JP6890436B2 - Hybrid air conditioning system and its control method - Google Patents

Hybrid air conditioning system and its control method Download PDF

Info

Publication number
JP6890436B2
JP6890436B2 JP2017030494A JP2017030494A JP6890436B2 JP 6890436 B2 JP6890436 B2 JP 6890436B2 JP 2017030494 A JP2017030494 A JP 2017030494A JP 2017030494 A JP2017030494 A JP 2017030494A JP 6890436 B2 JP6890436 B2 JP 6890436B2
Authority
JP
Japan
Prior art keywords
unit
outdoor unit
ghp
refrigerant
ehp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030494A
Other languages
Japanese (ja)
Other versions
JP2018136073A (en
Inventor
有佑 徳田
有佑 徳田
則通 村井
則通 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017030494A priority Critical patent/JP6890436B2/en
Publication of JP2018136073A publication Critical patent/JP2018136073A/en
Application granted granted Critical
Publication of JP6890436B2 publication Critical patent/JP6890436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒を前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、前記冷媒循環路に設けられ、冷媒を減圧する膨張弁と、冷媒と室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを前記空気調和装置として備え、前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率を制御する運転制御を実行する運転制御部を備えたハイブリッド空調システム、及びその制御方法に関する。 The present invention includes a refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and an engine-driven compressor provided in the refrigerant circulation path for compressing the refrigerant using the engine as a drive source. , A GHP outdoor unit having a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility, and an electrically driven compressor provided in the refrigerant circulation path that compresses the refrigerant using an electric motor as a drive source. An EHP outdoor unit unit having an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility, an expansion valve provided in the refrigerant circulation path that reduces the pressure of the refrigerant, and the refrigerant and indoor air. An indoor unit unit having an indoor heat exchanger that exchanges heat with the refrigerant unit is provided as the air conditioner, and the operating capacity ratio between the GHP outdoor unit unit and the EHP outdoor unit unit is defined according to the air conditioning load factor. The present invention relates to a hybrid air conditioning system including an operation control unit that executes operation control for controlling an operation capacity ratio between the GHP outdoor unit and the EHP outdoor unit based on an operation control map, and a control method thereof.

従来、施設の空調を行う空気調和装置として、エンジンを駆動源とするエンジン駆動式のヒートポンプ(以下、GHPと略称する場合がある)と、電動機を駆動源とする電気駆動式のヒートポンプ(以下、EHPと略称する場合がある)とを備えたハイブリッド式の空気調和装置が知られている(特許文献1を参照)。
GHPは、運転の際にエンジンの排熱が発生するため、例えば、室外熱交換器に着霜するほど外気温度が低い場合等には、当該排熱を用いる等して除霜運転ができるため、低温立ち上がり性が高い。また、駆動源としてエンジンを用いるためEHPに比して節電性が高いというメリットがある。一方で、低負荷における運転効率が低く、低負荷での省エネ性は高いとは言えない。
EHPは、低負荷での運転効率がGHPに比べ高く、低負荷での省エネ性に優れている。一方で、運転の際に排熱がほとんど発生しないため、GHPの如く低温時における除霜運転を行うことができず、低温立ち上り性は高いとは言えない。また、電動機を駆動源とし、運転に際して電力を消費することから、GHPに比べ節電性が高いとも言えない。
Conventionally, as an air conditioner for air-conditioning a facility, an engine-driven heat pump (hereinafter, may be abbreviated as GHP) using an engine as a drive source and an electric-driven heat pump (hereinafter, may be abbreviated as GHP) using an electric motor as a drive source. A hybrid air conditioner equipped with (sometimes abbreviated as EHP) is known (see Patent Document 1).
Since the exhaust heat of the engine is generated during operation of the GHP, for example, when the outside air temperature is low enough to cause frost on the outdoor heat exchanger, the exhaust heat can be used to perform the defrosting operation. , High low temperature rise. Further, since an engine is used as a drive source, there is an advantage that power saving is high as compared with EHP. On the other hand, the operating efficiency at low load is low, and it cannot be said that the energy saving performance at low load is high.
EHP has higher operating efficiency at low load than GHP, and is excellent in energy saving at low load. On the other hand, since almost no exhaust heat is generated during operation, defrosting operation at low temperature cannot be performed as in GHP, and it cannot be said that low temperature riseability is high. In addition, since an electric motor is used as a drive source and power is consumed during operation, it cannot be said that power saving is higher than that of GHP.

そこで、上記ハイブリッド式の空気調和装置では、GHPとEHPの優れた点を取り入れるべく、空調負荷率毎にGHPとEHPとの運転容量比率を設定した運転制御マップに従って夫々の運転を制御する運転制御部が設けられている。
当該運転制御マップでは、例えば、図2に示すように、低負荷において省エネ性が高いEHPの運転容量比率を高くすると共に、負荷率が高くなるに従って、節電性や総合効率の高いGHPの運転容量比率を高くする設定となっている。
また、図示は省略するが、例えば、上述の如く、外気温度が室外熱交換器に着霜する程度に低い場合等には、運転制御部は、例外的に、上述の運転制御マップに従わずに、GHPのみを運転させ、GHPの排熱を用いる等して除霜運転を実行する場合もある。
Therefore, in the above hybrid type air conditioner, in order to incorporate the excellent points of GHP and EHP, the operation control that controls each operation according to the operation control map in which the operation capacity ratio of GHP and EHP is set for each air conditioning load factor. A part is provided.
In the operation control map, for example, as shown in FIG. 2, the operating capacity ratio of EHP, which has high energy saving at low load, is increased, and as the load factor increases, the operating capacity of GHP, which has high power saving and overall efficiency, is increased. It is set to increase the ratio.
Further, although not shown, for example, when the outside air temperature is low enough to cause frost on the outdoor heat exchanger as described above, the operation control unit exceptionally does not follow the operation control map described above. In some cases, only the GHP is operated and the defrosting operation is performed by using the exhaust heat of the GHP.

特開2015−132410号公報Japanese Unexamined Patent Publication No. 2015-132410

さて、上述した運転制御マップにおいて、全運転容量比率をGHPが占めるとき(図2では、空調負荷率が30%のとき)と全運転容量比率をEHPが占めるとき(図2では、空調負荷率が20%のとき)との間で、空調負荷率を変動する場合、運転制御部は、GHP及びEHPの何れか一方の起動処理を実行し、且つGHP及びEHPの何れか他方の停止処理を実行する。
ここで、EHP及びGHPは、起動処理を開始してから、所望の出力を発揮するまでに一定の時間を要するため、従来のハイブリッド式の空気調和装置にあっては、図5に示すように、GHPとEHPとの双方が停止する時間帯(図5で、T1で示す時間帯)が発生し、当該時間帯及びその時間帯から連続する一定期間(図5で、T2で示す時間帯)にあっては、室内熱交換器からの空調用空気の吹出温度が目標温度から乖離する(例えば、冷房運転時の場合には吹出温度が目標温度よりも高くなり、暖房運転時の場合には吹出温度が目標温度よりも低くなる)こととなり、使用者の使用感を損ねる虞があった。
更には、空調用空気の吹出温度の目標温度から乖離する場合、運転制御部は、その後の運転制御において、吹出温度が目標温度となるようGHP或いはEHPの空調出力を増加させるため、不要なエネルギを消費することとなり、省エネ性の観点から改善の余地があった。
By the way, in the above-mentioned operation control map, when GHP occupies the total operating capacity ratio (when the air conditioning load factor is 30% in FIG. 2) and when EHP occupies the total operating capacity ratio (in FIG. 2, the air conditioning load factor). When the air conditioning load factor fluctuates between (when is 20%), the operation control unit executes the start processing of either GHP or EHP, and stops the other of GHP and EHP. Execute.
Here, since it takes a certain time for EHP and GHP to exhibit a desired output after starting the start-up process, as shown in FIG. 5 in the conventional hybrid type air conditioner. , A time zone in which both GHP and EHP stop (time zone indicated by T1 in FIG. 5) occurs, and the time zone and a certain period continuous from that time zone (time zone indicated by T2 in FIG. 5) In this case, the temperature of the air-conditioning air blown out from the indoor heat exchanger deviates from the target temperature (for example, in the case of cooling operation, the blow-out temperature becomes higher than the target temperature, and in the case of heating operation. The blowing temperature will be lower than the target temperature), which may impair the usability of the user.
Furthermore, when the air-conditioning air blowout temperature deviates from the target temperature, the operation control unit increases the air-conditioning output of the GHP or EHP so that the blowout temperature becomes the target temperature in the subsequent operation control, so that unnecessary energy is not required. There was room for improvement from the viewpoint of energy saving.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、空調負荷率の変動によるGHP室外機ユニットとEHP室外機ユニットの切り換え時において、快適性が低下することを防止すると共に、省エネ性を高め得るハイブリッド空調システム、及びその制御方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to prevent a decrease in comfort when switching between a GHP outdoor unit unit and an EHP outdoor unit unit due to fluctuations in an air conditioning load factor. The purpose of the present invention is to provide a hybrid air conditioning system capable of enhancing energy saving and a control method thereof.

上記目的を達成するためのハイブリッド空調システムは、
冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムであって、その特徴構成は、
前記運転制御部は、前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始し、且つ、
前記運転制御部は、前記起動処理の開始時点から所定待機時間が経過した後に前記停止処理を開始するものであり、且つ、
前記EHP室外機ユニットの前記起動処理の開始時点から前記GHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのGHP待機時間を、前記GHP室外機ユニットの前記起動処理の開始時点から前記EHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのEHP待機時間よりも短く設定する点にある。
A hybrid air conditioning system to achieve the above objectives
A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
The GHP and operating capacity ratio between the outdoor unit and the EHP outdoor unit is based on the operation control map that is defined according to the air conditioning load factor, the operating capacity ratio of the GHP outdoor unit and the EHP outdoor unit It is a hybrid air-conditioning system equipped with an operation control unit that executes operation control, and its characteristic configuration is.
The operation control unit executes the activation processing of either the GHP outdoor unit unit or the EHP outdoor unit unit in accordance with the change in the operation capacity ratio, and the GHP outdoor unit unit and the EHP outdoor unit unit. When executing the stop process of any one of the above, the stop process is started after the start time of the start process , and the stop process is started.
The operation control unit starts the stop process after a predetermined waiting time has elapsed from the start time of the start process, and
The GHP standby time as the predetermined standby time from the start time of the start process of the EHP outdoor unit unit to the start time of the stop process of the GHP outdoor unit is set as the start time of the start process of the GHP outdoor unit. The point is that the EHP outdoor unit unit is set to be shorter than the EHP standby time as the predetermined standby time from the start time to the start time of the stop processing.

