JP6897537B2 - Muscle tone controller and program - Google Patents

Muscle tone controller and program Download PDF

Info

Publication number
JP6897537B2
JP6897537B2 JP2017238603A JP2017238603A JP6897537B2 JP 6897537 B2 JP6897537 B2 JP 6897537B2 JP 2017238603 A JP2017238603 A JP 2017238603A JP 2017238603 A JP2017238603 A JP 2017238603A JP 6897537 B2 JP6897537 B2 JP 6897537B2
Authority
JP
Japan
Prior art keywords
voltage
muscles
contraction
muscle
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238603A
Other languages
Japanese (ja)
Other versions
JP2019103655A (en
Inventor
有信 新島
有信 新島
山田 智広
智広 山田
渡部 智樹
智樹 渡部
良輔 青木
良輔 青木
籔内 勉
勉 籔内
隆司 伊勢崎
隆司 伊勢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017238603A priority Critical patent/JP6897537B2/en
Publication of JP2019103655A publication Critical patent/JP2019103655A/en
Application granted granted Critical
Publication of JP6897537B2 publication Critical patent/JP6897537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)

Description

本発明は、四肢の筋肉の随意収縮強度を制御する筋緊張制御装およびプログラムに関する。 The present invention relates to muscle tone control equipment and programs that control voluntary contraction muscle strength limb.

生体を構成する細胞一つ一つは、微弱な電気を発生しており、電圧(電流)で四肢の筋(筋肉)やその筋肉を支配する運動神経を刺激すると、当該筋肉が収縮することが知られている。 Each cell that makes up a living body generates weak electricity, and when a voltage (electric current) stimulates the muscles (muscles) of the limbs and the motor nerves that control those muscles, the muscles may contract. Are known.

筋肉の表面に正極および負極から構成される一対の電極を装着して電圧(電流)を印加し、電気刺激を与えることで筋肉を収縮させる技術として、例えばEMS(Electrical Muscle Stimulation)技術や、FES(Functional Electrical Stimulation)技術がある。なお、上記印加電圧としては、例えば40[V]程度(電流であれば10[mA]程度)の電圧が用いられる。 As a technique of attaching a pair of electrodes composed of a positive electrode and a negative electrode to the surface of a muscle, applying a voltage (current), and applying electrical stimulation to contract the muscle, for example, EMS (Electrical Muscle Stimulation) technique or FES (Functional Electrical Stimulation) There is technology. As the applied voltage, for example, a voltage of about 40 [V] (about 10 [mA] for a current) is used.

これらEMS、FES技術は、例えば、医療の分野におけるリハビリ運動の支援、日常生活で筋肉を鍛えるために使われる他、近年では人間とコンピュータとの相互関係、および対話型操作に関する研究(以下、HCI:Human-Computer Interaction)を進めるための手法の一つとしても注目されている。 These EMS and FES technologies are used, for example, to support rehabilitation exercises in the medical field and to train muscles in daily life, and in recent years, research on the interrelationship between humans and computers and interactive operations (hereinafter, HCI). : Human-Computer Interaction) is also attracting attention as one of the methods for advancing.

さらに、前記技術の応用例の一つとして、スポーツ分野で選手が正しいフォームを獲得するための学習支援にも用いられている(例えば、非特許文献1または非特許文献2を参照。)。 Further, as one of the application examples of the technique, it is also used for learning support for athletes to acquire a correct form in the sports field (see, for example, Non-Patent Document 1 or Non-Patent Document 2).

また、筋肉の力の入れ具合、いわゆる緊張度を生体から電気的に計測する筋電センサと組み合わせて、特定の部位の筋肉の収縮強度を電気刺激で緩和させる装置も提案されている(例えば、特許文献1を参照。)。 In addition, a device has been proposed in which the contraction strength of muscles in a specific part is relaxed by electrical stimulation in combination with a myoelectric sensor that electrically measures the degree of muscle force, so-called tension, from a living body (for example,). See Patent Document 1).

ところで、EMS技術では、例えば、制御したい対象の主動作筋(例えば、上腕二頭筋)またはその主動作筋と逆の動きをする拮抗筋(上腕二頭筋に対応する筋として上腕三角筋)の表面に電極を装着させて筋肉を収縮させる。したがって、複数の筋肉の収縮強度を同時に制御しようとする場合、その数に応じて装着させる電極数も増えてしまうという問題がある。 By the way, in the EMS technology, for example, the agonist muscle of the target to be controlled (for example, the biceps brachii muscle) or the antagonist muscle that moves in the opposite direction to the agonist muscle (the deltoid muscle of the upper arm as a muscle corresponding to the biceps brachii muscle). An electrode is attached to the surface of the muscle to contract the muscle. Therefore, when trying to control the contraction strength of a plurality of muscles at the same time, there is a problem that the number of electrodes to be attached increases according to the number of muscles.

すなわち、例えば、両足のヒラメ筋、前脛骨筋、橈側手根屈筋、および橈側手根伸筋の随意収縮強度を制御してトレーニング支援を行う場合、対象筋肉の全てに正極および負極から構成される1対の電極を装着させる必要があり、用意する電極のコストが高くなる。なお、随意収縮とは、自己の意思又は意図に基づいた運動をいい、随意収縮強度とは、前記運動時における筋肉の収縮の強さをいう。 That is, for example, when training support is performed by controlling the voluntary contraction strength of the soleus muscle, tibialis anterior muscle, flexor carpi radialis muscle, and extensor carpi radialis muscle of both legs, all of the target muscles are composed of positive electrodes and negative electrodes. It is necessary to mount a pair of electrodes, which increases the cost of the electrodes to be prepared. The voluntary contraction refers to an exercise based on one's own intention or intention, and the voluntary contraction strength refers to the strength of muscle contraction during the exercise.

また、例えば、神経科学や運動科学に関する研究において、自発的な噛み締め運動は、ヒラメ筋、前脛骨筋、橈側手根屈筋、および橈側手根伸筋などの四肢の筋肉の随意収縮強度に影響を与えることが明らかになっており、例えば、噛み締め運動によってダンベルを握ったときの最大握力が増加することが報告されている(例えば、非特許文献3参照。)。 In addition, for example, in research on neuroscience and exercise science, voluntary clenching exercise affects the voluntary contraction strength of limb muscles such as soleus muscle, tibialis anterior muscle, flexor carpi radialis muscle, and extensor carpi radialis muscle. It has been clarified that it is given, and it has been reported that, for example, the maximum gripping force when gripping a dumbbell is increased by a clenching motion (see, for example, Non-Patent Document 3).

特開2009−125263号公報JP-A-2009-125263

Hassan et al., “FootStriker: An EMS-based Foot Strike Assistant for Running” (2017).Hassan et al., “FootStriker: An EMS-based Foot Strike Assistant for Running” (2017). Tatsuno et al., “Supportive training system for sports skill acquisition based on electrical stimulation” (2017).Tatsuno et al., “Supportive training system for sports skill acquisition based on electrical stimulation” (2017). 中禮宏等、 “噛みしめによる握力発揮特性の変化”, Jpn Prosthodont Soc 46:732-737, 2002.Hiroshi Nakare et al., “Changes in grip strength characteristics due to clenching”, Jpn Prosthodont Soc 46: 732-737, 2002.

しかし、前記噛み締め運動に必要とする咬筋を外部から制御した場合において、当該外部からのその咬筋への制御と、四肢の筋肉の随意収縮強度と、の関係については未だ明らかになっていない。 However, when the masseter muscle required for the clenching exercise is controlled from the outside, the relationship between the control of the masseter muscle from the outside and the voluntary contraction strength of the muscles of the limbs has not yet been clarified.

本発明は、前記課題に鑑みてなされたものであり、四肢の筋肉の緊張状態を少数の電極で制御することを可能にし、これにより装置のコストダウンと被検者への負担の軽減を図った筋緊張制御装およびプログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and makes it possible to control the tension state of the muscles of the limbs with a small number of electrodes, thereby reducing the cost of the device and the burden on the subject. an object of the present invention is to provide a muscle tension control equipment and a program.

本発明に係る筋緊張制御装置は、四肢における制御対象となる複数の筋肉とは異なる部位で、かつ当該筋肉との間で筋収縮動作に係る関連性を有する部位であって、噛み締め運動に係る部位に装着される電極と、前記電極に、前記複数の筋肉の収縮強度を促進または抑制するための刺激用電圧を印加する電圧出力回路と、前記電圧出力回路による前記電極への刺激用電圧の印加を制御する制御回路とを備える。 The muscle tension control device according to the present invention is a part different from a plurality of muscles to be controlled in the limbs, and is a part having a relationship related to a muscle contraction motion with the muscle , and is related to a clenching exercise. An electrode attached to the site, a voltage output circuit that applies a stimulating voltage to the electrode to promote or suppress the contraction strength of the plurality of muscles, and a voltage for stimulating the electrode by the voltage output circuit. It is provided with a control circuit for controlling application.

