JP6889833B2 - Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members - Google Patents
Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members Download PDFInfo
- Publication number
- JP6889833B2 JP6889833B2 JP2017113323A JP2017113323A JP6889833B2 JP 6889833 B2 JP6889833 B2 JP 6889833B2 JP 2017113323 A JP2017113323 A JP 2017113323A JP 2017113323 A JP2017113323 A JP 2017113323A JP 6889833 B2 JP6889833 B2 JP 6889833B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- alloy member
- amount
- precipitation
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、析出硬化型アルミニウム合金部材の歪み量推定方法及び歪み量推定装置に関する。 The present invention relates to a strain amount estimation method and a strain amount estimation device for a precipitation hardening aluminum alloy member.
過給機、圧縮機等の運転温度の上昇により、析出硬化型アルミニウム合金で形成されたインペラ等の析出硬化型アルミニウム合金部材における使用環境は、材料の能力の限界に近づいている。析出硬化型アルミニウム合金部材の信頼性向上のために、高い精度での寿命設計が求められている。このような金属部材の寿命設計を高い精度で行うために、引張変形やクリープ変形した金属部材の結晶方位を測定して歪み量を推定することが行われている(例えば、特許文献1参照)。 Due to the rise in operating temperature of turbochargers, compressors, etc., the usage environment for precipitation hardening aluminum alloy members such as impellers made of precipitation hardening aluminum alloys is approaching the limit of material capacity. In order to improve the reliability of precipitation hardening aluminum alloy members, life design with high accuracy is required. In order to design the life of such a metal member with high accuracy, the amount of strain is estimated by measuring the crystal orientation of the metal member subjected to tensile deformation or creep deformation (see, for example, Patent Document 1). ..
ところで、引張変形やクリープ変形した析出硬化型アルミニウム合金部材の結晶方位を測定して歪み量を推定する場合には、析出硬化型アルミニウム合金部材から試料を採取した後に機械研磨や化学研磨等することにより試料調整して結晶方位測定が行われる。このような場合には、研磨等の試料調整による測定面の状態にばらつきが生じ易く、析出硬化型アルミニウム合金部材の歪み量の推定精度が低下する可能性がある。 By the way, when estimating the amount of strain by measuring the crystal orientation of a precipitation hardening aluminum alloy member that has been tensilely deformed or creep deformed, mechanical polishing or chemical polishing should be performed after collecting a sample from the precipitation hardening aluminum alloy member. The sample is adjusted and the crystal orientation is measured. In such a case, the state of the measurement surface tends to vary due to sample preparation such as polishing, and the accuracy of estimating the strain amount of the precipitation hardening aluminum alloy member may decrease.
そこで本発明の目的は、析出硬化型アルミニウム合金部材の歪み量の推定精度をより向上させることが可能な析出硬化型アルミニウム合金部材の歪み量推定方法及び歪み量推定装置を提供することである。 Therefore, an object of the present invention is to provide a method for estimating the strain amount of a precipitation hardening aluminum alloy member and an apparatus for estimating the strain amount, which can further improve the accuracy of estimating the strain amount of the precipitation hardening aluminum alloy member.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法は、引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する熱分析工程と、前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する歪み量推定工程と、を備えることを特徴とする。 The method for estimating the amount of strain of the precipitation-curable aluminum alloy member according to the present invention includes a thermal analysis step of thermally analyzing a tensile-deformed precipitation-curable aluminum alloy member and measuring the exothermic peak top temperature of the exothermic peak, and the tensile deformation. Heat generation peak top temperature of the precipitation-curable aluminum alloy member, and the amount of tensile strain and heat generation peak in the known tensile-deformed precipitation-curable aluminum alloy member having the same composition as the tensile-deformed precipitation-curable aluminum alloy member obtained in advance. It is characterized by comprising a strain amount estimation step of estimating the tensile strain amount of the tensilely deformed precipitation-curable aluminum alloy member by comparing the relationship with the top temperature.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法において、前記歪み量推定工程は、前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度の変化量と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の変化量の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定することを特徴とする。 In the method for estimating the amount of strain of a precipitation-curable aluminum alloy member according to the present invention, the strain amount estimation step includes the amount of change in the exothermic peak top temperature of the tension-deformed precipitation-curable aluminum alloy member and the previously obtained amount. The relationship between the amount of tensile strain and the amount of change in the exothermic peak top temperature in a known tensile-deformed precipitation-curable aluminum alloy member having the same composition as the tensile-deformed precipitation-curable aluminum alloy member is compared with the above-mentioned tensile-deformation precipitation. It is characterized in that the amount of tensile strain of the hardened aluminum alloy member is estimated.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法において、前記熱分析工程は、前記発熱ピークトップ温度を示差走査熱量測定で測定することを特徴とする。 In the method for estimating the amount of strain of a precipitation hardening aluminum alloy member according to the present invention, the thermal analysis step is characterized in that the exothermic peak top temperature is measured by differential scanning calorimetry.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法は、クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する熱分析工程と、前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する歪み量推定工程と、を備えることを特徴とする。 The method for estimating the amount of strain of the precipitation-curable aluminum alloy member according to the present invention includes a thermal analysis step of thermally analyzing a creep-deformed precipitation-curable aluminum alloy member and measuring the heat absorption peak top temperature of the heat absorption peak, and the creep-deformation method. Heat absorption peak top temperature of the precipitation-curing aluminum alloy member, and the amount of creep strain and the heat absorption peak of the creep-deformed precipitation-curing aluminum alloy member known in the same composition as the creep-deformed precipitation-curing aluminum alloy member obtained in advance. It is characterized by comprising a strain amount estimation step of estimating the creep strain amount of the creep-deformed precipitation-curable aluminum alloy member by comparing the relationship with the top temperature.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法において、前記歪み量推定工程は、前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度の変化量と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の変化量の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定することを特徴とする。 In the method for estimating the amount of strain of a precipitation-curable aluminum alloy member according to the present invention, the strain amount estimation step includes the amount of change in the heat absorption peak top temperature of the creep-deformed precipitation-hardened aluminum alloy member and the previously obtained amount. The creep-deformed precipitation is compared with the relationship between the amount of creep strain and the amount of change in the heat absorption peak top temperature in the known creep-deformed precipitation-curable aluminum alloy member having the same composition as the creep-deformed precipitation-curing aluminum alloy member. It is characterized in that the amount of creep strain of the hardened aluminum alloy member is estimated.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定方法において、前記熱分析工程は、前記吸熱ピークトップ温度を示差走査熱量測定で測定することを特徴とする。 In the method for estimating the amount of strain of a precipitation-curable aluminum alloy member according to the present invention, the thermal analysis step is characterized in that the endothermic peak top temperature is measured by differential scanning calorimetry.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定装置は、引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する熱分析手段と、前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する歪み量推定手段と、を備えることを特徴とする。 The strain amount estimation device for the precipitation-curable aluminum alloy member according to the present invention includes a thermal analysis means for thermally analyzing a tensile-deformed precipitation-curable aluminum alloy member and measuring the exothermic peak top temperature of the exothermic peak, and the tensile-deformation. Heat generation peak top temperature of the precipitation-curable aluminum alloy member, and the amount of tensile strain and heat generation peak in the known tensile-deformed precipitation-curable aluminum alloy member having the same composition as the tensile-deformed precipitation-curable aluminum alloy member obtained in advance. It is characterized by comprising a strain amount estimating means for estimating the tensile strain amount of the tensilely deformed precipitation-hardened aluminum alloy member by comparing the relationship with the top temperature.
