JP6894324B2 - Manufacturing method of gallium nitride - Google Patents
Manufacturing method of gallium nitride Download PDFInfo
- Publication number
- JP6894324B2 JP6894324B2 JP2017171056A JP2017171056A JP6894324B2 JP 6894324 B2 JP6894324 B2 JP 6894324B2 JP 2017171056 A JP2017171056 A JP 2017171056A JP 2017171056 A JP2017171056 A JP 2017171056A JP 6894324 B2 JP6894324 B2 JP 6894324B2
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- gallium
- temperature
- ammonia
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002601 GaN Inorganic materials 0.000 title claims description 62
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 53
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 38
- 229910052733 gallium Inorganic materials 0.000 claims description 38
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 229910021529 ammonia Inorganic materials 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 26
- 238000001816 cooling Methods 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000005121 nitriding Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、LED材料等として有用な高純度窒化ガリウムの製造方法に関する。 The present invention relates to a method for producing high-purity gallium nitride, which is useful as an LED material or the like.
窒化ガリウムは、白色LEDの基板、光学ディスプレイ、レーザーダイオード等の材料として有用であり、古典的には金属ガリウムをアンモニア中で1050℃〜1100℃で反応させる方法(非特許文献1)が知られている。また、特許文献1には、金属ガリウムをアンモニア液中に100℃〜700℃の温度に晒し、その後1000℃〜1200℃で窒化させる方法が記載されている。また、特許文献2には、金属ガリウムを1400℃に加熱してガリウム蒸気とし、1050℃〜1100℃の管状電気炉内でアンモニアガスと反応させて窒化ガリウム結晶核を生成させる方法が記載されている。さらに、特許文献3には、塩化水素を800℃〜1000℃の温度でガリウム粉末と反応させて塩化ガリウムガスを生成し、得られた塩化ガリウムガスを800℃〜1000℃の温度でアンモニアと反応させて窒化ガリウム(固体)を合成する方法が記載されている。 Gallium nitride is useful as a material for white LED substrates, optical displays, laser diodes, etc. Classically, a method of reacting metallic gallium in ammonia at 1050 ° C to 1100 ° C is known (Non-Patent Document 1). ing. Further, Patent Document 1 describes a method of exposing metallic gallium to a temperature of 100 ° C. to 700 ° C. in an ammonia solution and then nitriding the metal gallium at 1000 ° C. to 1200 ° C. Further, Patent Document 2 describes a method of heating metallic gallium to 1400 ° C. to obtain gallium vapor and reacting it with ammonia gas in a tubular electric furnace at 1050 ° C. to 1100 ° C. to generate gallium nitride crystal nuclei. There is. Further, in Patent Document 3, hydrogen chloride is reacted with gallium powder at a temperature of 800 ° C. to 1000 ° C. to generate gallium chloride gas, and the obtained gallium chloride gas is reacted with ammonia at a temperature of 800 ° C. to 1000 ° C. A method for synthesizing gallium nitride (solid) is described.
しかしながら、非特許文献1や特許文献1記載の方法では、窒化ガリウムが金属ガリウム表面に生成するため、その窒化ガリウムが内部の金属ガリウムとアンモニアガスの接触を阻害し、それ以上の窒化反応が進行しない。また、特許文献2の方法では、ガリウム蒸気量に対してアンモニア量が少ないと、炉芯管や配管などに金属ガリウムが析出して、付着がおきる。また、アンモニア量が多く、過剰な場合、未反応のアンモニアが多く、管状電気炉からの排ガス中のアンモニアの処理が必要となり、製造コストが高くなる。さらに、特許文献3の方法では、生成した窒化ガリウム中に金属ガリウムが残らないが、窒化ガリウム中に微量成分として中間体の塩化ガリウム(塩素)が残る。塩素の残存は、後の工程(例えば、単結晶化やスパッタリング等)において、腐食ガスを発生させると共に最終製品の純度を低下させるという欠点があった。 However, in the methods described in Non-Patent Document 1 and Patent Document 1, since gallium nitride is generated on the surface of metallic gallium, the gallium nitride inhibits the contact between the internal metallic gallium and ammonia gas, and further nitriding reaction proceeds. do not. Further, in the method of Patent Document 2, if the amount of ammonia is smaller than the amount of gallium vapor, metallic gallium is deposited on the core tube, piping, etc., and adhesion occurs. Further, when the amount of ammonia is large and excessive, the amount of unreacted ammonia is large, and it is necessary to treat the ammonia in the exhaust gas from the tubular electric furnace, resulting in high production cost. Further, in the method of Patent Document 3, metallic gallium does not remain in the produced gallium nitride, but gallium chloride (chlorine) as an intermediate remains in gallium nitride as a trace component. Residual chlorine has the drawback of generating corrosive gas and reducing the purity of the final product in subsequent steps (eg, single crystallization, sputtering, etc.).