本発明によれば、四肢の筋肉の緊張状態を少数の電極で制御することを可能にし、これにより装置のコストダウンと被検者への負担の軽減を図ることが可能になる。 According to the present invention, it is possible to control the tension state of the muscles of the limbs with a small number of electrodes, which makes it possible to reduce the cost of the device and the burden on the subject.

本発明の実施形態に係る筋緊張制御装置10の電子回路の構成を示したブロック図。The block diagram which showed the structure of the electronic circuit of the muscle tone control device 10 which concerns on embodiment of this invention. 前記実施形態に係る筋緊張制御装置10の動作を示したフローチャート。The flowchart which showed the operation of the muscle tone control device 10 which concerns on the said embodiment. 前記筋緊張制御装置10における収縮促進用電極12a、収縮抑制用電極12bを、生体の咬筋および口角のそれぞれに装着させた様子を示す図。It is a figure which shows the state that the contraction promoting electrode 12a and the contraction suppressing electrode 12b in the muscle tone control device 10 were attached to each of the masseter muscle and the corner of the mouth of a living body. 前記筋緊張制御装置10における筋電センサ13によって橈側手根伸筋、および橈側手根屈筋の収縮強度を計測した様子を示す図。It is a figure which shows the state which measured the contraction strength of the radial carpi radialis muscle and the radial carpi radialis flexor muscle by the myoelectric sensor 13 in the muscle tone control device 10. 前記筋緊張制御装置10を用いた条件1〜条件6での実験で得られた値を、RMS(Root Mean Square)を用いて算出し、箱ひげを用いて示した図。The figure which calculated the value obtained in the experiment under the conditions 1 to 6 using the muscle tone control device 10 using RMS (Root Mean Square), and showed it using a box whiskers.

以下、本発明の実施形態に係る筋緊張制御装置、筋緊張制御方法、およびプログラムについて図面を参照して説明する。 Hereinafter, the muscle tone control device, the muscle tone control method, and the program according to the embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る筋緊張制御装置10の電子回路の構成を示したブロック図である。 FIG. 1 is a block diagram showing a configuration of an electronic circuit of the muscle tone control device 10 according to the embodiment of the present invention.

筋緊張制御装置10は、コンピュータとして機能する制御部(CPU)14を備える。 The muscle tone control device 10 includes a control unit (CPU) 14 that functions as a computer.

このCPU14には、第1電圧出力回路11a、第2電圧出力回路11b、筋電センサ13およびメモリ15が接続される。また、第1電圧出力回路11aを介して収縮促進用電極12aが接続され、第2電圧出力回路11bを介して収縮抑制用電極12bが接続される。 A first voltage output circuit 11a, a second voltage output circuit 11b, a myoelectric sensor 13 and a memory 15 are connected to the CPU 14. Further, the shrinkage promoting electrode 12a is connected via the first voltage output circuit 11a, and the shrinkage suppressing electrode 12b is connected via the second voltage output circuit 11b.

前記メモリ15は、筋収縮制御処理プログラム15aのデータを格納するプログラムエリアおよび作業エリア15bを備える。 The memory 15 includes a program area and a work area 15b for storing data of the muscle contraction control processing program 15a.

つまり、筋収縮制御処理プログラム15aは、前記CPU14により作業エリア15bを用いて起動・実行され、当該筋収縮制御処理プログラムに基づいたCPU14からの制御信号に従って、回路各部の動作が制御される。 That is, the muscle contraction control processing program 15a is started and executed by the CPU 14 using the work area 15b, and the operation of each part of the circuit is controlled according to the control signal from the CPU 14 based on the muscle contraction control processing program.

第1電圧出力回路11aは、前記制御信号に従い第1電圧(0[V]〜20[V]の範囲で決定される電圧)を、筋肉の収縮を促進させる前記収縮促進用電極12aに供給する機能を有する。 The first voltage output circuit 11a supplies a first voltage (a voltage determined in the range of 0 [V] to 20 [V]) to the contraction promoting electrode 12a that promotes muscle contraction according to the control signal. Has a function.

第2電圧出力回路11bは、前記制御信号に従い第2電圧(0[V]〜15[V]の範囲で決定される電圧)を、筋肉の収縮を抑制させる前記収縮抑制用電極12bに供給する機能を有する。 The second voltage output circuit 11b supplies a second voltage (a voltage determined in the range of 0 [V] to 15 [V]) to the contraction suppressing electrode 12b that suppresses muscle contraction according to the control signal. Has a function.

前記収縮促進用電極12aは、生体に装着可能とされ、前記第1電圧出力回路11aからの第1電圧に基づいて、前記生体の筋肉の収縮を促進させる部分(例えば、咬筋:咀嚼筋の1つ)に、所定の周波数を有した電圧を印加することで電気刺激を与える。 The contraction promoting electrode 12a is attached to a living body, and based on the first voltage from the first voltage output circuit 11a, a portion that promotes contraction of the muscle of the living body (for example, masseter muscle: 1 of the muscles of mastication). An electrical stimulus is given to one) by applying a voltage having a predetermined frequency.

前記収縮抑制用電極12bは、生体に装着可能とされ、前記第2電圧出力回路11bからの第2電圧に基づいて、前記生体の筋肉の収縮を抑制させる部分(例えば、口角)に、所定の周波数を有した電圧を印加することで電気刺激を与える。 The contraction-suppressing electrode 12b is attached to a living body, and is predetermined to a portion (for example, a corner of the mouth) that suppresses contraction of muscles of the living body based on a second voltage from the second voltage output circuit 11b. An electrical stimulus is given by applying a voltage having a frequency.

例えば、前記口角に収縮抑制用電極12bを装着することで、当該口角から口腔内部に電流を流し、歯髄(筋肉)を介して歯の神経に痛みを生じさせることで前記口角の収縮を抑制させる。 For example, by attaching the contraction-suppressing electrode 12b to the corner of the mouth, an electric current is passed from the corner of the mouth to the inside of the oral cavity, causing pain in the nerves of the tooth via the pulp (muscle), thereby suppressing the contraction of the corner of the mouth. ..

筋電センサ13は、収縮促進用電極12a、および収縮抑制用電極12bを装着する部位とは異なる、例えば腕や太もも等といった四肢の筋肉に装着され、これら腕や太もも等の筋電位(随意収縮の強度)を計測する機能を有し、当該計測した筋電位のデータをCPU14へ出力する。 The myoelectric sensor 13 is attached to the muscles of the limbs, such as the arms and thighs, which are different from the sites where the contraction promoting electrodes 12a and the contraction suppressing electrodes 12b are attached, and the myoelectric potentials (voluntary contractions) of these arms and thighs are attached. It has a function of measuring the strength of the muscle potential), and outputs the measured myoelectric potential data to the CPU 14.

CPU14は、前記筋電センサ13からの筋電位のデータを受信し、受信した筋電位のデータが、例えば予め設定したしきい値に対して高い(筋が緊張のため収縮し、理想値より力が入り過ぎている)場合には、第2電圧出力回路11bに抑制を促すための制御信号を出力し、一方、予め設定したしきい値に対して低い(筋が緩み、理想値より力が入っていない)場合には、第1電圧出力回路11aに促進を促すための制御信号を出力する機能を有する。 The CPU 14 receives the myoelectric potential data from the myoelectric sensor 13, and the received myoelectric potential data is higher than, for example, a preset threshold value (the muscle contracts due to tension, and the force is higher than the ideal value. Is too much), a control signal for prompting suppression is output to the second voltage output circuit 11b, while the force is lower than the preset threshold value (the muscles are loosened and the force is lower than the ideal value). If it is not included), it has a function of outputting a control signal for promoting promotion to the first voltage output circuit 11a.

前記メモリ15内に設けられた作業エリア15bは、前記筋電センサ13の計測により得られた制御対象の筋電位のデータが、理想値よりも高いか否かを判断する前記しきい値を記憶する。 The work area 15b provided in the memory 15 stores the threshold value for determining whether or not the myoelectric potential data of the controlled object obtained by the measurement of the myoelectric sensor 13 is higher than the ideal value. To do.