本発明に係る析出硬化型アルミニウム合金部材の歪み量推定装置は、クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する熱分析手段と、前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する歪み量推定手段と、を備えることを特徴とする。 The strain amount estimation device for the precipitation-curable aluminum alloy member according to the present invention includes a thermal analysis means for thermally analyzing a creep-deformed precipitation-curable aluminum alloy member and measuring the heat absorption peak top temperature of the heat absorption peak, and the creep-deformation. Heat absorption peak top temperature of the precipitation-curing aluminum alloy member, and the amount of creep strain and the heat absorption peak of the creep-deformed precipitation-curing aluminum alloy member known in the same composition as the creep-deformed precipitation-curing aluminum alloy member obtained in advance. It is characterized by comprising a strain amount estimating means for estimating the creep strain amount of the creep-deformed precipitation-curable aluminum alloy member by comparing the relationship with the top temperature.
上記構成によれば、熱分析により析出硬化型アルミニウム合金部材の歪み量を推定するので、析出硬化型アルミニウム合金部材の歪み量の推定精度をより向上させることが可能となる。 According to the above configuration, since the strain amount of the precipitation hardening aluminum alloy member is estimated by thermal analysis, it is possible to further improve the estimation accuracy of the strain amount of the precipitation hardening aluminum alloy member.
以下に本発明の実施の形態について図面を用いて詳細に説明する。
[第一実施形態]
本発明の第一実施形態について図面を用いて詳細に説明する。図1は、析出硬化型アルミニウム合金部材の歪み量推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の歪み量推定方法は、熱分析工程(S10)と、歪み量推定工程(S12)と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
The first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing a method for estimating the amount of strain of a precipitation hardening aluminum alloy member. The method for estimating the strain amount of the precipitation hardening aluminum alloy member includes a thermal analysis step (S10) and a strain amount estimation step (S12).
析出硬化型アルミニウム合金部材は、例えば、船舶用過給機、発電機、車両用過給機に用いられるコンプレッサインペラ等の展伸部材や鋳造部材である。このような析出硬化型アルミニウム合金部材は、例えば、過給機等の装置の運転中に、約100℃から約200℃で熱曝露されており、引張変形やクリープ変形する場合がある。 The precipitation hardening aluminum alloy member is, for example, a spreading member or a casting member such as a compressor impeller used in a supercharger for ships, a generator, or a supercharger for vehicles. Such a precipitation hardening aluminum alloy member is exposed to heat at about 100 ° C. to about 200 ° C. during operation of a device such as a supercharger, and may be subjected to tensile deformation or creep deformation.
析出硬化型アルミニウム合金部材は、JIS規格等の析出硬化型アルミニウム合金で形成されているとよい。析出硬化型アルミニウム合金は、溶体化処理した後に時効処理することにより、析出物を析出させて強化させたアルミニウム合金である。析出硬化型アルミニウム合金部材は、例えば、Al−Cu系合金、Al−Cu−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金等(2000系、6000系、7000系、AC1B、AC4A、AC4C、AC4CH等)で形成されている。 The precipitation hardening aluminum alloy member is preferably formed of a precipitation hardening aluminum alloy such as JIS standard. The precipitation hardening aluminum alloy is an aluminum alloy in which precipitates are precipitated and strengthened by a solution treatment and then an aging treatment. The precipitation-curable aluminum alloy member includes, for example, Al-Cu alloy, Al-Cu-Mg alloy, Al-Mg-Si alloy, Al-Zn-Mg alloy, Al-Zn-Mg-Cu alloy and the like. (2000 series, 6000 series, 7000 series, AC1B, AC4A, AC4C, AC4CH, etc.).
熱分析工程(S10)は、引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する工程である。図2は、析出硬化型アルミニウム合金部材の熱分析曲線を示すモデル図である。図2のグラフでは、横軸に温度を取り、縦軸に熱量を取り、温度に対する熱量の変化を実線で模式的に示している。発熱ピークトップ温度T1は、発熱ピークの中で最も熱量が大きい時の温度のことである。 The thermal analysis step (S10) is a step of thermally analyzing a tension-deformed precipitation hardening aluminum alloy member and measuring the exothermic peak top temperature of the exothermic peak. FIG. 2 is a model diagram showing a thermal analysis curve of a precipitation hardening aluminum alloy member. In the graph of FIG. 2, the horizontal axis represents the temperature, the vertical axis represents the amount of heat, and the change in the amount of heat with respect to the temperature is schematically shown by a solid line. The exothermic peak top temperature T1 is the temperature at which the calorific value is the largest among the exothermic peaks.
後述する実施例で示すように、発熱反応を示す発熱ピークの発熱ピークトップ温度と、引張変形による引張歪み量とは、相関関係があることを明らかにした。より詳細には、発熱ピークの発熱ピークトップ温度は、引張歪み量が大きくなるほど、低温側にシフトする傾向が得られた。この理由は、引張変形のような歪み速度が大きい塑性変形等の場合には、転位は、強化析出相(GPゾーン、GPBゾーン等)をカッティングすることにより通過して結晶粒内に存在していると考えられる。なお、一般的な引張変形時の歪み速度は、例えば、1×10−4S−1から1×10−2S−1である。このような変形メカニズムを示す場合、結晶粒内に存在している転位は、不均一核生成サイト等の核生成サイトとなって安定相(S相等)の析出を促進すると考えられる。一方、引張変形していない場合や、引張歪み量が小さい場合には、結晶粒内には殆ど転位が存在しないことから、核生成サイトが少なくなり、安定相(S相等)が析出し難くなる。このように、引張歪み量が大きくなるほど、結晶粒内に存在する転位の量が多くなり、転位の存在により安定相(S相等)が析出し易くなって安定相(S相等)の析出反応が促進されるため、発熱ピークトップ温度が低温側にシフトすると考えられる。例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、引張歪み量が大きくなるほど、結晶粒内に存在する転位の量が多くなり、転位により安定相であるS相(Al2CuMg)の析出反応が促進されると考えられる。 As shown in Examples described later, it was clarified that there is a correlation between the exothermic peak top temperature of the exothermic peak showing an exothermic reaction and the amount of tensile strain due to tensile deformation. More specifically, the exothermic peak top temperature of the exothermic peak tends to shift to the lower temperature side as the amount of tensile strain increases. The reason for this is that in the case of plastic deformation with a large strain rate such as tensile deformation, dislocations pass through by cutting the strengthened precipitation phase (GP zone, GPB zone, etc.) and exist in the crystal grains. It is thought that there is. The strain rate at the time of general tensile deformation is, for example, 1 × 10 -4 S -1 to 1 × 10 -2- S -1 . When exhibiting such a deformation mechanism, it is considered that the dislocations existing in the crystal grains become nucleation sites such as heterogeneous nucleation sites and promote the precipitation of stable phases (S phase, etc.). On the other hand, when there is no tensile deformation or the amount of tensile strain is small, there are almost no dislocations in the crystal grains, so that the number of nucleation sites decreases and it becomes difficult for stable phases (S phase, etc.) to precipitate. .. As described above, as the amount of tensile strain increases, the amount of dislocations existing in the crystal grains increases, and the presence of dislocations makes it easier for the stable phase (S phase, etc.) to precipitate, and the precipitation reaction of the stable phase (S phase, etc.) occurs. Since it is promoted, it is considered that the exothermic peak top temperature shifts to the low temperature side. For example, when the precipitation-curable aluminum alloy member is made of an Al—Cu—Mg-based alloy, the larger the amount of tensile strain, the larger the amount of dislocations existing in the crystal grains, and the more stable the phase due to the dislocations. It is considered that the precipitation reaction of a certain S phase (Al 2 CuMg) is promoted.