従って、本発明の課題は、容易かつ簡便な手段で高純度の窒化ガリウムを製造する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing high-purity gallium nitride by an easy and convenient means.
そこで本発明者は、金属ガリウムを内部まで窒化反応させ、かつ簡便な操作で高純度の窒化ガリウムを回収する手段を見出すべく種々検討したところ、金属ガリウムとアンモニアの反応により生成する窒化ガリウムは1100℃以上の温度で昇華する一方、金属ガリウムの沸点は2403℃であるという温度差に着目し、反応容器内で1100℃以上の温度で金属ガリウムとアンモニアガスを反応させて窒化ガリウムをガスとして生成させ、ガス化した窒化ガリウムを1100℃未満に冷却できる領域を原料金属ガリウムが存在する場所とは相違する領域に設ければ、その領域で窒化ガリウムガスが固化し、金属ガリウムとアンモニアガスの反応は最後まで進行する結果、高純度の窒化ガリウムが高収率で得られることを見出し、本発明を完成した。 Therefore, the present inventor has made various studies to find a means for recovering high-purity gallium nitride by nitriding metallic gallium to the inside and using a simple operation. As a result, the gallium nitride produced by the reaction between metallic gallium and ammonia is 1100. Focusing on the temperature difference that the boiling point of metallic gallium is 2403 ° C while sublimating at a temperature of ° C or higher, the reaction of metallic gallium and ammonia gas at a temperature of 1100 ° C or higher in the reaction vessel produces gallium nitride as a gas. If a region where the gasified gallium nitride can be cooled to less than 1100 ° C. is provided in a region different from the location where the raw metal gallium exists, the gallium nitride gas solidifies in that region and the reaction between the metallic gallium and the ammonia gas Has completed the present invention by finding that high-purity gallium nitride can be obtained in high yield as a result of proceeding to the end.
すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。 That is, the present invention provides the following [1] to [3].
〔1〕金属ガリウムを1100℃以上1400℃以下の温度でアンモニアと反応させ、生じた窒化ガリウムガスを1100℃未満の温度領域に誘導し固化させることを特徴とする窒化ガリウムの製造方法。
〔2〕1100℃以上1400℃以下の加熱領域と、1100℃未満の窒化ガリウム固化領域とを有する反応容器を用いる〔1〕記載の製造方法。
〔3〕窒化ガリウムガスを固化させる温度が、1050℃以下である〔1〕又は〔2〕記載の製造方法。
[1] A method for producing gallium nitride, which comprises reacting metallic gallium with ammonia at a temperature of 1100 ° C. or higher and 1400 ° C. or lower, and inducing the generated gallium nitride gas to a temperature range of less than 1100 ° C. to solidify it.
[2] The production method according to [1], wherein a reaction vessel having a heating region of 1100 ° C. or higher and 1400 ° C. or lower and a gallium nitride solidification region of lower than 1100 ° C. is used.
[3] The production method according to [1] or [2], wherein the temperature at which the gallium nitride gas is solidified is 1050 ° C. or lower.
本発明方法によれば、金属ガリウムが窒化して窒化ガリウムガスが生成する領域と、窒化ガリウムガスが固化して固体の窒化ガリウムになる領域が相違するため、金属ガリウムが全部窒化ガリウムになり、高純度の窒化ガリウムが高収率で得られる。 According to the method of the present invention, the region where the metal gallium is nitrided to generate gallium nitride gas and the region where the gallium nitride gas solidifies to become solid gallium nitride are different, so that all the metal gallium becomes gallium nitride. High-purity gallium nitride can be obtained in high yield.