なお、図1では、筋緊張制御装置10内に第1電圧出力回路11aと収縮促進用電極12aとの組と、第2電圧出力回路11bと収縮抑制用電極12bとの組と、をそれぞれ設けた構成を示したが、何れか一方の組の電圧出力回路11a(11b)と電極12a(12b)で構成してもよい。この場合、当該一方の組の電圧出力回路11a(11b)と電極12a(12b)が随意収縮促進機能と随意収縮抑制機能とを兼ね備える。 In FIG. 1, a pair of a first voltage output circuit 11a and a contraction promoting electrode 12a and a pair of a second voltage output circuit 11b and a contraction suppressing electrode 12b are provided in the muscle tone control device 10. However, one set of the voltage output circuit 11a (11b) and the electrode 12a (12b) may be used. In this case, the one set of voltage output circuits 11a (11b) and electrodes 12a (12b) have both a voluntary contraction promoting function and a voluntary contraction suppressing function.

また、第1電圧出力回路11a、および第2電圧出力回路11bを1つに纏めて、単一の電圧出力回路11としてもよい。 Further, the first voltage output circuit 11a and the second voltage output circuit 11b may be combined into a single voltage output circuit 11.

このように構成された筋緊張制御装置10は、前記CPU14が前記筋収縮制御処理プログラム15aに記述された命令に従い回路各部の動作を制御し、ソフトウェアとハードウェアとが協働して動作することにより、以下の動作説明で述べるような筋収縮制御機能を実現する。 In the muscle tone control device 10 configured in this way, the CPU 14 controls the operation of each part of the circuit according to the instruction described in the muscle contraction control processing program 15a, and the software and the hardware operate in cooperation with each other. As a result, the muscle contraction control function as described in the following operation explanation is realized.

次に、前記構成の筋緊張制御装置10の動作について説明する。 Next, the operation of the muscle tone control device 10 having the above configuration will be described.

図2は、本実施形態に係る筋緊張制御装置10による筋収縮制御処理を示したフローチャートである。 FIG. 2 is a flowchart showing a muscle contraction control process by the muscle tone control device 10 according to the present embodiment.

図3は、前記筋緊張制御装置10のフローチャートを実行するに当たり、前記収縮促進用電極12a、収縮抑制用電極12bを、左右の咬筋および口角(具体的には、歯髄を覆う口表面部分)に2枚ずつ縦に並べて装着した場合の様子を示す図である。なお、歯髄とは、歯の内部の歯髄腔を満たす軟組織を指す。 FIG. 3 shows that in executing the flowchart of the muscle tone control device 10, the contraction promoting electrode 12a and the contraction suppressing electrode 12b are attached to the left and right masseter muscles and the corners of the mouth (specifically, the surface portion of the mouth covering the pulp). It is a figure which shows the state in the case of mounting two sheets vertically side by side. The pulp refers to a soft tissue that fills the pulp cavity inside the tooth.

図4は、橈側手根伸筋、および橈側手根屈筋の収縮強度を筋電センサ13によって計測した様子を示す図である。 FIG. 4 is a diagram showing how the contraction strength of the flexor carpi radialis and flexor carpi radialis was measured by the myoelectric sensor 13.

前記収縮促進用電極12aを、筋肉収縮させたい筋肉とは異なる部位、例えば左右の咬筋2枚ずつ縦に並べて装着させ、また前記収縮抑制用電極12bを、筋肉収縮させたい筋肉とは異なる部位、例えば口角に2枚ずつ縦に並べて装着させ、さらに筋電センサ13(橈側手根伸筋用電極13a、橈側手根屈筋用電極13b)を橈側手根伸筋、および橈側手根屈筋に装着させた後、筋緊張制御装置10を起動させる。 The contraction promoting electrode 12a is attached to a portion different from the muscle to be contracted, for example , two each vertically side by side on the left and right bite muscles, and the contraction suppressing electrode 12b is attached to a portion different from the muscle to be contracted. For example, two pieces are mounted vertically side by side on the corner of the mouth, and the myoelectric sensor 13 (flexor carpi radialis electrode 13a, flexor carpi radialis electrode 13b) is mounted on the flexor carpi radialis and flexor carpi radialis. After that, the muscle tension control device 10 is activated.

すると、CPU14により、前記筋電センサ13によって計測された、例えば橈側手根伸筋、および橈側手根屈筋の筋電位(随意収縮の強度)のデータが作業エリア15bに記憶され(ステップS1)、次いで、当該作業エリア15bに記憶されたデータの示す筋電位が予め設定したしきい値よりも高いか否かの判断がなされる(ステップS2)。 Then, the data of the myoelectric potentials (intensity of voluntary contraction) of the flexor carpi radialis muscle and the flexor carpi radialis muscle measured by the myoelectric sensor 13 by the CPU 14 are stored in the work area 15b (step S1). Next, it is determined whether or not the myoelectric potential indicated by the data stored in the work area 15b is higher than the preset threshold value (step S2).

ステップS2の結果、予め設定したしきい値よりも低いと判断されると(ステップS2、No)、第1電圧を収縮促進用電極12aに出力するよう前記第1電圧出力回路11aへ指示する(ステップS3)。 As a result of step S2, when it is determined that the threshold value is lower than the preset threshold value (steps S2, No), the first voltage output circuit 11a is instructed to output the first voltage to the shrinkage promoting electrode 12a (step S2, No). Step S3).

これにより収縮促進用電極12aを装着した前記咬筋に対して、所定の周波数を有する電気刺激を与え、対象の筋肉(前記橈側手根伸筋、および橈側手根屈筋)の随意収縮を促進させることができる。 As a result, the masseter muscle to which the contraction promoting electrode 12a is attached is given an electrical stimulus having a predetermined frequency to promote voluntary contraction of the target muscles (the radial carpi radialis muscle and the radial carpi radialis muscle). Can be done.

これに対して、CPU14により、作業エリア15bに記憶されたデータを示す筋電位が、予め設定したしきい値よりも高いと判断されると(ステップS2、Yes)、前記第2電圧を収縮抑制用電極12bに印加するよう前記第2電圧出力回路11bへ指示する(ステップS4)。 On the other hand, when the CPU 14 determines that the myoelectric potential indicating the data stored in the work area 15b is higher than the preset threshold value (step S2, Yes), the second voltage is suppressed from contraction. The second voltage output circuit 11b is instructed to apply the voltage to the electrode 12b (step S4).

これにより、当該収縮抑制用電極12bを装着した前記口角に対して、所定の周波数を有する電気刺激を与え、対象の筋肉(前記橈側手根伸筋、および橈側手根屈筋)の随意収縮を抑制させることができる。 As a result, an electrical stimulus having a predetermined frequency is applied to the corner of the mouth to which the contraction suppressing electrode 12b is attached, and voluntary contraction of the target muscles (the flexor carpi radialis muscle and the flexor carpi radialis muscle) is suppressed. Can be made to.

なお、筋電センサ13からなんら計測された筋電位の信号を受信しない場合には、前記収縮促進用電極12a、および収縮抑制用電極12bを通した咬筋、および口角への電気刺激は行わない。 When no measured myoelectric potential signal is received from the myoelectric sensor 13, the masseter muscle and the corner of the mouth are not electrically stimulated through the contraction promoting electrode 12a and the contraction suppressing electrode 12b.

なお、上記処理ステップS1〜ステップS4は、同時の制御を排除するものではない。 The processing steps S1 to S4 do not exclude simultaneous control.

すなわち、前記ステップS1〜ステップS4において、収縮促進用電極12aおよび収縮抑制用電極12bから同時に対象とする筋肉(咬筋、および口角)に電気刺激を与えてもよい。 That is, in steps S1 to S4, the contraction promoting electrode 12a and the contraction suppressing electrode 12b may simultaneously apply electrical stimulation to the target muscles (masseter muscle and corner of the mouth).

また、電圧出力回路11a(11b)と電極12a(12b)との一方の組で随意収縮促進機能と随意収縮抑制機能とを兼ね備える場合において、電圧出力回路11a(11b)が出力する第1電圧(第2電圧)の値をCPU14により制御することにより筋肉の収縮強度を調整することも可能である。 Further, when one set of the voltage output circuit 11a (11b) and the electrode 12a (12b) has both the voluntary contraction promoting function and the voluntary contraction suppressing function, the first voltage output by the voltage output circuit 11a (11b) ( It is also possible to adjust the contraction strength of the muscle by controlling the value of the second voltage) by the CPU 14.

