JP6888514B2 - Rotating machine rotor - Google Patents

Rotating machine rotor Download PDF

Info

Publication number
JP6888514B2
JP6888514B2 JP2017201801A JP2017201801A JP6888514B2 JP 6888514 B2 JP6888514 B2 JP 6888514B2 JP 2017201801 A JP2017201801 A JP 2017201801A JP 2017201801 A JP2017201801 A JP 2017201801A JP 6888514 B2 JP6888514 B2 JP 6888514B2
Authority
JP
Japan
Prior art keywords
refrigerant passage
rotor
passage
cylindrical hole
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201801A
Other languages
Japanese (ja)
Other versions
JP2019075932A (en
Inventor
鷹英 片桐
鷹英 片桐
豊 河合
豊 河合
宏 金原
宏 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017201801A priority Critical patent/JP6888514B2/en
Publication of JP2019075932A publication Critical patent/JP2019075932A/en
Application granted granted Critical
Publication of JP6888514B2 publication Critical patent/JP6888514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、回転電機のロータに関する。 The present invention relates to a rotor of a rotary electric machine.

従来、回転電機のロータとしては、特許文献1に記載されているものがある。このロータは、シャフトと、円環状のロータコアを備え、ロータコアは、シャフトの外周面に固定される。ロータコアは、周方向に間隔をおいて埋め込み配置された複数の永久磁石を含む。また、ロータコアは軸方向に延在する冷媒通路を有し、冷却油等の冷却媒体が冷媒通路内を流動する。回転電機の使用時、永久磁石がその内部を流れる渦電流によって発熱し、それに起因してロータコアが熱くなる。この回転電機は、冷媒通路内に冷却媒体を流動させることでロータコアを冷却している。 Conventionally, as a rotor of a rotary electric machine, there is one described in Patent Document 1. The rotor includes a shaft and an annular rotor core, the rotor core being fixed to the outer peripheral surface of the shaft. The rotor core includes a plurality of permanent magnets embedded and arranged at intervals in the circumferential direction. Further, the rotor core has a refrigerant passage extending in the axial direction, and a cooling medium such as cooling oil flows in the refrigerant passage. When using a rotary electric machine, the permanent magnet generates heat due to the eddy current flowing inside it, which causes the rotor core to heat up. This rotary electric machine cools the rotor core by flowing a cooling medium in the refrigerant passage.

特開2017−046545号公報Japanese Unexamined Patent Publication No. 2017-046545

ロータコアに冷媒通路を設けると、ロータコアにおける冷媒通路の周辺箇所の強度が低下する。したがって、ロータが高速回転すると、ロータコアに生じる遠心力が増加するので、上記冷媒通路の周辺箇所が変形し易い。 If the rotor core is provided with a refrigerant passage, the strength of the portion around the refrigerant passage in the rotor core is reduced. Therefore, when the rotor rotates at high speed, the centrifugal force generated in the rotor core increases, so that the peripheral portion of the refrigerant passage is easily deformed.

そこで、本発明の課題は、ロータコアを冷却でき、冷媒通路周辺箇所の変形も抑制できる回転電機のロータを提供することにある。 Therefore, an object of the present invention is to provide a rotor of a rotary electric machine capable of cooling a rotor core and suppressing deformation of a portion around a refrigerant passage.

上記課題を解決するため、本発明に係る回転電機のロータは、シャフトと、前記シャフトの外周面に固定され、積層された電磁鋼鈑を含むロータコアと、を備え、前記ロータコアには、冷却媒体が流動すると共に軸方向の一方側から他方側に延びる有底の冷媒通路が設けられ、前記冷媒通路の内側に設けられて流路が前記冷媒通路より長い内側冷媒通路を前記冷媒通路内に画定する隔壁部を有し、前記内側冷媒通路が、前記軸方向に延在する2以上の軸方向延在通路部と、前記冷媒通路における前記軸方向の底側の端部において2つの前記軸方向延在通路部を連通させる連通通路部とを少なくとも含み、前記冷媒通路が、円筒孔部と、その円筒孔部から径方向に延在して前記円筒孔部に連通する2以上の取付凹部とを有し、前記隔壁部が、前記2以上の取付凹部に対応する形状を有すると共に前記2以上の取付凹部に嵌合する2以上の端部を有する
In order to solve the above problems, the rotor of the rotary electric machine according to the present invention includes a shaft and a rotor core including an electromagnetic steel plate fixed and laminated on the outer peripheral surface of the shaft, and the rotor core includes a cooling medium. A bottomed refrigerant passage extending from one side to the other in the axial direction is provided, and an inner refrigerant passage provided inside the refrigerant passage and having a longer passage than the refrigerant passage is defined in the refrigerant passage. The inner refrigerant passage has two or more axially extending passages extending in the axial direction, and two axially extending passages at the bottom end of the refrigerant passage in the axial direction. at least look including a communicating passage portion communicating the extension passage, the refrigerant passage, a cylindrical hole portion, 2 or more attachment recesses extending radially from the cylindrical hole portion communicating with the cylindrical hole The partition wall has a shape corresponding to the two or more mounting recesses and has two or more ends that fit into the two or more mounting recesses .

本発明に係るロータによれば、冷媒通路の内側に隔壁部が設けられる。したがって、この隔壁部で冷媒通路周辺箇所の強度を大きくでき、冷媒通路の変形を抑制できる。 According to the rotor according to the present invention, a partition wall is provided inside the refrigerant passage. Therefore, the strength of the portion around the refrigerant passage can be increased at this partition wall portion, and the deformation of the refrigerant passage can be suppressed.