また、後述する実施例で示すように、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度から引張歪み量を推定することにより、引張歪み量が1%以下の微小な引張変形の場合でも、引張歪み量を精度よく推定できることを明らかにした。このように、引張歪み量が大きい場合だけでなく、引張歪み量が1%以下の微小な引張変形の場合でも、引張歪み量を精度よく推定することができるので、析出硬化型アルミニウム合金部材の引張損傷形態を特定することが可能となる。 Further, as shown in Examples described later, by estimating the tensile strain amount from the heat generation peak top temperature of the precipitation hardening aluminum alloy member that has been tensilely deformed, even in the case of a minute tensile deformation with a tensile strain amount of 1% or less. , It was clarified that the amount of tensile strain can be estimated accurately. As described above, since the tensile strain amount can be accurately estimated not only when the tensile strain amount is large but also when the tensile strain amount is minute tensile deformation of 1% or less, the precipitation-curable aluminum alloy member can be used. It is possible to identify the form of tensile damage.
析出硬化型アルミニウム合金部材の熱分析は、示差走査熱量測定(DSC)で発熱ピークトップ温度を測定するとよい。示差走査熱量測定によれば、発熱ピークトップ温度を容易に測定することが可能となる。示差走査熱量測定には、一般的な示差走査熱量計等を用いることができる。 For thermal analysis of precipitation hardening aluminum alloy members, it is preferable to measure the exothermic peak top temperature by differential scanning calorimetry (DSC). According to the differential scanning calorimetry, the exothermic peak top temperature can be easily measured. A general differential scanning calorimeter or the like can be used for the differential scanning calorimetry.
歪み量推定工程(S12)は、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する工程である。また、歪み量推定工程(S12)は、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度の変化量と、予め求めておいた引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の変化量の関係と、を比較して、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定するとよい。 In the strain amount estimation step (S12), the heat generation peak top temperature of the tensilely deformed precipitation-curable aluminum alloy member and the known tensile-deformation precipitation-hardening having the same composition as the previously determined tensile-deformation precipitation-curable aluminum alloy member are performed. This is a step of estimating the tensile strain amount of the tensilely deformed precipitation-hardened aluminum alloy member by comparing the relationship between the tensile strain amount and the heat generation peak top temperature in the type aluminum alloy member. Further, in the strain amount estimation step (S12), it is known that the amount of change in the exothermic peak top temperature of the tensilely deformed precipitation-curable aluminum alloy member and the same composition as the previously determined tensile-deformation precipitation-hardened aluminum alloy member. It is advisable to estimate the amount of tensile strain of the stretch-deformed precipitation-hardened aluminum alloy member by comparing the relationship between the amount of tensile strain and the amount of change in the exothermic peak top temperature in the tensile-deformed precipitation-hardened aluminum alloy member.
予め引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形を受けた析出硬化型アルミニウム合金部材の発熱ピークトップ温度を熱分析により求めて、例えば、引張歪み量及び発熱ピークトップ温度の変化量の関係を示すマスター曲線等を作成する。図3は、引張歪み量の推定方法を示すモデル図である。図3では、横軸に引張歪み量を取り、縦軸に発熱ピークトップ温度の変化量を取り、引張歪み量と、発熱ピークトップ温度の変化量との関係を実線で示している。例えば、引張変形した析出硬化型アルミニウム合金部材における発熱ピークトップ温度の変化量がΔT1の場合には、引張歪み量がε1と推定される。なお、引張変形した析出硬化型アルミニウム合金部材における発熱ピークトップ温度の変化量は、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、引張変形していない析出硬化型アルミニウム合金部材の発熱ピークトップ温度との差から求めるとよい。引張変形していない析出硬化型アルミニウム合金部材には、受入れまま材を用いるとよい。 The heat generation peak top temperature of the precipitation hardening aluminum alloy member having the same composition as the precipitation hardening aluminum alloy member previously tension-deformed and having undergone known tensile deformation is determined by thermal analysis, and for example, the tensile strain amount and the heat generation peak top temperature are determined. Create a master curve or the like showing the relationship of the amount of change. FIG. 3 is a model diagram showing a method of estimating the amount of tensile strain. In FIG. 3, the horizontal axis represents the amount of tensile strain, the vertical axis represents the amount of change in the exothermic peak top temperature, and the relationship between the amount of tensile strain and the amount of change in the exothermic peak top temperature is shown by a solid line. For example, when the amount of change in the heat generation peak top temperature in the tension-deformed precipitation hardening aluminum alloy member is ΔT1, the amount of tensile strain is estimated to be ε1. The amount of change in the heat generation peak top temperature of the tension-deformed precipitation hardening aluminum alloy member is the heat generation peak top temperature of the tension-deformed precipitation-hardening aluminum alloy member and the heat generation of the precipitation-hardening aluminum alloy member that is not tension-deformed. It should be calculated from the difference from the peak top temperature. For the precipitation hardening aluminum alloy member that is not tensilely deformed, it is preferable to use the material as it is accepted.
また、異なる温度で引張変形した析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線から引張歪み量を推定することができる。例えば、異なる温度で引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度の変化量がΔT1で同じである場合には、図3のグラフから、異なる温度で引張変形した析出硬化型アルミニウム合金部材の引張歪み量がε1と推定される。 Further, even in the case of precipitation hardening aluminum alloy members that are tensilely deformed at different temperatures, the amount of tensile strain can be estimated from the same master curve. For example, when the amount of change in the heat generation peak top temperature of the precipitation hardening aluminum alloy member tensilely deformed at different temperatures is the same at ΔT1, the precipitation hardening aluminum alloy member tensilely deformed at different temperatures can be seen from the graph of FIG. The amount of tensile strain of is estimated to be ε1.
次に、析出硬化型アルミニウム合金部材の歪み量推定装置について説明する。図4は、析出硬化型アルミニウム合金部材の歪み量推定装置10の構成を示すブロック図である。析出硬化型アルミニウム合金部材の歪み量推定装置10は、熱分析手段12と、制御手段14と、出力手段16と、を備えている。
Next, a strain amount estimation device for the precipitation hardening aluminum alloy member will be described. FIG. 4 is a block diagram showing a configuration of a strain
熱分析手段12は、引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する機能を有している。熱分析手段12は、示差走査熱量計等で構成することが可能である。 The thermal analysis means 12 has a function of thermally analyzing a tension-deformed precipitation hardening aluminum alloy member and measuring the exothermic peak top temperature of the exothermic peak. The thermal analysis means 12 can be configured by a differential scanning calorimeter or the like.
制御手段14は、歪み量推定手段18と、記憶手段20と、を有している。制御手段14は、例えば、一般的なコンピュータシステム等により構成することが可能である。歪み量推定手段18は、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する機能を有している。記憶手段20は、引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度や、予め求めておいた引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係を示すマスター曲線等のデータを記憶する機能を有している。 The control means 14 includes a strain amount estimation means 18 and a storage means 20. The control means 14 can be configured by, for example, a general computer system or the like. The strain amount estimation means 18 is a tensile-deformed precipitation-curable aluminum alloy member known to have the same composition as the heat-generating peak top temperature of the tensile-deformation precipitation-curable aluminum alloy member and the previously determined tensile-deformation precipitation-curable aluminum alloy member. It has a function of estimating the amount of tensile strain of a tensile-deformed precipitation-hardened aluminum alloy member by comparing the relationship between the amount of tensile strain in the alloy member and the exothermic peak top temperature. The storage means 20 includes a heat generation peak top temperature of the tension-hardened precipitation-hardened aluminum alloy member and a tension-hardened precipitation-hardened aluminum alloy member known in the same composition as the previously determined tensile-hardened precipitation-hardened aluminum alloy member. It has a function of storing data such as a master curve showing the relationship between the amount of tensile strain and the peak top temperature of heat generation.