具体的には、電圧出力回路11a(11b)が出力する第1電圧により前記随意収縮が過剰に促進(筋肉の随意収縮が理想値よりも高くなり、しきい値を大幅に超えている状態)され、且つ電圧出力回路11a(11b)が出力する第1電圧がゼロでない場合には、当該電圧出力回路11a(11b)による第1電圧を当初の値より下げ、前記過剰に促進した随意収縮の強度を低下させる構成を有してもよい。 Specifically, the first voltage output by the voltage output circuit 11a (11b) excessively promotes the voluntary contraction (a state in which the voluntary contraction of the muscle becomes higher than the ideal value and greatly exceeds the threshold value). If the first voltage output by the voltage output circuit 11a (11b) is not zero, the first voltage by the voltage output circuit 11a (11b) is lowered from the initial value to cause the excessively promoted voluntary contraction. It may have a structure that reduces the strength.

一方、電圧出力回路11a(11b)が出力する第2電圧により筋肉の随意収縮が過剰に抑制(筋肉の随意収縮が理想値よりも低く、しきい値を大幅に下回っている状態)され、且つ電圧出力回路11b(11a)による第2電圧がゼロでない場合には、当該電圧出力回路11b(11a)の第2電圧を当初の値よりも下げることで、過剰に抑制された随意収縮の強度を上昇させる構成を有してもよい。 On the other hand, the second voltage output by the voltage output circuit 11a (11b) excessively suppresses the voluntary contraction of the muscle (a state in which the voluntary contraction of the muscle is lower than the ideal value and is significantly below the threshold value), and When the second voltage by the voltage output circuit 11b (11a) is not zero, the second voltage of the voltage output circuit 11b (11a) is lowered from the initial value to reduce the strength of the excessively suppressed voluntary contraction. It may have a configuration for raising.

さらに、前記しきい値は、ある一定の幅を有した値としてもよい。つまり、前記しきい値を一定の幅を有した値とせずに、一点からなる所定の値であるとすると、その所定の値を境に制御対象となる筋肉において随意収縮の促進および抑制が交互に連続して発生してしまうからである。 Further, the threshold value may be a value having a certain width. That is, if the threshold value is not set to a value having a certain width but is a predetermined value consisting of one point, the promotion and suppression of voluntary contraction are alternately promoted and suppressed in the muscle to be controlled with the predetermined value as a boundary. This is because it occurs continuously.

以下では、前記ステップS1〜前記ステップS4を実行し、CPU14からの指示によって制御された第1電圧出力回路11a、および第2電圧出力回路11bにより、前記咬筋および口角への電圧印加を行うことで、これらの部位とは異なる別の部位の筋肉(橈側手根伸筋、および橈側手根屈筋)の収縮強度をどの程度制御できるか、実験により検証する。 In the following, the steps S1 to S4 are executed, and the voltage is applied to the masseter muscle and the corner of the mouth by the first voltage output circuit 11a and the second voltage output circuit 11b controlled by the instruction from the CPU 14. , We will verify to what extent the contraction strength of muscles (extensor carpi radialis and flexor carpi radialis) in other parts different from these parts can be controlled by experiments.

実験内容(1.キャリブレーション設定、2.実験手順、3.実験条件、4.パラメータ設定、5.仮説、6.実験結果)について説明する。 The contents of the experiment (1. calibration setting, 2. experimental procedure, 3. experimental condition, 4. parameter setting, 5. hypothesis, 6. experimental result) will be explained.

<実験内容>
1.キャリブレーション設定
まず、前記左右の咬筋に2枚ずつ収縮促進用電極12aを縦に並べて装着した状態で電圧を印加し、咬筋の収縮を確認する(図3参照)。具体的には、0[V]から1[V]ごとに電圧を増加させて咬筋の収縮を確認し、最大20[V]まで上昇させる。
<Experimental content>
1. 1. Calibration settings
First, a voltage is applied to the left and right masseter muscles in a state where two electrodes for promoting contraction 12a are vertically arranged and attached, and the contraction of the masseter muscles is confirmed (see FIG. 3). Specifically, the voltage is increased from 0 [V] to 1 [V] to confirm the contraction of the masseter muscle, and the voltage is increased up to 20 [V].

なお、20[V]まで電圧を上げても咬筋の収縮を確認できない場合は、収縮促進用電極12aの位置を数[mm]ずらして再度0[V]から電圧を印加することとした。 If the contraction of the masseter muscle could not be confirmed even when the voltage was increased to 20 [V], the position of the contraction promoting electrode 12a was shifted by several [mm] and the voltage was applied again from 0 [V].

次いで、前記左右の口角付近に2枚ずつ収縮抑制用電極12bを縦に並べて装着した状態で電圧を印加し、歯髄に痛みが生じることを確認する。具体的には、0[V]から1[V]毎に電圧を増加させたところ、20[V]では必要以上の痛みを伴ったことから、ここでは11[V]−15[V]程度の電圧を印加することとした。 Next, a voltage is applied in a state where two shrinkage suppressing electrodes 12b are vertically arranged and attached near the left and right corners of the mouth, and it is confirmed that pain occurs in the pulp. Specifically, when the voltage was increased from 0 [V] to 1 [V], 20 [V] caused more pain than necessary, so here it is about 11 [V] -15 [V]. It was decided to apply the voltage of.

このように、収縮抑制用電極12bを通して歯髄へ印加する電圧は、収縮促進用電極12aを通して咬筋へ印加する電圧に比べて低電圧とする。なお、咬筋は18−20[V]程度で十分な収縮が確認された。 As described above, the voltage applied to the dental pulp through the contraction suppressing electrode 12b is lower than the voltage applied to the masseter muscle through the contraction promoting electrode 12a. It was confirmed that the masseter muscle contracted sufficiently at about 18-20 [V].

なお、20[V]まで電圧を上げても口角に痛みが生じない場合は、収縮抑制用電極12bの位置を数[mm]ずらして再度0[V]から電圧を印加することとした。 If no pain occurred in the corner of the mouth even when the voltage was raised to 20 [V], the position of the shrinkage suppression electrode 12b was shifted by several [mm] and the voltage was applied again from 0 [V].

次いで、実験手順について説明する。
2.実験手順
手順1.被験者は直立姿勢となり、両手に500[g]のダンベルを持つ。
手順2.開始の合図に合わせ、両手のダンベルを最大握力で3秒間握る。
手順3.10秒間脱力する。
前記手順2と3を5回繰り返す。
前記筋電センサ13にて、両腕の橈側手根伸筋、および橈側手根屈筋の最大握力発揮時の前腕の筋電位を計測する(両腕合わせて合計4箇所、図4参照)。
前記手順1〜手順3を1工程とし、各被験者(例えば、6名)に対して計6工程行うこととする。
Next, the experimental procedure will be described.
2. Experimental procedure
Step 1. The subject is in an upright position and holds 500 [g] dumbbells in both hands.
Step 2. At the start signal, hold the dumbbells of both hands with maximum grip strength for 3 seconds.
Step 3. Weak for 10 seconds.
The steps 2 and 3 are repeated 5 times.
The myoelectric sensor 13 measures the myoelectric potentials of the forearms when the maximal grip strength of the extensor carpi radialis and flexor carpi radialis of both arms is exerted (a total of four points in total for both arms, see FIG. 4).
Steps 1 to 3 are defined as one step, and a total of six steps are performed for each subject (for example, 6 persons).

ただし、各工程時に以下の実験条件1〜実験条件6の何れかがランダムで選ばれ、各実験条件下で実施するものとする。 However, one of the following experimental conditions 1 to 6 is randomly selected at each step, and the experiment is carried out under each experimental condition.

次いで、実験条件1〜実験条件6について説明する。
3.実験条件
条件1.咬筋および口角のいずれにも電圧を印加しない状態で、噛み締めを行わずに前記ダンベルを握る。
条件2.咬筋および口角のいずれにも電圧を印加しない状態で、噛み締めながら前記ダンベルを握る。
条件3.咬筋に電圧を印加した状態で、噛み締めを行わずに前記ダンベルを握る。
条件4.口角に電圧を印加した状態で、噛み締めを行わずに前記ダンベルを握る。
条件5.咬筋に電圧を印加した状態で、噛み締めながら前記ダンベルを握る。
条件6.口角に電圧を印加した状態で、噛み締めながら前記ダンベルを握る。
4.パラメータ設定
前記収縮促進用電極12a、収縮抑制用電極12bを通して印加する電圧以外のパラメータは一般的にEMS技術で利用されるパラメータを参考に決定した。
Next, experimental conditions 1 to 6 will be described.
3. 3. Experimental conditions
Condition 1. Grip the dumbbell without applying a voltage to either the masseter muscle or the corner of the mouth.
Condition 2. Grip the dumbbell while clenching it without applying voltage to either the masseter muscle or the corner of the mouth.
Condition 3. With the voltage applied to the masseter muscle, the dumbbell is gripped without tightening.
Condition 4. With the voltage applied to the corner of the mouth, grip the dumbbell without tightening.
Condition 5. With the voltage applied to the masseter muscle, grasp the dumbbell while clenching.
Condition 6. With the voltage applied to the corner of the mouth, grasp the dumbbell while clenching it.
4. parameter settings
Parameters other than the voltage applied through the shrinkage promoting electrode 12a and the shrinkage suppressing electrode 12b were determined with reference to the parameters generally used in the EMS technique.