上記目的を達成するためのハイブリッド空調システムの制御方法は、
冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムの制御方法において、
前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始し、且つ、
前記起動処理の開始時点から所定待機時間が経過した後に前記停止処理を開始するものであり、且つ、
前記EHP室外機ユニットの前記起動処理の開始時点から前記GHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのGHP待機時間を、前記GHP室外機ユニットの前記起動処理の開始時点から前記EHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのEHP待機時間よりも短く設定する点にある。
The control method of the hybrid air conditioning system to achieve the above purpose is
A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
The operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is based on an operation control map in which the operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is defined according to the air conditioning load factor. In the control method of a hybrid air-conditioning system equipped with an operation control unit that executes operation control to control
Along with the change in the operating capacity ratio, one of the GHP outdoor unit unit and the EHP outdoor unit unit is started, and one of the GHP outdoor unit unit and the EHP outdoor unit unit is stopped. When executing the process, the stop process is started after the start time of the start process, and the stop process is started.
The stop process is started after a predetermined waiting time has elapsed from the start time of the start process, and the stop process is started.
The GHP standby time as the predetermined standby time from the start time of the start process of the EHP outdoor unit unit to the start time of the stop process of the GHP outdoor unit is set as the start time of the start process of the GHP outdoor unit. The point is that the EHP outdoor unit unit is set to be shorter than the EHP standby time as the predetermined standby time from the start time to the start time of the stop processing.

上記特徴構成によれば、GHPとEHPのハイブリッド式の空調システムにおいて、運転制御部が、運転容量比率の変更に伴って、GHP室外機ユニット及びEHP室外機ユニットの何れか一方の起動処理を実行し、且つGHP室外機ユニット及びEHP室外機ユニットの何れか他方の停止処理を実行する場合、起動処理の開始時点より後に停止処理を開始するから、少なくともGHP室外機ユニットとEHP室外機ユニットとの双方が停止状態(出力が零の状態)となる時間を短縮することができ(より好ましくは、双方が停止状態となる時間をなくすことができ)、室内熱交換器からの空調用空気の吹出温度の目標温度からの乖離を抑制でき、快適性が低下することを防止できる。
更に、空調用空気の吹出温度の目標温度からの乖離を抑制できるため、それに伴いGHP室外機ユニット又はEHP室外機ユニットの空調出力を従来技術の如く増加させる必要がなくなり、省エネ性を高めることができる。
更に、通常、EHP室外機ユニットの起動処理では、エンジン冷却水を圧送する冷却水ポンプの回転数の確認や、エンジン冷却水の温度の確認等に伴う処理が必要ないため、それらの実行に伴う時間分だけ、EHP室外機ユニットの起動時間が、GHP室外機ユニットの起動時間に比べ短くなる。
上記特徴構成によれば、EHP室外機ユニットの起動処理が開始した後にGHP室外機ユニットの停止処理を開始するまでの所定待機時間としてのGHP待機時間を、GHP室外機ユニットの起動処理が開始した後にEHP室外機ユニットの停止処理を開始するまでの所定待機時間としてのEHP待機時間よりも短く設定することで、GHP待機時間が不必要に長くなることを避けることができる。
即ち、上記特徴構成によれば、GHP待機時間とEHP待機時間との夫々を、GHP室外機ユニット及びEHP室外機ユニット夫々の実際の運転形態に合わせた状態で設定するから、GHP室外機ユニット及びEHP室外機ユニットの双方が停止状態となる時間が発生することを防止できると共に、不必要にGHP室外機ユニット及びEHP室外機ユニットの双方が起動状態となる時間が発生することが防止できる。結果、GHP室外機ユニットの起動処理が開始した後にEHP室外機ユニットの停止処理をする場合と、EHP室外機ユニットの起動処理が開始した後にGHP室外機ユニットの停止処理をする場合との何れの場合でも、室内熱交換器からの空調用空気の吹出温度と目標温度との乖離を低減できる。
以上より、空調負荷率の変動によるGHP室外機ユニットとEHP室外機ユニットの切り換え時において、快適性が低下することを防止すると共に、省エネ性を高め得るハイブリッド空調システム、及びその制御方法を実現できる。
According to the above feature configuration, in the GHP and EHP hybrid air-conditioning system, the operation control unit executes the activation process of either the GHP outdoor unit unit or the EHP outdoor unit unit according to the change in the operating capacity ratio. However, when the stop processing of either the GHP outdoor unit unit or the EHP outdoor unit unit is executed, the stop processing is started after the start time of the start processing, so that at least the GHP outdoor unit unit and the EHP outdoor unit unit are combined. It is possible to shorten the time when both are stopped (the output is zero) (more preferably, it is possible to eliminate the time when both are stopped), and the air for air conditioning is blown out from the indoor heat exchanger. It is possible to suppress the deviation of the temperature from the target temperature and prevent the comfort from being lowered.
Further, since the deviation of the air-conditioning air blowing temperature from the target temperature can be suppressed, it is not necessary to increase the air-conditioning output of the GHP outdoor unit or the EHP outdoor unit as in the prior art, and energy saving can be improved. it can.
Further, normally, in the start-up process of the EHP outdoor unit, it is not necessary to confirm the rotation speed of the cooling water pump that pumps the engine cooling water, the temperature of the engine cooling water, and the like. The startup time of the EHP outdoor unit is shorter than the startup time of the GHP outdoor unit by the amount of time.
According to the above feature configuration, the start processing of the GHP outdoor unit is started with the GHP standby time as a predetermined standby time from the start of the start processing of the EHP outdoor unit unit to the start of the stop processing of the GHP outdoor unit. By setting it shorter than the EHP standby time as a predetermined standby time until the stop processing of the EHP outdoor unit unit is started later, it is possible to avoid an unnecessarily long GHP standby time.
That is, according to the above-mentioned feature configuration, the GHP standby time and the EHP standby time are set in a state corresponding to the actual operation modes of the GHP outdoor unit and the EHP outdoor unit, respectively. Therefore, the GHP outdoor unit and the EHP outdoor unit and the EHP outdoor unit It is possible to prevent both the EHP outdoor unit units from being in the stopped state and to prevent both the GHP outdoor unit unit and the EHP outdoor unit unit from being in the activated state unnecessarily. As a result, either the case where the EHP outdoor unit unit is stopped after the GHP outdoor unit unit start processing is started or the case where the GHP outdoor unit unit is stopped after the EHP outdoor unit unit start processing is started. Even in this case, the deviation between the temperature at which the air conditioning air blown out from the indoor heat exchanger and the target temperature can be reduced.
From the above, it is possible to realize a hybrid air-conditioning system capable of preventing a decrease in comfort and improving energy saving when switching between the GHP outdoor unit unit and the EHP outdoor unit unit due to fluctuations in the air-conditioning load factor, and a control method thereof. ..

上記目的を達成するためのハイブリッド空調システムは、
冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムであって、その特徴構成は、
前記空調負荷率の過去の経時的な変動履歴を記憶する記憶部を備え、
前記運転制御部は、前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始するものであり、
前記記憶部に記憶される前記空調負荷率の前記変動履歴に基づいて、前記運転制御部が前記運転容量比率の変更に伴って前記起動処理を実行し且つ前記停止処理を実行するときの前記起動処理の開始予測時点を予測する起動処理開始時点予測部を備え、
前記起動処理は、前記GHP室外機ユニット又は前記EHP室外機ユニットの予備動作を実行する予備動作処理を最初に実行するものであり、
前記運転制御部は、前記起動処理開始時点予測部にて予測された前記起動処理の前記開始予測時点よりも前に、前記起動処理にて起動される前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の前記予備動作処理を少なくとも完了させる点にある。
A hybrid air conditioning system to achieve the above objectives
A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
The operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is based on an operation control map in which the operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is defined according to the air conditioning load factor. It is a hybrid air-conditioning system equipped with an operation control unit that executes operation control, and its characteristic configuration is.
A storage unit for storing the past time-dependent fluctuation history of the air conditioning load factor is provided.
The operation control unit executes the activation processing of either the GHP outdoor unit unit or the EHP outdoor unit unit in accordance with the change in the operation capacity ratio, and the GHP outdoor unit unit and the EHP outdoor unit unit. When any one of the other stop processes is executed, the stop process is started after the start time of the start process.
The start when the operation control unit executes the start process and executes the stop process in accordance with the change in the operation capacity ratio based on the fluctuation history of the air conditioning load factor stored in the storage unit. Equipped with a start-up processing start time prediction unit that predicts the start prediction time of processing
The start-up process first executes the preparatory operation process for executing the preparatory operation of the GHP outdoor unit or the EHP outdoor unit.
The operation control unit is the GHP outdoor unit and the EHP outdoor unit that are started by the start processing before the start prediction time of the start processing predicted by the start processing start time prediction unit. At least one of the preliminary operation processes is completed.