出力手段16は、推定された析出硬化型アルミニウム合金部材の引張歪み量等を出力する機能を有している。出力手段16は、ディスプレイやプリンタ等で構成することが可能である。 The output means 16 has a function of outputting the estimated amount of tensile strain of the precipitation hardening aluminum alloy member and the like. The output means 16 can be configured by a display, a printer, or the like.
以上、上記構成によれば、引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークトップ温度から引張歪み量を推定することにより、機械研磨等の試料調整が不要になるので、引張歪み量を精度よく推定することができる。また、引張変形した析出硬化型アルミニウム合金部材から直接情報を得て引張歪み量を推定しているので、引張歪み量の推定精度が向上する。更に、上記構成によれば、発熱ピークトップ温度から引張歪み量を推定することにより、引張歪み量が1%以下の微小な引張変形の場合でも、引張歪み量を精度よく推定することができる。 As described above, according to the above configuration, the tension hardening type aluminum alloy member that has been tensilely deformed is thermally analyzed, and the amount of tensile strain is estimated from the exothermic peak top temperature, so that sample adjustment such as mechanical polishing becomes unnecessary. The quantity can be estimated accurately. Further, since the tensile strain amount is estimated by directly obtaining information from the precipitation hardening type aluminum alloy member that has been tensilely deformed, the estimation accuracy of the tensile strain amount is improved. Further, according to the above configuration, by estimating the tensile strain amount from the exothermic peak top temperature, the tensile strain amount can be accurately estimated even in the case of a minute tensile deformation in which the tensile strain amount is 1% or less.
[第二実施形態]
本発明の第二実施形態について図面を用いて詳細に説明する。図5は、析出硬化型アルミニウム合金部材の歪み量推定方法を示すフローチャートである。析出硬化型アルミニウム合金部材の歪み量推定方法は、熱分析工程(S20)と、歪み量推定工程(S22)と、を備えている。第二実施形態の析出硬化型アルミニウム合金部材の歪み量推定方法は、第一実施形態に対して、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する点が相違している。
[Second Embodiment]
The second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 5 is a flowchart showing a method for estimating the amount of strain of a precipitation hardening aluminum alloy member. The method for estimating the strain amount of the precipitation hardening aluminum alloy member includes a thermal analysis step (S20) and a strain amount estimation step (S22). The method for estimating the amount of strain of the precipitation hardening aluminum alloy member of the second embodiment is different from that of the first embodiment in that the amount of creep strain of the creep-deformed precipitation hardening aluminum alloy member is estimated.
熱分析工程(S20)は、クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する工程である。図6は、析出硬化型アルミニウム合金部材の熱分析曲線を示すモデル図である。図6のグラフでは、横軸に温度を取り、縦軸に熱量を取り、温度に対する熱量の変化を実線で模式的に示している。吸熱ピークトップ温度T2は、吸熱ピークの中で最も熱量が小さい時の温度のことである。 The thermal analysis step (S20) is a step of thermally analyzing a creep-deformed precipitation hardening aluminum alloy member and measuring the endothermic peak top temperature of the endothermic peak. FIG. 6 is a model diagram showing a thermal analysis curve of a precipitation hardening aluminum alloy member. In the graph of FIG. 6, the horizontal axis represents the temperature, the vertical axis represents the amount of heat, and the change in the amount of heat with respect to the temperature is schematically shown by a solid line. The endothermic peak top temperature T2 is the temperature at which the amount of heat is the smallest among the endothermic peaks.
後述する実施例で示すように、吸熱反応を示す吸熱ピークの吸熱ピークトップ温度と、クリープ変形のクリープ歪み量とは、相関関係があることを明らかにした。より詳細には、吸熱ピークトップ温度は、クリープ歪み量の増加に伴って低温側にシフトする傾向があることがわかった。この理由は、クリープ変形のように歪み速度が小さい塑性変形等の場合には、転位は、強化析出相(GPゾーン、GPBゾーン等)に堆積して強化析出相上に存在すると考えられる。なお、一般的なクリープ変形時の歪み速度は、例えば、1×10−5S−1以下である。このような変形メカニズムの場合には、堆積した転位により、強化析出相(GPゾーン、GPBゾーン等)の溶解を促進すると考えられる。これにより、クリープ歪み量が大きくなるほど、強化析出相上に堆積する転位の量が多くなり、強化析出相(GPゾーン、GPBゾーン等)の溶解が促進されるので、吸熱ピークトップ温度が低温側にシフトすると考えられる。一方、クリープ変形していない場合や、クリープ歪み量が小さい場合には、強化析出相上に堆積する転位が少ないため、強化析出相(GPゾーン、GPBゾーン等)の溶解を促進することが難しくなる。これにより、吸熱ピークトップ温度は、より高温側になると考えられる。例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、クリープ歪み量が大きくなるほど、強化析出相であるGPBゾーンに堆積する転位の量が多くなり、GPBゾーンの溶解反応が促進されると考えられる。 As shown in Examples described later, it was clarified that there is a correlation between the endothermic peak top temperature of the endothermic peak showing the endothermic reaction and the creep strain amount of the creep deformation. More specifically, it was found that the endothermic peak top temperature tends to shift to the low temperature side as the creep strain amount increases. The reason for this is considered to be that in the case of plastic deformation with a small strain rate such as creep deformation, dislocations are deposited in the strengthened precipitation phase (GP zone, GPB zone, etc.) and exist on the strengthened precipitation phase. The strain rate at the time of general creep deformation is, for example, 1 × 10 -5 S -1 or less. In the case of such a deformation mechanism, it is considered that the deposited dislocations promote the dissolution of the strengthened precipitation phase (GP zone, GPB zone, etc.). As a result, as the amount of creep strain increases, the amount of dislocations deposited on the strengthened precipitation phase increases, and the dissolution of the strengthened precipitation phase (GP zone, GPB zone, etc.) is promoted, so that the endothermic peak top temperature is on the low temperature side. It is thought that it will shift to. On the other hand, when the creep deformation is not performed or the creep strain amount is small, it is difficult to promote the dissolution of the strengthened precipitation phase (GP zone, GPB zone, etc.) because there are few dislocations deposited on the strengthened precipitation phase. Become. As a result, the endothermic peak top temperature is considered to be on the higher temperature side. For example, when the precipitation hardening type aluminum alloy member is formed of an Al—Cu—Mg based alloy, the larger the creep strain amount, the larger the amount of dislocations deposited in the GPB zone, which is the strengthened precipitation phase, and the GPB. It is considered that the dissolution reaction of the zone is promoted.
また、後述する実施例で示すように、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度からクリープ歪み量を推定することにより、クリープ歪み量が1%以下の微小なクリープ変形の場合でも、クリープ歪み量を精度よく推定できることが明らかとなった。このように、クリープ歪み量が大きい場合だけでなく、クリープ歪み量が1%以下の微小なクリープ変形の場合でも、クリープ歪み量を精度よく推定することができるので、析出硬化型アルミニウム合金部材のクリープ損傷形態を特定することが可能となる。 Further, as shown in Examples described later, by estimating the creep strain amount from the heat absorption peak top temperature of the creep-deformed precipitation hardening aluminum alloy member, even in the case of a minute creep deformation in which the creep strain amount is 1% or less. , It became clear that the amount of creep strain can be estimated accurately. In this way, the creep strain amount can be estimated accurately not only when the creep strain amount is large but also when the creep strain amount is minute creep deformation of 1% or less. It is possible to identify the form of creep damage.