具体的には、収縮促進用電極12a、収縮抑制用電極12bを通して印加される電圧のパルス幅100[μsec]、電圧の周波数を1000[Hz]とする。また、筋電センサ13がデータを取得するサンプリングレートを1000[Hz]とする。 Specifically, the pulse width of the voltage applied through the shrinkage promoting electrode 12a and the shrinkage suppressing electrode 12b is 100 [μsec], and the voltage frequency is 1000 [Hz]. Further, the sampling rate at which the myoelectric sensor 13 acquires data is set to 1000 [Hz].

さらに、当該筋電センサ13が取得したデータ(前記3秒間毎のデータを計5回)に対して通過帯域を20[Hz]〜450[Hz]のバンドパスフィルタを適用する。すなわち、取得データのうち20[Hz]〜450[Hz]の周波数を有するデータをフィルタリングした後、これを対象データとし、この3秒間毎の対象データに対して算出窓幅を100[ms]間隔としてRMS(Root Mean Square)を計測する。 Further, a bandpass filter having a pass band of 20 [Hz] to 450 [Hz] is applied to the data acquired by the myoelectric sensor 13 (the data every 3 seconds is totaled 5 times). That is, after filtering the acquired data having a frequency of 20 [Hz] to 450 [Hz], this is used as the target data, and the calculated window width is set at 100 [ms] intervals with respect to the target data every 3 seconds. RMS (Root Mean Square) is measured as.

ここで、RMSとは、随意収縮強度の指標として、筋電計測で一般的に使われている指標の一つであり、RMSの値が高いほど筋肉が収縮しており、随意収縮強度が高いことを示す。 Here, RMS is one of the indexes generally used in myoelectric measurement as an index of voluntary contraction strength, and the higher the RMS value, the more the muscle contracts, and the higher the voluntary contraction strength. Show that.

また、このRMSの計測に際して、ダンベルを握りしめた開始時刻t0から時刻t1(0秒から1秒)までのRMSの平均値を、計測値の代表値(以下、最大随意収縮強度値)とする。 Further, in the measurement of this RMS, the average value of the RMS from the start time t0 when the dumbbell is gripped to the time t1 (0 seconds to 1 second) is taken as a representative value of the measured values (hereinafter, the maximum voluntary contraction strength value).

5.仮説
以下、実験結果を得る前に、運動ニューロンの活性化による作用に基づき、下記(1)〜(3)の仮説を立てた。具体的には、
(1)前記条件2に示すように、噛み締め運動を実施すると、橈側手根伸筋、および橈側手根屈筋の随意収縮が促進され、最大随意収縮強度が増加し、
(2)前記条件3に示すように、咬筋に電圧を印加し、電気刺激を与えると、橈側手根伸筋、および橈側手根屈筋の随意収縮が促進され、前記噛み締め運動を実行せずとも最大随意収縮強度が増加し、
(3)前記条件6に示すように、口角に電圧を印加し、電気刺激を与えると、橈側手根伸筋、および橈側手根屈筋の随意収縮が抑制され、噛み締め運動を実施したとしても、単なる噛み締め運動の実施のみの場合(条件2)と比べて最大随意収縮強度が低下し、前記条件1と同程度の値となる、
という仮説である。以下、実験結果を述べる。
5. hypothesis
Below, before obtaining the experimental results, the following hypotheses (1) to (3) were established based on the action of activation of motor neurons. In particular,
(1) As shown in the above condition 2, when the biting exercise is performed, the voluntary contraction of the radial carpi radialis muscle and the radial carpi radialis muscle is promoted, and the maximum voluntary contraction strength is increased.
(2) As shown in the condition 3, when a voltage is applied to the masseter muscle and an electrical stimulus is applied, the voluntary contraction of the radial carpi radialis muscle and the radial carpi radialis muscle is promoted, and the biting exercise is not performed. Maximum voluntary contraction strength increased,
(3) As shown in the above condition 6, when a voltage is applied to the corner of the mouth and an electrical stimulus is applied, the voluntary contraction of the radial carpi radialis muscle and the radial carpi radialis muscle is suppressed, and even if the biting exercise is performed, the biting exercise is performed. The maximum voluntary contraction strength is lower than that in the case of merely performing the biting exercise (Condition 2), and the value is about the same as that of Condition 1.
Is the hypothesis. The experimental results will be described below.

6.実験結果
図5は、前記筋緊張制御装置10を用いた条件1〜条件6での実験で得られた値を前記RMSを用いて算出し、この算出した値について箱ひげを用いて示した図(グラフ)である。
6. Experimental result
FIG. 5 is a diagram (graph) in which the values obtained in the experiments under the conditions 1 to 6 using the muscle tone control device 10 were calculated using the RMS, and the calculated values were shown using a boxplot. ).

まず、グラフ中の計測データの読み方を説明する。
前記グラフにおいて、縦軸を前記RMS値とし、横軸を条件1〜条件6とする。なお、縦軸に示すRMSの数値は、条件1にて計測され、取得された値に基づいて正規化した数値である。換言すれば、他の条件2〜条件6のRMS値は、条件1で得られたRMS値で除算された値である。なお、条件1〜条件6のRMS値は、前記4組の筋電センサ13(橈側手根伸筋用電極13a、橈側手根屈筋用電極13b)にて計測された代表値を合算した値である。
First, how to read the measurement data in the graph will be described.
In the graph, the vertical axis represents the RMS value, and the horizontal axis represents conditions 1 to 6. The RMS value shown on the vertical axis is a value measured under condition 1 and normalized based on the acquired value. In other words, the RMS value of the other conditions 2 to 6 is a value divided by the RMS value obtained in the condition 1. The RMS values of conditions 1 to 6 are the sum of the representative values measured by the four sets of myoelectric sensors 13 (radial carpi radialis electrode 13a, radial carpi radialis electrode 13b). is there.

ここで、「箱ひげ」とは、データを下から小さい順に並べることで当該データの分布やばらつきをわかりやすく表現するためのグラフであり、ノッチが付いた六角形の箱と、その両端から伸びるひげと、で表現される。なお、ノッチとは、前記箱ひげのうちV字または逆V字で示された形状の高さを指す。 Here, the "box whiskers" is a graph for arranging the data in ascending order from the bottom to express the distribution and variation of the data in an easy-to-understand manner, and extends from a hexagonal box with a notch and both ends thereof. Expressed as a beard. The notch refers to the height of the boxplot having a V-shape or an inverted V-shape.

具体的には、前記箱ひげを用いることで5つの統計量を示すことができ、最小値(ひげの下端)、および最大値(ひげの上端)の他に、第一四分位数(箱の下端部がq1:全体の25パーセントの値)、中央値(q2:全体の50パーセントの値)、および第三四分位数(箱の上端部がq3:全体の75パーセントの値)を表すことが出来る。 Specifically, five statistics can be shown by using the boxplot, and in addition to the minimum value (lower end of the beard) and the maximum value (upper end of the beard), the first quartile (box). The bottom of the box is q1: 25 percent of the total), the median (q2: 50 percent of the total), and the third quartile (the top of the box is q3: 75 percent of the total). Can be represented.

そして、図5において縦に伸びる「ひげ」の下端である前記最小値、および上端である最大値は、前記第一四分位数(q1)、および第三四分位数(q3)を用いて、
最小値は、q1−1.5(q3−q1)で表され、
最大値は、q3+1.5(q3−q1)で表される。
Then, the minimum value at the lower end and the maximum value at the upper end of the vertically extending "whisker" in FIG. 5 use the first quartile (q1) and the third quartile (q3). hand,
The minimum value is represented by q1-1.5 (q3-q1).
The maximum value is represented by q3 + 1.5 (q3-q1).