上記特徴構成によれば、GHPとEHPのハイブリッド式の空調システムにおいて、運転制御部が、運転容量比率の変更に伴って、GHP室外機ユニット及びEHP室外機ユニットの何れか一方の起動処理を実行し、且つGHP室外機ユニット及びEHP室外機ユニットの何れか他方の停止処理を実行する場合、起動処理の開始時点より後に停止処理を開始するから、少なくともGHP室外機ユニットとEHP室外機ユニットとの双方が停止状態(出力が零の状態)となる時間を短縮することができ(より好ましくは、双方が停止状態となる時間をなくすことができ)、室内熱交換器からの空調用空気の吹出温度の目標温度からの乖離を抑制でき、快適性が低下することを防止できる。
更に、空調用空気の吹出温度の目標温度からの乖離を抑制できるため、それに伴いGHP室外機ユニット又はEHP室外機ユニットの空調出力を従来技術の如く増加させる必要がなくなり、省エネ性を高めることができる。
以上より、空調負荷率の変動によるGHP室外機ユニットとEHP室外機ユニットの切り換え時において、快適性が低下することを防止すると共に、省エネ性を高め得るハイブリッド空調システム、及びその制御方法を実現できる。
更に、上記特徴構成によれば、起動処理開始時点予測部による起動処理の開始予測時点の予測が適切である場合、GHP室外機ユニット及びEHP室外機ユニットの何れか一方の起動処理が実行される前に、起動処理に伴う処理である予備動作処理が完了することになるから、GHP室外機ユニットとEHP室外機ユニットとの双方が停止状態(出力が零の状態)となる時間を従来に比べて短くでき、室内熱交換器からの空調用空気の吹出温度の目標温度からの乖離を抑制でき、快適性が低下することを防止できる。

According to the above feature configuration, in the GHP and EHP hybrid air-conditioning system, the operation control unit executes the activation process of either the GHP outdoor unit unit or the EHP outdoor unit unit according to the change in the operating capacity ratio. However, when the stop processing of either the GHP outdoor unit unit or the EHP outdoor unit unit is executed, the stop processing is started after the start time of the start processing, so that at least the GHP outdoor unit unit and the EHP outdoor unit unit are combined. It is possible to shorten the time when both are stopped (the output is zero) (more preferably, it is possible to eliminate the time when both are stopped), and the air for air conditioning is blown out from the indoor heat exchanger. It is possible to suppress the deviation of the temperature from the target temperature and prevent the comfort from being lowered.
Further, since the deviation of the air-conditioning air blowing temperature from the target temperature can be suppressed, it is not necessary to increase the air-conditioning output of the GHP outdoor unit or the EHP outdoor unit as in the prior art, and energy saving can be improved. it can.
From the above, it is possible to realize a hybrid air-conditioning system capable of preventing a decrease in comfort and improving energy saving when switching between the GHP outdoor unit unit and the EHP outdoor unit unit due to fluctuations in the air-conditioning load factor, and a control method thereof. ..
Further, according to the above-mentioned feature configuration, when the prediction of the start prediction time of the start processing by the start processing start time prediction unit is appropriate, the start processing of either the GHP outdoor unit unit or the EHP outdoor unit unit is executed. Before, since the preliminary operation process, which is the process associated with the start-up process, is completed, the time during which both the GHP outdoor unit unit and the EHP outdoor unit unit are in the stopped state (the output is zero) is compared with the conventional one. It can be shortened, and the deviation of the temperature of the air-conditioning air blown out from the indoor heat exchanger from the target temperature can be suppressed, and the deterioration of comfort can be prevented.

これまで説明してきたハイブリッド空調システムは、
前記運転制御部は、前記起動処理開始時点予測部にて予測された前記起動処理の前記開始予測時点よりも前に、前記起動処理にて起動される前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の前記起動処理を完了させることが好ましい。
The hybrid air conditioning system described so far is
The operation control unit is the GHP outdoor unit and the EHP outdoor unit that are started by the start processing before the start prediction time of the start processing predicted by the start processing start time prediction unit. It is preferable to complete the activation process of any one of the above.

当該制御を実行することにより、GHP室外機ユニット及びEHP室外機ユニットの双方が停止状態となるリスクを、より一層低減できる。 By executing the control, the risk that both the GHP outdoor unit unit and the EHP outdoor unit unit are stopped can be further reduced.

これまで説明してきたハイブリッド空調システムは、
前記運転制御部は、前記運転容量比率の変更に伴って前記起動処理を実行し且つ前記停止処理を実行する場合、前記GHP室外機ユニット及び前記EHP室外機ユニットの少なくとも何れか一方の運転容量が零より大きい状態が維持されるように、前記停止処理を開始することが好ましい。
The hybrid air conditioning system described so far is
When the operation control unit executes the start process and the stop process in accordance with the change in the operation capacity ratio, the operation capacity of at least one of the GHP outdoor unit and the EHP outdoor unit is increased. It is preferable to start the stop process so that the state above zero is maintained.

当該制御を実行することにより、GHP室外機ユニット及びEHP室外機ユニットの少なくとも一方は、常に運転状態にある(出力が零より大きい状態にある)から、空調用空気の吹出温度の目標温度からの乖離を、より一層低減できる。 By executing the control, at least one of the GHP outdoor unit and the EHP outdoor unit is always in the operating state (the output is larger than zero), so that the air-conditioning air blow-out temperature from the target temperature is reached. The divergence can be further reduced.

これまで説明してきたハイブリッド空調システムにおいては、
前記GHP室外機ユニットの前記起動処理は、少なくとも、
前記エンジンのエンジン冷却水を循環する冷却水ポンプの起動と、前記GHP室外熱交換器に設けられる室外機ファンの起動とを含む初期起動処理と、
前記冷却水ポンプの回転数の確認、前記エンジン冷却水の温度の確認、及び前記冷媒循環路を循環する冷媒の圧力の確認を含む確認処理と、
前記エンジンへ燃料を供給する燃料供給路を開閉する電磁弁を開動作して、前記エンジンを点火駆動する点火駆動処理とを含むものであり、
前記EHP待機時間は、少なくとも前記初期起動処理と前記確認処理と前記点火駆動処理とにかかる時間に基づいて決定されることが好ましい。
In the hybrid air conditioning system described so far,
The activation process of the GHP outdoor unit is at least
Initial startup processing including activation of the cooling water pump that circulates the engine cooling water of the engine and activation of the outdoor unit fan provided in the GHP outdoor heat exchanger.
Confirmation processing including confirmation of the rotation speed of the cooling water pump, confirmation of the temperature of the engine cooling water, and confirmation of the pressure of the refrigerant circulating in the refrigerant circulation path.
It includes an ignition drive process for igniting and driving the engine by opening an electromagnetic valve that opens and closes a fuel supply path for supplying fuel to the engine.
The EHP standby time is preferably determined based on at least the time required for the initial start-up process, the confirmation process, and the ignition drive process.

更に好ましくは、EHP待機時間は、初期動作処理と確認処理と点火駆動処理のすべてにかかる時間よりも長いことが好ましい。 More preferably, the EHP standby time is longer than the time required for all of the initial operation process, the confirmation process, and the ignition drive process.

これまで説明してきたハイブリッド空調システムにおいては、
前記起動処理にて前記GHP室外機ユニットが起動される場合、
前記予備動作処理は、少なくとも、
前記エンジンのエンジン冷却水を循環する冷却水ポンプの起動と、前記GHP室外熱交換器に設けられる室外機ファンの起動とを含む初期起動処理と、
前記冷却水ポンプの回転数の確認、前記エンジン冷却水の温度の確認、及び前記冷媒循環路を循環する冷媒の圧力の確認を含む確認処理とを含む処理であることが好ましい。
In the hybrid air conditioning system described so far,
When the GHP outdoor unit is activated by the activation process,
The preparatory operation process is at least
Initial startup processing including activation of the cooling water pump that circulates the engine cooling water of the engine and activation of the outdoor unit fan provided in the GHP outdoor heat exchanger.
The process preferably includes a confirmation process including confirmation of the rotation speed of the cooling water pump, confirmation of the temperature of the engine cooling water, and confirmation of the pressure of the refrigerant circulating in the refrigerant circulation path.

第1実施形態に係るハイブリッド空調システムの概略構成図である。It is a schematic block diagram of the hybrid air-conditioning system which concerns on 1st Embodiment. 運転制御マップの一例を示すものであり、空調負荷率毎のGHP室外機ユニットとEHP室外機ユニットとの運転容量比率を示すグラフ図である。An example of an operation control map is shown, and it is a graph which shows the operating capacity ratio of a GHP outdoor unit unit and an EHP outdoor unit unit for each air-conditioning load factor. 第1実施形態に係るGHP室外機ユニット及びEHP室外機ユニットの運転容量比率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the operating capacity ratio of the GHP outdoor unit unit and the EHP outdoor unit unit which concerns on 1st Embodiment. 第2実施形態に係るGHP室外機ユニット及びEHP室外機ユニットの運転容量比率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the operating capacity ratio of the GHP outdoor unit unit and the EHP outdoor unit unit which concerns on 2nd Embodiment. 従来技術に係るGHP室外機ユニット及びEHP室外機ユニットの運転容量比率の経時変化を示すグラフ図である。It is a graph which shows the time-dependent change of the operating capacity ratio of a GHP outdoor unit unit and an EHP outdoor unit unit which concerns on a prior art.

本発明の実施形態に係るハイブリッド空調システム100、及びその制御方法は、空調負荷率の変動によるGHP室外機ユニットとEHP室外機ユニットの切り換え時において、快適性が低下することを防止すると共に、省エネ性を高め得るものである。
以下、図面に基づいて説明する。
The hybrid air-conditioning system 100 and its control method according to the embodiment of the present invention prevent deterioration of comfort when switching between the GHP outdoor unit unit and the EHP outdoor unit unit due to fluctuations in the air-conditioning load factor, and save energy. It can enhance the sex.
Hereinafter, description will be given based on the drawings.

〔第1実施形態〕
第1実施形態に係るハイブリッド空調システム100は、図1に示すように、電気事業者Pから電力の供給を受ける空気調和装置20と、その運転を制御する運転制御部としての制御装置Sとを備えている。
[First Embodiment]
As shown in FIG. 1, the hybrid air-conditioning system 100 according to the first embodiment includes an air conditioner 20 that receives electric power from the electric power company P and a control device S as an operation control unit that controls the operation thereof. I have.

空気調和装置20は、図示しない施設の内部を空調するものであり、基本的な構成として、冷媒が循環する冷媒循環路Cと、GHP室外機ユニット30と、EHP室外機ユニット40と、室内機ユニット60a、60bとを備えて構成されている。
GHP室外機ユニット30は、冷媒循環路Cに設けられエンジンEを駆動源として冷媒を圧縮するエンジン駆動式圧縮機35と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器36とを有し、GHP制御部31にてその運転が制御される。
尚、図示は省略するが、エンジンEは、燃料ガスを供給する燃料供給路を開閉する電磁弁と、冷却水循環路と、当該冷却水循環路にエンジン冷却水を循環する冷却水ポンプと、冷却水循環路を循環するエンジン冷却水の温度(例えば、エンジンジャケット出口の温度)を計測する温度計とを備えて構成されており、GHP室外機ユニット30内の冷媒循環路Cには、循環する冷媒の圧力(例えば、エンジン駆動式圧縮機35の出口の圧力)を計測する圧力計が備えられている。
The air conditioner 20 air-conditions the inside of a facility (not shown), and has a basic configuration of a refrigerant circulation path C in which a refrigerant circulates, a GHP outdoor unit unit 30, an EHP outdoor unit 40, and an indoor unit. It is configured to include units 60a and 60b.
The GHP outdoor unit 30 is an engine-driven compressor 35 provided in the refrigerant circulation path C and compressing the refrigerant using the engine E as a drive source, and a GHP outdoor heat exchanger 36 that exchanges heat between the refrigerant and the air outside the facility. The operation is controlled by the GHP control unit 31.
Although not shown, the engine E includes an electromagnetic valve that opens and closes a fuel supply path for supplying fuel gas, a cooling water circulation path, a cooling water pump that circulates engine cooling water in the cooling water circulation path, and cooling water circulation. It is equipped with a compressor that measures the temperature of the engine cooling water that circulates in the path (for example, the temperature at the outlet of the engine jacket), and the refrigerant circulation path C in the GHP outdoor unit unit 30 contains the circulating refrigerant. A pressure gauge for measuring the pressure (for example, the pressure at the outlet of the engine-driven compressor 35) is provided.

EHP室外機ユニット40は、冷媒循環路Cに設けられ、モータM(電動機の一例)を駆動源として冷媒を圧縮する電気駆動式圧縮機45と、冷媒を施設の外の空気とを熱交換させるEHP室外熱交換器46とを有し、EHP制御部41にてその運転が制御される。
尚、図示は省略するが、EHP室外機ユニット40内の冷媒循環路Cには、循環する冷媒の電気駆動式圧縮機45の出口の圧力を計測する圧力計が備えられている。
The EHP outdoor unit 40 is provided in the refrigerant circulation path C and exchanges heat between the electrically driven compressor 45, which compresses the refrigerant using the motor M (an example of a motor) as a drive source, and the air outside the facility. It has an EHP outdoor heat exchanger 46, and its operation is controlled by the EHP control unit 41.
Although not shown, the refrigerant circulation path C in the EHP outdoor unit unit 40 is provided with a pressure gauge for measuring the pressure at the outlet of the electrically driven compressor 45 of the circulating refrigerant.

室内機ユニット60aは、冷媒循環路Cに設けられ、冷媒を減圧する膨張弁21と、冷媒と施設の室内の空気とを熱交換させる室内熱交換器22とを有する。
同様に、室内機ユニット60bは、冷媒循環路Cに設けられ、冷媒を減圧する膨張弁23と、冷媒と施設の室内の空気とを熱交換させる室内熱交換器24とを有する。
The indoor unit 60a is provided in the refrigerant circulation path C and has an expansion valve 21 for reducing the pressure of the refrigerant and an indoor heat exchanger 22 for heat exchange between the refrigerant and the air in the facility.
Similarly, the indoor unit unit 60b is provided in the refrigerant circulation path C and has an expansion valve 23 for reducing the pressure of the refrigerant and an indoor heat exchanger 24 for heat exchange between the refrigerant and the air in the facility room.

冷媒循環路Cは、GHP室外機ユニット30及びEHP室外機ユニット40の夫々から送出された冷媒を合流した後、複数の室内機ユニット60a、60bに対して並列に冷媒を通流させ、複数の室内機ユニット60a、60bを通流後の冷媒を合流した後、GHP室外機ユニット30及びEHP室外機ユニット40の夫々に対して、並列に冷媒を返送可能に配設されている。 The refrigerant circulation path C merges the refrigerants sent from the GHP outdoor unit 30 and the EHP outdoor unit 40, and then allows the refrigerant to flow in parallel to the plurality of indoor unit units 60a and 60b, thereby causing a plurality of refrigerants. After the refrigerants after passing through the indoor unit units 60a and 60b are merged, the refrigerants are arranged so as to be able to be returned in parallel to each of the GHP outdoor unit unit 30 and the EHP outdoor unit unit 40.

空気調和装置20は、GHP室外機ユニット30での冷媒の循環方向を切り替える第1四方弁34(弁体の一例)が設けられ、EHP室外機ユニット40での冷媒の循環方向を切り替える第2四方弁44(弁体の一例)が設けられ、これらの第1四方弁34と第2四方弁44を対応して切り換え制御して、冷媒の循環状態を切り換え、暖房運転と冷房運転とを切り換え可能に構成されている。 The air conditioner 20 is provided with a first four-way valve 34 (an example of a valve body) for switching the refrigerant circulation direction in the GHP outdoor unit unit 30, and a second four-way valve for switching the refrigerant circulation direction in the EHP outdoor unit 40. A valve 44 (an example of a valve body) is provided, and the first four-way valve 34 and the second four-way valve 44 can be switched and controlled correspondingly to switch the refrigerant circulation state and switch between heating operation and cooling operation. It is configured in.

電気事業者Pから供給される電力は、電力線Dにより、施設の各電力負荷へ供給されるように構成されている。施設が電気事業者Pから電力線Dを介して受電する実際の受電電力は、受電電力測定部10を用いて測定される。また、施設によって消費される電力(電力デマンド)は電力デマンド測定部11により測定される。 The electric power supplied from the electric power company P is configured to be supplied to each electric power load of the facility by the electric power line D. The actual received power received by the facility from the electric power company P via the power line D is measured by using the received power measuring unit 10. Further, the electric power (electric power demand) consumed by the facility is measured by the electric power demand measuring unit 11.

空気調和装置20は、施設の電力デマンドが、単位時間(例えば、30分)あたりでの契約電力を超えないように、GHP室外機ユニット30及びEHP室外機ユニット40とが制御装置Sにてデマンド制御される。尚、契約電力は、例えば、昨年の所定時間における電力使用量のうち最大の値が設定され、契約電力が高いほど、電気事業者Pに支払う基本料金が高く設定されるものである。更に、施設の管理者(施設の電気料金を電気事業者へ支払う者)は、所定時間において施設の電力デマンドが契約電力を超えた場合、ペナルティとして違約金を支払う契約を、電気事業者Pとの間で交わしている。 In the air conditioner 20, the GHP outdoor unit 30 and the EHP outdoor unit 40 are demanded by the control device S so that the power demand of the facility does not exceed the contracted power per unit time (for example, 30 minutes). Be controlled. For the contracted power, for example, the maximum value of the amount of power used in the predetermined time last year is set, and the higher the contracted power, the higher the basic charge paid to the electric power company P is set. Furthermore, the facility manager (the person who pays the facility's electricity charges to the electricity company) makes a contract with the electricity company P to pay a penalty as a penalty if the facility's electricity demand exceeds the contracted electricity in a predetermined time. We are exchanging between.

制御装置Sは、記憶部(図示せず)において、デマンドレベル(契約電力よりも低い複数のレベル)毎に記憶され、且つ運転容量比率が空調負荷率に応じて規定される運転制御マップ(図2に例示するマップ)に従って、GHP室外機ユニット30とEHP室外機ユニット40との運転容量比率を制御する。
当該運転制御マップは、例えば、図2に示すように、低負荷率においては、省エネ性が高いEHP室外機ユニット40の運転容量比率を高くする(図2で、空調負荷率が20%以下の低負荷率においては、100%EHPで負荷を賄っている)と共に、負荷率が高くなるに従って、節電性や総合効率の高いGHP室外機ユニット30の運転容量比率を高くする設定となっている。
以下、図2に示す運転制御マップを例として、説明する。
The control device S is stored in a storage unit (not shown) for each demand level (a plurality of levels lower than the contract power), and the operating capacity ratio is defined according to the air conditioning load factor (FIG.). The operating capacity ratio between the GHP outdoor unit 30 and the EHP outdoor unit 40 is controlled according to the map illustrated in 2).
In the operation control map, for example, as shown in FIG. 2, at a low load factor, the operating capacity ratio of the EHP outdoor unit 40 having high energy saving is increased (in FIG. 2, the air conditioning load factor is 20% or less). In the low load factor, the load is covered by 100% EHP), and as the load factor increases, the operating capacity ratio of the GHP outdoor unit unit 30 having high power saving and overall efficiency is set to increase.
Hereinafter, the operation control map shown in FIG. 2 will be described as an example.

さて、上述した運転制御マップにおいて、全運転容量比率をGHP室外機ユニット30が占めるとき(図2では、空調負荷率が30%のとき)と、全運転容量比率をEHP室外機ユニット40が占めるとき(図2では、空調負荷率が20%のとき)との間で、空調負荷率が変動する場合、制御装置Sは、GHP室外機ユニット30及びEHP室外機ユニット40の何れか一方の起動処理を実行し、且つGHP室外機ユニット30及びEHP室外機ユニット40の何れか他方の停止処理を実行する。
ここで、GHP室外機ユニット30及びEHP室外機ユニット40は、起動処理を開始してから、所望の出力を発揮するまでに一定の時間を要するため、GHP室外機ユニット30及びEHP室外機ユニット40の双方が停止する時間帯が比較的長くなる虞があり、当該時間帯にあっては、室内熱交換器22、24からの空調用空気の吹出温度が目標温度から乖離する。
By the way, in the above-mentioned operation control map, when the GHP outdoor unit 30 occupies the total operating capacity ratio (in FIG. 2, when the air conditioning load factor is 30%), the EHP outdoor unit 40 occupies the total operating capacity ratio. When the air-conditioning load factor fluctuates between when (in FIG. 2, when the air-conditioning load factor is 20%), the control device S activates either the GHP outdoor unit 30 or the EHP outdoor unit 40. The process is executed, and the stop process of any one of the GHP outdoor unit unit 30 and the EHP outdoor unit unit 40 is executed.
Here, since the GHP outdoor unit unit 30 and the EHP outdoor unit 40 require a certain amount of time from the start of the start-up process until the desired output is exhibited, the GHP outdoor unit 30 and the EHP outdoor unit 40 There is a possibility that the time zone in which both of the above are stopped will be relatively long, and in this time zone, the temperature at which the air conditioning air is blown out from the indoor heat exchangers 22 and 24 deviates from the target temperature.