析出硬化型アルミニウム合金部材の熱分析は、示差走査熱量測定(DSC)で吸熱ピークトップ温度を測定するとよい。示差走査熱量測定によれば、吸熱ピークトップ温度を容易に測定することが可能となる。示差走査熱量測定には、一般的な示差走査熱量計等を用いることができる。 For thermal analysis of precipitation hardening aluminum alloy members, the endothermic peak top temperature may be measured by differential scanning calorimetry (DSC). According to the differential scanning calorimetry, the endothermic peak top temperature can be easily measured. A general differential scanning calorimeter or the like can be used for the differential scanning calorimetry.
歪み量推定工程(S22)は、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいたクリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する工程である。また、歪み量推定工程(S22)は、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度の変化量と、予め求めておいたクリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の変化量の関係と、を比較して、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定するとよい。 In the strain amount estimation step (S22), the heat absorption peak top temperature of the creep-deformed precipitation-curing aluminum alloy member and the known creep-deformed precipitation-hardening having the same composition as the creep-deformed precipitation-curing aluminum alloy member obtained in advance are performed. This is a step of estimating the creep strain amount of the creep-deformed precipitation-hardened aluminum alloy member by comparing the relationship between the creep strain amount and the heat absorption peak top temperature of the type aluminum alloy member. Further, the strain amount estimation step (S22) is known for the amount of change in the heat absorption peak top temperature of the creep-deformed precipitation-curable aluminum alloy member and the same composition as the creep-deformed precipitation-curable aluminum alloy member obtained in advance. It is advisable to estimate the creep strain amount of the creep-deformed precipitation-curable aluminum alloy member by comparing the relationship between the creep strain amount and the change amount of the heat absorption peak top temperature in the creep-deformed precipitation-curable aluminum alloy member.
予めクリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形を受けた析出硬化型アルミニウム合金部材の吸熱ピークトップ温度を熱分析により求めて、例えば、クリープ歪み量及び吸熱ピークトップ温度の変化量の関係を示すマスター曲線等を作成する。図7は、クリープ歪み量の推定方法を示すモデル図である。図7では、横軸にクリープ歪み量を取り、縦軸に吸熱ピークトップ温度の変化量を取り、クリープ歪み量と、吸熱ピークトップ温度の変化量との関係を実線で示している。例えば、クリープ変形した析出硬化型アルミニウム合金部材における吸熱ピークトップ温度の変化量がΔT2の場合には、クリープ歪み量がε2と推定される。なお、クリープ変形した析出硬化型アルミニウム合金部材における吸熱ピークトップ温度の変化量は、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、クリープ変形していない析出硬化型アルミニウム合金部材の吸熱ピークトップ温度との差から求めるとよい。クリープ変形していない析出硬化型アルミニウム合金部材には、受入れまま材を用いるとよい。 The heat absorption peak top temperature of the known creep-deformed precipitation-curable aluminum alloy member having the same composition as the pre-creep-deformed precipitation-curable aluminum alloy member is determined by thermal analysis, and for example, the creep strain amount and the heat-absorption peak top temperature are determined. Create a master curve or the like showing the relationship of the amount of change. FIG. 7 is a model diagram showing a method of estimating the creep strain amount. In FIG. 7, the horizontal axis represents the amount of creep strain, the vertical axis represents the amount of change in the heat absorption peak top temperature, and the relationship between the creep strain amount and the amount of change in the heat absorption peak top temperature is shown by a solid line. For example, when the amount of change in the heat absorption peak top temperature in the creep-deformed precipitation hardening aluminum alloy member is ΔT2, the amount of creep strain is estimated to be ε2. The amount of change in the heat absorption peak top temperature of the creep-deformed precipitation hardening aluminum alloy member is the heat absorption peak top temperature of the creep-deformed precipitation-hardening aluminum alloy member and the heat absorption of the non-creep-deformed precipitation-hardening aluminum alloy member. It should be calculated from the difference from the peak top temperature. For the precipitation hardening aluminum alloy member that has not been creep-deformed, it is preferable to use the material as it is accepted.
また、異なる温度でクリープ変形した析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線からクリープ歪み量を推定することができる。例えば、異なる温度でクリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度の変化量がΔT2で同じである場合には、図7のグラフから、異なる温度でクリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量がε2と推定される。 Further, even in the case of precipitation hardening aluminum alloy members that have been creep-deformed at different temperatures, the amount of creep strain can be estimated from the same master curve. For example, when the amount of change in the heat absorption peak top temperature of the precipitation hardening aluminum alloy member creep-deformed at different temperatures is the same at ΔT2, the precipitation hardening aluminum alloy member creep-deformed at different temperatures is shown from the graph of FIG. The creep strain amount of is estimated to be ε2.
次に、析出硬化型アルミニウム合金部材の歪み量推定装置について説明する。図8は、析出硬化型アルミニウム合金部材の歪み量推定装置30の構成を示すブロック図である。析出硬化型アルミニウム合金部材の歪み量推定装置30は、熱分析手段32と、制御手段34と、出力手段36と、を備えている。
Next, a strain amount estimation device for the precipitation hardening aluminum alloy member will be described. FIG. 8 is a block diagram showing a configuration of a strain
熱分析手段32は、クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する機能を有している。熱分析手段32は、示差走査熱量計等で構成することが可能である。 The thermal analysis means 32 has a function of thermally analyzing a creep-deformed precipitation hardening aluminum alloy member and measuring the endothermic peak top temperature of the endothermic peak. The thermal analysis means 32 can be configured by a differential scanning calorimeter or the like.
制御手段34は、歪み量推定手段38と、記憶手段40と、を有している。制御手段34は、例えば、一般的なコンピュータシステム等により構成することが可能である。歪み量推定手段38は、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいたクリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する機能を有している。記憶手段40は、クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度や、予め求めておいたクリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係を示すマスター曲線等のデータを記憶する機能を有している。 The control means 34 includes a strain amount estimation means 38 and a storage means 40. The control means 34 can be configured by, for example, a general computer system or the like. The strain amount estimating means 38 has a known creep-deformed precipitation-curable aluminum having the same composition as the creep-deformed precipitation-curable aluminum alloy member and the heat absorption peak top temperature of the creep-deformed precipitation-curable aluminum alloy member. It has a function of estimating the creep strain amount of the creep-deformed precipitation-hardened aluminum alloy member by comparing the relationship between the creep strain amount and the heat absorption peak top temperature in the alloy member. The storage means 40 is a creep-deformed precipitation-curable aluminum alloy member known to have the same composition as the creep-deformed precipitation-curable aluminum alloy member and the heat absorption peak top temperature of the creep-deformed precipitation-curable aluminum alloy member. It has a function of storing data such as a master curve showing the relationship between the amount of creep strain and the heat absorption peak top temperature.
出力手段36は、推定された析出硬化型アルミニウム合金部材のクリープ歪み量等を出力する機能を有している。出力手段36は、ディスプレイやプリンタ等で構成されている。 The output means 36 has a function of outputting the estimated creep strain amount of the precipitation hardening aluminum alloy member and the like. The output means 36 is composed of a display, a printer, or the like.