本発明の窒化ガリウムの製造方法は、金属ガリウムを1100℃以上1400℃以下の温度でアンモニアと反応させ、生じた窒化ガリウムを1100℃未満の温度領域に誘導し固化させることを特徴とする。 The method for producing gallium nitride of the present invention is characterized in that metallic gallium is reacted with ammonia at a temperature of 1100 ° C. or higher and 1400 ° C. or lower, and the resulting gallium nitride is guided to a temperature region of less than 1100 ° C. and solidified.
本発明においては、まず、金属ガリウムとアンモニアとを1100℃以上1400℃以下の温度で反応させて、窒化ガリウムガスを生成させる。
用いられる金属ガリウムとしては、容易に入手できる塊状や液体状のものでよい。一方、アンモニアは、アンモニアガスを用いるのが好ましい。金属ガリウムとアンモニアの使用量は、ガリウム1モルに対して、アンモニアは1モル以上であればよく、反応を促進させるためには、3モル以上が好ましい。
通常金属ガリウムとアンモニアは900℃以上で反応し窒化ガリウムを生成するが、本発明では窒化ガリウムをガスとして生成させる点から1100℃以上の温度で反応させる。また、用いられる反応容器、例えばアルミナや窒化珪素等の材料の使用等を考慮すると反応温度の上限は1400℃以下が好ましい。
In the present invention, first, metallic gallium and ammonia are reacted at a temperature of 1100 ° C. or higher and 1400 ° C. or lower to generate gallium nitride gas.
The metallic gallium used may be in the form of easily available lumps or liquids. On the other hand, as ammonia, it is preferable to use ammonia gas. The amount of metallic gallium and ammonia used may be 1 mol or more with respect to 1 mol of gallium, and 3 mol or more is preferable in order to promote the reaction.
Normally, metallic gallium and ammonia react at 900 ° C. or higher to form gallium nitride, but in the present invention, gallium nitride is reacted at a temperature of 1100 ° C. or higher from the point of producing it as a gas. Further, considering the use of the reaction vessel used, for example, a material such as alumina or silicon nitride, the upper limit of the reaction temperature is preferably 1400 ° C. or lower.
窒化ガリウムガスの生成反応は、例えば図1に示すような反応容器中で行うのが好ましい。図1の反応容器中には、金属ガリウムを入れるアルミナボート等の容器を設置するのが好ましい。当該アルミナボート設置部は1100℃以上1400℃以下に加熱される。反応容器上部からアンモニアガスを投入すれば、金属ガリウムとアンモニアは1100℃以上1400℃以下の温度で反応し、窒化ガリウムガスが生成する。 The gallium nitride gas formation reaction is preferably carried out in a reaction vessel as shown in FIG. 1, for example. In the reaction vessel of FIG. 1, it is preferable to install a vessel such as an alumina boat containing metallic gallium. The alumina boat installation portion is heated to 1100 ° C. or higher and 1400 ° C. or lower. When ammonia gas is charged from the upper part of the reaction vessel, metallic gallium and ammonia react at a temperature of 1100 ° C. or higher and 1400 ° C. or lower to generate gallium nitride gas.
次に、窒化ガリウムガスを1100℃未満の温度領域に誘導し固化させて窒化ガリウムを析出させる。この1100℃未満の温度領域は、金属ガリウムが設置されている場所からは離れているのが好ましい。反応により生成した窒化ガリウムガスは上昇するので、反応容器内の上部であればよい。図1では、空気を循環させることのできる突部を反応容器内の上部に設置している。この突部は空気の循環により空冷されているので、1100℃未満になっているから、この突部の表面で窒化ガリウムガスが固化して固体状の窒化ガリウムが析出する。この1100℃未満の窒化ガリウム固化領域は、図1の形態に限らず、分離回収することができればどのような形態でもよく、例えば、反応容器の天井部に析出させたり、反応容器側面でもよい。
固化領域の温度は、熱伝対などで温度を測定して、空気や水等の冷却媒体の流入量もしくは循環量を調整することによって、所定の温度に設定、維持することができる。
なお、冷却領域の温度が1100℃以上の場合には、本固化領域では回収することができず、反応容器中のいずれかの低温部で固化される。すなわち、反応容器には、1100℃以上1400℃以下の加熱領域と、1100℃未満の窒化ガリウム固化領域とが存在すればよい。
また、窒化ガリウムガスを固化させる温度は1050℃以下が好ましく、さらに1000℃以下が好ましい。
Next, gallium nitride gas is induced in a temperature region of less than 1100 ° C. and solidified to precipitate gallium nitride. This temperature range of less than 1100 ° C. is preferably separated from the place where the metallic gallium is installed. Since the gallium nitride gas generated by the reaction rises, it may be the upper part in the reaction vessel. In FIG. 1, a protrusion capable of circulating air is installed in the upper part of the reaction vessel. Since this protrusion is air-cooled by air circulation, the temperature is lower than 1100 ° C., so that gallium nitride gas solidifies on the surface of this protrusion and solid gallium nitride is deposited. The gallium nitride solidified region having a temperature of less than 1100 ° C. is not limited to the form shown in FIG. 1, and may be in any form as long as it can be separated and recovered. For example, it may be deposited on the ceiling of the reaction vessel or on the side surface of the reaction vessel.
The temperature of the solidified region can be set and maintained at a predetermined temperature by measuring the temperature with a heat transfer pair or the like and adjusting the inflow amount or circulation amount of a cooling medium such as air or water.
When the temperature of the cooling region is 1100 ° C. or higher, it cannot be recovered in the main solidification region and is solidified in any low temperature portion in the reaction vessel. That is, the reaction vessel may have a heating region of 1100 ° C. or higher and 1400 ° C. or lower and a gallium nitride solidification region of less than 1100 ° C.
The temperature at which the gallium nitride gas is solidified is preferably 1050 ° C. or lower, more preferably 1000 ° C. or lower.
本発明方法においては、1100℃以上に加熱して金属ガリウム及びアンモニアから窒化ガリウムガスを生成する領域と、窒化ガリウムガスを1100℃未満にして固化させる領域とが融離されているため、金属ガリウムは窒化ガリウムに変換される。一方、反応容器内には、他の成分が存在しないので得られる窒化ガリウムは高純度となる。 In the method of the present invention, the region where gallium nitride gas is generated from metallic gallium and ammonia by heating to 1100 ° C. or higher and the region where gallium nitride gas is solidified at less than 1100 ° C. are separated. Is converted to gallium nitride. On the other hand, since there are no other components in the reaction vessel, the obtained gallium nitride has high purity.
次に実施例を挙げて本発明を更に詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.
実施例1
金属ガリウム(塊状)100gを計量しアルミナボートに入れ、図1の反応容器に投入した。窒化ガリウムを析出させる装置(以下、「コレクター」とする。)付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は5℃/minで1200℃まで昇温後、24時間保持し、このとき、コレクター温度が800℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて、コレクターに付着した窒化ガリウムを回収した。
回収物の重量は92gで、XRDを用いて鉱物相を同定したところ、GaNの単相であった(図2)。また、回収物の酸素窒素濃度を測定したところ、酸素量0.5%、窒素量16.8%であった。
なお、回収率は、回収物の重量/金属ガリウム100gから得られるGaNの重量×100で算出した。
Example 1
100 g of metallic gallium (mass) was weighed, placed in an alumina boat, and placed in the reaction vessel shown in FIG. The lid with the device for precipitating gallium nitride (hereinafter referred to as “collector”) was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The temperature was raised to 1200 ° C. at 5 ° C./min and then held for 24 hours. At this time, the supply pressure of air cooling air was adjusted so that the collector temperature became 800 ° C. After nitriding, gallium nitride adhering to the collector was recovered in the glove box.
The weight of the recovered product was 92 g, and when the mineral phase was identified using XRD, it was a single phase of GaN (Fig. 2). Moreover, when the oxygen-nitrogen concentration of the recovered product was measured, the amount of oxygen was 0.5% and the amount of nitrogen was 16.8%.
The recovery rate was calculated by multiplying the weight of the recovered material / the weight of GaN obtained from 100 g of metallic gallium × 100.
実施例2
金属ガリウム100gを計量しアルミナボートに入れ、反応容器に投入した。コレクター付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は5℃/minで1100℃まで昇温後、24時間保持し、このとき、コレクター温度が800℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて、コレクターに付着した窒化ガリウムを回収した。
回収物の重量は84gで、XRDを用いて鉱物相を同定したところ、GaNの単相であった。また、回収物の酸素窒素濃度を測定したところ、酸素量0.6%、窒素量17.1%であった。
Example 2
100 g of metallic gallium was weighed, placed in an alumina boat, and placed in a reaction vessel. The lid with the collector was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The temperature was raised to 1100 ° C. at 5 ° C./min and then held for 24 hours. At this time, the supply pressure of air cooling air was adjusted so that the collector temperature became 800 ° C. After nitriding, gallium nitride adhering to the collector was recovered in the glove box.
The weight of the recovered product was 84 g, and when the mineral phase was identified using XRD, it was a single phase of GaN. Moreover, when the oxygen-nitrogen concentration of the recovered product was measured, the amount of oxygen was 0.6% and the amount of nitrogen was 17.1%.
実施例3
金属ガリウム100gを計量しアルミナボートに入れ、反応容器に投入した。コレクター付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は1200℃まで5℃/min、1400℃まで3℃/minとし、24時間保持した。このとき、コレクター温度が800℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて、コレクターに付着した窒化ガリウムを回収した。
回収物の重量は105gで、XRDを用いて鉱物相を同定したところ、GaNの単相であった。また、回収物の酸素窒素濃度を測定したところ、酸素量0.5%、窒素量16.9%であった。
Example 3
100 g of metallic gallium was weighed, placed in an alumina boat, and placed in a reaction vessel. The lid with the collector was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The heating rate was 5 ° C./min up to 1200 ° C. and 3 ° C./min up to 1400 ° C., and maintained for 24 hours. At this time, the supply pressure of the air cooling air was adjusted so that the collector temperature became 800 ° C. After nitriding, gallium nitride adhering to the collector was recovered in the glove box.
The weight of the recovered product was 105 g, and when the mineral phase was identified using XRD, it was a single phase of GaN. Moreover, when the oxygen-nitrogen concentration of the recovered product was measured, the oxygen amount was 0.5% and the nitrogen amount was 16.9%.
実施例4
金属ガリウム100gを計量しアルミナボートに入れ、反応容器に投入した。コレクター付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は5℃/minで1200℃まで昇温後、24時間保持し、このとき、コレクター温度が1000℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて、コレクターに付着した窒化ガリウムを回収した。
回収物の重量は89gで、XRDを用いて鉱物相を同定したところ、GaNの単相であった。また、回収物の酸素窒素濃度を測定したところ、酸素量0.4%、窒素量17.3%であった。
Example 4
100 g of metallic gallium was weighed, placed in an alumina boat, and placed in a reaction vessel. The lid with the collector was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The temperature was raised to 1200 ° C. at 5 ° C./min and then held for 24 hours. At this time, the supply pressure of air cooling air was adjusted so that the collector temperature became 1000 ° C. After nitriding, gallium nitride adhering to the collector was recovered in the glove box.
The weight of the recovered product was 89 g, and when the mineral phase was identified using XRD, it was a single phase of GaN. Moreover, when the oxygen-nitrogen concentration of the recovered product was measured, the oxygen amount was 0.4% and the nitrogen amount was 17.3%.
比較例1
金属ガリウム100gを計量しアルミナボートに入れ、反応容器に投入した。コレクター付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は5℃/minで1000℃まで昇温後、24時間保持し、このとき、コレクター温度が800℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて、コレクターに付着した窒化ガリウムを回収した。
回収物の重量は3gで、そのほとんどがアルミナボート上に残っていた。コレクターから回収した窒化ガリウムが少なかったので、XRDによる鉱物組成の同定、酸素窒素濃度の測定は行わなかった。
Comparative Example 1
100 g of metallic gallium was weighed, placed in an alumina boat, and placed in a reaction vessel. The lid with the collector was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The temperature was raised to 1000 ° C. at 5 ° C./min and then held for 24 hours. At this time, the supply pressure of air cooling air was adjusted so that the collector temperature became 800 ° C. After nitriding, gallium nitride adhering to the collector was recovered in the glove box.
The recovered material weighed 3 g, most of which remained on the alumina boat. Since the amount of gallium nitride recovered from the collector was small, the mineral composition was not identified by XRD and the oxygen-nitrogen concentration was not measured.
比較例2
金属ガリウム100gを計量しアルミナボートに入れ、反応容器に投入した。コレクター付の蓋を閉じ、反応容器を密閉とし、3L/minのアンモニアフローにて15分ガス置換した。空冷用エアーを導入するためのコンプレッサーの電源を入れ、コレクターの冷却を開始し、電気炉の加熱を開始した。昇温速度は5℃/minで1200℃まで昇温後、24時間保持し、このとき、コレクター温度が1100℃になるよう空冷用エアーの供給圧を調整した。窒化後、グローブボックス内にて窒化ガリウムを回収した。
窒化ガリウムは、温度の低いアンモニアガスの排出口付近の反応容器の壁や蓋、アンモニア排出用の配管内に析出していたため、コレクターから回収することはできなかった。
Comparative Example 2
100 g of metallic gallium was weighed, placed in an alumina boat, and placed in a reaction vessel. The lid with the collector was closed, the reaction vessel was sealed, and gas replacement was performed with an ammonia flow of 3 L / min for 15 minutes. The compressor for introducing air for air cooling was turned on, the collector was started to cool, and the electric furnace was started to be heated. The temperature was raised to 1200 ° C. at 5 ° C./min and then held for 24 hours. At this time, the supply pressure of air cooling air was adjusted so that the collector temperature became 1100 ° C. After nitriding, gallium nitride was recovered in the glove box.
The gallium nitride could not be recovered from the collector because it was deposited on the wall and lid of the reaction vessel near the outlet of the low temperature ammonia gas and in the piping for discharging ammonia.
実施例1〜4及び比較例1、2の結果を表1に示す。 The results of Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017171056A JP6894324B2 (en) | 2017-09-06 | 2017-09-06 | Manufacturing method of gallium nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017171056A JP6894324B2 (en) | 2017-09-06 | 2017-09-06 | Manufacturing method of gallium nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019043826A JP2019043826A (en) | 2019-03-22 |
JP6894324B2 true JP6894324B2 (en) | 2021-06-30 |
Family
ID=65815536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017171056A Active JP6894324B2 (en) | 2017-09-06 | 2017-09-06 | Manufacturing method of gallium nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6894324B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117165939B (en) * | 2023-10-30 | 2024-03-15 | 苏州大学 | Equipment and method for preparing nano gallium nitride film |
-
2017
- 2017-09-06 JP JP2017171056A patent/JP6894324B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019043826A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6467650B2 (en) | Spherical boron nitride fine particles and production method thereof | |
WO2007004495A1 (en) | Process for producing crystal with supercrtical solvent, crystal growth apparatus, crystal, and device | |
JP6894324B2 (en) | Manufacturing method of gallium nitride | |
JP2015504439A (en) | Process for preparing trialkyl compounds of Group IIIA metals | |
CN103771360B (en) | Prepare the method for AlN powder | |
CN107162599B (en) | Nano aluminum nitride powder and preparation method and application thereof | |
JP2010195690A (en) | High-purity trialkyl gallium, and method of producing the same | |
Chen et al. | Phase equilibrium in carbothermal reduction Al2O3→ AlN studied by thermodynamic calculations | |
TWI510435B (en) | Production of hydrogen chloride | |
WO2018230380A1 (en) | Method for producing polysilicon | |
JP5495392B2 (en) | Method for producing valuable materials from waste liquid | |
JP5392488B2 (en) | Production method and use of trichlorosilane | |
JP5217162B2 (en) | Method for producing polycrystalline silicon | |
US2874040A (en) | Method for the production of titanium | |
Song et al. | Conditions for growth of AlN single crystals in Al–Sn flux | |
JP5871008B2 (en) | Chloropolysilane production method and chloropolysilane production apparatus | |
TWI750221B (en) | Manufacturing method of gallium nitride crystal | |
TW201922346A (en) | Production method for trichlorosilane, and pipe | |
JP5348186B2 (en) | High-purity trialkylgallium and its production method | |
Hoseinpur Kermani et al. | Kinetic study of vacuum evaporation of elements from ternary melts; case of dilute solution of P in Si-Al melts | |
CN101724826B (en) | Surface treatment method for C-C heating element | |
JP4742763B2 (en) | Method for producing aminomethylene phosphonic acid | |
US1725292A (en) | Manufacture of ammonium chloride crystals | |
Zyatkevich et al. | Manufacture of fine aluminum nitride powder | |
JP4904042B2 (en) | Method for producing borazine compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6894324 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |