、前記複数の第1電流経路および前記複数の第2電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する警報部と、
を備えるケーブル断線予兆検知装置。
It is a device that detects signs of disconnection of a plurality of cables that are connected to a plurality of connection portions of a load and apply a current to the load.
The cable includes a first cable connected to a first connection portion among the plurality of connection portions of the load, and a second cable connected to a second connection portion among the plurality of connection portions of the load. ,
The first cable is composed of a plurality of first current paths connected in parallel.
The second cable is composed of a plurality of second current paths connected in parallel.
A current detection unit that detects the sum or difference between the current flowing in at least one of the plurality of first current paths and the current flowing in at least one of the plurality of second current paths.
By comparing the value detected by the current detection unit with the threshold value and detecting the energized state of the plurality of first current paths and the energized state of the plurality of second current paths, the plurality of first current paths and the plurality of first current paths and the energized state are detected. An alarm unit that issues an alarm when it is determined whether or not there is a disconnection in the plurality of second current paths and it is determined that there is a disconnection.
Cable disconnection sign detection device equipped with.
負荷の複数の接続部にそれぞれ接続されて前記負荷に電流を通電する複数のケーブルの断線の予兆を検知する装置であって、
前記ケーブルは、前記負荷の複数の接続部のうち第1接続部に接続される第1ケーブルと、前記負荷の複数の接続部のうち第2接続部に接続される第2ケーブルと、を含み、
前記第1ケーブルは、並列接続された複数の第1電流経路で構成され、
前記第2ケーブルは、並列接続された複数の第2電流経路で構成され、
前記複数の第1電流経路のうち少なくとも二つの電流経路に流れる電流の和または差に対する、前記複数の第2電流経路のうち少なくとも一つの電流経路に流れる電流の和または差を検出する電流検出部と、
前記電流検出部による検出値と閾値とを比較して、前記複数の第1電流経路の通電状態および前記複数の第2電流経路の通電状態を検出することで、前記複数の第1電流経路および前記複数の第2電流経路の断線有無を判定し、断線有りと判定したとき、警報を発する警報部と、
を備えるケーブル断線予兆検知装置。
It is a device that detects signs of disconnection of a plurality of cables that are connected to a plurality of connection portions of a load and apply a current to the load.
The cable includes a first cable connected to a first connection portion among the plurality of connection portions of the load, and a second cable connected to a second connection portion among the plurality of connection portions of the load. ,
The first cable is composed of a plurality of first current paths connected in parallel.
The second cable is composed of a plurality of second current paths connected in parallel.
A current detector that detects the sum or difference of the currents flowing in at least one of the plurality of second current paths with respect to the sum or difference of the currents flowing in at least two of the plurality of first current paths. When,
By comparing the value detected by the current detection unit with the threshold value and detecting the energized state of the plurality of first current paths and the energized state of the plurality of second current paths, the plurality of first current paths and the plurality of first current paths and the energized state are detected. An alarm unit that issues an alarm when it is determined whether or not there is a disconnection in the plurality of second current paths and it is determined that there is a disconnection.
Cable disconnection sign detection device equipped with.
前記閾値は、初期状態における前記電流検出部による検出値に基づいて定められたものである、請求項1または請求項2に記載のケーブル断線予兆検知装置。 The cable disconnection sign detection device according to claim 1 or 2, wherein the threshold value is determined based on a value detected by the current detection unit in the initial state.
JP2018034492A 2018-02-28 2018-02-28 Cable disconnection sign detection device Active JP6897603B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018034492A JP6897603B2 (en) 2018-02-28 2018-02-28 Cable disconnection sign detection device
PCT/JP2019/001740 WO2019167472A1 (en) 2018-02-28 2019-01-22 Cable disconnection sign detection device
TW108103635A TWI695558B (en) 2018-02-28 2019-01-30 Cable breakage precursor detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034492A JP6897603B2 (en) 2018-02-28 2018-02-28 Cable disconnection sign detection device

Publications (2)

Publication Number Publication Date
JP2019148546A JP2019148546A (en) 2019-09-05
JP6897603B2 true JP6897603B2 (en) 2021-06-30

Family

ID=67805717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034492A Active JP6897603B2 (en) 2018-02-28 2018-02-28 Cable disconnection sign detection device

Country Status (3)

Country Link
JP (1) JP6897603B2 (en)
TW (1) TWI695558B (en)
WO (1) WO2019167472A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462300A (en) * 2020-11-11 2021-03-09 上海新海信通信息技术有限公司 System and method for monitoring poor shunting of track circuit
KR102403986B1 (en) * 2020-11-17 2022-05-30 정경모 Certifying Apparatus of End Kit of Heating Cable connected to Power Connection Kit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2139755A1 (en) * 1992-07-10 1994-01-20 Majid Al-Dabbagh High impedance fault detector
JPH1164420A (en) * 1997-08-27 1999-03-05 Kubota Corp Disconnection detector
JP3406215B2 (en) * 1998-02-06 2003-05-12 富士通アクセス株式会社 Remote sense type power supply
JPH11255429A (en) * 1998-03-09 1999-09-21 Tanaka Seiki Kk Coating removal device
JP2008202974A (en) * 2007-02-16 2008-09-04 Nippon Steel Engineering Co Ltd Method of detecting disconnection in power supply cable
JP2010181255A (en) * 2009-02-05 2010-08-19 Omron Corp Disconnection detection device, control device, and power regulator
US9782527B2 (en) * 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
JP6147599B2 (en) * 2013-07-23 2017-06-14 株式会社日本製鋼所 Degradation / disconnection detection method for feeder lines

Also Published As

Publication number Publication date
JP2019148546A (en) 2019-09-05
WO2019167472A1 (en) 2019-09-06
TW201937825A (en) 2019-09-16
TWI695558B (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US9783071B2 (en) Device and method for providing a quantity of energy in said supply device for consumer
JP6897603B2 (en) Cable disconnection sign detection device
US11495920B2 (en) Power connector with integrated status monitoring
US20150364976A1 (en) Overheat detection device for electric motor equipped with multiple ptc thermistors
BR102019026487A2 (en) system and method for monitoring the integrity of an electric heater from an aerial data probe
CN108474819B (en) Method and device for short-circuit monitoring of three-phase loads
WO2011156186A1 (en) Process variable transmitter with thermocouple polarity detection
BR112014005976B1 (en) DEVICE AND METHOD FOR PROTECTING A LOAD
WO2020183634A1 (en) Contact part abnormality monitoring device and circuit breaker using contact part abnormality monitoring device
CN104792431A (en) Temperature measuring system and temperature measuring instrument
Mendes et al. Thermographic analysis of parallelly cables: A method to avoid misdiagnosis
RU2642127C2 (en) Measuring device of leakage current in load of single-phase rectifier
KR20140040795A (en) Representation and display of the coil temperature of an electrical power transformer
JP2018164358A (en) Disconnection discrimination device and wiring discrimination device of DC power supply circuit
JP2002277333A (en) Deterioration determination method and deterioration determination device
US9702918B2 (en) Electromagnetic radiation detecting system and method
KR200260919Y1 (en) A temperature detecting and automatic tripping apparatus of a circuit breaker
JP6076951B2 (en) Injection molding machine characterized by electric wires for heater wiring
KR101699404B1 (en) Current measurement device of electric power supply using the plural of hall sensor
KR101046440B1 (en) Terminal inspection device of electric wire
KR200484477Y1 (en) Branch circuit measuring apparatus
US3327167A (en) Electrical detecting system
KR101817005B1 (en) Smart relay and power system protective control system using the same
KR102404340B1 (en) system detecting heat generation in wireless power track
JP7330069B2 (en) Watt-hour meter and electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250