以上、上記構成によれば、クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークトップ温度からクリープ歪み量を推定することにより、機械研磨等の試料調整が不要になるので、クリープ歪み量を精度よく推定することができる。また、クリープ変形した析出硬化型アルミニウム合金部材から直接情報を得てクリープ歪み量を推定しているので、クリープ歪み量の推定精度が向上する。更に、上記構成によれば、吸熱ピークトップ温度からクリープ歪み量を推定することにより、クリープ歪み量が1%以下の微小なクリープ変形の場合でも、クリープ歪み量を精度よく推定することができる。 As described above, according to the above configuration, by thermally analyzing the creep-deformed precipitation hardening aluminum alloy member and estimating the creep strain amount from the heat absorption peak top temperature, sample adjustment such as mechanical polishing becomes unnecessary, so that creep strain The quantity can be estimated accurately. Further, since the creep strain amount is estimated by directly obtaining information from the creep-deformed precipitation hardening aluminum alloy member, the estimation accuracy of the creep strain amount is improved. Further, according to the above configuration, by estimating the creep strain amount from the heat absorption peak top temperature, the creep strain amount can be estimated accurately even in the case of a minute creep deformation in which the creep strain amount is 1% or less.
[実施例1]
析出硬化型アルミニウム合金部材の歪み量推定試験を行った。まず、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定するためのマスター曲線の作成について説明する。マスター曲線を作成するための引張供試体には、Al−Cu−Mg系合金である2618合金(調質状態T6:溶体化処理後の人工時効処理)を使用した。引張試験については、各引張供試体に大気室温環境下で所定の引張荷重を負荷し、所定の引張歪み量が得られた時点で中止した。引張試験は、JIS Z2241に準拠して行った。引張歪み量は、0.05%、0.27%、0.47%とした。また、引張歪み量が0%(引張変形なし)の引張供試体(受入れまま材)についても用意した。各引張供試体について、示差走査熱量測定を行って発熱ピークから発熱ピークトップ温度を求めた。
[Example 1]
A strain estimation test was conducted on the precipitation hardening aluminum alloy member. First, the creation of a master curve for estimating the amount of tensile strain of a tension-hardened precipitation-hardened aluminum alloy member will be described. A 2618 alloy (tempered state T6: artificial aging treatment after solution treatment), which is an Al—Cu—Mg-based alloy, was used as the tensile specimen for creating the master curve. The tensile test was stopped when a predetermined tensile load was applied to each tensile specimen in an air-room temperature environment and a predetermined amount of tensile strain was obtained. The tensile test was performed in accordance with JIS Z2241. The amount of tensile strain was 0.05%, 0.27%, and 0.47%. In addition, a tensile specimen (material as received) having a tensile strain amount of 0% (no tensile deformation) was also prepared. For each tensile specimen, differential scanning calorimetry was performed and the exothermic peak top temperature was determined from the exothermic peak.
次に、引張歪み量と、発熱ピークトップ温度との関係を示すマスター曲線を作成した。図9は、引張歪み量と、発熱ピークトップ温度の変化量との関係を示すマスター曲線を示すグラフである。図9のグラフでは、横軸に引張歪み量を取り、縦軸に発熱ピークトップ温度の変化量を取り、各引張供試体のデータを黒三角形で示している。また、発熱ピークトップ温度の変化量は、各引張変形した引張供試体の発熱ピークトップ温度と、引張歪み量が0%(引張変形なし)の引張供試体(受入れまま材)の発熱ピークトップ温度との差から求めた。図9のグラフから、引張歪み量と、発熱ピークトップ温度の変化量との間には、相関関係が認められた。より詳細には、引張歪み量が大きくなるほど、発熱ピークトップ温度の変化量の負側の絶対値が大きくなり、発熱ピークトップ温度が低温側にシフトすることが明らかとなった。 Next, a master curve showing the relationship between the amount of tensile strain and the exothermic peak top temperature was created. FIG. 9 is a graph showing a master curve showing the relationship between the amount of tensile strain and the amount of change in the exothermic peak top temperature. In the graph of FIG. 9, the horizontal axis represents the amount of tensile strain, the vertical axis represents the amount of change in the exothermic peak top temperature, and the data of each tensile specimen is indicated by a black triangle. The amount of change in the exothermic peak top temperature is the exothermic peak top temperature of each tensilely deformed tensile specimen and the exothermic peak top temperature of the tensile specimen (material as received) having a tensile strain amount of 0% (no tensile deformation). It was calculated from the difference with. From the graph of FIG. 9, a correlation was observed between the amount of tensile strain and the amount of change in the exothermic peak top temperature. More specifically, it was clarified that as the amount of tensile strain increases, the absolute value on the negative side of the amount of change in the exothermic peak top temperature increases, and the exothermic peak top temperature shifts to the low temperature side.
次に、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する方法について説明する。まず、引張変形前後の析出硬化型アルミニウム合金部材から試料等を採取し、示差走査熱量測定等の熱分析をして各々の発熱ピークトップ温度を求める。引張変形後の発熱ピークトップ温度と、引張変形前の発熱ピークトップ温度との差を算出する。予め求めておいた引張歪み量と発熱ピークトップ温度の変化量との関係として、図9に示すマスター曲線を用いることにより、引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する。例えば、発熱ピークトップ温度の変化量ΔTが−3℃である場合には、引張歪み量が0.33%と推定される。このように引張歪み量が1%以下の微小な引張変形の場合でも、引張歪み量を精度良く推定することができる。 Next, a method of estimating the amount of tensile strain of the precipitation hardening aluminum alloy member that has been tensilely deformed will be described. First, a sample or the like is sampled from a precipitation hardening aluminum alloy member before and after tensile deformation, and thermal analysis such as differential scanning calorimetry is performed to obtain each exothermic peak top temperature. The difference between the exothermic peak top temperature after tensile deformation and the exothermic peak top temperature before tensile deformation is calculated. As the relationship between the amount of tensile strain obtained in advance and the amount of change in the exothermic peak top temperature, the amount of tensile strain of the precipitation hardening aluminum alloy member that has been tensilely deformed is estimated by using the master curve shown in FIG. For example, when the amount of change ΔT of the exothermic peak top temperature is -3 ° C, the amount of tensile strain is estimated to be 0.33%. As described above, even in the case of minute tensile deformation with a tensile strain amount of 1% or less, the tensile strain amount can be estimated accurately.
[実施例2]
次に、クリープ変形した析出硬化型アルミニウム合金部材の歪み量推定試験を行った。まず、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定するためのマスター曲線の作成について説明する。マスター曲線作成用のクリープ供試体には、Al−Cu−Mg系合金である2618合金(調質状態T6:溶体化処理後の人工時効処理)を用いた。クリープ試験については、クリープ供試体に所定温度で所定のクリープ荷重を負荷し、所定のクリープ歪み量が得られた時点で中止した。各クリープ供試体のクリープ歪み量は、0.10%、0.44%とした。また、クリープ歪み量が0%(クリープ変形なし)のクリープ供試体(受入れまま材)についても用意した。各クリープ供試体について、示差走査熱量測定を行って吸熱ピークから吸熱ピークトップ温度を求めた。
[Example 2]
Next, a strain amount estimation test of the creep-deformed precipitation hardening aluminum alloy member was performed. First, the creation of a master curve for estimating the amount of creep strain of a creep-deformed precipitation hardening aluminum alloy member will be described. As the creep specimen for creating the master curve, a 2618 alloy (conditioning state T6: artificial aging treatment after solution treatment), which is an Al—Cu—Mg-based alloy, was used. The creep test was stopped when a predetermined creep load was applied to the creep specimen at a predetermined temperature and a predetermined creep strain amount was obtained. The creep strain amount of each creep specimen was 0.10% and 0.44%. In addition, a creep specimen (material as received) having a creep strain amount of 0% (no creep deformation) was also prepared. For each creep specimen, differential scanning calorimetry was performed and the endothermic peak top temperature was determined from the endothermic peak.