そこで、当該実施形態に係るハイブリッド空調システム100にあっては、制御装置Sは、運転容量比率(空調負荷率)の変更に伴って、GHP室外機ユニット30及びEHP室外機ユニット40の何れか一方の起動処理を実行し、且つGHP室外機ユニット30及びEHP室外機ユニット40の何れか他方の停止処理を実行する場合、起動処理の開始時点より後に停止処理を開始する。
例えば、制御装置Sが、図2に示す運転制御マップに従って、図3に示すように、空調負荷率が20%から30%へ変更され、更にその後、空調負荷率が30%から20%へ変更される場合を考える。
このとき、制御装置Sは、図3に示すように、空調負荷率の20%から30%への変更に伴って、GHP室外機ユニット30の起動処理及びEHP室外機ユニット40の停止処理を実行する場合、GHP室外機ユニット30の起動処理の開始時点(図3でtで示す時点)より後に、EHP室外機ユニット40の停止処理を開始(図3でtで示す時点に開始)する。
更に、その後、制御装置Sは、空調負荷率の30%から20%への変更に伴って、EHP室外機ユニット40の起動処理及びGHP室外機ユニット30の停止処理を実行する場合、EHP室外機ユニット40の起動処理の開始時点(図3でtで示す時点)より後に、GHP室外機ユニット30の停止処理を開始(図3でtで示す時点に開始)する。
Therefore, in the hybrid air conditioning system 100 according to the embodiment, the control device S is one of the GHP outdoor unit unit 30 and the EHP outdoor unit 40 as the operating capacity ratio (air conditioning load factor) is changed. When the start process of the above is executed and the stop process of any one of the GHP outdoor unit 30 and the EHP outdoor unit 40 is executed, the stop process is started after the start time of the start process.
For example, in the control device S, the air conditioning load factor is changed from 20% to 30%, and then the air conditioning load factor is changed from 30% to 20%, as shown in FIG. 3, according to the operation control map shown in FIG. Consider the case where it is done.
At this time, as shown in FIG. 3, the control device S executes the start processing of the GHP outdoor unit 30 and the stop processing of the EHP outdoor unit 40 in accordance with the change of the air conditioning load factor from 20% to 30%. to case, after the start of the startup process of GHP outdoor unit 30 (time point indicated by in Fig. 3 t a), starts the stop processing of the EHP outdoor unit 40 (starting at the time indicated by in FIG. 3 t b) to ..
Further, after that, when the control device S executes the start processing of the EHP outdoor unit 40 and the stop processing of the GHP outdoor unit 30 in accordance with the change of the air conditioning load factor from 30% to 20%, the EHP outdoor unit After the start processing of the unit 40 (the time indicated by t c in FIG. 3), the stop processing of the GHP outdoor unit unit 30 is started (started at the time indicated by t d in FIG. 3).

これにより、制御装置Sは、運転容量比率(空調負荷率)の変更に伴って起動処理を実行し且つ停止処理を実行する場合、GHP室外機ユニット30及びEHP室外機ユニット40の少なくとも何れか一方の運転容量が零より大きい状態が維持されるように、停止処理を開始することになる。制御装置Sは、当該制御を実行することで、空調用空気の吹出温度が目標温度(図3では、約22〜23℃)から乖離することを抑制できる。 As a result, when the control device S executes the start processing and the stop processing in accordance with the change in the operating capacity ratio (air conditioning load factor), at least one of the GHP outdoor unit unit 30 and the EHP outdoor unit 40 The stop processing will be started so that the operating capacity of is maintained above zero. By executing the control, the control device S can prevent the air-conditioning air blowing temperature from deviating from the target temperature (about 22 to 23 ° C. in FIG. 3).

制御装置Sは、起動処理の開始時点から所定待機時間が経過した後に停止処理を開始するものである。
そこで、GHP室外機ユニット30の起動処理の開始時点(図3でtで示す時点)からEHP室外機ユニット40の停止処理の開始時点(図3でtで示す時点)までの間のEHP待機時間(所定待機時間の一例:図3でT3)、及びEHP室外機ユニット40の起動処理の開始時点(図3でtで示す時点)からGHP室外機ユニット30の停止処理の開始時点(図3でtで示す時点)までの間のGHP待機時間(所定待機時間の一例:図3でT4)につき、説明を追加する。
GHP室外機ユニット30の起動処理は、エンジンEのエンジン冷却水を循環する冷却水ポンプ(図示せず)の起動、GHP室外熱交換器36に設けられる室外機ファンの起動、及びGHP室外機ユニットに設けられる第1四方弁34(弁体の一例)の位置だしを含む初期起動処理と、冷却水ポンプの回転数の確認、冷却水循環路でエンジンEのジャケットの出口の温度計にて計測されるエンジン冷却水の温度の確認、及び冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認とを含む確認処理と、エンジンEへ燃料ガスを供給する燃料供給路(図示せず)を開閉する電磁弁(図示せず)を開動作して、エンジンEを点火駆動する点火駆動処理とを含むものである。
そこで、EHP待機時間(所定待機時間の一例:図3でT3)は、少なくとも初期起動処理と確認処理と点火駆動処理とにかかる時間に基づいて決定され、制御装置Sは、図示しない記憶部に予め記憶するEHP待機時間に基づいて、起動処理及び停止処理を実行する。
尚、EHP待機時間は、GHP室外機ユニット30の出力が発揮された時点(出力が零を超えた時点)以降に、EHP室外機ユニット40の停止処理を開始する観点からは、初期起動処理と確認処理と点火駆動処理とにかかる時間よりも長く設定されることが好ましい。
The control device S starts the stop processing after a predetermined waiting time has elapsed from the start time of the start processing.
Therefore, EHP between the start of the startup process of GHP outdoor unit 30 (time point indicated by in Fig. 3 t a) and the commencement of the process of stopping the EHP outdoor unit 40 (time point indicated by in Fig. 3 t b) From the standby time (an example of the predetermined standby time: T3 in FIG. 3) and the start time of the start processing of the EHP outdoor unit 40 (the time indicated by tc in FIG. 3) to the start time of the stop processing of the GHP outdoor unit 30 (Tc). An explanation will be added for the GHP waiting time (an example of the predetermined waiting time: T4 in FIG. 3) up to the time point indicated by t d in FIG.
The GHP outdoor unit 30 is started by starting a cooling water pump (not shown) that circulates engine cooling water of engine E, starting an outdoor unit fan provided in the GHP outdoor heat exchanger 36, and starting the GHP outdoor unit. The initial start-up process including the positioning of the first four-way valve 34 (an example of the valve body) provided in the engine, the confirmation of the rotation speed of the cooling water pump, and the measurement with the thermometer at the outlet of the engine E jacket in the cooling water circulation path. Confirmation processing including confirmation of the temperature of the engine cooling water and confirmation of the refrigerant pressure measured by the pressure gauge at the outlet of the engine-driven compressor 35 in the refrigerant circulation path C, and supply of fuel gas to the engine E. It includes an ignition drive process for igniting and driving the engine E by opening an electromagnetic valve (not shown) that opens and closes a fuel supply path (not shown).
Therefore, the EHP standby time (an example of the predetermined standby time: T3 in FIG. 3) is determined based on at least the time required for the initial start-up process, the confirmation process, and the ignition drive process, and the control device S is stored in a storage unit (not shown). The start processing and the stop processing are executed based on the EHP standby time stored in advance.
The EHP standby time is defined as the initial start processing from the viewpoint of starting the stop processing of the EHP outdoor unit 40 after the time when the output of the GHP outdoor unit unit 30 is exhibited (the time when the output exceeds zero). It is preferable that the time required for the confirmation process and the ignition drive process is set longer.

一方、EHP室外機ユニット40の起動処理は、EHP室外機ユニット40に設けられる第2四方弁44(弁体の一例)の位置だしを含む初期起動処理と、冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認を含む確認処理と、モータMの駆動を開始する駆動開始処理とを含むものである。
そこで、GHP待機時間(所定待機時間の一例:図3でT4)は、少なくとも初期起動処理と確認処理と駆動開始処理とにかかる時間に基づいて決定され、制御装置Sは、図示しない記憶部に予め記憶するGHP待機時間に基づいて、起動処理及び停止処理を実行する。
尚、GHP待機時間は、EHP室外機ユニット40の出力が発揮された時点(出力が零を超えた時点)以降に、GHP室外機ユニット30の停止処理を開始する観点からは、初期起動処理と確認処理と駆動開始処理とにかかる時間よりも長く設定されることが好ましい。
On the other hand, the start-up process of the EHP outdoor unit 40 includes the initial start-up process including the positioning of the second four-way valve 44 (an example of the valve body) provided in the EHP outdoor unit 40, and the engine-driven compression in the refrigerant circulation path C. It includes a confirmation process including confirmation of the refrigerant pressure measured by the pressure gauge at the outlet of the machine 35, and a drive start process for starting the drive of the motor M.
Therefore, the GHP standby time (an example of a predetermined standby time: T4 in FIG. 3) is determined based on at least the time required for the initial start processing, the confirmation processing, and the drive start processing, and the control device S is stored in a storage unit (not shown). The start processing and the stop processing are executed based on the GHP standby time stored in advance.
The GHP standby time is defined as the initial start process from the viewpoint of starting the stop process of the GHP outdoor unit 30 after the time when the output of the EHP outdoor unit unit 40 is exhibited (when the output exceeds zero). It is preferable that the time is set longer than the time required for the confirmation process and the drive start process.

ここで、EHP室外機ユニット40の起動処理は、GHP室外機ユニット30の起動処理に比べ、エンジン冷却水に関連する処理(即ち、エンジンEのエンジン冷却水を循環する冷却水ポンプの起動、冷却水ポンプの回転数の確認、及び冷却水循環路でエンジンEのジャケットの出口の温度計にて計測されるエンジン冷却水の温度の確認等)がない分だけ短くすることができる。
そこで、当該実施形態に係る記憶部は、GHP待機時間(図3でT4)をEHP待機時間(図3でT3)よりも短く設定する形態で、GHP待機時間及びEHP待機時間の双方を記憶している。
より好ましくは、記憶部は、GHP待機時間をEHP待機時間よりも、上記エンジン冷却水に関連する処理にかかる時間以上短く設定する形態で、GHP待機時間及びEHP待機時間の双方を記憶している。
Here, the start-up process of the EHP outdoor unit 40 is a process related to engine cooling water (that is, start-up and cooling of the cooling water pump that circulates the engine cooling water of the engine E) as compared with the start-up process of the GHP outdoor unit 30. It can be shortened by the amount that there is no confirmation of the rotation speed of the water pump and confirmation of the temperature of the engine cooling water measured by the thermometer at the outlet of the jacket of the engine E in the cooling water circulation path.
Therefore, the storage unit according to the embodiment stores both the GHP standby time and the EHP standby time in a form in which the GHP standby time (T4 in FIG. 3) is set shorter than the EHP standby time (T3 in FIG. 3). ing.
More preferably, the storage unit stores both the GHP standby time and the EHP standby time in a form in which the GHP standby time is set shorter than the EHP standby time by the time required for the processing related to the engine cooling water or more. ..

〔第2実施形態〕
上記第1実施形態にあっては、制御装置Sが、運転制御マップに基づいてGHP室外機ユニット30及びEHP室外機ユニット40の運転容量比率の変更に伴って、GHP室外機ユニット30及びEHP室外機ユニット40の何れか一方の起動処理と、GHP室外機ユニット30及びEHP室外機ユニット40の何れか他方の停止処理とを実行する場合に、起動処理の開始時点より後に停止処理を開始する例を示した。
当該第2実施形態にあっては、制御装置Sは、空調負荷率の過去の経時的な変動履歴に基づいて、起動処理及び停止処理を実行するものである。更に、当該第2実施形態にあっては、起動処理は、GHP室外機ユニット30又はEHP室外機ユニット40の予備動作を実行する予備動作処理を最初に実行するものである。
尚、当該第2実施形態に係るハイブリッド空調システム100は、基本的な構成については、上述した第1実施形態に係るハイブリッド空調システム100と同一であるので、以下では、同一の構成については説明を割愛し、第1実施形態と異なる構成についてのみ説明する。
[Second Embodiment]
In the first embodiment, the control device S changes the operating capacity ratios of the GHP outdoor unit 30 and the EHP outdoor unit 40 based on the operation control map, and the GHP outdoor unit 30 and the EHP outdoor unit 30 are changed. An example in which the stop processing is started after the start time of the start processing when the start processing of any one of the machine units 40 and the stop processing of any one of the GHP outdoor unit 30 and the EHP outdoor unit 40 are executed. showed that.
In the second embodiment, the control device S executes the start processing and the stop processing based on the past time-dependent fluctuation history of the air conditioning load factor. Further, in the second embodiment, the start-up process first executes the preliminary operation process for executing the preliminary operation of the GHP outdoor unit 30 or the EHP outdoor unit 40.
The hybrid air-conditioning system 100 according to the second embodiment has the same basic configuration as the hybrid air-conditioning system 100 according to the first embodiment described above. Therefore, the same configuration will be described below. Omitted, only the configuration different from the first embodiment will be described.

第2実施形態に係るハイブリッド空調システム100の制御装置Sは、空調負荷率の過去の経時的な変動履歴を記憶する記憶部(図示せず)と、当該記憶部に記憶される空調負荷率の変動履歴に基づいて、運転制御部が運転容量比率(空調負荷率)の変更に伴って起動処理を実行し且つ停止処理を実行するときの起動処理の開始予測時点(図4でt)を予測する起動処理開始時点予測部(図示せず)と、起動処理開始時点予測部にて予測された起動処理の開始予測時点よりも前(図4でtで示す時点)に、起動処理にて起動されるGHP室外機ユニット30又はEHP室外機ユニット40の予備動作処理を少なくとも完了させる運転制御部(図示せず)とを備えている。 The control device S of the hybrid air conditioner system 100 according to the second embodiment has a storage unit (not shown) that stores a history of past fluctuations in the air conditioner load factor, and an air conditioner load factor stored in the storage unit. based on the change history, the operation control unit operating capacity ratio estimated starting time of the startup processing when performing the executed and stop processing the activation process following a change in the (air conditioning load factor) (Fig. 4 at t e) The start processing is performed before the start processing start time prediction unit (not shown) and the start processing start prediction time predicted by the start processing start time prediction unit (the time indicated by tg in FIG. 4). It is provided with an operation control unit (not shown) that at least completes the preparatory operation processing of the GHP outdoor unit unit 30 or the EHP outdoor unit 40 that is activated.

例えば、ハイブリッド空調システム100が備えられる比較的大型のビル等の施設にあっては、所定期間(例えば、一日)を単位として、空調負荷率が経時的に同様の変動をする傾向がある。
そこで、記憶部は、所定期間を単位として、空調負荷率の過去の経時的な変動履歴を記憶し、起動処理開始時点予測部は、当該記憶部に記憶される空調負荷率の過去の経時的な変動履歴に基づいて、運転制御部が運転容量比率の変更に伴って起動処理を実行し且つ停止処理を実行するときの起動処理の開始予測時点を予測する。
ここで、起動処理開始時点予測部は、例えば、複数の所定期間に亘る空調負荷率の過去の経時的な変動履歴から起動処理の開始予測時点を予測しても構わない。
具体的には、起動処理開始時点予測部は、カレンダーに照らし合わせて曜日を判別し、休日の空調負荷率の推移、平日の空調負荷率の推移を、空調負荷率の過去の経時的な変動履歴として、当日の空調負荷率の推移を予測し、それに基づいて、起動処理の開始予測時点を予測しても構わない。
また、起動処理開始時点予測部は、昨年の同時期の空調負荷率の推移を、空調負荷率の過去の経時的な変動履歴として、当日の空調負荷率の推移を予測し、それに基づいて、起動処理の開始予測時点を予測しても構わない。
更に、起動処理開始時点予測部は、外気温度の変動に基づいて、当日の空調負荷率の予測値を補正する制御を採用しても構わない。
For example, in a facility such as a relatively large building provided with the hybrid air conditioning system 100, the air conditioning load factor tends to fluctuate with time in units of a predetermined period (for example, one day).
Therefore, the storage unit stores the past time-dependent fluctuation history of the air-conditioning load factor in units of predetermined periods, and the start-up processing start time prediction unit stores the air-conditioning load factor stored in the storage unit over time. Based on the fluctuation history, the operation control unit predicts the start prediction time point of the start processing when the start processing is executed and the stop processing is executed according to the change of the operation capacity ratio.
Here, the start processing start time prediction unit may, for example, predict the start processing start prediction time from the past time-dependent fluctuation history of the air conditioning load factor over a plurality of predetermined periods.
Specifically, the start-up processing start time prediction unit determines the day of the week by comparing it with the calendar, and changes the air-conditioning load factor on holidays and the air-conditioning load factor on weekdays, and changes the air-conditioning load factor over time in the past. As a history, the transition of the air conditioning load factor on the day of the week may be predicted, and the start prediction time of the start processing may be predicted based on the prediction.
In addition, the start-up processing start time prediction unit predicts the transition of the air-conditioning load factor on the day as the past time-dependent fluctuation history of the air-conditioning load factor of the same period last year, and based on that, You may predict the start prediction time of the start processing.
Further, the start-up processing start time prediction unit may adopt a control that corrects the predicted value of the air conditioning load factor on the day based on the fluctuation of the outside air temperature.

運転制御部は、起動処理開始時点予測部にて予測された起動処理の開始予測時点よりも前に、起動処理にて起動されるGHP室外機ユニット30又はEHP室外機ユニット40の予備動作処理を少なくとも完了させる。
より好ましくは、運転制御部は、起動処理開始時点予測部にて予測された起動処理の開始予測時点よりも前に、起動処理にて起動されるGHP室外機ユニット30又はEHP室外機ユニット40の起動処理を完了させる。
The operation control unit performs the preliminary operation processing of the GHP outdoor unit unit 30 or the EHP outdoor unit 40 that is started by the start processing before the start prediction start time predicted by the start processing start time prediction unit. At least complete.
More preferably, the operation control unit is the GHP outdoor unit unit 30 or the EHP outdoor unit 40 that is started by the start processing before the start processing start prediction time predicted by the start processing start time prediction unit. Complete the startup process.

GHP室外機ユニット30の起動処理は、エンジンEのエンジン冷却水を循環する冷却水ポンプ(図示せず)の起動、GHP室外熱交換器36に設けられる室外機ファンの起動、及びGHP室外機ユニットに設けられる第1四方弁34(弁体の一例)の位置だしを含む初期起動処理と、冷却水ポンプの回転数の確認、冷却水循環路でエンジンEのジャケットの出口の温度計にて計測されるエンジン冷却水の温度の確認、及び冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認とを含む確認処理と、エンジンEへ燃料ガスを供給する燃料供給路(図示せず)を開閉する電磁弁(図示せず)を開動作して、エンジンEを点火駆動する点火駆動処理とを含むものである。
GHP室外機ユニット30の起動処理を実行する場合、上述した予備動作処理は、少なくとも、初期起動処理を含むものである。尚、初期起動処理に加えて確認処理も含むものとしても構わない。
The GHP outdoor unit 30 is started by starting a cooling water pump (not shown) that circulates engine cooling water of engine E, starting an outdoor unit fan provided in the GHP outdoor heat exchanger 36, and starting the GHP outdoor unit. The initial start-up process including the positioning of the first four-way valve 34 (an example of the valve body) provided in the engine, the confirmation of the rotation speed of the cooling water pump, and the measurement with the thermometer at the outlet of the engine E jacket in the cooling water circulation path. Confirmation processing including confirmation of the temperature of the engine cooling water and confirmation of the refrigerant pressure measured by the pressure gauge at the outlet of the engine-driven compressor 35 in the refrigerant circulation path C, and supply of fuel gas to the engine E. It includes an ignition drive process for igniting and driving the engine E by opening an electromagnetic valve (not shown) that opens and closes a fuel supply path (not shown).
When executing the start-up process of the GHP outdoor unit 30, the above-mentioned preliminary operation process includes at least the initial start-up process. It should be noted that the confirmation process may be included in addition to the initial start-up process.

一方、EHP室外機ユニット40の起動処理は、EHP室外機ユニットに設けられる第2四方弁44(弁体の一例)の位置だしを含む初期起動処理と、冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認を含む確認処理と、モータMを駆動する駆動処理とを含むものである。
EHP室外機ユニット40の起動処理を実行する場合、上述した予備動作処理は、少なくとも、初期起動処理を含むものである。尚、初期起動処理に加えて確認処理も含むものとしても構わない。
On the other hand, the start-up process of the EHP outdoor unit 40 includes the initial start-up process including the positioning of the second four-way valve 44 (an example of the valve body) provided in the EHP outdoor unit, and the engine-driven compressor in the refrigerant circulation path C. It includes a confirmation process including confirmation of the refrigerant pressure measured by the pressure gauge at the outlet of 35, and a drive process for driving the motor M.
When executing the start-up process of the EHP outdoor unit 40, the above-mentioned preliminary operation process includes at least the initial start-up process. It should be noted that the confirmation process may be included in addition to the initial start-up process.

以上の制御により、運転制御部が、運転容量比率の変更に伴って、GHP室外機ユニット30及びEHP室外機ユニット40の何れか一方の起動処理の開始時点(図4でtで示す時点よりも前の時点)よりも、GHP室外機ユニット30及びEHP室外機ユニット40の何れか他方の停止処理の開始時点(図4でtで示す時点)が早くなる虞を低減できる。 With the above control, the operation control unit starts the start processing of either the GHP outdoor unit 30 or the EHP outdoor unit 40 with the change of the operation capacity ratio (from the time indicated by t g in FIG. 4). even than before the time of), it can reduce the possibility that the start point of the other one of the stopping process of GHP outdoor unit 30 and EHP outdoor unit 40 (time point indicated by in FIG. 4 t f) is advanced.

〔別実施形態〕
(1)上記実施形態にあっては、GHP室外機ユニット30の起動処理は、エンジンEのエンジン冷却水を循環する冷却水ポンプ(図示せず)の起動、GHP室外熱交換器36に設けられる室外機ファンの起動、及びGHP室外機ユニットに設けられる第1四方弁34(弁体の一例)の位置だしを含む初期起動処理と、冷却水ポンプの回転数の確認、冷却水循環路でエンジンEのジャケットの出口の温度計にて計測されるエンジン冷却水の温度の確認、及び冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認とを含む確認処理と、エンジンEへ燃料ガスを供給する燃料供給路(図示せず)を開閉する電磁弁(図示せず)を開動作して、エンジンEを点火駆動する点火駆動処理とを含むものである例を示した。
しかしながら、暖房運転又は冷房運転が維持される場合で、第2四方弁44の位置だしを行う必要がない場合、初期起動処理において、第2四方弁44の位置だしを省略しても構わない。
[Another Embodiment]
(1) In the above embodiment, the activation process of the GHP outdoor unit unit 30 is provided in the GHP outdoor heat exchanger 36, the activation of the cooling water pump (not shown) that circulates the engine cooling water of the engine E. Initial start processing including starting the outdoor unit fan and positioning the first four-way valve 34 (an example of the valve body) provided in the GHP outdoor unit unit, checking the rotation speed of the cooling water pump, and checking the engine E in the cooling water circulation path. Confirmation including confirmation of the temperature of the engine cooling water measured by the thermometer at the outlet of the jacket and confirmation of the refrigerant pressure measured by the pressure gauge at the outlet of the engine-driven compressor 35 in the refrigerant circulation path C. An example including a process and an ignition drive process for igniting and driving the engine E by opening an electromagnetic valve (not shown) for opening and closing a fuel supply path (not shown) for supplying fuel gas to the engine E. Indicated.
However, if the heating operation or the cooling operation is maintained and it is not necessary to position the second four-way valve 44, the positioning of the second four-way valve 44 may be omitted in the initial start-up process.

(2)上記実施形態にあっては、EHP室外機ユニット40の起動処理は、EHP室外機ユニットに設けられる第2四方弁44(弁体の一例)の位置だしを含む初期起動処理と、冷媒循環路Cでエンジン駆動式圧縮機35の出口の圧力計にて計測される冷媒圧力の確認を含む確認処理と、モータMを駆動する駆動処理とを含むものである例を示した。
しかしながら、暖房運転又は冷房運転が維持される場合で、第2四方弁44の位置だしを行う必要がない場合、初期起動処理を省略しても構わない。
(2) In the above embodiment, the start-up process of the EHP outdoor unit 40 includes the initial start-up process including the positioning of the second four-way valve 44 (an example of the valve body) provided in the EHP outdoor unit, and the refrigerant. An example is shown in which a confirmation process including confirmation of the refrigerant pressure measured by a pressure gauge at the outlet of the engine-driven compressor 35 in the circulation path C and a drive process for driving the motor M are included.
However, if the heating operation or the cooling operation is maintained and it is not necessary to position the second four-way valve 44, the initial start-up process may be omitted.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明のハイブリッド空調システム、及びその制御方法は、空調負荷率の変動によるGHP室外機ユニットとEHP室外機ユニットの切り換え時において、快適性が低下することを防止すると共に、省エネ性を高め得るハイブリッド空調システム、及びその制御方法として、有効に利用可能である。 The hybrid air conditioning system of the present invention and its control method are hybrids that can prevent a decrease in comfort and enhance energy saving when switching between a GHP outdoor unit unit and an EHP outdoor unit unit due to fluctuations in an air conditioning load factor. It can be effectively used as an air conditioning system and its control method.

20 :空気調和装置
21 :膨張弁
22 :室内熱交換器
23 :膨張弁
24 :室内熱交換器
30 :GHP室外機ユニット
34 :第1四方弁
35 :エンジン駆動式圧縮機
36 :GHP室外熱交換器
40 :EHP室外機ユニット
44 :第2四方弁
45 :電気駆動式圧縮機
46 :EHP室外熱交換器
60a :室内機ユニット
60b :室内機ユニット
100 :ハイブリッド空調システム
C :冷媒循環路
E :エンジン
M :モータ
S :制御装置
20: Air conditioner 21: Expansion valve 22: Indoor heat exchanger 23: Expansion valve 24: Indoor heat exchanger 30: GHP outdoor unit unit 34: First four-way valve 35: Engine-driven compressor 36: GHP outdoor heat exchange Unit 40: EHP outdoor unit 44: 2nd four-way valve 45: Electric drive compressor 46: EHP outdoor heat exchanger 60a: Indoor unit 60b: Indoor unit 100: Hybrid air conditioning system C: Refrigerant circulation path E: Engine M: Motor S: Control device

Claims (7)

冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムにおいて、
前記運転制御部は、前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始し、且つ、
前記運転制御部は、前記起動処理の開始時点から所定待機時間が経過した後に前記停止処理を開始するものであり、且つ、
前記EHP室外機ユニットの前記起動処理の開始時点から前記GHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのGHP待機時間を、前記GHP室外機ユニットの前記起動処理の開始時点から前記EHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのEHP待機時間よりも短く設定するハイブリッド空調システム。
A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
The GHP and operating capacity ratio between the outdoor unit and the EHP outdoor unit is based on the operation control map that is defined according to the air conditioning load factor, the operating capacity ratio of the GHP outdoor unit and the EHP outdoor unit In a hybrid air-conditioning system equipped with an operation control unit that executes operation control to control
The operation control unit executes the activation processing of either the GHP outdoor unit unit or the EHP outdoor unit unit in accordance with the change in the operation capacity ratio, and the GHP outdoor unit unit and the EHP outdoor unit unit. When executing the stop process of any one of the above, the stop process is started after the start time of the start process , and the stop process is started.
The operation control unit starts the stop process after a predetermined waiting time has elapsed from the start time of the start process, and
The GHP standby time as the predetermined standby time from the start time of the start process of the EHP outdoor unit unit to the start time of the stop process of the GHP outdoor unit is set as the start time of the start process of the GHP outdoor unit. A hybrid air-conditioning system set to be shorter than the EHP standby time as the predetermined standby time from the EHP outdoor unit unit to the start time of the stop processing.
前記運転制御部は、前記運転容量比率の変更に伴って前記起動処理を実行し且つ前記停止処理を実行する場合、前記GHP室外機ユニット及び前記EHP室外機ユニットの少なくとも何れか一方の運転容量が零より大きい状態が維持されるように、前記停止処理を開始する請求項1に記載のハイブリッド空調システム。 When the operation control unit executes the start process and the stop process in accordance with the change in the operation capacity ratio, the operation capacity of at least one of the GHP outdoor unit and the EHP outdoor unit is increased. The hybrid air conditioning system according to claim 1, wherein the stop processing is started so that a state larger than zero is maintained. 前記GHP室外機ユニットの前記起動処理は、少なくとも、
前記エンジンのエンジン冷却水を循環する冷却水ポンプの起動と、前記GHP室外熱交換器に設けられる室外機ファンの起動とを含む初期起動処理と、
前記冷却水ポンプの回転数の確認、前記エンジン冷却水の温度の確認、及び前記冷媒循環路を循環する冷媒の圧力の確認を含む確認処理と、
前記エンジンへ燃料を供給する燃料供給路を開閉する電磁弁を開動作して、前記エンジンを点火駆動する点火駆動処理とを含むものであり、
前記EHP待機時間は、少なくとも前記初期起動処理と前記確認処理と前記点火駆動処理とにかかる時間に基づいて決定される請求項1に記載のハイブリッド空調システム。
The activation process of the GHP outdoor unit is at least
Initial startup processing including activation of the cooling water pump that circulates the engine cooling water of the engine and activation of the outdoor unit fan provided in the GHP outdoor heat exchanger.
Confirmation processing including confirmation of the rotation speed of the cooling water pump, confirmation of the temperature of the engine cooling water, and confirmation of the pressure of the refrigerant circulating in the refrigerant circulation path.
It includes an ignition drive process for igniting and driving the engine by opening an electromagnetic valve that opens and closes a fuel supply path for supplying fuel to the engine.
The hybrid air conditioning system according to claim 1, wherein the EHP standby time is determined based on at least the time required for the initial start-up process, the confirmation process, and the ignition drive process.
冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、 A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、 An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、 An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムの制御方法において、 The operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is based on an operation control map in which the operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is defined according to the air conditioning load factor. In the control method of a hybrid air-conditioning system equipped with an operation control unit that executes operation control to control
前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始し、且つ、 Along with the change in the operating capacity ratio, one of the GHP outdoor unit unit and the EHP outdoor unit unit is started, and one of the GHP outdoor unit unit and the EHP outdoor unit unit is stopped. When executing the process, the stop process is started after the start time of the start process, and the stop process is started.
前記起動処理の開始時点から所定待機時間が経過した後に前記停止処理を開始するものであり、且つ、 The stop process is started after a predetermined waiting time has elapsed from the start time of the start process, and the stop process is started.
前記EHP室外機ユニットの前記起動処理の開始時点から前記GHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのGHP待機時間を、前記GHP室外機ユニットの前記起動処理の開始時点から前記EHP室外機ユニットの前記停止処理の開始時点までの前記所定待機時間としてのEHP待機時間よりも短く設定するハイブリッド空調システムの制御方法。 The GHP standby time as the predetermined standby time from the start time of the start process of the EHP outdoor unit unit to the start time of the stop process of the GHP outdoor unit is set as the start time of the start process of the GHP outdoor unit. A control method for a hybrid air-conditioning system, which is set to be shorter than the EHP standby time as the predetermined standby time from the EHP outdoor unit unit to the start time of the stop processing.
冷媒が循環する冷媒循環路と、当該冷媒循環路にて冷媒を減圧する膨張弁と、
前記冷媒循環路に設けられ、エンジンを駆動源として冷媒を圧縮するエンジン駆動式圧縮機と、冷媒と施設の外の空気とを熱交換させるGHP室外熱交換器とを有するGHP室外機ユニットと、
前記冷媒循環路に設けられ、電動機を駆動源として冷媒を圧縮する電気駆動式圧縮機と、冷媒と前記施設の外の空気とを熱交換させるEHP室外熱交換器とを有するEHP室外機ユニットと、
前記冷媒循環路に設けられ、冷媒と前記施設の室内の空気とを熱交換させる室内熱交換器とを有する室内機ユニットとを空気調和装置として備え、
前記GHP室外機ユニットと前記EHP室外機ユニットとの運転容量比率が空調負荷率に応じて規定される運転制御マップに基づいて、前記GHP室外機ユニットと前記EHP室外機ユニットとの前記運転容量比率を制御する運転制御を実行する運転制御部とを備えたハイブリッド空調システムにおいて、
前記空調負荷率の過去の経時的な変動履歴を記憶する記憶部を備え、
前記運転制御部は、前記運転容量比率の変更に伴って、前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の起動処理を実行し、且つ前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか他方の停止処理を実行する場合、前記起動処理の開始時点より後に前記停止処理を開始するものであり、
前記記憶部に記憶される前記空調負荷率の前記変動履歴に基づいて、前記運転制御部が前記運転容量比率の変更に伴って前記起動処理を実行し且つ前記停止処理を実行するときの前記起動処理の開始予測時点を予測する起動処理開始時点予測部を備え、
前記起動処理は、前記GHP室外機ユニット又は前記EHP室外機ユニットの予備動作を実行する予備動作処理を最初に実行するものであり、
前記運転制御部は、前記起動処理開始時点予測部にて予測された前記起動処理の前記開始予測時点よりも前に、前記起動処理にて起動される前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の前記予備動作処理を少なくとも完了させるハイブリッド空調システム。
A refrigerant circulation path through which the refrigerant circulates, an expansion valve for reducing the pressure of the refrigerant in the refrigerant circulation path, and the like.
A GHP outdoor unit unit provided in the refrigerant circulation path and having an engine-driven compressor that compresses the refrigerant using the engine as a drive source, and a GHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility.
An EHP outdoor unit unit provided in the refrigerant circulation path and having an electrically driven compressor that compresses the refrigerant using an electric motor as a drive source and an EHP outdoor heat exchanger that exchanges heat between the refrigerant and the air outside the facility. ,
An indoor unit unit provided in the refrigerant circulation path and having an indoor heat exchanger for heat exchange between the refrigerant and the air in the facility is provided as an air conditioner.
The operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is based on an operation control map in which the operating capacity ratio between the GHP outdoor unit and the EHP outdoor unit is defined according to the air conditioning load factor. In a hybrid air-conditioning system equipped with an operation control unit that executes operation control to control
A storage unit for storing the past time-dependent fluctuation history of the air conditioning load factor is provided.
The operation control unit executes the activation processing of either the GHP outdoor unit unit or the EHP outdoor unit unit in accordance with the change in the operation capacity ratio, and the GHP outdoor unit unit and the EHP outdoor unit unit. When any one of the other stop processes is executed, the stop process is started after the start time of the start process.
The start when the operation control unit executes the start process and executes the stop process in accordance with the change in the operation capacity ratio based on the fluctuation history of the air conditioning load factor stored in the storage unit. Equipped with a start-up processing start time prediction unit that predicts the start prediction time of processing
The start-up process first executes the preparatory operation process for executing the preparatory operation of the GHP outdoor unit or the EHP outdoor unit.
The operation control unit is the GHP outdoor unit and the EHP outdoor unit that are started by the start processing before the start prediction time of the start processing predicted by the start processing start time prediction unit. A hybrid air conditioning system that at least completes the preparatory operation process of any one of the above.
前記運転制御部は、前記起動処理開始時点予測部にて予測された前記起動処理の前記開始予測時点よりも前に、前記起動処理にて起動される前記GHP室外機ユニット及び前記EHP室外機ユニットの何れか一方の前記起動処理を完了させる請求項5に記載のハイブリッド空調システム。 The operation control unit is the GHP outdoor unit and the EHP outdoor unit that are started by the start processing before the start prediction time of the start processing predicted by the start processing start time prediction unit. The hybrid air conditioning system according to claim 5, wherein the activation process of any one of the above is completed. 前記起動処理にて前記GHP室外機ユニットが起動される場合、
前記予備動作処理は、少なくとも、
前記エンジンのエンジン冷却水を循環する冷却水ポンプの起動と、前記GHP室外熱交換器に設けられる室外機ファンの起動とを含む初期起動処理と、
前記冷却水ポンプの回転数の確認、前記エンジン冷却水の温度の確認、及び前記冷媒循環路を循環する冷媒の圧力の確認を含む確認処理とを含む処理である請求項5又は6に記載のハイブリッド空調システム。
When the GHP outdoor unit is activated by the activation process,
The preparatory operation process is at least
Initial startup processing including activation of the cooling water pump that circulates the engine cooling water of the engine and activation of the outdoor unit fan provided in the GHP outdoor heat exchanger.
The process according to claim 5 or 6, which is a process including confirmation of the rotation speed of the cooling water pump, confirmation of the temperature of the engine cooling water, and confirmation of the pressure of the refrigerant circulating in the refrigerant circulation path. Hybrid air conditioning system.
JP2017030494A 2017-02-21 2017-02-21 Hybrid air conditioning system and its control method Active JP6890436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030494A JP6890436B2 (en) 2017-02-21 2017-02-21 Hybrid air conditioning system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030494A JP6890436B2 (en) 2017-02-21 2017-02-21 Hybrid air conditioning system and its control method

Publications (2)

Publication Number Publication Date
JP2018136073A JP2018136073A (en) 2018-08-30
JP6890436B2 true JP6890436B2 (en) 2021-06-18

Family

ID=63366774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030494A Active JP6890436B2 (en) 2017-02-21 2017-02-21 Hybrid air conditioning system and its control method

Country Status (1)

Country Link
JP (1) JP6890436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174936B2 (en) * 2018-07-30 2022-11-18 パナソニックIpマネジメント株式会社 air conditioner
JP2021143810A (en) * 2020-03-13 2021-09-24 東京瓦斯株式会社 Air conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228295A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner
KR20050086188A (en) * 2004-02-25 2005-08-30 엘지전자 주식회사 Air conditioner driven by engine or electric motor and control method thereof
JP2009041801A (en) * 2007-08-07 2009-02-26 Daikin Ind Ltd Electricity/gas mixed-air conditioning control system
JP2010236711A (en) * 2009-03-30 2010-10-21 Osaka Gas Co Ltd Power generating-air conditioning system
JP5249164B2 (en) * 2009-09-29 2013-07-31 アイシン精機株式会社 Air conditioner adjusting device and air conditioner

Also Published As

Publication number Publication date
JP2018136073A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6854901B2 (en) Air conditioner
JP4552119B2 (en) Multi air conditioner demand control system
JP4899549B2 (en) Compressor operating method of refrigeration apparatus and refrigeration apparatus
JP2015145765A (en) air conditioning system
JP6890436B2 (en) Hybrid air conditioning system and its control method
JP4726664B2 (en) Air conditioner
JP2003065588A (en) Air conditioning apparatus
JP2016061487A (en) Optimum start-up control device for air conditioning system and optimum start-up control method for air conditioning system
JP6053201B2 (en) Refrigeration equipment
JP2017101881A (en) Refrigerating air conditioner, controlling device and computer program
JP5584024B2 (en) Air conditioner group control device and air conditioning system
JP5633335B2 (en) Air conditioner
JP5140341B2 (en) Heat source control device and heat source control method
JP2019148382A (en) Heat pump type heating device
JP5920027B2 (en) Air conditioner
JP2022015936A (en) Vehicular heat exchange system
JP2023065680A (en) Refrigeration cycle device
JP4921407B2 (en) Power generation / air conditioning system
WO2021191949A1 (en) Heat pump heat source device and heat pump water heater
CN110431363B (en) Heat pump
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems
JPH1172252A (en) Electric power storage type air conditioner
JP7315059B1 (en) air conditioner
JP7258130B2 (en) air conditioner
JP2000161752A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150