本発明の一実施形態に係る回転電機のロータにおける周方向一部分の部分平面図である。It is a partial plan view of a part in the circumferential direction in the rotor of the rotary electric machine which concerns on one Embodiment of this invention. 図1のA‐A線断面図である。It is sectional drawing of the line AA of FIG. ロータを、軸方向に延びる冷媒通路を通過すると共に径方向及び周方向を含む平面で切断したときの部分断面図である。It is a partial cross-sectional view when the rotor is cut in a plane including a radial direction and a circumferential direction while passing through a refrigerant passage extending in the axial direction. 板状の隔壁部材の厚さ方向の中心を通過する平面でロータを切断したときの、軸方向に延びる冷媒通路の周辺かつ軸方向一方側の断面図である。It is sectional drawing around the refrigerant passage extending in the axial direction and one side in the axial direction when the rotor is cut in the plane passing through the center in the thickness direction of a plate-shaped partition wall member. 第1変形例のロータにおける図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 in the rotor of the 1st modification. 第2変形例のロータにおける図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 in the rotor of the 2nd modification. 第3変形例のロータにおける図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 in the rotor of the 3rd modification. 第4変形例のロータにおける図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 in the rotor of the 4th modification. 第5変形例のロータにおける図4に対応する断面である。It is a cross section corresponding to FIG. 4 in the rotor of the 5th modification. 第6変形例のロータにおける隔壁部材の側面図である。It is a side view of the partition wall member in the rotor of the 6th modification.

以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の説明及び図面において、R方向は、回転電機1のロータ10の径方向を示し、θ方向は、ロータ10の周方向を示し、Z方向は、ロータ10の軸方向を示す。R方向、θ方向、及びZ方向は、互いに直交する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. When a plurality of embodiments and modifications are included in the following, it is assumed from the beginning that a new embodiment is constructed by appropriately combining the characteristic portions thereof. Further, in the following description and drawings, the R direction indicates the radial direction of the rotor 10 of the rotary electric machine 1, the θ direction indicates the circumferential direction of the rotor 10, and the Z direction indicates the axial direction of the rotor 10. The R, θ, and Z directions are orthogonal to each other.

図1は、本発明の一実施形態に係る回転電機1のロータ10におけるθ方向一部分の部分平面図であり、図2は、図1のA‐A線断面図である。なお、図1においては、ロータ10内部に設けられる冷媒通路70の配設位置を明確に示すため冷媒通路70を実線で示す。 FIG. 1 is a partial plan view of a part of the rotor 10 of the rotary electric machine 1 according to the embodiment of the present invention in the θ direction, and FIG. 2 is a sectional view taken along line AA of FIG. In FIG. 1, the refrigerant passage 70 is shown by a solid line in order to clearly show the arrangement position of the refrigerant passage 70 provided inside the rotor 10.

図1及び図2に示すように、ロータ10は、シャフト30と、ロータコア50を備える。シャフト30は、中心軸に沿ってZ方向に延在する円筒状の貫通孔31を有する。ロータコア50は、シャフト30の外周面に、キー係合、スプライン係合、焼き嵌め、又は冷やし嵌め等の手段により相対回転不可に固定される。ロータコア50は、シャフト30と同心の円筒状の磁性体である。ロータコア50は、Z方向に積層された複数の環状鋼板を含む。環状鋼板は、例えば薄板状の電磁鋼板をプレスで打ち抜くことによって形成される。打ち抜き前の各電磁鋼鈑の表面及び裏面には、絶縁被膜が設けられる。この絶縁被膜は、電磁鋼鈑の層間抵抗を高くするために設けられ、層間渦電流を防止するために設けられる。層間渦電流を防止することで、鉄損(電気エネルギーから磁気エネルギーへの変換において発生するエネルギー損失)を小さくでき、エネルギー効率を高くできる。積層された複数の環状鋼板は、加圧カシメ等の処理が施されることにより連結される。 As shown in FIGS. 1 and 2, the rotor 10 includes a shaft 30 and a rotor core 50. The shaft 30 has a cylindrical through hole 31 extending in the Z direction along the central axis. The rotor core 50 is fixed to the outer peripheral surface of the shaft 30 so as not to rotate relative to each other by means such as key engagement, spline engagement, shrink fitting, or cold fitting. The rotor core 50 is a cylindrical magnetic material concentric with the shaft 30. The rotor core 50 includes a plurality of annular steel plates laminated in the Z direction. The annular steel plate is formed by punching, for example, a thin plate-shaped electromagnetic steel plate with a press. Insulating coatings are provided on the front and back surfaces of each electrical steel sheet before punching. This insulating coating is provided to increase the interlayer resistance of the electrical steel sheet, and is provided to prevent an interlayer eddy current. By preventing the interlayer eddy current, iron loss (energy loss generated in the conversion of electrical energy to magnetic energy) can be reduced and energy efficiency can be improved. The plurality of laminated annular steel sheets are connected by being subjected to a treatment such as pressure caulking.

図1に示すように、ロータコア50は、Z方向に延在する複数の磁石挿入孔対51,52を有する。各磁石挿入孔対51は、対をなす2つの磁石挿入孔51a,51bで構成される。磁石挿入孔51a,51bには、その孔の両端を除き略全長に亘って磁石55が挿入される。磁石55が挿入された磁石挿入孔51a,51b内には、例えば、エポキシ系樹脂などの樹脂が充填される。磁石55は樹脂によって磁石挿入孔51a,51b内に固定される。また、同様に、各磁石挿入孔対52も、対をなす2つの磁石挿入孔52a,52bで構成される。磁石挿入孔52a,52bには、その孔の両端を除き略全長に亘って磁石58が挿入される。磁石58が挿入された磁石挿入孔52a,52b内にも、例えば、エポキシ系樹脂などの樹脂が充填される。磁石58は樹脂によって磁石挿入孔52a,52b内に固定される。 As shown in FIG. 1, the rotor core 50 has a plurality of magnet insertion hole pairs 51, 52 extending in the Z direction. Each magnet insertion hole pair 51 is composed of two paired magnet insertion holes 51a and 51b. The magnet 55 is inserted into the magnet insertion holes 51a and 51b over substantially the entire length except for both ends of the holes. The magnet insertion holes 51a and 51b into which the magnet 55 is inserted are filled with a resin such as an epoxy resin, for example. The magnet 55 is fixed in the magnet insertion holes 51a and 51b by the resin. Similarly, each magnet insertion hole pair 52 is also composed of two paired magnet insertion holes 52a and 52b. The magnet 58 is inserted into the magnet insertion holes 52a and 52b over substantially the entire length except for both ends of the holes. The magnet insertion holes 52a and 52b into which the magnet 58 is inserted are also filled with a resin such as an epoxy resin. The magnet 58 is fixed in the magnet insertion holes 52a and 52b by the resin.

磁石挿入孔対51に挿入される2つの磁石55、及び磁石挿入孔対52に挿入される2つの磁石58によって1対の磁極が形成される。このような磁極の形成により、ロータ10には、N極とS極がθ方向に互い違いに形成される。 A pair of magnetic poles is formed by two magnets 55 inserted into the magnet insertion hole pair 51 and two magnets 58 inserted into the magnet insertion hole pair 52. Due to the formation of such magnetic poles, the north pole and the south pole are alternately formed in the θ direction in the rotor 10.

詳述しないが、回転電機1は、ロータ10の外周側に図示しない環状のステータを備える。ステータは、環状のヨークと、複数のティースを含み、複数のティースは、θ方向に間隔をおいて配置され、各ティースは、ヨークからR方向内方側に突出する。各ティースは、僅かな隙間を介してロータ10にR方向に対向する。ティースには、ステータコイルが巻回される。 Although not described in detail, the rotary electric machine 1 includes an annular stator (not shown) on the outer peripheral side of the rotor 10. The stator includes an annular yoke and a plurality of teeth, the plurality of teeth are arranged at intervals in the θ direction, and each tooth projects inward in the R direction from the yoke. Each tooth faces the rotor 10 in the R direction through a slight gap. A stator coil is wound around the teeth.

回転電機1を、モータとして使用する場合には、ステータコイルを通電することにより、ステータに回転磁界を発生させる。この回転磁界で磁石55,58を有するロータ10に電磁気力を作用させて、ロータ10を回転させる。他方、回転電機1を、ジェネレータとして使用する場合には、回転するロータ10の磁石55,58が生成する変動磁場によりステータコイルに誘導電流を生成し、この誘導電流を電力として外部に取り出す。 When the rotary electric machine 1 is used as a motor, a rotating magnetic field is generated in the stator by energizing the stator coil. An electromagnetic force is applied to the rotor 10 having magnets 55 and 58 by this rotating magnetic field to rotate the rotor 10. On the other hand, when the rotary electric machine 1 is used as a generator, an induced current is generated in the stator coil by the fluctuating magnetic field generated by the magnets 55 and 58 of the rotating rotor 10, and this induced current is taken out as electric power.

図2に示すように、ロータ10は、冷媒通路70を有する。冷媒通路70は、冷却油等の液体からなる冷却媒体をR方向内側から外側に流動させるために設けられる。冷媒通路70は、第1径方向延在通路部71、第2径方向延在通路部72、第1軸方向延在通路部73、周方向延在通路部74、第2軸方向延在通路部75、及び第3径方向延在通路部76を含む。 As shown in FIG. 2, the rotor 10 has a refrigerant passage 70. The refrigerant passage 70 is provided to allow a cooling medium made of a liquid such as cooling oil to flow from the inside to the outside in the R direction. The refrigerant passage 70 includes a first radial extending passage portion 71, a second radial extending passage portion 72, a first axial extending passage portion 73, a circumferential extending passage portion 74, and a second axial extending passage. A portion 75 and a third radial extending passage portion 76 are included.

第1径方向延在通路部71は、略R方向に延在してシャフト30の内周面33から外周面34まで延びる。また、第2径方向延在通路部72は、第1径方向延在通路部71のR方向外方側の端部に連通し、ロータコア50の内周面53からR方向外方側に延びる。また、第1軸方向延在通路部73は、第2径方向延在通路部72のR方向外方側の端部に連通し、その端部からZ方向一方側(紙面における下側)に延在する。また、周方向延在通路部74は、第1軸方向延在通路部73のZ方向一方側の端部に連通し、その端部からθ方向一方側に延在する。 The first radial extension passage portion 71 extends substantially in the R direction and extends from the inner peripheral surface 33 of the shaft 30 to the outer peripheral surface 34. Further, the second radial extending passage portion 72 communicates with the end portion of the first radial extending passage portion 71 on the outer side in the R direction, and extends outward from the inner peripheral surface 53 of the rotor core 50 in the R direction. .. Further, the first axial extending passage portion 73 communicates with the end portion of the second radial extending passage portion 72 on the outer side in the R direction, and is located on one side in the Z direction (lower side on the paper surface) from the end portion. It is postponed. Further, the circumferential extending passage portion 74 communicates with the end portion on one side in the Z direction of the extending passage portion 73 in the first axial direction, and extends from the end portion on one side in the θ direction.

図3は、ロータ10を、第1軸方向延在通路部73を通過すると共にR方向及びθ方向を含む平面で切断したときの部分断面図である。図3に示すように、第1軸方向延在通路部73は、ロータコア50に設けられた有底の円筒孔80にZ方向に延在する隔壁部材90を内嵌して固定することで形成される。隔壁部材90は、隔壁部の一例である。隔壁部材90は板状部材であり、隔壁部材90のR方向両側の端面91,92は円筒孔80の内周面に対応する形状の円弧面となっている。隔壁部材90は、円筒孔80の中心軸を通過し、隔壁部材90の端面91,92は、円筒孔80の中心を挟んで円筒孔80の径方向に対向する円筒孔80内周面の2箇所81,82に隙間なく当接する。隔壁部材90は、例えば、焼き嵌め、又は冷やし嵌め等の手段により円筒孔80に対して相対移動不可に固定される。隔壁部材90は、図3に示す断面図において円筒孔80の内側領域を略同じ面積の2つの領域に分断する。2つの平面領域のうちの一方は、第1軸方向延在通路部73に含まれ、他方は、第2軸方向延在通路部75に含まれる。 FIG. 3 is a partial cross-sectional view of the rotor 10 when it passes through the extending passage portion 73 in the first axial direction and is cut in a plane including the R direction and the θ direction. As shown in FIG. 3, the first axial extending passage portion 73 is formed by internally fitting and fixing a partition wall member 90 extending in the Z direction into a bottomed cylindrical hole 80 provided in the rotor core 50. Will be done. The partition member 90 is an example of the partition portion. The partition member 90 is a plate-shaped member, and the end surfaces 91 and 92 on both sides of the partition member 90 in the R direction are arc surfaces having a shape corresponding to the inner peripheral surface of the cylindrical hole 80. The partition member 90 passes through the central axis of the cylindrical hole 80, and the end faces 91 and 92 of the partition member 90 are 2 on the inner peripheral surface of the cylindrical hole 80 facing the center of the cylindrical hole 80 in the radial direction. It abuts at locations 81 and 82 without gaps. The partition wall member 90 is fixed to the cylindrical hole 80 so as not to move relative to the cylindrical hole 80 by means such as shrink fitting or cold fitting. The partition member 90 divides the inner region of the cylindrical hole 80 into two regions having substantially the same area in the cross-sectional view shown in FIG. One of the two plane regions is included in the first axial extending passage portion 73, and the other is included in the second axial extending passage portion 75.

図4は、隔壁部材90の厚さ方向の中心を通過する平面でロータ10を切断したときの、円筒孔80周辺かつZ方向一方側の断面図である。図4に示すように、隔壁部材90のZ方向一方側の端面91は、円筒孔80の底面84に隙間を介してZ方向に対向し、その結果、周方向延在通路部74が円筒孔80のZ方向一方側に設けられる。周方向延在通路部74は、θ方向に延在する。周方向延在通路部74の長さは、隔壁部材90の厚さに略一致する。 FIG. 4 is a cross-sectional view of the periphery of the cylindrical hole 80 and one side in the Z direction when the rotor 10 is cut on a plane passing through the center of the partition wall member 90 in the thickness direction. As shown in FIG. 4, the end surface 91 on one side of the partition wall member 90 in the Z direction faces the bottom surface 84 of the cylindrical hole 80 in the Z direction through a gap, and as a result, the circumferential extending passage portion 74 is formed in the cylindrical hole. It is provided on one side of the 80 in the Z direction. The circumferential extension passage portion 74 extends in the θ direction. The length of the circumferential extending passage portion 74 substantially matches the thickness of the partition wall member 90.

再度、図2を参照して、第2軸方向延在通路部75は、周方向延在通路部74のθ方向一方側の端部に連通し、その端部からZ方向他方側(図2の紙面における上側)に延在する。また、第3径方向延在通路部76は、第2軸方向延在通路部75のZ方向他方側の端部に連通し、その端部からロータコア50の外周面までR方向外方側に延在する。円筒孔80は、ロータコア50に設けられてZ方向に延在する冷媒通路を構成し、第1軸方向延在通路部73、周方向延在通路部74、及び第2軸方向延在通路部75は、内側冷媒通路79を構成する。内側冷媒通路79は、円筒孔80の流路長の略2倍の流路長を有する。内側冷媒通路79は、隔壁部材90を円筒孔80の内面に内嵌して固定することで円筒孔80内に形成される。 Again, referring to FIG. 2, the second axial extending passage portion 75 communicates with one end of the circumferential extending passage portion 74 in the θ direction, and from that end to the other side in the Z direction (FIG. 2). Extends to the upper side of the paper. Further, the third radial extending passage portion 76 communicates with the end portion of the second axial extending passage portion 75 on the other side in the Z direction, and extends outward in the R direction from the end portion to the outer peripheral surface of the rotor core 50. It is postponed. The cylindrical hole 80 is provided in the rotor core 50 and constitutes a refrigerant passage extending in the Z direction, and includes a first axial extending passage portion 73, a circumferential extending passage portion 74, and a second axial extending passage portion. Reference numeral 75 constitutes an inner refrigerant passage 79. The inner refrigerant passage 79 has a flow path length that is approximately twice the flow path length of the cylindrical hole 80. The inner refrigerant passage 79 is formed in the cylindrical hole 80 by fitting and fixing the partition member 90 inwardly on the inner surface of the cylindrical hole 80.

隔壁部材90は、絶縁性を有する材料で構成され、電流が隔壁部材90を通じてZ方向に隣り合う電磁鋼鈑間に流れることがない。よって、隔壁部材90を挿入しても鉄損が大きくなることを防止できる。隔壁部材90を構成する絶縁材料としては、[表1]に示すセラミックスや[表2]に示すプラスチック(樹脂)を好適に使用できる。 The partition member 90 is made of a material having an insulating property, and current does not flow between the electromagnetic steel plates adjacent to each other in the Z direction through the partition member 90. Therefore, even if the partition member 90 is inserted, it is possible to prevent the iron loss from becoming large. As the insulating material constituting the partition wall member 90, the ceramics shown in [Table 1] and the plastic (resin) shown in [Table 2] can be preferably used.

Figure 0006888514
Figure 0006888514
Figure 0006888514
Figure 0006888514

隔壁部材90を構成する他の好適な絶縁材料としては、大理石、ダイヤモンド、マイカ、又は乾いた木材等が挙げられる。又は、隔壁部材90は、絶縁材料のみで形成されなくてもよく、金属等の導電性材料の表面に絶縁処理を施すことで形成されてもよい。絶縁処理としては、[表1]や[表2]に記載された材料の絶縁コーティングや、絶縁シート、例えば、紙、ゴム、又はビニール等の導電性材料の表面への貼り付けを好適に採用できる。 Other suitable insulating materials constituting the partition member 90 include marble, diamond, mica, dry wood and the like. Alternatively, the partition wall member 90 does not have to be formed only of the insulating material, and may be formed by subjecting the surface of a conductive material such as metal to an insulating treatment. As the heat insulating treatment, the insulating coating of the materials described in [Table 1] and [Table 2] and the sticking to the surface of an insulating sheet, for example, a conductive material such as paper, rubber, or vinyl are preferably adopted. it can.

上記構成において、冷却媒体は、回転電機1の外部に設けられてポンプ等を含む冷媒供給源(図示せず)からシャフト30の貫通孔31に供給される。貫通孔31に供給された冷却媒体の一部は、冷媒通路70内に導入され、冷媒通路70内を、第1径方向延在通路部71、第2径方向延在通路部72、第1軸方向延在通路部73、周方向延在通路部74、第2軸方向延在通路部75、及び第3径方向延在通路部76の順に、図2に矢印Bに示す方向に流動し、冷媒通路70の第3径方向延在通路部76からロータ10とステータのギャップに放出される。ギャップGに放出された冷却媒体は、ギャップG内を進んだ後、回転電機のケースの底部に落下する。他方、貫通孔31に導入されてギャップに放出されない冷却媒体は、シャフト30のZ方向片側から外部へと放出され、ケースの底部に落下する。ケースの底部に落下した冷却媒体は、ケースの底部又は別の部分で冷却された後、冷媒供給源に戻される。 In the above configuration, the cooling medium is supplied to the through hole 31 of the shaft 30 from a refrigerant supply source (not shown) provided outside the rotary electric machine 1 and including a pump or the like. A part of the cooling medium supplied to the through hole 31 is introduced into the refrigerant passage 70, and the inside of the refrigerant passage 70 is the first radial extending passage portion 71, the second radial extending passage portion 72, and the first. Axial extending passage 73, circumferential extending passage 74, second axial extending passage 75, and third radial extending passage 76 flow in the order shown by arrow B in FIG. , Is discharged from the third radial extending passage portion 76 of the refrigerant passage 70 into the gap between the rotor 10 and the stator. The cooling medium discharged into the gap G travels in the gap G and then falls to the bottom of the case of the rotary electric machine. On the other hand, the cooling medium introduced into the through hole 31 and not discharged into the gap is discharged to the outside from one side in the Z direction of the shaft 30 and falls to the bottom of the case. The cooling medium that has fallen to the bottom of the case is cooled at the bottom of the case or another part, and then returned to the refrigerant supply source.

上記実施形態によれば、ロータコア50に設けられてZ方向に延在する円筒孔80の内面に隔壁部材90が内嵌されて固定される。したがって、円筒孔80の内面の少なくとも一部が隔壁部材90によって拘束され、その部分が変形しにくくなる。よって、円筒孔80周辺箇所の強度を大きくでき、ロータコア50の強度不足を抑制できる。 According to the above embodiment, the partition member 90 is internally fitted and fixed to the inner surface of the cylindrical hole 80 provided in the rotor core 50 and extending in the Z direction. Therefore, at least a part of the inner surface of the cylindrical hole 80 is restrained by the partition member 90, and that part is less likely to be deformed. Therefore, the strength of the portion around the cylindrical hole 80 can be increased, and the insufficient strength of the rotor core 50 can be suppressed.

更には、隔壁部材90を円筒孔80に内嵌して固定することで、円筒孔の流路長より長い流路長を有する内側冷媒通路79を円筒孔80内に画定できる。したがって、内側冷媒通路79の流路面積(冷媒が通過する流路に垂直な断面の面積)を円筒孔80の流路面積よりも小さくでき、内側冷媒通路79を通過する冷却媒体の流速を、隔壁部材90を挿入しない場合に円筒孔80を通過する冷却媒体の流速よりも速くできる。よって、冷却媒体の流動によるロータコア50の冷却効率を高くできる。 Further, by fitting and fixing the partition wall member 90 in the cylindrical hole 80, the inner refrigerant passage 79 having a flow path length longer than the flow path length of the cylindrical hole can be defined in the cylindrical hole 80. Therefore, the flow path area of the inner refrigerant passage 79 (the area of the cross section perpendicular to the flow path through which the refrigerant passes) can be made smaller than the flow path area of the cylindrical hole 80, and the flow velocity of the cooling medium passing through the inner refrigerant passage 79 can be adjusted. It can be faster than the flow velocity of the cooling medium passing through the cylindrical hole 80 when the partition member 90 is not inserted. Therefore, the cooling efficiency of the rotor core 50 due to the flow of the cooling medium can be increased.

尚、本発明は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。 The present invention is not limited to the above-described embodiment and its modifications, and various improvements and modifications can be made within the scope of the claims of the present application and the equivalent scope thereof.

例えば、上記実施形態では、円筒孔(ロータコアに設けられたZ方向に延在する冷媒通路)80を、θ方向及びR方向を含む平面で切断したときの断面において、隔壁部材90が円筒孔80を略同一の面積を有する2つの領域に分断する場合について説明した。しかし、図5、すなわち、第1変形例のロータ110における図3に対応する断面図に示すように、隔壁部の一例としての隔壁部材190は、θ方向及びR方向を含む平面で切断したときの断面において、ロータコア150に設けられたZ方向に延在する冷媒通路(以下、元冷媒通路という)180を3つの略同一の面積領域181,182,183に分断してもよく、元冷媒通路180内に3つの軸方向延在通路部185,186,187を形成してもよい。この場合、例えば、第1軸方向延在通路部185のZ方向一方側の端部と、第2軸方向延在通路部186のZ方向一方側の端部を連通させ、第2軸方向延在通路部186のZ方向他方側の端部と第3軸方向延在通路部187のZ方向他方側の端部を連通させる。 For example, in the above embodiment, the partition wall member 90 has a cylindrical hole 80 in a cross section when a cylindrical hole (a refrigerant passage extending in the Z direction provided in the rotor core) 80 is cut in a plane including the θ direction and the R direction. Was divided into two regions having substantially the same area. However, as shown in FIG. 5, that is, the cross-sectional view corresponding to FIG. 3 in the rotor 110 of the first modification, when the partition member 190 as an example of the partition is cut in a plane including the θ direction and the R direction. In the cross section of the above, the refrigerant passage (hereinafter referred to as the original refrigerant passage) 180 provided in the rotor core 150 in the Z direction may be divided into three substantially the same area regions 181, 182, 183, and the original refrigerant passage may be divided. Three axially extending passage portions 185, 186, 187 may be formed in 180. In this case, for example, the end of the first axial extending passage portion 185 on one side in the Z direction and the end of the second axial extending passage portion 186 on one side in the Z direction are communicated with each other to extend in the second axial direction. The end of the existing passage portion 186 on the other side in the Z direction and the end portion of the third axial extending passage portion 187 on the other side in the Z direction are communicated with each other.

本変形例によれば、隔壁部材190で元冷媒通路180の内周面の3箇所を拘束(支持)することができるので、元冷媒通路180周辺の剛性を更に高くできる。また、上述の3つの軸方向延在通路部185,186,187の連結で、元冷媒通路180内に形成される内側冷媒通路179の流路長を、元冷媒通路180の流路長の略3倍とできる。よって、内側冷媒通路179を流れる冷却媒体の速さを更に速くでき、冷却媒体による冷却効率を更に上昇させることができる。なお、隔壁部材が、θ方向及びR方向を含む平面で切断したときの断面において元冷媒通路を4以上の略同一の面積領域に分断してもよく、元冷媒通路内に4以上の軸方向延在通路部を形成してもよい。 According to this modification, since the partition wall member 190 can restrain (support) three points on the inner peripheral surface of the original refrigerant passage 180, the rigidity around the original refrigerant passage 180 can be further increased. Further, the flow path length of the inner refrigerant passage 179 formed in the original refrigerant passage 180 by connecting the above-mentioned three axial extending passage portions 185, 186, 187 is abbreviated as the flow path length of the original refrigerant passage 180. It can be tripled. Therefore, the speed of the cooling medium flowing through the inner refrigerant passage 179 can be further increased, and the cooling efficiency by the cooling medium can be further increased. The original refrigerant passage may be divided into four or more substantially the same area regions in the cross section when the partition wall member is cut in a plane including the θ direction and the R direction, and the original refrigerant passage may be divided into four or more axial directions. An extended passage portion may be formed.

また、元冷媒通路に隔壁部材の取付部を2箇所以上設けて、隔壁部材の2箇所以上の被取付部をその2箇所以上の取付部に取り付けることで元冷媒通路に対する隔壁部材の相対移動を防止すると共に、隔壁部材による元冷媒通路の変形抑制効果を各段に大きくしてもよい。 Further, by providing two or more mounting portions of the partition wall member in the original refrigerant passage and attaching two or more mounting portions of the partition wall member to the two or more mounting portions, the relative movement of the partition wall member with respect to the original refrigerant passage can be performed. In addition to preventing this, the effect of suppressing the deformation of the original refrigerant passage by the partition member may be increased in each stage.

例えば、図6、すなわち、第2変形例のロータ210における図3に対応する断面図に示すように、隔壁部の一例としての隔壁部材290が、断面図においてH字状の形状を有してもよく。元冷媒通路280が、円筒孔部281と、それに連通する2つの断面略T字状の取付凹部282,283を含んでもよい。そして、2つの断面略T字状の取付凹部282,283を、円筒孔部281の径方向に対向するように配置し、略断面H字状の隔壁部材290の両端部291,292を断面略T字状の取付凹部282,283に隙間なく嵌合させてもよい。この場合、ロータコア250において円筒孔部281と取付凹部282,283とで挟まれている部分251を、隔壁部材290の両端部291,292で円筒孔部281側に押え付けることができる。よって、隔壁部材290による元冷媒通路280の変形抑制効果を各段に大きくできる。断面略T字状の取付凹部282,283は、元冷媒通路の取付部を構成し、取付凹部282,283に嵌め込まれる隔壁部材290の両端部291,292は、隔壁部材の被取付部を構成する。 For example, as shown in FIG. 6, that is, the cross-sectional view of the rotor 210 of the second modification, which corresponds to FIG. 3, the partition wall member 290 as an example of the partition wall portion has an H-shaped shape in the cross-sectional view. Well. The original refrigerant passage 280 may include a cylindrical hole 281 and two substantially T-shaped mounting recesses 282,283 communicating with the cylindrical hole 281. Then, the two mounting recesses 282, 283 having a substantially T-shaped cross section are arranged so as to face each other in the radial direction of the cylindrical hole portion 281, and both ends 291, 292 of the partition member 290 having a substantially H-shaped cross section are substantially cross-sectioned. It may be fitted tightly into the T-shaped mounting recesses 282 and 283. In this case, the portion 251 sandwiched between the cylindrical hole portion 281 and the mounting recesses 282, 283 in the rotor core 250 can be pressed against the cylindrical hole portion 281 side by both end portions 291, 292 of the partition wall member 290. Therefore, the deformation suppressing effect of the original refrigerant passage 280 by the partition member 290 can be greatly increased in each stage. The mounting recesses 282, 283 having a substantially T-shaped cross section constitute the mounting portion of the original refrigerant passage, and the both end portions 291, 292 of the partition wall member 290 fitted into the mounting recesses 282, 283 form the mounting portion of the partition wall member. To do.

また、図7、すなわち、第3変形例のロータ310における図3に対応する断面図に示すように、元冷媒通路380の取付部は、円筒孔部381から径方向の外方に離れるにしたがって末広がりとなる取付凹部382,383であってもよく、隔壁部の一例としての隔壁部材390の被取付部は、取付凹部382,383に対応する形状の部分391,392であり、Z方向に延在する隔壁部材390の幅方向の両端部に設けられてもよい。 Further, as shown in FIG. 7, that is, the cross-sectional view corresponding to FIG. 3 in the rotor 310 of the third modification, the mounting portion of the original refrigerant passage 380 is gradually separated from the cylindrical hole portion 381 in the radial direction. The mounting recesses 382,383 that expand toward the end may be used, and the mounted portion of the partition wall member 390 as an example of the partition wall portion is a portion 391,392 having a shape corresponding to the mounting recesses 382,383 and extends in the Z direction. It may be provided at both ends in the width direction of the existing partition member 390.

要は、元冷媒通路に設けられる2以上の取付部の夫々は、それに取り付けられる隔壁部材の被取付部がロータコアに対してZ方向にしか相対移動できず、2以上の取付部で元冷媒通路に対する隔壁部材の相対回転を防止できる形状であれば如何なる形状であってもよい。なお、図7及び図8に示す例では、元冷媒通路に2つの取付部を設ける場合について説明したが、元冷媒通路に3以上の取付部を設けてもよく、元冷媒通路に3以上の軸方向延在通路部を設けてもよい。 In short, in each of the two or more mounting portions provided in the original refrigerant passage, the mounted portion of the partition wall member attached to the original refrigerant passage can move relative to the rotor core only in the Z direction, and the two or more mounting portions have the original refrigerant passage. Any shape may be used as long as it can prevent the relative rotation of the partition wall member with respect to the relative rotation. In the examples shown in FIGS. 7 and 8, the case where two mounting portions are provided in the original refrigerant passage has been described, but three or more mounting portions may be provided in the original refrigerant passage, and three or more mounting portions may be provided in the original refrigerant passage. Axial extending passages may be provided.

また、図8、すなわち、第4変形例のロータ410における図3に対応する断面図に示すように、隔壁部の一例としての隔壁部材490が、元冷媒通路としての円筒孔480の内周面に隙間なく内嵌されて固定される円環状部491を有してもよい。第3変形例のロータ410によれば、隔壁部材490の円環状部491で円筒孔480の内周面を全周に亘って拘束(支持)できる。よって、ロータコア450における円筒孔480周辺箇所の変形を効果的に抑制できる。 Further, as shown in FIG. 8, that is, the cross-sectional view corresponding to FIG. 3 in the rotor 410 of the fourth modification, the partition member 490 as an example of the partition is the inner peripheral surface of the cylindrical hole 480 as the original refrigerant passage. It may have an annular portion 491 that is fitted and fixed to the inside without a gap. According to the rotor 410 of the third modification, the inner peripheral surface of the cylindrical hole 480 can be restrained (supported) over the entire circumference by the annular portion 491 of the partition member 490. Therefore, the deformation of the portion around the cylindrical hole 480 in the rotor core 450 can be effectively suppressed.

また、上記実施形態では、図4に示すように、2つの第1及び第2軸方向延在通路部73,75(図3参照)を、流路の断面形状が矩形の周方向延在通路部74で連通する場合について説明した。しかし、図9、すなわち、第5変形例のロータ510における図4に対応する断面図に示すように、2つの軸方向延在通路部を連通する連通通路部574の流路の断面形状は、矩形でなくて、円形でもよく、それ以外の如何なる形状でもよい。 Further, in the above embodiment, as shown in FIG. 4, the two first and second axial extending passage portions 73,75 (see FIG. 3) are provided with a circumferential extending passage having a rectangular cross-sectional shape. The case of communicating in section 74 has been described. However, as shown in FIG. 9, that is, the cross-sectional view corresponding to FIG. 4 in the rotor 510 of the fifth modification, the cross-sectional shape of the flow path of the communication passage portion 574 communicating the two axial extending passage portions is. It may be circular instead of rectangular, and may have any other shape.

また、図10に示すように、隔壁部の一例としての隔壁部材690を、螺旋状のフランジ691が設けられた棒状部材で構成してもよい。また、螺旋状のフランジ691において最も径方向の外方に位置する箇所が内周面に接触するような円筒孔を、Z方向に延在するようにロータコアに形成してもよく、元冷媒通路としてもよい。そして、隔壁部材690を円筒孔に内嵌して固定することで、円筒孔の内周面とZ方向に隣り合うフランジで螺旋状の内側冷媒通路を円筒孔内に画定してもよい。本変形例によれば、冷却媒体の流れの向きが大きく変化する箇所が内側冷媒通路内に存在しない。よって、冷却媒体が内側冷媒通路内を円滑に流動し易く、冷却媒体の流速を速くし易い。 Further, as shown in FIG. 10, the partition wall member 690 as an example of the partition wall portion may be composed of a rod-shaped member provided with a spiral flange 691. Further, a cylindrical hole in the spiral flange 691 such that the outermost portion in the radial direction contacts the inner peripheral surface may be formed in the rotor core so as to extend in the Z direction, and the original refrigerant passage may be formed. May be. Then, by fitting the partition wall member 690 into the cylindrical hole and fixing it, a spiral inner refrigerant passage may be defined in the cylindrical hole by a flange adjacent to the inner peripheral surface of the cylindrical hole in the Z direction. According to this modification, there is no place in the inner refrigerant passage where the direction of the flow of the cooling medium changes significantly. Therefore, the cooling medium can easily flow smoothly in the inner refrigerant passage, and the flow velocity of the cooling medium can be easily increased.

また、隔壁部を隔壁部材90,190,290,390,490,690で構成して、ロータコア50,150,250,450の元冷媒通路180,280,380に内嵌して固定する場合について説明した。しかし、隔壁部を隔壁部材で構成し、その隔壁部材を元冷媒通路の内側に摺動可能な状態で接触するように配置してもよい。又は、隔壁部は、ロータコアと一体に成形されてもよく、この場合、隔壁部は、例えばプレス成形等で容易に形成できる。 Further, a case will be described in which the partition wall portion is composed of partition wall members 90,190,290,390,490,690 and internally fitted and fixed in the original refrigerant passages 180,280,380 of the rotor cores 50,150,250,450. did. However, the partition wall portion may be composed of a partition wall member, and the partition wall member may be arranged so as to be slidably contacted inside the original refrigerant passage. Alternatively, the partition wall portion may be formed integrally with the rotor core, and in this case, the partition wall portion can be easily formed by, for example, press molding.

また、円筒孔80,480や元冷媒通路180,280,380(ロータコアに設けられて軸方向の一方側から他方側に延びる冷媒通路)がZ方向に延在する場合について説明した。しかし、ロータコアに設けられる冷媒通路は、Z方向に傾斜する直線方向に延在してもよい。又は、ロータコアに設けられる冷媒通路は、湾曲した通路でZ方向の一方側から他方側に延在してもよい。ロータコアに設けられる冷媒通路は、Z方向の一方側から他方側に延在する通路であれば如何なる通路でもよい。 Further, a case where the cylindrical holes 80,480 and the original refrigerant passages 180,280,380 (refrigerant passages provided in the rotor core and extending from one side in the axial direction to the other side) extend in the Z direction has been described. However, the refrigerant passage provided in the rotor core may extend in a linear direction inclined in the Z direction. Alternatively, the refrigerant passage provided in the rotor core may extend from one side in the Z direction to the other side in a curved passage. The refrigerant passage provided in the rotor core may be any passage as long as it extends from one side in the Z direction to the other side.

1 回転電機、 10,110,210,310,410,510 ロータ、 30 シャフト、 50,150,250,450 ロータコア、 79,179 内側冷媒通路、 80,480 円筒孔(軸方向の一方側から他方側に延びる冷媒通路)、 90,190,290,390,490,690 隔壁部材、 180,280,380 元冷媒通路(軸方向の一方側から他方側に延びる冷媒通路)、 R方向 ロータの径方向、 θ方向 ロータの周方向、 Z方向 ロータの軸方向。 1 rotary electric machine, 10,110,210,310,410,510 rotor, 30 shaft, 50,150,250,450 rotor core, 79,179 inner refrigerant passage, 80,480 cylindrical hole (one side to the other side in the axial direction) Refrigerant passage extending to), 90,190,290,390,490,690 partition member, 180,280,380 original refrigerant passage (refrigerant passage extending from one side in the axial direction to the other side), radial direction of the rotor in the R direction, θ direction Rotor circumferential direction, Z direction Rotor axial direction.

Claims (1)

シャフトと、
前記シャフトの外周面に固定され、積層された電磁鋼鈑を含むロータコアと、
を備え、
前記ロータコアには、冷却媒体が流動すると共に軸方向の一方側から他方側に延びる有底の冷媒通路が設けられ、
前記冷媒通路の内側に設けられて流路が前記冷媒通路より長い内側冷媒通路を前記冷媒通路内に画定する隔壁部を有し、
前記内側冷媒通路が、前記軸方向に延在する2以上の軸方向延在通路部と、前記冷媒通路における前記軸方向の底側の端部において2つの前記軸方向延在通路部を連通させる連通通路部とを少なくとも含み、
前記冷媒通路が、円筒孔部と、その円筒孔部から径方向に延在して前記円筒孔部に連通する2以上の取付凹部とを有し、
前記隔壁部が、前記2以上の取付凹部に対応する形状を有すると共に前記2以上の取付凹部に嵌合する2以上の端部を有する、回転電機のロータ。
With the shaft
A rotor core containing an electromagnetic steel plate fixed and laminated on the outer peripheral surface of the shaft, and
With
The rotor core is provided with a bottomed refrigerant passage that flows from one side in the axial direction to the other side as the cooling medium flows.
It has a partition wall provided inside the refrigerant passage and defines an inner refrigerant passage in which the flow path is longer than the refrigerant passage in the refrigerant passage.
The inner refrigerant passage communicates two or more axially extending passages extending in the axial direction with the two axially extending passages at the axially bottom end of the refrigerant passage. at least look including a communicating passage portion,
The refrigerant passage has a cylindrical hole portion and two or more mounting recesses extending radially from the cylindrical hole portion and communicating with the cylindrical hole portion.
A rotor of a rotary electric machine, wherein the partition wall has a shape corresponding to the two or more mounting recesses and has two or more ends that fit into the two or more mounting recesses.
JP2017201801A 2017-10-18 2017-10-18 Rotating machine rotor Active JP6888514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017201801A JP6888514B2 (en) 2017-10-18 2017-10-18 Rotating machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201801A JP6888514B2 (en) 2017-10-18 2017-10-18 Rotating machine rotor

Publications (2)

Publication Number Publication Date
JP2019075932A JP2019075932A (en) 2019-05-16
JP6888514B2 true JP6888514B2 (en) 2021-06-16

Family

ID=66545231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201801A Active JP6888514B2 (en) 2017-10-18 2017-10-18 Rotating machine rotor

Country Status (1)

Country Link
JP (1) JP6888514B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501952B (en) * 2012-10-09 2014-03-26 Integral Powertrain Ltd A motor and a method of cooling a motor
JP6079733B2 (en) * 2014-09-03 2017-02-15 トヨタ自動車株式会社 Rotating electrical machine rotor
JP2017046545A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Rotary electric machine rotor
JP2017163688A (en) * 2016-03-09 2017-09-14 本田技研工業株式会社 Rotor

Also Published As

Publication number Publication date
JP2019075932A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP6592296B2 (en) Brushless DC motor and its rotor
JP7131564B2 (en) Rotors, motors and electric power steering devices
JP2007074776A (en) Rotating electric machine
CN105814779A (en) Embedded permanent magnet-type rotating electrical machine
US10483817B2 (en) Rotor for an electric motor including a structure for retaining rotor segments and permanent magnets on a hub thereof
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
JP2011139617A (en) Rotary electric machine
JP2015053831A (en) Rotor of rotating electrical machine
JP2015089178A (en) Rotary electric machine embedded with permanent magnet
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP6940965B2 (en) IPM rotor and rotary machine
JP2009219312A (en) Rotating electric machine and spindle unit using same
JP2012019623A (en) Rotor core
JP2020096474A (en) Rotor of rotary electric machine
JP7275436B2 (en) Rotors, motors and electric power steering devices
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JP7235042B2 (en) Rotors, motors and electric power steering devices
JP6888514B2 (en) Rotating machine rotor
JP2009106001A (en) Rotary electric machine
JP5959616B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP6148206B2 (en) Rotor for rotating electrical machines
JP6857514B2 (en) Rotating machine stator
KR102600791B1 (en) Flux concentrata type rotor and motor having the same
JP6946120B2 (en) Axial gap type rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210312

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210323

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R151 Written notification of patent or utility model registration

Ref document number: 6888514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151