次に、クリープ歪み量と、吸熱ピークトップ温度との関係を示すマスター曲線を作成した。図10は、クリープ歪み量と、吸熱ピークトップ温度の変化量との関係を示すマスター曲線のグラフである。図10のグラフでは、横軸にクリープ歪み量を取り、縦軸に吸熱ピークトップ温度の変化量を取り、各クリープ供試体のデータを黒菱形で示している。また、吸熱ピークトップ温度の変化量は、各クリープ変形したクリープ供試体の吸熱ピークトップ温度と、クリープ歪み量が0%(クリープ変形なし)のクリープ供試体(受入れまま材)の吸熱ピークトップ温度との差から求めた。図10のグラフから、クリープ歪み量と、吸熱ピークトップ温度の変化量との間には、相関関係が認められた。より詳細には、クリープ歪み量が大きくなるほど、吸熱ピークトップ温度の変化量の負側の絶対値が大きくなり、吸熱ピークトップ温度が低温側にシフトすることが明らかとなった。 Next, a master curve showing the relationship between the amount of creep strain and the endothermic peak top temperature was created. FIG. 10 is a graph of a master curve showing the relationship between the amount of creep strain and the amount of change in the endothermic peak top temperature. In the graph of FIG. 10, the amount of creep strain is taken on the horizontal axis, the amount of change in the endothermic peak top temperature is taken on the vertical axis, and the data of each creep specimen is shown by a black rhombus. The amount of change in the heat absorption peak top temperature is the heat absorption peak top temperature of each creep deformed creep specimen and the heat absorption peak top temperature of the creep specimen (material as received) having a creep strain amount of 0% (no creep deformation). It was calculated from the difference with. From the graph of FIG. 10, a correlation was observed between the amount of creep strain and the amount of change in the endothermic peak top temperature. More specifically, it was clarified that as the amount of creep strain increases, the absolute value on the negative side of the amount of change in the endothermic peak top temperature increases, and the endothermic peak top temperature shifts to the low temperature side.
次に、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する方法について説明する。まず、クリープ変形前後の析出硬化型アルミニウム合金部材から試料等を採取し、示差走査熱量測定等の熱分析をして各々の吸熱ピークトップ温度を求める。クリープ変形後の吸熱ピークトップ温度と、クリープ変形前の吸熱ピークトップ温度との差を算出する。予め求めておいたクリープ歪み量と吸熱ピークトップ温度の変化量との関係として、図10に示すマスター曲線を用いることにより、クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する。例えば、吸熱ピークトップ温度の変化量ΔTが−4℃である場合には、クリープ歪み量が0.24%と推定される。このようにクリープ歪み量が1%以下の微小なクリープ変形の場合でも、クリープ歪み量を精度良く推定することができる。 Next, a method of estimating the amount of creep strain of the precipitation hardening aluminum alloy member that has been creep-deformed will be described. First, a sample or the like is sampled from a precipitation hardening aluminum alloy member before and after creep deformation, and thermal analysis such as differential scanning calorimetry is performed to obtain each endothermic peak top temperature. The difference between the endothermic peak top temperature after creep deformation and the endothermic peak top temperature before creep deformation is calculated. The creep strain amount of the creep-deformed precipitation hardening aluminum alloy member is estimated by using the master curve shown in FIG. 10 as the relationship between the creep strain amount obtained in advance and the change amount of the heat absorption peak top temperature. For example, when the change amount ΔT of the endothermic peak top temperature is -4 ° C., the creep strain amount is estimated to be 0.24%. As described above, even in the case of a minute creep deformation in which the creep strain amount is 1% or less, the creep strain amount can be estimated accurately.
10、30 析出硬化型アルミニウム合金部材の歪み量推定装置
12、32 熱分析手段
14、34 制御手段
16、36 出力手段
18、38 歪み量推定手段
20、40 記憶手段
10, 30 Strain amount estimation device for precipitation hardening
Claims (8)
引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する熱分析工程と、
前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する歪み量推定工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 A method for estimating the amount of strain in a precipitation hardening aluminum alloy member.
A thermal analysis process that thermally analyzes a tension-deformed precipitation hardening aluminum alloy member and measures the exothermic peak top temperature of the exothermic peak.
The exothermic peak top temperature of the tension-deformed precipitation-hardened aluminum alloy member and the tensile strain of the tension-deformed precipitation-hardened aluminum alloy member known in advance with the same composition as the tension-deformed precipitation-hardened aluminum alloy member. A strain amount estimation step for estimating the tensile strain amount of the tension-hardened precipitation-hardened aluminum alloy member by comparing the relationship between the amount and the exothermic peak top temperature.
A method for estimating the amount of strain of a precipitation hardening aluminum alloy member.
前記歪み量推定工程は、前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度の変化量と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の変化量の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定することを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 The method for estimating the amount of strain of a precipitation hardening aluminum alloy member according to claim 1.
In the strain amount estimation step, the amount of change in the exothermic peak top temperature of the tensilely deformed precipitation-curable aluminum alloy member and the known tensile deformation having the same composition as the previously determined tensile-deformation precipitation-curable aluminum alloy member. It is characterized in that the tensile strain amount of the tensilely deformed precipitation-hardened aluminum alloy member is estimated by comparing the relationship between the tensile strain amount and the change amount of the exothermic peak top temperature in the precipitation-hardened aluminum alloy member. A method for estimating the amount of strain in a precipitation-curable aluminum alloy member.
前記熱分析工程は、前記発熱ピークトップ温度を示差走査熱量測定で測定することを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 The method for estimating the amount of strain of a precipitation hardening aluminum alloy member according to claim 1 or 2.
The thermal analysis step is a method for estimating the amount of strain of a precipitation hardening aluminum alloy member, which comprises measuring the exothermic peak top temperature by differential scanning calorimetry.
クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する熱分析工程と、
前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する歪み量推定工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 A method for estimating the amount of strain in a precipitation hardening aluminum alloy member.
A thermal analysis process that thermally analyzes a creep-deformed precipitation hardening aluminum alloy member and measures the endothermic peak top temperature of the endothermic peak.
The heat absorption peak top temperature of the creep-deformed precipitation-curing aluminum alloy member and the creep strain in the creep-deformed precipitation-curing aluminum alloy member known in advance with the same composition as the creep-deformed precipitation-curing aluminum alloy member. A strain amount estimation step for estimating the creep strain amount of the creep-deformed precipitation-curable aluminum alloy member by comparing the relationship between the amount and the heat absorption peak top temperature, and
A method for estimating the amount of strain of a precipitation hardening aluminum alloy member.
前記歪み量推定工程は、前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度の変化量と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の変化量の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定することを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 The method for estimating the amount of strain of a precipitation hardening aluminum alloy member according to claim 4.
In the strain amount estimation step, the creep deformation known in the same composition as the creep-deformed precipitation-curable aluminum alloy member and the amount of change in the heat absorption peak top temperature of the creep-deformed precipitation-curable aluminum alloy member and the creep-deformed precipitation-curable aluminum alloy member obtained in advance. It is characterized in that the creep strain amount of the creep-deformed precipitation-curable aluminum alloy member is estimated by comparing the relationship between the creep strain amount and the change amount of the heat absorption peak top temperature in the creep-hardened aluminum alloy member. A method for estimating the amount of strain in a precipitation-hardened aluminum alloy member.