また、十字のプロットは、「外れ値」と呼ばれ、他の計測データに比べて著しく離れた値が含まれている場合に表示される。 Also, the cross plot is called an "outlier" and is displayed when it contains values that are significantly distant from other measurement data.

さらに、信頼区間(取得データの中央値(q2)から95%の確率で推定される母集団の中央値の範囲)を箱の切れ目(前記ノッチ)で表している。ここで、ノッチの上端の値は、q2+1.57(q3−q1)/sqrt(n)で表され、当該ノッチの下端の値は、q2−1.57(q3−q1)/sqrt(n)で表される。なお、nは観測数、すなわち計測回数を示す。 Further, the confidence interval (the range of the median value of the population estimated from the median value (q2) of the acquired data with a probability of 95%) is represented by the break (the notch) of the box. Here, the value at the upper end of the notch is represented by q2 + 1.57 (q3-q1) / sqrt (n), and the value at the lower end of the notch is q2-1.57 (q3-q1) / sqrt (n). It is represented by. Note that n indicates the number of observations, that is, the number of measurements.

ここでは、前記箱ひげを用いたグラフを作成するのに一元配置分散分析を実施した。
一元配置分散分析とは、F分布を用いて3つ以上の条件で計測したそれぞれのデータの平均を比較するために使われる手法であり、F値およびp値が用いられる。
Here, a one-way ANOVA was performed to create a graph using the boxplot.
One-way ANOVA is a method used to compare the mean of each data measured under three or more conditions using the F distribution, and the F value and p value are used.

前記F分布とは、統計学等で使用される連続確率分布であり、分散分析に応用される手法である。 The F distribution is a continuous probability distribution used in statistics and the like, and is a method applied to analysis of variance.

また前記F値とは、計測したデータ内での分散の比率を意味し、前記p値とは、前記F値から算出され、有意差が生じているか否かを判断する指標であり、当該p値が有意水準よりも低い値であると有意差があると判断される。 Further, the F value means the ratio of dispersion in the measured data, and the p value is an index calculated from the F value and determining whether or not a significant difference has occurred, and the p value. If the value is lower than the significance level, it is judged that there is a significant difference.

さらに、有意水準とは、ある事象が起こる確率が偶然とは考えにくい(有意である)と判断する基準となる確率であり、通常では5%を使用する。 Further, the significance level is a probability that is a criterion for judging that the probability that a certain event occurs is unlikely to be accidental (significant), and 5% is usually used.

つまり、ある事象(例えば、条件1よりも大きな最大随意収縮強度の値)が発生する確率が、全体の計測回数のうち5%以上であれば、その条件で得られた計測結果は偶然とは考えにくい、すなわち有意差があると判断する。 That is, if the probability that a certain event (for example, the value of the maximum voluntary contraction strength larger than condition 1) occurs is 5% or more of the total number of measurements, the measurement result obtained under that condition is a coincidence. It is difficult to think, that is, it is judged that there is a significant difference.

本実験では、F値=5.714、p値=0.0002(<有意水準=5%)を得た。したがって、本実験において、条件1〜条件6の中で有意差があると判断された。 In this experiment, F value = 5.714 and p value = 0.0002 (<significance level = 5%) were obtained. Therefore, in this experiment, it was judged that there was a significant difference between conditions 1 to 6.

しかし、この一元配置分散分析は、どれか1つ以上の条件間に差が発生している、ということが分かるものの、具体的にどの条件と、どの条件と、の間に差が発生しているのか分からない。 However, although this one-way ANOVA shows that there is a difference between any one or more conditions, there is a specific difference between which condition and which condition. I don't know if there is.

このため、本実施形態では、さらにTukey−Kramer法を用いて多重比較を行った。多重比較により、同種の実験(手順1〜3)を繰り返して全体(条件1〜条件6)での有意差の有無を判断する場合において、どの条件と、どの条件と、で差が発生しているのかを知ることができる。 Therefore, in this embodiment, multiple comparisons were further performed using the Tukey-Kramer method. When the same type of experiment (procedures 1 to 3) is repeated by multiple comparison to determine whether or not there is a significant difference in the whole (conditions 1 to 6), a difference occurs between which condition and which condition. You can know if you are there.

具体的には、図5において前記多重比較を用いることで、条件1の信頼区間(ノッチ1の長さ)と、各条件2〜条件6の信頼区間(ノッチ2〜ノッチ6)と、がオーバーラップしない場合に前記有意差が認められると判断することができる。 Specifically, by using the multiple comparison in FIG. 5, the confidence interval of condition 1 (length of notch 1) and the confidence interval of each condition 2 to 6 (notch 2 to notch 6) are exceeded. It can be determined that the significant difference is observed when no wrapping is performed.

その結果、条件1と、他の条件2〜条件6と、の間で前記有意差が認められたのは、RMS値の中央値(q2)が1.06の条件2、中央値(q2)が1.08の条件3、および中央値(q2)が1.06の条件5であった。 As a result, the significant difference between the condition 1 and the other conditions 2 to 6 was observed in the condition 2 and the median (q2) in which the median RMS value (q2) was 1.06. Was 1.08, and the median (q2) was 1.06.

すなわち、前記仮説(1)に従えば、咬筋に電圧を印加せずとも噛み締めながらダンベルを握れば(条件2)、なんら噛み締めを行わずにダンベルを握った場合(条件1)よりもRMS値が高くなるのは想定の範囲内であるが、前記仮説(2)のように、噛み締めを行わないものの、咬筋に電圧を印加するだけでRMS値が前記条件1の値よりも大きな値となる(条件3)ことを実証できた。 That is, according to the hypothesis (1), if the dumbbell is gripped while clenching without applying a voltage to the masseter muscle (condition 2), the RMS value is higher than that when the dumbbell is gripped without any clenching (condition 1). Although it is within the expected range, the RMS value becomes larger than the value of the above condition 1 only by applying a voltage to the masseter muscle, although the bite is not tightened as in the hypothesis (2). Condition 3) was able to be demonstrated.

つまり、装着した収縮促進用電極12aに電圧を印加するだけで当該咬筋とは異なる他の部位である橈側手根伸筋、および橈側手根屈筋の2箇所の筋肉における随意収縮強度を制御可能と実証できた。 That is, it is possible to control the voluntary contraction strength in two muscles, the radial carpi radialis muscle and the radial carpi radialis muscle, which are other parts different from the masseter muscle, simply by applying a voltage to the attached contraction promoting electrode 12a. I was able to prove it.

これに対して、有意差が認められなかったのは、条件4(1.03)および条件6(1.00)である。すなわち、条件6のように、たとえ噛み締めてダンベルを握ったとしても、口角に電圧を印加すると、RMS値が前記条件2、および条件3よりも小さくなり、条件1、すなわち「咬筋および口角に電圧を印加しない状態で、噛み締めを行わずに前記ダンベルを握る」場合と同程度の値となった(仮説3)。 On the other hand, the conditions 4 (1.03) and 6 (1.00) did not show a significant difference. That is, as in condition 6, even if the dumbbell is gripped by clenching, when a voltage is applied to the corner of the mouth, the RMS value becomes smaller than the conditions 2 and 3, and condition 1, that is, "voltage on the masseter and corner of the mouth". The value was about the same as in the case of "holding the dumbbell without biting without applying" (hypothesis 3).

このように、口角に印加する電圧を制御することで、前記咬筋と同様に橈側手根伸筋、および橈側手根屈筋の2箇所の筋肉における随意収縮強度を制御可能と実証できるとともに、前記仮説1〜前記仮説3の正当性を立証することができた。 By controlling the voltage applied to the corner of the mouth in this way, it can be demonstrated that the voluntary contraction strength in the two muscles, the flexor carpi radialis and the flexor carpi radialis, can be controlled in the same manner as the masseter muscle, and the hypothesis 1-The validity of Hypothesis 3 could be proved.

したがって、前記構成の筋緊張制御装置10によれば、咬筋および口角のそれぞれに収縮促進用電極12a、および収縮抑制用電極12bを装着し、前記第1電圧出力回路11a、および第2電圧出力回路11bからの電圧供給に応じた第1(第2)電圧を、当該咬筋または口角のいずれかに印加することで、これとは異なる部位である橈側手根伸筋、および橈側手根屈筋の2箇所の収縮強度を強めたり弱めたりと制御する。 Therefore, according to the muscle tension control device 10 having the above configuration, the contraction promoting electrode 12a and the contraction suppressing electrode 12b are attached to the bite muscle and the corner of the mouth, respectively, and the first voltage output circuit 11a and the second voltage output circuit are attached. By applying the first (second) voltage corresponding to the voltage supply from 11b to either the bite muscle or the corner of the mouth, the flexor carpi radialis muscle and the flexor carpi radialis muscle, which are different sites, 2 It controls the shrinkage strength of the part to be strengthened or weakened.

つまり、制御対象となる四肢の複数の筋肉(橈側手根伸筋、および橈側手根屈筋)に電極を装着せずとも、電極を装着させ、咬筋および口角に電気刺激を与えることで前記複数の筋肉を制御することができることから、必要とする電極数を減少させてコストを抑制することができThat is, even if the electrodes are not attached to the plurality of muscles (extensor carpi radialis and flexor carpi radialis) of the limbs to be controlled, the electrodes are attached and the masseter muscle and the corner of the mouth are electrically stimulated. since it is possible to control the muscles, Ru can be suppressed cost by decreasing the number of electrodes that need.

さらに、前記構成の筋緊張制御装置10によれば、咬筋に装着する収縮促進用電極12aの電圧を大きくすることで、橈側手根伸筋、および橈側手根屈筋の収縮強度を増大し、口角に装着する収縮抑制用電極12bの電圧を大きくすることで、当該橈側手根伸筋、および橈側手根屈筋の前記収縮強度の増大を抑制する。 Further, according to the muscle tone control device 10 having the above configuration, by increasing the voltage of the contraction promoting electrode 12a attached to the masseter muscle, the contraction strength of the flexor carpi radialis and flexor carpi radialis is increased, and the angle of the mouth is increased. By increasing the voltage of the contraction suppressing electrode 12b attached to the radial carpi radialis muscle, the increase in the contraction strength of the flexor carpi radialis muscle and the flexor carpi radialis muscle is suppressed.

これにより、外部から四肢の筋肉(橈側手根伸筋、および橈側手根屈筋)の随意収縮強度に影響を与える部位(咬筋および口角)に適切な電圧を印加し電気刺激を与えることで、当該橈側手根伸筋、および橈側手根屈筋の収縮強度を制御することができる。 As a result, by applying an appropriate voltage to the sites (masseter and mouth corners) that affect the voluntary contraction strength of the extensor carpi radialis and flexor carpi radialis muscles from the outside, electrical stimulation is applied. The contraction strength of the flexor carpi radialis and flexor carpi radialis can be controlled.

さらに、噛み締め運動は、両腕の橈側手根屈筋、および橈側手根伸筋の他に、ヒラメ筋、および前脛骨筋などの四肢の筋肉の随意収縮強度にも影響を与えることが報告されていることから、前記構成の筋緊張制御装置10を用いて当該咬筋に印加する電圧を制御すれば、当該ヒラメ筋、および前脛骨筋についても同様にその収縮強度を制御することができる。 Furthermore, it has been reported that the clenching exercise affects the voluntary contraction strength of the muscles of the extensor muscles such as the soleus muscle and the tibialis anterior muscle, in addition to the flexor carpi radialis and extensor carpi radialis muscles of both arms. Therefore, if the voltage applied to the bite muscle is controlled by using the muscle tone control device 10 having the above configuration, the contraction strength of the soleus muscle and the tibialis anterior muscle can be similarly controlled.

したがって、必要とする電極数をさらに減少させることができ、コストをより抑制することができる。 Therefore, the required number of electrodes can be further reduced, and the cost can be further suppressed.

なお、橈側手根伸筋、橈側手根屈筋、ヒラメ筋、および前脛骨筋の収縮強度を制御できるのであれば、収縮抑制用電極12bを装着する位置を、例えば口角でなく、歯髄、その歯髄を支配する神経、および歯としてもよい。 If the contraction strength of the flexor carpi radialis, flexor carpi radialis, soleus, and tibialis anterior muscles can be controlled, the position where the contraction-suppressing electrode 12b is attached is, for example, the pulp, not the corner of the mouth, and its pulp. It may be the nerve that controls the nerve, and the tooth.

本発明は、前記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、前記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されたり、幾つかの構成要件が異なる形態にして組み合わされても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除されたり組み合わされた構成が発明として抽出され得るものである。 The present invention is not limited to the above-described embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. Further, the embodiments include inventions at various stages, and various inventions can be extracted by an appropriate combination of a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment or some constituent elements are combined in different forms, the problem described in the problem to be solved by the invention is solved. If the problem can be solved and the effect described in the section of effect of the invention is obtained, the configuration in which this constituent requirement is deleted or combined can be extracted as the invention.

10…筋緊張制御装置、11a…第1電圧出力回路、11b…第2電圧出力回路、
12a…収縮促進用電極、12b…収縮抑制用電極、13…筋電センサ、
13a…橈側手根伸筋用電極、13b…橈側手根屈筋用電極、14…制御部(CPU)、15…メモリ、15a…筋収縮制御処理プログラム、15b…作業エリア。
10 ... Muscle tone control device, 11a ... First voltage output circuit, 11b ... Second voltage output circuit,
12a ... Shrinkage promoting electrode, 12b ... Shrinkage suppressing electrode, 13 ... Myoelectric sensor,
13a ... Electrode for radial carpi radialis, 13b ... Electrode for radial carpi radialis, 14 ... Control unit (CPU), 15 ... Memory, 15a ... Muscle contraction control processing program, 15b ... Work area.

Claims (7)

四肢における制御対象となる複数の筋肉とは異なる部位で、かつ当該筋肉との間で筋収縮動作に係る関連性を有する部位であって、噛み締め運動に係る部位に装着される電極と、
前記電極に、前記複数の筋肉の収縮強度を促進または抑制するための刺激用電圧を印加する電圧出力回路と、
前記電圧出力回路による前記電極への刺激用電圧の印加を制御する制御回路と、
を備える、筋緊張制御装置。
Electrodes attached to the parts of the limbs that are different from the multiple muscles to be controlled and that are related to the muscle contraction movement with the muscles and are related to the clenching movement.
A voltage output circuit that applies a stimulating voltage to the electrodes to promote or suppress the contraction strength of the plurality of muscles.
A control circuit that controls the application of a stimulating voltage to the electrodes by the voltage output circuit, and
A muscle tone control device.
前記電極は、
前記複数の筋肉の収縮強度を促進する部位に装着される促進用電極と、
前記複数の筋肉の収縮強度を抑制する部位に装着される抑制用電極と、
を備え、
前記制御回路は、
前記電圧出力回路から前記促進用電極に前記刺激用電圧を印加させることで、前記複数の筋肉の収縮強度を促進させ、
前記電圧出力回路から前記抑制用電極に前記刺激用電圧を印加させることで、前記複数の筋肉の収縮強度を抑制させる、
請求項1に記載の筋緊張制御装置。
The electrode is
A promotion electrode attached to a site that promotes the contraction strength of the plurality of muscles,
An inhibitory electrode attached to a site that suppresses the contraction strength of the plurality of muscles,
With
The control circuit
By applying the stimulation voltage from the voltage output circuit to the promotion electrode, the contraction strength of the plurality of muscles is promoted.
By applying the stimulation voltage from the voltage output circuit to the suppression electrode, the contraction strength of the plurality of muscles is suppressed.
The muscle tone control device according to claim 1.
前記電極は、
前記複数の筋肉の収縮強度を促進する部位に装着される促進用電極と、
前記複数の筋肉の収縮強度を抑制する部位に装着される抑制用電極と、
を備え、
前記制御回路は、
前記数の筋肉の収縮強度が予め設定したしきい値よりも低い場合、前記促進するための刺激用電圧として、前記電圧出力回路から第1電圧を前記促進用電極に印加させることで、前記複数の筋肉の収縮強度を促進させ
前記数の筋肉の収縮強度が予め設定したしきい値よりも高い場合、前記抑制するための刺激用電圧として、前記電圧出力回路から前記第1電圧よりも低い第2電圧を前記抑制用電極印加させることで、前記複数の筋肉の収縮強度を抑制させる、
請求項1に記載の筋緊張制御装置。
The electrode is
A promotion electrode attached to a site that promotes the contraction strength of the plurality of muscles,
An inhibitory electrode attached to a site that suppresses the contraction strength of the plurality of muscles,
With
The control circuit
Wherein when contraction strength of several muscle is lower than the threshold set in advance, as a stimulus voltage to said accelerating, the first voltage from the voltage output circuit that is applied to the accelerating electrode, wherein Promotes contraction strength of multiple muscles ,
Higher than threshold contraction muscle strength of the multiple number set in advance, as a stimulus voltage to said suppressed, the voltage output circuit the suppression electrode a second voltage lower than said first voltage from be applied to the, Ru is suppressed contraction intensity of said plurality of muscles,
The muscle tone control device according to claim 1.
四肢における制御対象となる複数の筋肉とは異なる部位で、かつ当該筋肉との間で筋収縮動作に係る関連性を有する部位であって、噛み締め運動に係る部位に装着される電極、と、
前記電極に、前記複数の筋肉の収縮強度を促進または抑制するための刺激用電圧を印加する電圧出力回路と、
前記電圧出力回路による前記電極への刺激用電圧の印加を制御する制御回路と、
を備え、
前記制御回路は、
前記電圧出力回路を前記収縮強度の促進用として機能させた場合において、前記制御回路により当該電圧出力回路から前記電極に前記複数の筋肉の収縮強度を促進するための前記刺激用電圧を印加させた結果、前記複数の筋肉の収縮強度が予め設定されたしきい値よりも高い場合には、前記電極に印加された前記刺激用電圧を、前記複数の筋肉の収縮強度が前記予め設定されたしきい値に近づくような値に低下させ、
前記電圧出力回路を前記収縮強度の抑制用として機能させた場合において、前記制御回路により当該電圧出力回路から前記電極に前記複数の筋肉の収縮強度を抑制するための前記刺激用電圧を印加させた結果、前記複数の筋肉の収縮強度が予め設定されたしきい値よりも低い場合には、前記極に印加された前記刺激用電圧を、前記複数の筋肉の収縮強度が当該しきい値に近づくような値に低下させる、
筋緊張制御装置。
Electrodes that are different from the plurality of muscles to be controlled in the limbs and that have a relationship with the muscles related to the muscle contraction motion and are attached to the parts related to the clenching movement.
A voltage output circuit that applies a stimulating voltage to the electrodes to promote or suppress the contraction strength of the plurality of muscles.
A control circuit that controls the application of a stimulating voltage to the electrodes by the voltage output circuit, and
With
The control circuit
When made to function the voltage output circuit for the promotion of the contraction intensity, the stimulation voltage to promote contraction intensity of said plurality of muscles to the electrode from the voltage output circuit was applied by the control circuit As a result, when the contraction strength of the plurality of muscles is higher than the preset threshold value, the stimulation voltage applied to the electrode is used, and the contraction strength of the plurality of muscles is preset. Reduce it to a value that approaches the threshold value,
When made to function the voltage output circuit for the suppression of the contraction intensity, the stimulation voltage for suppressing the contraction intensity of said plurality of muscles to the electrode from the voltage output circuit was applied by the control circuit result, when the contraction intensity of said plurality of muscles is lower than a preset threshold, the applied the stimulus voltage to the electrodes, contraction intensity of said plurality of muscles to the threshold Decrease to a value that approaches
Muscle tone control device.
前記電極は、
前記複数の筋肉の収縮強度を促進または抑制する他の筋肉またはその筋肉を支配する神経に装着される、
請求項2乃至請求項4のいずれか一項に記載の筋緊張制御装置。
The electrode is
Attached to other muscles that promote or suppress the contraction strength of the plurality of muscles or the nerves that control the muscles.
The muscle tone control device according to any one of claims 2 to 4.
四肢における制御対象となる複数の筋肉とは異なる部位で、かつ当該筋肉との間で筋収縮動作に係る関連性を有する部位であって、噛み締め運動に係る第1部位および第2部位にそれぞれ装着される収縮促進用電極および収縮抑制用電極、と、
第1電圧およびこの第1電圧よりも低い第2電圧を出力する電圧出力回路と、
前記第1電圧前記第1部位に印加され、かつ前記第2電圧前記第2部位に印加されるように前記電圧出力回路を制御する制御回路と、
を備える筋緊張制御装置。
It is a part different from the plurality of muscles to be controlled in the limbs, and is a part having a relationship related to the muscle contraction motion with the muscle, and is attached to the first part and the second part related to the clenching exercise, respectively. Shrinkage promoting electrode and shrinkage suppressing electrode,
A voltage output circuit that outputs a first voltage and a second voltage lower than this first voltage,
A control circuit for the first voltage is applied to the first site and the second voltage to control the voltage output circuit so that is applied to the second portion,
A muscle tone control device equipped with.
請求項1乃至請求項6のいずれか一項に記載の筋緊張制御装置が備える制御回路の動作をコンピュータに実行させるプログラム。 A program for causing a computer to execute an operation of a control circuit included in the muscle tone control device according to any one of claims 1 to 6.
JP2017238603A 2017-12-13 2017-12-13 Muscle tone controller and program Active JP6897537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238603A JP6897537B2 (en) 2017-12-13 2017-12-13 Muscle tone controller and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238603A JP6897537B2 (en) 2017-12-13 2017-12-13 Muscle tone controller and program

Publications (2)

Publication Number Publication Date
JP2019103655A JP2019103655A (en) 2019-06-27
JP6897537B2 true JP6897537B2 (en) 2021-06-30

Family

ID=67062247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238603A Active JP6897537B2 (en) 2017-12-13 2017-12-13 Muscle tone controller and program

Country Status (1)

Country Link
JP (1) JP6897537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223379A1 (en) * 2022-05-16 2023-11-23 日本電信電話株式会社 Electrical stimulation system, electrical stimulation control device, electrical stimulation control method, and program
WO2023238251A1 (en) * 2022-06-07 2023-12-14 日本電信電話株式会社 Co-contraction control device, co-contraction control method, server device, delivery method, and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608606T3 (en) * 2003-04-01 2017-04-12 Sunstar Suisse Sa Apparatus for monitoring muscle activity
US7949403B2 (en) * 2007-02-27 2011-05-24 Accelerated Care Plus Corp. Electrical stimulation device and method for the treatment of neurological disorders
JP5117829B2 (en) * 2007-11-22 2013-01-16 日本電信電話株式会社 Muscle tone relief device
SE1050420A1 (en) * 2010-04-27 2011-07-26 Inerventions Ab System and clothing for relaxing a spastic muscle
KR20140098780A (en) * 2011-11-11 2014-08-08 뉴로이네이블링 테크놀로지스, 인크. Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function
US9616217B1 (en) * 2014-09-17 2017-04-11 Jay Pensler Method of applying electrotherapy to facial muscles

Also Published As

Publication number Publication date
JP2019103655A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
RU2719941C2 (en) Training of mouth muscles
AU639898B2 (en) Control of fns variations of response emg
AU2018378194B2 (en) Eliciting swallowing using electrical stimulation applied via surface electrodes
US20150142079A1 (en) Method for stimulating facial muscles
JP2007151747A (en) Electrostimulator for surface stimulation and cervical electrode applicator using the same
JP6897537B2 (en) Muscle tone controller and program
KR101132889B1 (en) Electrical srimulation appratus for working exercise
US20220118256A1 (en) Apparatus for management of a parkinson&#39;s disease patient&#39;s gait
Sharif et al. Effects of FES-ambulation training on locomotor function and health-related quality of life in individuals with spinal cord injury
CN108697888A (en) neuromuscular stimulation system and method
JP5497460B2 (en) Electrical stimulation device that is less likely to cause muscle fatigue
Dow et al. EMG-based detection of inspiration in the rat diaphragm muscle
JP6600481B2 (en) Current stimulating apparatus and current stimulating method for recovering physical dysfunction of body
Kim et al. Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model
Zhang et al. Muscle fatigue tracking based on stimulus evoked EMG and adaptive torque prediction
Thorsen et al. Enhancement of isometric ankle dorsiflexion by automyoelectrically controlled functional electrical stimulation on subjects with upper motor neuron lesions
US9616217B1 (en) Method of applying electrotherapy to facial muscles
Askari et al. Effect of functional electrical stimulation (FES) combined with robotically assisted treadmill training on the EMG profile
JP5916154B2 (en) Electrical stimulation device with muscle output measurement function
Nguyen et al. Current generation circuit to functional electrical stimulate foot-drop patients
Popovic Neural prostheses for movement restoration
WO2023058166A1 (en) Grip reinforcing device, grip reinforcing method, and program
US20240009457A1 (en) Systems and methods for facilitating multisite paired corticospinal-motoneuronal stimulation therapy
CN116712673A (en) Median nerve stimulation system, electronic device, and storage medium
Thrasher et al. FES-assisted walking for rehabilitation of incomplete spinal cord injury

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150