前記熱分析工程は、前記吸熱ピークトップ温度を示差走査熱量測定で測定することを特徴とする析出硬化型アルミニウム合金部材の歪み量推定方法。 The method for estimating the amount of strain of a precipitation hardening aluminum alloy member according to claim 4 or 5.
The thermal analysis step is a method for estimating the strain amount of a precipitation hardening aluminum alloy member, which comprises measuring the endothermic peak top temperature by differential scanning calorimetry.
引張変形した析出硬化型アルミニウム合金部材を熱分析し、発熱ピークの発熱ピークトップ温度を測定する熱分析手段と、
前記引張変形した析出硬化型アルミニウム合金部材の発熱ピークトップ温度と、予め求めておいた前記引張変形した析出硬化型アルミニウム合金部材と同一組成で既知の引張変形した析出硬化型アルミニウム合金部材における引張歪み量及び発熱ピークトップ温度の関係と、を比較して、前記引張変形した析出硬化型アルミニウム合金部材の引張歪み量を推定する歪み量推定手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の歪み量推定装置。 It is a strain estimation device for precipitation hardening aluminum alloy members.
A thermal analysis means for thermally analyzing a tension-deformed precipitation hardening aluminum alloy member and measuring the exothermic peak top temperature of the exothermic peak.
The exothermic peak top temperature of the tension-deformed precipitation-hardened aluminum alloy member and the tensile strain of the tension-deformed precipitation-hardened aluminum alloy member known in advance with the same composition as the tension-deformed precipitation-hardened aluminum alloy member. A strain amount estimating means for estimating the tensile strain amount of the tension-hardened precipitation-hardened aluminum alloy member by comparing the relationship between the amount and the exothermic peak top temperature.
An apparatus for estimating the amount of strain of a precipitation hardening aluminum alloy member.
クリープ変形した析出硬化型アルミニウム合金部材を熱分析し、吸熱ピークの吸熱ピークトップ温度を測定する熱分析手段と、
前記クリープ変形した析出硬化型アルミニウム合金部材の吸熱ピークトップ温度と、予め求めておいた前記クリープ変形した析出硬化型アルミニウム合金部材と同一組成で既知のクリープ変形した析出硬化型アルミニウム合金部材におけるクリープ歪み量及び吸熱ピークトップ温度の関係と、を比較して、前記クリープ変形した析出硬化型アルミニウム合金部材のクリープ歪み量を推定する歪み量推定手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の歪み量推定装置。 It is a strain estimation device for precipitation hardening aluminum alloy members.
A thermal analysis means that thermally analyzes a creep-deformed precipitation hardening aluminum alloy member and measures the endothermic peak top temperature of the endothermic peak.
The heat absorption peak top temperature of the creep-deformed precipitation-curing aluminum alloy member and the creep strain in the creep-deformed precipitation-curing aluminum alloy member known in advance with the same composition as the creep-deformed precipitation-curing aluminum alloy member. A strain amount estimating means for estimating the creep strain amount of the creep-deformed precipitation-hardened aluminum alloy member by comparing the relationship between the amount and the heat absorption peak top temperature, and
An apparatus for estimating the amount of strain of a precipitation hardening aluminum alloy member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113323A JP6889833B2 (en) | 2017-06-08 | 2017-06-08 | Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113323A JP6889833B2 (en) | 2017-06-08 | 2017-06-08 | Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018205232A JP2018205232A (en) | 2018-12-27 |
JP6889833B2 true JP6889833B2 (en) | 2021-06-18 |
Family
ID=64956974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017113323A Active JP6889833B2 (en) | 2017-06-08 | 2017-06-08 | Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6889833B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08226905A (en) * | 1995-02-21 | 1996-09-03 | Hitachi Cable Ltd | Method for setting softening-temperature of metal material |
US6197130B1 (en) * | 1997-04-24 | 2001-03-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus to access optimum strength during processing of precipitation strengthened alloys |
JP2003344262A (en) * | 2002-05-28 | 2003-12-03 | Mitsubishi Electric Corp | Method for diagnosing degree of deterioration of high polymer material |
JP4541934B2 (en) * | 2005-03-09 | 2010-09-08 | 株式会社神戸製鋼所 | Manufacturing method of forming aluminum alloy sheet |
JP4620609B2 (en) * | 2006-02-28 | 2011-01-26 | 住友金属工業株式会社 | Prediction method for stress-strain relationship of steel |
JP4673792B2 (en) * | 2006-05-22 | 2011-04-20 | 株式会社東芝 | Gas turbine component life management system and gas turbine component life management method |
JP5506771B2 (en) * | 2011-12-22 | 2014-05-28 | 株式会社日立製作所 | Long-term creep strength estimation method, remaining life estimation method, and remaining life evaluation apparatus for precipitation strengthened heat resistant alloys |
-
2017
- 2017-06-08 JP JP2017113323A patent/JP6889833B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018205232A (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Etesami et al. | Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method | |
Yoo et al. | The melting lines of model silicon calculated from coexisting solid–liquid phases | |
Easton et al. | Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys | |
Raghunath et al. | Flow stress modeling of AZ91 magnesium alloys at elevated temperature | |
Hosch et al. | Analysis of the high growth-rate transition in Al–Si eutectic solidification | |
Malekan et al. | Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy | |
Marchwica et al. | Fraction solid evolution characteristics of AlSiCu alloys-dynamic baseline approach | |
Farahany et al. | Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis | |
JP2023502716A (en) | Heat treatment adjustment control method based on information collected in situ and its application | |
CN112912523A (en) | Material search device, method, and program | |
Bogno et al. | Quantification of primary dendritic and secondary eutectic nucleation undercoolings in rapidly solidified hypo-eutectic Al-Cu droplets | |
Rokni et al. | The strain-compensated constitutive equation for high temperature flow behavior of an Al-Zn-Mg-Cu alloy | |
JP6889833B2 (en) | Strain amount estimation method and strain amount estimation device for precipitation hardening aluminum alloy members | |
Jiang et al. | Multi-scale crystal viscoplasticity approach for estimating anisotropic steady-state creep properties of single-crystal SnAgCu alloys | |
Jafari et al. | A finite-deformation dislocation density-based crystal viscoplasticity constitutive model for calculating the stored deformation energy | |
Ceschini et al. | Effects of the delay between quenching and aging on hardness and tensile properties of A356 aluminum alloy | |
Chino et al. | Solid solution strengthening for Mg-3.0 mass pct (2.71 at. pct) Al and Mg-0.06 mass pct (0.036 at. pct) Ca alloys | |
Zhou et al. | Prediction of Shrinkage Microporosity in Gravity‐Cast and Low‐Pressure Sand‐Cast Mg–6Gd–3Y–0.5 Zr Magnesium Alloys | |
WO2017152397A1 (en) | Method for testing phase transformation point of aluminium alloy | |
Hoyt et al. | A molecular dynamics simulation study of the cavitation pressure in liquid Al | |
Vafaeenezhad et al. | Numerical and experimental analysis of creep deformation and stress-relaxation in Sn-5Sb lead-free alloy | |
Fornaro et al. | Study of dilute Al–Cu solidification by cooling curve analysis | |
Cipoletti et al. | A microstructure-based model of the deformation mechanisms and flow stress during elevated-temperature straining of a magnesium alloy | |
Pan et al. | Precipitation and dissolution peaks of hydride in Zr–2.5 Nb during quasistatic thermal cycles | |
Berman et al. | Measuring and Modeling Microsegregation in High-Pressure Die Cast Mg–Al Alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210505 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6889833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |