JP6886883B2 - Manufacturing method of styrene resin - Google Patents
Manufacturing method of styrene resin Download PDFInfo
- Publication number
- JP6886883B2 JP6886883B2 JP2017142147A JP2017142147A JP6886883B2 JP 6886883 B2 JP6886883 B2 JP 6886883B2 JP 2017142147 A JP2017142147 A JP 2017142147A JP 2017142147 A JP2017142147 A JP 2017142147A JP 6886883 B2 JP6886883 B2 JP 6886883B2
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- weight
- polymerization
- resin
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title claims description 516
- 229920005989 resin Polymers 0.000 title claims description 159
- 239000011347 resin Substances 0.000 title claims description 159
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000002245 particle Substances 0.000 claims description 140
- 238000006116 polymerization reaction Methods 0.000 claims description 91
- 238000005470 impregnation Methods 0.000 claims description 70
- 239000012736 aqueous medium Substances 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 47
- 239000000178 monomer Substances 0.000 claims description 30
- 239000003505 polymerization initiator Substances 0.000 claims description 28
- 150000001451 organic peroxides Chemical class 0.000 claims description 23
- 239000006185 dispersion Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 230000000977 initiatory effect Effects 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 28
- 239000004793 Polystyrene Substances 0.000 description 21
- 238000005259 measurement Methods 0.000 description 21
- 239000000155 melt Substances 0.000 description 21
- 238000000569 multi-angle light scattering Methods 0.000 description 19
- 229920002223 polystyrene Polymers 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 14
- 238000005227 gel permeation chromatography Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- -1 alkylbenzene sulfonates Chemical class 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 208000034628 Celiac artery compression syndrome Diseases 0.000 description 11
- 239000004094 surface-active agent Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000004088 simulation Methods 0.000 description 10
- 239000000375 suspending agent Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011342 resin composition Substances 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 238000006356 dehydrogenation reaction Methods 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000004817 gas chromatography Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000001879 gelation Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- JXCAHDJDIAQCJO-UHFFFAOYSA-N (1-tert-butylperoxy-2-ethylhexyl) hydrogen carbonate Chemical compound CCCCC(CC)C(OC(O)=O)OOC(C)(C)C JXCAHDJDIAQCJO-UHFFFAOYSA-N 0.000 description 5
- 239000003945 anionic surfactant Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 5
- BRQMAAFGEXNUOL-UHFFFAOYSA-N 2-ethylhexyl (2-methylpropan-2-yl)oxy carbonate Chemical compound CCCCC(CC)COC(=O)OOC(C)(C)C BRQMAAFGEXNUOL-UHFFFAOYSA-N 0.000 description 4
- 239000006085 branching agent Substances 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 229940078499 tricalcium phosphate Drugs 0.000 description 4
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 4
- 235000019731 tricalcium phosphate Nutrition 0.000 description 4
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 3
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007771 core particle Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MEBONNVPKOBPEA-UHFFFAOYSA-N 1,1,2-trimethylcyclohexane Chemical compound CC1CCCCC1(C)C MEBONNVPKOBPEA-UHFFFAOYSA-N 0.000 description 2
- LGNQGTFARHLQFB-UHFFFAOYSA-N 1-dodecyl-2-phenoxybenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1OC1=CC=CC=C1 LGNQGTFARHLQFB-UHFFFAOYSA-N 0.000 description 2
- BQARUDWASOOSRH-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-yl hydrogen carbonate Chemical compound CC(C)(C)OOC(C)(C)OC(O)=O BQARUDWASOOSRH-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 2
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000010813 internal standard method Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical group C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- HCXVPNKIBYLBIT-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 3,5,5-trimethylhexaneperoxoate Chemical compound CC(C)(C)CC(C)CC(=O)OOOC(C)(C)C HCXVPNKIBYLBIT-UHFFFAOYSA-N 0.000 description 1
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- VBQCFYPTKHCPGI-UHFFFAOYSA-N 1,1-bis(2-methylpentan-2-ylperoxy)cyclohexane Chemical compound CCCC(C)(C)OOC1(OOC(C)(C)CCC)CCCCC1 VBQCFYPTKHCPGI-UHFFFAOYSA-N 0.000 description 1
- VTEYUPDBOLSXCD-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-2-methylcyclohexane Chemical compound CC1CCCCC1(OOC(C)(C)C)OOC(C)(C)C VTEYUPDBOLSXCD-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- OTMBZPVYOQYPBE-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclododecane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCCCCCCCC1 OTMBZPVYOQYPBE-UHFFFAOYSA-N 0.000 description 1
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 1
- DPGYCJUCJYUHTM-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-yloxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)CC(C)(C)C DPGYCJUCJYUHTM-UHFFFAOYSA-N 0.000 description 1
- ZLRFPQPVXRIBCQ-UHFFFAOYSA-N 2-$l^{1}-oxidanyl-2-methylpropane Chemical compound CC(C)(C)[O] ZLRFPQPVXRIBCQ-UHFFFAOYSA-N 0.000 description 1
- CHKCPIUYSMYEEW-UHFFFAOYSA-N 2-(2-cyclohexylpropan-2-ylperoxy)-2-ethylhexanoic acid Chemical compound CCCCC(CC)(C(O)=O)OOC(C)(C)C1CCCCC1 CHKCPIUYSMYEEW-UHFFFAOYSA-N 0.000 description 1
- WAVTZYKJTMZICQ-UHFFFAOYSA-N 2-(2-methylbutan-2-ylperoxy)propan-2-yl hydrogen carbonate Chemical compound CCC(C)(C)OOC(C)(C)OC(O)=O WAVTZYKJTMZICQ-UHFFFAOYSA-N 0.000 description 1
- IEMBFTKNPXENSE-UHFFFAOYSA-N 2-(2-methylpentan-2-ylperoxy)propan-2-yl hydrogen carbonate Chemical compound CCCC(C)(C)OOC(C)(C)OC(O)=O IEMBFTKNPXENSE-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- SKVOYPCECYQZAI-UHFFFAOYSA-N 2-ethylhexyl 2-methylbutan-2-ylperoxy carbonate Chemical compound CCCCC(CC)COC(=O)OOOC(C)(C)CC SKVOYPCECYQZAI-UHFFFAOYSA-N 0.000 description 1
- IFXDUNDBQDXPQZ-UHFFFAOYSA-N 2-methylbutan-2-yl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CC IFXDUNDBQDXPQZ-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- NFWPZNNZUCPLAX-UHFFFAOYSA-N 4-methoxy-3-methylaniline Chemical compound COC1=CC=C(N)C=C1C NFWPZNNZUCPLAX-UHFFFAOYSA-N 0.000 description 1
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- JUIBLDFFVYKUAC-UHFFFAOYSA-N [5-(2-ethylhexanoylperoxy)-2,5-dimethylhexan-2-yl] 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C(CC)CCCC JUIBLDFFVYKUAC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- UPIWXMRIPODGLE-UHFFFAOYSA-N butyl benzenecarboperoxoate Chemical compound CCCCOOC(=O)C1=CC=CC=C1 UPIWXMRIPODGLE-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
Images
Landscapes
- Graft Or Block Polymers (AREA)
Description
本発明は、スチレン系樹脂の製造方法に関する。 The present invention relates to a method for producing a styrene resin.
スチレン系樹脂は、寸法安定性、成形安定性などに優れ、剛性が高く、安価なことから、種々の成形品の原料として用いられている。一般に、スチレン系樹脂の分子量を高めることで、樹脂の溶融張力を高めることができるが、高分子量であるほど、樹脂の流動性が低下し、成形加工性及び生産性が低下し易かった。
かかる問題を解消するために、種々の試みが行われている。
Styrene-based resins are used as raw materials for various molded products because they are excellent in dimensional stability, molding stability, etc., have high rigidity, and are inexpensive. Generally, by increasing the molecular weight of the styrene-based resin, the melt tension of the resin can be increased, but the higher the molecular weight, the lower the fluidity of the resin, and the more easily the moldability and productivity are lowered.
Various attempts have been made to solve this problem.
例えば、線状ポリスチレンと多分岐状ポリスチレンとを含有してなるスチレン系樹脂組成物であって、(1)そのGPC−MALLS法により求められる重量平均分子量(絶対重量平均分子量)が25万〜75万であり、(2)該重量平均分子量を横軸とし、又GPC−MALLSにより求められる該樹脂組成物の慣性半径を縦軸とした対数グラフに於ける傾きが0.35〜0.45となるスチレン系樹脂組成物を用いて、溶融張力が高く、流動性が高く、深さと開口部との比の広い範囲の容器を製造することが開示されている(例えば、特許文献1参照)。 For example, it is a styrene resin composition containing linear polystyrene and multi-branched polystyrene, and (1) the weight average molecular weight (absolute weight average molecular weight) obtained by the GPC-MALLS method is 250,000 to 75. (2) The slope in the logarithmic graph with the weight average molecular weight as the horizontal axis and the inertial radius of the resin composition obtained by GPC-MALLS as the vertical axis is 0.35 to 0.45. It is disclosed that a styrene-based resin composition obtained from the above is used to produce a container having a high melt tension, high fluidity, and a wide range of depth to opening ratio (see, for example, Patent Document 1).
スチレン系樹脂の高分子量化以外に、樹脂の溶融張力を高める方法として、ポリスチレン系樹脂の分子鎖を分岐状にすることも知られている。しかし、分子鎖を分岐状にするために欠かせない多官能性単量体は、樹脂の合成時にゲル化を招くおそれがある。かかる問題を解消するために、例えば、ゲル化を抑制し、超高分子量の高分岐型ポリスチレンおよび線状ポリスチレンからなるスチレン系樹脂組成物を製造する方法として、次の方法が開示されている。すなわち、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、重量基準で50ppm〜5000ppm添加し、水中で懸濁重合を行うことにより、該溶剤可溶性多官能ビニル共重合体と該ビニル系モノマーが重合して生じる高分岐型超高分子量共重合体と該ビニル系モノマーが重合して生じる線状重合体とを含むスチレン系樹脂組成物を製造する方法が開示されている(例えば、特許文献2参照)。 In addition to increasing the molecular weight of the styrene resin, it is also known to branch the molecular chains of the polystyrene resin as a method of increasing the melt tension of the resin. However, the polyfunctional monomer, which is indispensable for branching the molecular chain, may cause gelation during resin synthesis. In order to solve such a problem, for example, the following method is disclosed as a method for suppressing gelation and producing a styrene-based resin composition composed of ultra-high molecular weight highly branched polystyrene and linear polystyrene. That is, a solvent-soluble polyfunctional vinyl compound copolymer having two or more vinyl groups in one molecule and having a branched structure on average is added to a vinyl-based monomer that requires styrene at 50 ppm to 5000 ppm on a weight basis. , A line generated by the polymerization of the solvent-soluble polyfunctional vinyl copolymer and the vinyl-based monomer by carrying out suspension polymerization in water, and the highly branched ultra-high molecular weight copolymer and the vinyl-based monomer. A method for producing a styrene-based resin composition containing a state polymer is disclosed (see, for example, Patent Document 2).
また、発泡成形品の軽量化と、成形時の生産性を向上し得る発泡用ポリスチレン系樹脂組成物を得るために、発泡用ポリスチレン系樹脂組成物を、多官能ビニル系芳香族化合物とスチレン系単量体由来の成分を基材樹脂として含み、前記多官能ビニル系芳香族化合物が、100以上、1000未満の分子量を有し、前記基材樹脂が、前記スチレン系単量体中に多官能ビニル系芳香族化合物を50〜500ppm含む単量体混合物を重合させることにより得、
前記基材樹脂を、(1)測定条件200℃において、以下の関係式を満たすメルトフローレート(MFR:g/10分)と溶融張力値(MT:cN)
MT≧−3×ln(MFR)+12
(2)以下の関係式を満たす0.01rad/sと100rad/sの角周波数ωでの損失正接tanδの比
4≦tanδ(ω=0.01(rad/s))/tanδ(ω=100(rad/s))≦20
を有するものとすることが開示されている(例えば、特許文献3参照)。
更に、発泡成形品へのスチレン及びそのオリゴマーの溶出を低減させつつ、成形時の生産性を向上し得る押出発泡用ポリスチレン系樹脂組成物を得るために、押出発泡用のポリスチレン系樹脂組成物を、(1)分子量分布におけるトップピーク分子量(Mp)が14万〜22万;(2)Mp以下の分子量の割合が全体の40〜55%;(3)z+1平均分子量が80万〜350万;(4)スチレンダイマーとスチレントリマーとからなるオリゴマーの含有量が2000ppm以下;及び(5)スチレンの含有量が1000ppm以下の物性を有するものとすることが開示されている(例えば、特許文献4参照)。
Further, in order to obtain a polystyrene-based resin composition for foaming that can reduce the weight of the foam-molded product and improve the productivity during molding, the polystyrene-based resin composition for foaming is made of a polyfunctional vinyl-based aromatic compound and a styrene-based resin. The monomer-derived component is contained as a base resin, the polyfunctional vinyl-based aromatic compound has a molecular weight of 100 or more and less than 1000, and the base material resin is polyfunctional in the styrene-based monomer. Obtained by polymerizing a monomer mixture containing 50 to 500 ppm of a vinyl-based aromatic compound.
The base resin is subjected to (1) melt flow rate (MFR: g / 10 minutes) and melt tension value (MT: cN) satisfying the following relational expression under measurement conditions of 200 ° C.
MT ≧ -3 × ln (MFR) +12
(2) Ratio of loss tangent tan δ at an angular frequency ω of 0.01 rad / s and 100 rad / s that satisfies the following
(See, for example, Patent Document 3).
Further, in order to obtain a polystyrene-based resin composition for extrusion foaming that can improve productivity during molding while reducing elution of styrene and its oligomer into the foam-molded product, a polystyrene-based resin composition for extrusion foaming is used. , (1) Top peak molecular weight (Mp) in molecular weight distribution is 140,000 to 220,000; (2) Ratio of molecular weight below Mp is 40 to 55% of the total; (3) z + 1 average molecular weight is 800,000 to 3.5 million; It is disclosed that (4) the content of an oligomer composed of a styrene dimer and a styrene trimer is 2000 ppm or less; and (5) the content of styrene is 1000 ppm or less (see, for example, Patent Document 4). ).
しかし、特許文献1〜4のいずれに開示されているスチレン系樹脂も、絶対重量平均分子量が数十万と、100万に満たないため、スチレン系樹脂の溶融張力が不十分であった。また、特許文献3及び4のように、多官能性単量体を用いて分岐状の樹脂を製造すると、流動性が低下するため、成形加工性に優れなかった。
However, since the styrene-based resin disclosed in any of
本発明は、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができるスチレン系樹脂の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a styrene-based resin, which has high fluidity and high melt tension and can produce a styrene-based resin having a branched structure.
すなわち、本発明は次のとおりである。
<1> スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させて、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20〜200重量部であり、
前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50〜700重量であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持するスチレン系樹脂の製造方法である。
That is, the present invention is as follows.
<1> A dispersion step of dispersing nuclear particles containing a styrene resin in an aqueous medium,
A polymerization initiator containing an organic peroxide and a styrene monomer are added to the aqueous medium, and the polymerization initiator and the styrene monomer are added to the nuclear particles at a temperature at which the polymerization of the styrene monomer does not substantially proceed. The impregnation process of impregnating the monomer and
A polymerization initiation step of raising the temperature of the aqueous medium to initiate polymerization of the styrene monomer, and
An additional impregnation polymerization step of adding a styrene monomer to the aqueous medium, impregnating the nuclei with the styrene monomer, and graft-polymerizing the styrene monomer to the styrene resin.
Including
The amount of the styrene monomer added in the impregnation step is 20 to 200 parts by weight with respect to 100 parts by weight of the nuclear particles.
The amount of the styrene monomer added in the additional impregnation polymerization step is 50 to 700 weight with respect to 100 parts by weight of the nuclear particles, and the content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step. Is a method for producing a styrene-based resin, which maintains the content of 10% by weight or less.
<2> 前記水性媒体は、30℃における酸素濃度が4mg/L以上である<1>に記載のスチレン系樹脂の製造方法である。 <2> The aqueous medium is the method for producing a styrene resin according to <1>, wherein the oxygen concentration at 30 ° C. is 4 mg / L or more.
<3> 前記分散工程における前記核粒子の平均粒子径が0.3〜1.2mmである<1>または<2>に記載のスチレン系樹脂の製造方法である。 <3> The method for producing a styrene resin according to <1> or <2>, wherein the average particle size of the nuclear particles in the dispersion step is 0.3 to 1.2 mm.
<4> 前記有機過酸化物の10時間半減期温度T1/2が85〜120℃であり、前記含浸工程における前記水性媒体の温度が70℃以上(T1/2−15)℃以下であり、前記追加含浸重合工程における前記水性媒体の温度が(T1/2−10℃)℃以上(T1/2+20)℃以下である<1>〜<3>のいずれか1つに記載のスチレン系樹脂の製造方法である。
<4> When the 10-hour half-life temperature T 1/2 of the organic peroxide is 85 to 120 ° C. and the temperature of the aqueous medium in the impregnation step is 70 ° C. or higher (T 1 / 2-15) ° C. or lower. There, according to the any one of the temperature of the
本発明によれば、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができるスチレン系樹脂の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a styrene-based resin, which can produce a styrene-based resin having a branched structure having high fluidity and high melt tension.
本発明のスチレン系樹脂の製造方法(以下、「本発明の製造方法」と称することがある)は、スチレン系樹脂を含む核粒子を水性媒体中に分散させる分散工程と、
前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させて、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20〜200重量部であり、
前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50〜700重量であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持する。
本発明の製造方法は、得られたスチレン系樹脂を洗浄する工程等の他の工程を、更に含んでいてもよい。
The method for producing a styrene-based resin of the present invention (hereinafter, may be referred to as "the production method of the present invention") includes a dispersion step of dispersing nuclear particles containing the styrene-based resin in an aqueous medium.
A polymerization initiator containing an organic peroxide and a styrene monomer are added to the aqueous medium, and the polymerization initiator and the styrene monomer are added to the nuclear particles at a temperature at which the polymerization of the styrene monomer does not substantially proceed. The impregnation process of impregnating the monomer and
A polymerization initiation step of raising the temperature of the aqueous medium to initiate polymerization of the styrene monomer, and
An additional impregnation polymerization step of adding a styrene monomer to the aqueous medium, impregnating the nuclei with the styrene monomer, and graft-polymerizing the styrene monomer to the styrene resin.
Including
The amount of the styrene monomer added in the impregnation step is 20 to 200 parts by weight with respect to 100 parts by weight of the nuclear particles.
The amount of the styrene monomer added in the additional impregnation polymerization step is 50 to 700 weight with respect to 100 parts by weight of the nuclear particles, and the content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step. Is maintained at 10% by weight or less.
The production method of the present invention may further include other steps such as a step of cleaning the obtained styrene resin.
スチレン系樹脂の溶融張力を向上し、強度を向上させる手段として、高分子量化が有用であるが、単純に高分子量化すると、樹脂の流動性が低下し、成形加工性が悪化するという問題があった。流動性を維持したまま強度を向上させる手段として、分子鎖に分岐構造を導入することが有用である。分岐構造を有する樹脂は、分子鎖同士の絡み合いの程度が大きくなるため溶融張力が高くなり、延伸加工時に破断しにくくなる。スチレン系樹脂の分子鎖に分岐構造を取り入れる方法として、分岐剤としてジビニルベンゼン等の多官能性単量体の存在下でスチレン単量体の重合を行なう方法がある。しかし、このような重合方法では、多官能性単量体が重合した部分に分岐点が集中し、ミクロゲルが生成しやすいという問題があった。より高度に分岐化したスチレン系樹脂を製造しようとして、多官能性単量体の添加量を多くすると、反応系内にて多官能性単量体同士が近接することで、重合中にゲル化が生じ易くなる。そのため、分岐剤の添加量が制限されてしまい、流動性を維持しながら、溶融張力が高いスチレン系樹脂を製造することは困難であった。
これに対し、本発明の製造方法が上記構成であることで、溶融張力が高く、かつ流動性にも優れるスチレン系樹脂を製造することができる理由は定かではないが、次の理由によるものと推察される。
High molecular weight is useful as a means to improve the melt tension and strength of the styrene resin, but simply increasing the high molecular weight causes a problem that the fluidity of the resin decreases and the moldability deteriorates. there were. It is useful to introduce a branched structure into the molecular chain as a means of improving the strength while maintaining the fluidity. A resin having a branched structure has a high degree of entanglement between molecular chains, so that the melt tension is high and it is difficult to break during the stretching process. As a method of incorporating a branched structure into the molecular chain of a styrene resin, there is a method of polymerizing a styrene monomer in the presence of a polyfunctional monomer such as divinylbenzene as a branching agent. However, in such a polymerization method, there is a problem that branching points are concentrated on the portion where the polyfunctional monomer is polymerized and microgels are easily formed. When the amount of the polyfunctional monomer added is increased in an attempt to produce a more highly branched styrene resin, the polyfunctional monomers are brought close to each other in the reaction system, resulting in gelation during polymerization. Is likely to occur. Therefore, the amount of the branching agent added is limited, and it is difficult to produce a styrene-based resin having a high melt tension while maintaining fluidity.
On the other hand, it is not clear why the styrene resin having high melt tension and excellent fluidity can be produced by the production method of the present invention having the above configuration, but it is due to the following reason. Inferred.
本発明の製造方法は、主として、核粒子を水性媒体中に分散させる分散工程と、核粒子内に重合開始剤及びスチレン単量体を含浸させる含浸工程、スチレン単量体の重合を開始する重合開始工程と、水性媒体中にスチレン単量体を追加添加して核粒子に含浸させ、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程とを有する。本発明では、追加含浸重合工程で、重合の反応場となる核粒子内におけるスチレン単量体の濃度を特定の濃度に保つことで、分岐点の数を大きくしつつ(高分岐度)、高分子量にすることができ、更に、分岐点間を離すことができるものと考えられる。 The production method of the present invention mainly comprises a dispersion step of dispersing the nuclear particles in an aqueous medium, an impregnation step of impregnating the nuclear particles with a polymerization initiator and a styrene monomer, and a polymerization of initiating the polymerization of the styrene monomer. It has a start step and an additional impregnation polymerization step of additionally adding a styrene monomer to an aqueous medium to impregnate the nuclear particles and graft-polymerizing the styrene monomer to a styrene-based resin. In the present invention, in the additional impregnation polymerization step, the concentration of the styrene monomer in the nuclear particles which is the reaction field of the polymerization is maintained at a specific concentration, so that the number of branching points is increased (high degree of branching) and high. It is considered that the molecular weight can be adjusted and the branch points can be separated from each other.
通常、反応場には、重合開始剤と多くのスチレン単量体とが存在し、重合開始剤から生成した開始剤ラジカルやポリマー鎖の生長末端ラジカルは、スチレン単量体のビニル基と優先的に反応するため、直鎖状のスチレン系樹脂が形成され易いと考えられる。
一方、反応場のスチレン単量体の濃度が低い場合、開始剤ラジカルやポリマー鎖の生長末端ラジカルはスチレン単量体との重合反応だけではなく、ポリマー鎖の水素引抜反応を生じやすくなると考えられる。その結果、水素引抜反応により発生したポリマー鎖上のラジカルに、スチレン単量体がグラフト重合したり、あるいは、ポリマー鎖の生長末端ラジカルが再結合したりすることで、ポリマー鎖に分岐鎖が生成すると考えられる。更に、ポリマー鎖に分岐鎖が生成した位置は、立体的に混み合った状況にあることから、生成した分岐点の近くには更なる分岐鎖は生じにくいと考えられる。つまり、立体障害が生じない程度に、分岐点から離れたポリマー鎖上で、再び水素引き抜き反応が生じ、分岐鎖が生成すると考えられる。そのため、分岐点間が適度に離れながら、分岐鎖を生成するため、ゲル化が生じることなく、多くの分岐鎖を有するスチレン系樹脂が得られるものと考えられる。 以上により、本発明の製造方法によれば、ゲル化を抑制しつつ、分岐鎖を多く有し、かつ高分子量のスチレン系樹脂を製造できるためできるため、溶融張力が高く、かつ流動性が維持されたスチレン系樹脂を製造することができると考えられる。
以下、本発明の製造方法の各工程について詳細に説明する。
Normally, a polymerization initiator and many styrene monomers are present in the reaction field, and the initiator radicals generated from the polymerization initiator and the growth-terminal radicals of the polymer chain are preferential to the vinyl group of the styrene monomer. It is considered that a linear styrene-based resin is likely to be formed because it reacts with.
On the other hand, when the concentration of the styrene monomer in the reaction field is low, it is considered that the initiator radical and the growing terminal radical of the polymer chain are likely to cause not only the polymerization reaction with the styrene monomer but also the hydrogen abstraction reaction of the polymer chain. .. As a result, the styrene monomer is graft-polymerized to the radical on the polymer chain generated by the hydrogen abstraction reaction, or the growing terminal radical of the polymer chain is recombined to generate a branched chain in the polymer chain. It is thought that. Further, since the position where the branched chain is generated in the polymer chain is in a sterically crowded state, it is considered that further branched chain is unlikely to be generated near the formed branch point. That is, it is considered that the hydrogen abstraction reaction occurs again on the polymer chain away from the branch point to the extent that steric hindrance does not occur, and the branched chain is generated. Therefore, it is considered that a styrene-based resin having many branched chains can be obtained without gelation because the branched chains are generated while the branched points are appropriately separated from each other. As described above, according to the production method of the present invention, it is possible to produce a styrene-based resin having a large number of branched chains and a high molecular weight while suppressing gelation, so that the melt tension is high and the fluidity is maintained. It is considered that the styrene-based resin produced can be produced.
Hereinafter, each step of the production method of the present invention will be described in detail.
〔分散工程〕
分散工程では、スチレン系樹脂を含む核粒子を水性媒体中に分散させる。
核粒子の水性媒体中への分散方法は、特に制限されず、例えば、核粒子と共に、水性媒体に懸濁剤と、必要に応じて界面活性剤を添加し、混合すればよい。
[Dispersion process]
In the dispersion step, the nuclear particles containing the styrene resin are dispersed in the aqueous medium.
The method for dispersing the nuclear particles in the aqueous medium is not particularly limited, and for example, a suspending agent and, if necessary, a surfactant may be added to the aqueous medium together with the nuclear particles and mixed.
(核粒子)
核粒子は、スチレン系樹脂を含む。
スチレン系樹脂としては、スチレン単量体の重合体、スチレン単量体と他の単量体との共重合体、及びこれらの2種以上の混合物が挙げられる。その共重合体に含まれるスチレン単量体に由来する構造単位は少なくとも50重量%以上、好ましくは60重量%以上、より好ましくは80重量%以上である。
スチレン系樹脂として、具体的には、ポリスチレン、ゴム変性ポリスチレン(耐衝撃性ポリスチレン)、スチレン−アクリロニトリル共重合体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−無水マレイン酸共重合体等が例示できる。スチレン系樹脂は、1種のみ用いてもよいし、2種以上を用いてもよい。これらのスチレン系樹脂の中でも、水素引き抜き反応を生じ易く、スチレン単量体と共に分岐鎖を生じ易い点から、ポリスチレンからなることが好ましい。
核粒子は、スチレン系樹脂以外の樹脂を含んでいてもよいが、スチレン系樹脂を70重量%以上含んでいることが好ましく、85重量%以上含んでいることがより好ましく、スチレン系樹脂からなることが更に好ましい。
(Nuclear particles)
The nuclear particles include a styrene resin.
Examples of the styrene-based resin include a polymer of a styrene monomer, a copolymer of a styrene monomer and another monomer, and a mixture of two or more of these. The structural unit derived from the styrene monomer contained in the copolymer is at least 50% by weight or more, preferably 60% by weight or more, and more preferably 80% by weight or more.
Specific examples of the styrene resin include polystyrene, rubber-modified polystyrene (impact resistant polystyrene), styrene-acrylonitrile copolymer, styrene-acrylic acid copolymer, styrene-methacrylate copolymer, and styrene-methyl methacrylate. Examples thereof include copolymers and styrene-maleic anhydride copolymers. Only one type of styrene resin may be used, or two or more types may be used. Among these styrene-based resins, polystyrene is preferable because a hydrogen abstraction reaction is likely to occur and a branched chain is likely to be formed together with the styrene monomer.
The nuclei particles may contain a resin other than the styrene resin, but preferably contain 70% by weight or more of the styrene resin, more preferably 85% by weight or more, and are made of the styrene resin. Is even more preferable.
核粒子の平均粒子径は、0.3〜1.2mmであることが好ましい。核粒子の平均粒子径が0.3mm以上であることで、得られる分岐状スチレン系樹脂に含まれる細粒の発生量が低減でき、1.2mm以下であることで比表面積が大きくなり核粒子へのスチレン単量体の含浸性が向上する。核粒子の平均粒子径は、0.3〜1.0mmであることがより好ましく、0.3〜0.5mmであることが更に好ましい。
核粒子の平均粒子径は、63%体積平均粒子径を意味する。
The average particle size of the nuclear particles is preferably 0.3 to 1.2 mm. When the average particle size of the nuclear particles is 0.3 mm or more, the amount of fine particles generated in the obtained branched styrene resin can be reduced, and when the average particle size is 1.2 mm or less, the specific surface area becomes large and the nuclear particles. The impregnation property of the styrene monomer to the resin is improved. The average particle size of the nuclear particles is more preferably 0.3 to 1.0 mm, and even more preferably 0.3 to 0.5 mm.
The average particle size of the nuclear particles means a 63% volume average particle size.
(水性媒体)
水性媒体としては、通常、脱イオン水等の水を用いることができるが、核粒子が溶解しない限度において、アルコール等の水溶性有機溶剤を含んでいてもよい。
(Aqueous medium)
As the aqueous medium, water such as deionized water can be usually used, but a water-soluble organic solvent such as alcohol may be contained as long as the nuclear particles are not dissolved.
(界面活性剤)
界面活性剤は、アニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤、及びノニオン性界面活性剤が挙げられる。これらの中でも、界面活性剤は、アニオン性界面活性剤、カチオン性界面活性剤、及びノニオン性界面活性剤からなる群より選択される少なくとも1つを有することが好ましい。具体的には、アルキルスルホン酸塩(例えば、ドデシルスルホン酸ナトリウム)、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸ナトリウム)、ポリオキシアルキルエーテルリン酸エステル、アルキルジメチルエチルアンモニウムエチルサルフェート、高級アルコール、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオオキシエチレンアルキルエーテル、脂肪酸塩等が挙げられる。
界面活性剤は1種のみ用いてもよいし、2種以上を用いてもよい。
更に、界面活性剤と共に、例えば塩化リチウム、塩化カリウム、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、コハク酸ナトリウム等の電解質を用いてもよい。
(Surfactant)
Surfactants include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Among these, the surfactant preferably has at least one selected from the group consisting of anionic surfactants, cationic surfactants, and nonionic surfactants. Specifically, alkyl sulfonates (eg, sodium dodecyl sulfonate), alkylbenzene sulfonates (eg, sodium dodecylbenzene sulfonate), polyoxyalkyl ether phosphate, alkyldimethylethylammonium ethyl sulfate, higher alcohols, Examples thereof include glycerin fatty acid ester, sorbitan fatty acid ester, polyooxyethylene alkyl ether, and fatty acid salt.
Only one type of surfactant may be used, or two or more types may be used.
Further, an electrolyte such as lithium chloride, potassium chloride, sodium chloride, sodium sulfate, sodium nitrate, sodium carbonate, sodium bicarbonate, sodium acetate, sodium succinate and the like may be used together with the surfactant.
(懸濁剤)
懸濁剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の親水性高分子;第三リン酸カルシウム、硝酸マグネシウム、ピロリン酸マグネシウム、ヒドロキシアパタイト、酸化アルミニウム、タルク、カオリン、ベントナイト等の難水溶性無機塩等が挙げられる。
懸濁剤は1種のみ用いてもよいし、2種以上を用いてもよい。親水性高分子又は難水溶性無機塩のいずれか一方又は両方を、それぞれ1種のみ用いてもよいし、それぞれ2種以上を用いてもよい。
懸濁剤として難水溶性無機塩を使用する場合には、アルキルスルホン酸ナトリウムやアルキルベンゼンスルホン酸ナトリウム等のアニオン系界面活性剤を併用することが好ましい。
(Suspension)
Examples of the suspending agent include hydrophilic polymers such as polyvinyl alcohol, methyl cellulose and polyvinylpyrrolidone; and poorly water-soluble inorganic substances such as calcium tertiary phosphate, magnesium nitrate, magnesium pyrophosphate, hydroxyapatite, aluminum oxide, talc, kaolin and bentonite. Examples include salt.
Only one type of suspending agent may be used, or two or more types may be used. Only one kind of each one or both of the hydrophilic polymer and the poorly water-soluble inorganic salt may be used, or two or more kinds of each may be used.
When a poorly water-soluble inorganic salt is used as the suspending agent, it is preferable to use an anionic surfactant such as sodium alkylsulfonate or sodium alkylbenzene sulfonate in combination.
懸濁剤の使用量は、核粒子とスチレン系単量体の総添加量の合計100重量部に対して、0.01〜5重量部であることが好ましい。難水溶性無機塩からなる懸濁剤とアニオン性界面活性剤とを併用する場合は、核粒子とスチレン系単量体の総添加量の合計100重量部に対して、懸濁剤を0.05〜3重量部、アニオン性界面活性剤を0.0001〜0.5重量部用いることが好ましい。 The amount of the suspending agent used is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the total amount of the nuclear particles and the styrene-based monomer added. When a suspension consisting of a poorly water-soluble inorganic salt and an anionic surfactant are used in combination, the suspension is added to the total amount of 100 parts by weight of the nuclear particles and the styrene-based monomer. It is preferable to use 05 to 3 parts by weight and 0.0001 to 0.5 parts by weight of the anionic surfactant.
〔含浸工程〕
含浸工程では、水性媒体中、すなわち、分散工程により分散した核粒子と、必要に応じて懸濁剤、界面活性剤等を含む水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で核粒子に重合開始剤及びスチレン単量体を含浸させる。
ここで、「実質的にスチレン単量体の重合が進行しない温度」とは、有機過酸化物が実質的に分解しない温度であり、有機過酸化物の分解を抑制するという観点から、有機過酸化物の10時間半減期温度をT1/2としたとき、含浸工程における水性媒体の温度を(T1/2−15)℃以下とすることが好ましく、(T1/2−18)℃以下とすることがより好ましい。核粒子へのスチレン単量体の含浸性の観点から、含浸工程における水性媒体の温度を70℃以上とすることが好ましく、75℃以上とすることがより好ましい。
また、含浸工程の水性媒体の温度は前記範囲内であれば一定でもよく、徐々に上昇させるなど、変化させてもよい。
含浸工程の時間は、スチレン単量体と重合開始剤とを核粒子中に十分に含浸させるという観点から、0.5〜2.0時間程度とすることが好ましく、1.0〜2.0時間とすることがより好ましい。
[Immersion process]
In the impregnation step, a polymerization initiator containing an organic peroxide and styrene monomer in an aqueous medium, that is, in an aqueous medium containing nuclear particles dispersed by the dispersion step and, if necessary, a suspending agent, a surfactant and the like. A quantity is added to impregnate the nuclei with the polymerization initiator and the styrene monomer at a temperature at which the polymerization of the styrene monomer does not substantially proceed.
Here, the "temperature at which the polymerization of the styrene monomer does not substantially proceed" is a temperature at which the organic peroxide does not substantially decompose, and from the viewpoint of suppressing the decomposition of the organic peroxide, the organic peroxide is present. when the 10-hour half-life temperature of the oxide was T 1/2, preferably to a temperature of the
Further, the temperature of the aqueous medium in the impregnation step may be constant as long as it is within the above range, or may be changed by gradually increasing the temperature.
The time of the impregnation step is preferably about 0.5 to 2.0 hours, preferably 1.0 to 2.0 hours, from the viewpoint of sufficiently impregnating the styrene monomer and the polymerization initiator into the nuclear particles. It is more preferable to set the time.
含浸工程におけるスチレン単量体の添加量は、核粒子100重量部に対し、20〜200重量部であり、30〜180重量部であることが好ましく、40〜160重量部であることがより好ましい。含浸工程において、スチレン単量体の添加量が少なすぎる場合、核粒子を十分に可塑化させることができず、重合開始剤を核粒子に十分に含浸させることができなくなる。一方、スチレン単量体の添加量が多すぎる場合、核粒子外でスチレン単量体が重合し細粒が発生し易くなる。 The amount of the styrene monomer added in the impregnation step is 20 to 200 parts by weight, preferably 30 to 180 parts by weight, and more preferably 40 to 160 parts by weight with respect to 100 parts by weight of the nuclear particles. .. If the amount of the styrene monomer added is too small in the impregnation step, the nuclear particles cannot be sufficiently plasticized, and the polymerization initiator cannot be sufficiently impregnated into the nuclear particles. On the other hand, when the amount of the styrene monomer added is too large, the styrene monomer is polymerized outside the nuclear particles and fine particles are likely to be generated.
(重合開始剤)
重合開始剤は、少なくとも有機過酸化物を含む。
有機過酸化物としては、例えば過酸化ベンゾイル、ジラウロイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシ−2−エチルヘキサノエート、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキシルカーボネート、t−ヘキシルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)ブタン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン等が挙げられる。
これらの有機過酸化物は1種のみ用いてもよいし、2種以上を用いてもよい。
(Polymerization initiator)
The polymerization initiator contains at least an organic peroxide.
Examples of the organic peroxide include benzoyl peroxide, dilauroyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, and t-hexylperoxy-2-ethylhexanoate. Ate, t-amylperoxy-2-ethylhexanoate, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy-2-ethyl Hexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-butyl Peroxybenzoate, t-amylperoxyisopropyl carbonate, t-amylperoxy-2-ethylhexyl carbonate, t-hexylperoxyisopropyl carbonate, t-butylperoxy-3,5,5-trimethylhexanoate, 1, 1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) Cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) butane, 1,1-bis (t-hexylperoxy) -3,3,5- Examples thereof include trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, and 2,2-bis (4,5-di-t-butylperoxycyclohexyl) propane.
Only one kind of these organic peroxides may be used, or two or more kinds may be used.
重合開始剤としては、10時間半減期温度T1/2が85〜120℃の有機過酸化物を用いることが好ましく、T1/2が90〜110℃のものを用いることがより好ましい。なお、2種類以上の有機過酸化物を重合開始剤として用いる場合、10時間半減期温度の最も低い有機過酸化物の10時間半減期温度をT1/2とする。また、有機過酸化物としては、これらの温度範囲を満足し、かつ水素引抜能の高いもの、例えば、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシベンゾエートなどのt−ブトキシラジカルを生成する有機過酸化物や、ジクミルパーキサイドなどのクミルオキシラジカルを生成する有機過酸化物を用いることがより好ましい。 As the polymerization initiator, it is preferable to use an organic peroxide having a 10-hour half-life temperature T 1/2 of 85 to 120 ° C., and more preferably to use an organic peroxide having a T 1/2 of 90 to 110 ° C. When two or more kinds of organic peroxides are used as the polymerization initiator, the 10-hour half-life temperature of the organic peroxide having the lowest 10-hour half-life temperature is T 1/2 . Further, as the organic peroxide, those satisfying these temperature ranges and having high hydrogen extraction ability, for example, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t- It is more preferable to use an organic peroxide that generates a t-butoxy radical such as butyl peroxybenzoate, or an organic peroxide that generates a cumyl oxy radical such as dicumyl perkiside.
重合開始剤は、有機過酸化物以外の重合開始剤を含んでいてもよいが、水素引き抜き反応を起こし易くする観点から、重合開始剤は、有機過酸化物を70重量%以上含むことが好ましく、85重量%以上含むことが好ましく、有機過酸化物からなることが更に好ましい。
重合開始剤の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して0.1〜2.0重量部であることが好ましい。この範囲であることで生産性を過度に低くせず、水素引き抜き反応を起こし易い。重合開始剤の添加量は、核粒子とスチレン単量体の総添加量の合計100重量部に対して、0.2〜1.5重量部であることがより好ましい。
The polymerization initiator may contain a polymerization initiator other than the organic peroxide, but from the viewpoint of facilitating the hydrogen abstraction reaction, the polymerization initiator preferably contains 70% by weight or more of the organic peroxide. , 85% by weight or more, and more preferably composed of an organic peroxide.
The amount of the polymerization initiator added is preferably 0.1 to 2.0 parts by weight based on 100 parts by weight of the total amount of the nuclear particles and the styrene monomer added. Within this range, the productivity is not excessively lowered and the hydrogen abstraction reaction is likely to occur. The amount of the polymerization initiator added is more preferably 0.2 to 1.5 parts by weight with respect to 100 parts by weight of the total amount of the nuclear particles and the styrene monomer added.
(水性媒体中の酸素濃度)
水性媒体として、30℃における酸素濃度が4mg/L以上の水性媒体を用いることが好ましい。水性媒体の酸素は、水性媒体中での重合禁止剤として機能しており、細粒の発生を阻害する。従って、水性媒体中の酸素濃度が高いほど、スチレン系樹脂の収率が向上する。30℃における酸素濃度は5mg/L以上であることがより好ましい。
また、水性媒体に、水溶性の重合禁止剤、例えば亜硝酸ナトリウムを30〜200ppm添加することによっても細粒発生を抑制することができる。
(Oxygen concentration in aqueous medium)
As the aqueous medium, it is preferable to use an aqueous medium having an oxygen concentration of 4 mg / L or more at 30 ° C. Oxygen in the aqueous medium functions as a polymerization inhibitor in the aqueous medium and inhibits the generation of fine particles. Therefore, the higher the oxygen concentration in the aqueous medium, the higher the yield of the styrene resin. The oxygen concentration at 30 ° C. is more preferably 5 mg / L or more.
Further, the generation of fine particles can also be suppressed by adding a water-soluble polymerization inhibitor, for example, sodium nitrite at 30 to 200 ppm to the aqueous medium.
〔重合開始工程〕
重合開始工程では、重合開始剤とスチレン単量体が含浸された核粒子を分散している水性媒体の温度を昇温し、スチレン単量体の重合を開始させる。具体的には、有機過酸化物が実質的に分解する温度とすることにより、スチレン単量体の重合を開始させることが好ましい。生産性の観点から、水性媒体の温度を(T1/2−10)℃以上の温度とすることが好ましく、(T1/2−5)℃以上の温度とすることがより好ましい。
前記温度までの昇温時間は特に限定されるものではないが、昇温中に核粒子中のスチレン単量体の重合を進め、後述する追加含浸重合において核粒子中のスチレン単量体の含有量を10重量%以下に制御しやすいことから、3時間以上とすることが好ましく、5時間以上とすることがより好ましい。一方、生産性の観点からは10時間以内とすることが好ましい。
[Polymerization start process]
In the polymerization initiation step, the temperature of the aqueous medium in which the polymerization initiator and the nuclear particles impregnated with the styrene monomer are dispersed is raised to initiate the polymerization of the styrene monomer. Specifically, it is preferable to initiate the polymerization of the styrene monomer by setting the temperature at which the organic peroxide is substantially decomposed. From the viewpoint of productivity, it is preferred that the temperature of the aqueous medium and (T 1/2 -10) ℃ temperatures above, and more preferably to (T 1/2 -5) ℃ or higher.
The temperature rise time to the temperature is not particularly limited, but the polymerization of the styrene monomer in the nuclear particles is promoted during the temperature rise, and the styrene monomer in the nuclear particles is contained in the additional impregnation polymerization described later. Since the amount can be easily controlled to 10% by weight or less, it is preferably 3 hours or more, and more preferably 5 hours or more. On the other hand, from the viewpoint of productivity, it is preferably within 10 hours.
〔追加含浸重合工程〕
追加含浸重合工程では、水性媒体中、すなわち、重合開始工程を経て、核粒子内でスチレン単量体の重合が始まっている核粒子を含む水性媒体中に、スチレン単量体を追加して添加して、核粒子にスチレン単量体を含浸させて重合させる。この際、スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し50〜700重量部である。そして、追加含浸重合工程における核粒子中のスチレン単量体の含有量(濃度)を10重量%以下に維持するようにスチレン単量体を断続的に又は連続的に添加する。
[Additional impregnation polymerization step]
In the additional impregnation polymerization step, the styrene monomer is additionally added to the aqueous medium, that is, the aqueous medium containing the nuclear particles in which the polymerization of the styrene monomer has started in the nuclear particles through the polymerization initiation step. Then, the nuclei are impregnated with the styrene monomer and polymerized. At this time, the amount of the styrene monomer added is 50 to 700 parts by weight with respect to 100 parts by weight of the nuclear particles in the additional impregnation polymerization step. Then, the styrene monomer is added intermittently or continuously so as to maintain the content (concentration) of the styrene monomer in the nuclear particles in the additional impregnation polymerization step to 10% by weight or less.
重合開始工程を経ることにより、スチレン単量体が核粒子内を反応場として重合を開始している。そして、追加含浸重合工程において、核粒子中のスチレン単量体の含有量を10重量%以下に維持することで、スチレン単量体同士での重合だけではなく、スチレン系樹脂にスチレン単量体のグラフト重合が生じやすくなり、分岐鎖を生成する。
なお、本発明の目的効果を阻害しない範囲において、追加含浸重合工程における核粒子中のスチレン単量体の含有量は10重量%を超えることができる。核粒子中のスチレン単量体の含有量が10重量%を超える時間は、追加含浸重合工程の時間のうち2割以下であることが好ましく、1割以下であることがより好ましく、追加含浸重合工程全てにおいて核粒子中のスチレン単量体の含有量を10重量%以下とすることが最も好ましい。分岐鎖を高度に生成させるという観点から、追加含浸重合工程の時間は、150分以上とすることが好ましく、より好ましくは180分以上である。生産効率の観点から、追加含浸重合工程の時間の上限は600分程度とすることが好ましい。
追加含浸重合工程における核粒子中のスチレン単量体の含有量は8重量%以下であることが好ましく、6重量%以下であることがより好ましい。
By going through the polymerization initiation step, the styrene monomer initiates polymerization with the inside of the nuclear particles as a reaction field. Then, in the additional impregnation polymerization step, by maintaining the content of the styrene monomer in the nuclei particles at 10% by weight or less, not only the polymerization between the styrene monomers but also the styrene monomer in the styrene resin is added. Graft polymerization is likely to occur, and branched chains are generated.
The content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step can exceed 10% by weight as long as the objective effect of the present invention is not impaired. The time when the content of the styrene monomer in the core particles exceeds 10% by weight is preferably 20% or less, more preferably 10% or less, and more preferably 10% or less of the time of the additional impregnation polymerization step. Most preferably, the content of the styrene monomer in the nuclear particles is 10% by weight or less in all the steps. From the viewpoint of highly producing branched chains, the time of the additional impregnation polymerization step is preferably 150 minutes or more, more preferably 180 minutes or more. From the viewpoint of production efficiency, the upper limit of the time of the additional impregnation polymerization step is preferably about 600 minutes.
The content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step is preferably 8% by weight or less, and more preferably 6% by weight or less.
なお、追加含浸重合工程における核粒子中のスチレン単量体の含有量は、重合に用いる重合開始剤の化学的特性、重合温度から求めたスチレンの重合速度等をもとに計算することが可能であり、その計算値をもとに所望の含有量となるようにスチレン単量体の追加添加のタイミング及び添加速度(添加割合)を調整することにより、追加含浸重合工程における核粒子中のスチレン単量体の含有量を調整することができる。また、実際の核粒子中のスチレン単量体の含有量は、重合中の核粒子を反応系から抜き出し、後述する方法により求めることができる。 The content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step can be calculated based on the chemical properties of the polymerization initiator used for the polymerization, the polymerization rate of styrene obtained from the polymerization temperature, and the like. By adjusting the timing of additional addition of the styrene monomer and the addition rate (addition ratio) so as to obtain the desired content based on the calculated value, styrene in the nuclear particles in the additional impregnation polymerization step. The content of the monomer can be adjusted. Further, the actual content of the styrene monomer in the nuclear particles can be determined by extracting the polymerized nuclear particles from the reaction system and using a method described later.
核粒子中のスチレン単量体の含有量が低い条件ほど、重合開始反応だけではなく水素引抜反応を起こしやすくなり、分岐度が向上すると考えられる。また、核粒子に対してスチレン単量体の比率が高い場合、絶対分子量及び分岐度が向上し易い。
既述のように、核粒子の平均粒子径を1.2mm以下とすることで、比表面積が大きくなり、スチレン単量体の含浸性が向上し、分岐を生成しやすくなるものと考えられる。
It is considered that the lower the content of the styrene monomer in the nuclear particles, the easier it is for not only the polymerization initiation reaction but also the hydrogen abstraction reaction to occur, and the degree of bifurcation is improved. Further, when the ratio of the styrene monomer to the nuclear particles is high, the absolute molecular weight and the degree of bifurcation are likely to be improved.
As described above, it is considered that when the average particle size of the nuclear particles is 1.2 mm or less, the specific surface area is increased, the impregnation property of the styrene monomer is improved, and branching is easily generated.
追加含浸重合工程の温度条件は特に制限されないが、水素引き抜き反応を生じ易くする観点から、追加含浸重合工程における水性媒体の温度は、(T1/2−10)℃〜(T1/2+20)℃であることが好ましく、(T1/2−5)℃〜(T1/2+10)℃であることがより好ましい。
また、追加含浸重合工程の水性媒体の温度は前記範囲内であれば一定でもよく、徐々に上昇させるなど変化させてもよい。
The temperature conditions of the additional impregnation polymerization step are not particularly limited, but the temperature of the aqueous medium in the additional impregnation polymerization step is (T 1 / 2-10) ° C. to (T 1/2 +20) from the viewpoint of facilitating the hydrogen abstraction reaction. ) ° C., more preferably (T 1 / 2-5) ° C. to (T 1/2 +10) ° C.
Further, the temperature of the aqueous medium in the additional impregnation polymerization step may be constant as long as it is within the above range, or may be changed by gradually increasing the temperature.
スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し50〜700重量部である。追加含浸重合工程においてスチレン単量体の添加量が少なすぎると、十分に分岐鎖を生成させることができなくなる。また、スチレン単量体の添加量が多すぎると、核粒子外でスチレン単量体同士が重合しやすくなり、スチレン系樹脂の収率が悪くなるおそれがある。
スチレン単量体の添加量は、追加含浸重合工程において、核粒子100重量部に対し100〜600重量部であることが好ましく、200〜550重量部であることがより好ましい。
The amount of the styrene monomer added is 50 to 700 parts by weight with respect to 100 parts by weight of the nuclear particles in the additional impregnation polymerization step. If the amount of the styrene monomer added in the additional impregnation polymerization step is too small, it becomes impossible to sufficiently generate branched chains. On the other hand, if the amount of the styrene monomer added is too large, the styrene monomers tend to polymerize outside the nuclear particles, and the yield of the styrene resin may deteriorate.
The amount of the styrene monomer added is preferably 100 to 600 parts by weight, more preferably 200 to 550 parts by weight, based on 100 parts by weight of the nuclear particles in the additional impregnation polymerization step.
本発明の製造方法は、多官能性単量体(分岐化剤)を用いずに、高分岐度のスチレン系樹脂を得ることができるが、重合時のゲル化が生じない限度において、多官能性単量体を添加してもよい。水性媒体中の多官能性単量体の添加量は、含浸重合工程及び追加添加工程を通じて、核粒子100重量部に対して0.2重量部以下であることが好ましく、0.1重量部以下であることがより好ましく、0重量部であることが更に好ましい。すなわち、多官能性単量体は用いないことが好ましい。多官能性単量体を用いないことによって、より分岐度の高いスチレン系樹脂を得ることができる。 The production method of the present invention can obtain a styrene-based resin having a high degree of branching without using a polyfunctional monomer (branching agent), but as long as gelation during polymerization does not occur, it is polyfunctional. A sex monomer may be added. The amount of the polyfunctional monomer added to the aqueous medium is preferably 0.2 parts by weight or less, preferably 0.1 part by weight or less, based on 100 parts by weight of the nuclear particles through the impregnation polymerization step and the additional addition step. Is more preferable, and 0 part by weight is further preferable. That is, it is preferable not to use a polyfunctional monomer. By not using the polyfunctional monomer, a styrene resin having a higher degree of branching can be obtained.
追加含浸重合工程に加え、本発明の製造方法は、更に、追加含浸重合工程後にスチレン系樹脂粒子中に残存するスチレン単量体を重合させる残重合工程、得られたスチレン系樹脂に付着した懸濁剤、界面活性剤等を水で洗浄する洗浄工程、スチレン系樹脂表面に帯電防止剤等の機能性成分を被覆する被覆工程等を含んでいてもよい。 In addition to the additional impregnation polymerization step, the production method of the present invention further comprises a residual polymerization step of polymerizing the styrene monomer remaining in the styrene resin particles after the additional impregnation polymerization step, and a suspension attached to the obtained styrene resin. It may include a cleaning step of washing the turbidant, the surfactant and the like with water, a coating step of coating the surface of the styrene resin with a functional component such as an antioxidant, and the like.
本発明の製造方法により得られるスチレン系樹脂は、GPC−MALS法により求められる、重量平均分子量(Mw’)が100万以上であり、3本鎖分岐を仮定したスチレン1000単位当たりの長鎖分岐度Bm,1000が0.3以上である分岐構造を有するスチレン系樹脂であることが好ましい。また、GPC−MALS法により求められる、Z平均分子量(Mz’)が300万以上であることが好ましく、1分子あたりの長鎖分岐度Bm,wが4〜20であることが好ましい。であることが好ましい。また、本発明の本発明の製造方法により得られるスチレン系樹脂中のテトラヒドロ不溶分が、0.1重量%以下(0を含む)ことが好ましい。
このような特性を示すスチレン系樹脂は、高分子量でありながらも、従来の分岐状スチレン系樹脂よりも、分子鎖中に多くの長鎖分岐鎖が存在し、かつ比較的低分子量の分子鎖中に多くの長鎖分岐鎖が存在しているものと考えられる。
The styrene-based resin obtained by the production method of the present invention has a weight average molecular weight (Mw') of 1 million or more, which is determined by the GPC-MALS method, and is a long-chain branch per 1000 units of styrene assuming a three-chain branch. It is preferable that the styrene resin has a branched structure in which degrees B m and 1000 are 0.3 or more. Further, the Z average molecular weight (Mz') determined by the GPC-MALS method is preferably 3 million or more, and the long chain branching degree B m, w per molecule is preferably 4 to 20. Is preferable. Further, it is preferable that the tetrahydro-insoluble content in the styrene resin obtained by the production method of the present invention of the present invention is 0.1% by weight or less (including 0).
The styrene-based resin exhibiting such characteristics has a higher molecular weight, but has more long-chain branched chains in the molecular chain than the conventional branched styrene-based resin, and has a relatively low molecular weight. It is considered that many long-chain branched chains are present in the chain.
なお、GPC−MALS法とは、ゲルパーミエーションクロマトグラフィ(GPC)と多角度光散乱検出器(Multi Angle Light Scattering:MALS)とを組み合わせた手法である。GPC−MALS法により、スチレン系樹脂の絶対分子量と二乗平均回転半径<Rg 2>を測定することができ、測定結果から、スチレン系樹脂の分岐度を推察することができる。 The GPC-MALS method is a method in which gel permeation chromatography (GPC) and a multi-angle light scattering detector (MALS) are combined. By the GPC-MALS method, the absolute molecular weight and the root mean square turning radius <R g 2 > of the styrene resin can be measured, and the degree of branching of the styrene resin can be inferred from the measurement results.
(GPC−MALS法の基本原理)
スチレン系樹脂を、テトラヒドロフラン等の溶媒に溶解してスチレン系樹脂溶液を調製し、GPC測定にかけると、分子サイズが大きいポリマーほど先に溶出することから、分子サイズにより分けられる。引き続き、分けられたスチレン系樹脂溶液をMALS測定にかけることにより、分子サイズにより分けられたスチレン系樹脂の重量平均分子量(Mw’)及び分子サイズに相当する二乗平均回転半径<Rg 2>を算出することができる。
具体的には、GPCで分子サイズにより分けられたスチレン系樹脂溶液に、レーザー光を照射し、レイリー散乱によってスチレン系樹脂溶液から生じた散乱光強度を計測する。得られた測定値から、以下の式(1)及び図8に示すDebyeプロットを用いてMw’及び<Rg 2>を算出する。
(Basic principle of GPC-MALS method)
When a styrene-based resin is dissolved in a solvent such as tetrahydrofuran to prepare a styrene-based resin solution and subjected to GPC measurement, the polymer having a larger molecular size elutes first, so that the polymer is classified according to the molecular size. Subsequently, the separated styrene resin solution was subjected to MALS measurement to obtain the weight average molecular weight (Mw') of the styrene resin divided by the molecular size and the root mean square radius of gyration <R g 2 > corresponding to the molecular size. Can be calculated.
Specifically, the styrene resin solution divided by the molecular size by GPC is irradiated with laser light, and the scattered light intensity generated from the styrene resin solution by Rayleigh scattering is measured. From the obtained measured values, Mw'and <R g 2 > are calculated using the following formula (1) and the Debye plot shown in FIG.
K*:光学パラメーター(4π2n0 2(dn/dc)2/[λ0 4NA])
n0:溶媒の屈折率
dn/dc:屈折率の濃度増分
λ0:真空中での入射光の波長
NA:アボガドロ数
c:サンプル濃度(g/mL)
R(θ):過剰散乱のレイリー比
Mw’:重量平均分子量(g/mole)
P(θ):干渉因子
P(θ)=(1−2{(4π/λ)sin(θ/2)}2<Rg 2>/3!+・・・)
λ:測定系における波長 λ0/n0
<Rg 2>:二乗平均回転半径
A2:第二ビリアル係数
K *: Optical parameter (4π 2 n 0 2 (dn / dc) 2 / [
n 0: refractive index dn / dc of the solvent: Concentration increment of the refractive index lambda 0: Wavelength N A of the incident light in a vacuum: Avogadro number c: sample concentration (g / mL)
R (θ): Rayleigh ratio of overscattering Mw': Weight average molecular weight (g / mole)
P (θ): Interference factor P (θ) = (1-2 {(4π / λ) sin (θ / 2)} 2 <R g 2 > / 3! + ...)
λ: Wavelength in the measurement system λ 0 / n 0
<R g 2 >: Root mean square radius of gyration A 2 : Second virial coefficient
図8は、樹脂濃度の異なるスチレン系樹脂溶液について、GPC−MALS法で測定をし、縦軸(Y軸)を「K*c/R(θ)」、横軸(X軸)を「sin2(θ/2)」としてプロットしたDebyeプロットの一例である。
Debyeプロットにより得られる回帰直線と縦軸との切片(Y軸切片)から、GPCで分子サイズにより分けられたスチレン系樹脂の重量平均分子量Mw’、回帰直線の初期勾配から、該スチレン系樹脂の二乗平均回転半径<Rg 2>が求まる。
GPC測定において、各溶出時間における濃度は非常に希薄であるため,第二ビリアル係数A2を0として解析すると、GPCで分子サイズにより分けられたスチレン系樹脂の重量平均分子量Mw’と二乗平均回転半径<Rg 2>は、それぞれ、下記式(2)、(3)により求めることができる。
In FIG. 8, styrene resin solutions having different resin concentrations are measured by the GPC-MALS method, and the vertical axis (Y axis) is “K * c / R (θ)” and the horizontal axis (X axis) is “sin”. This is an example of a Debye plot plotted as "2 (θ / 2)".
From the intercept (Y-axis intercept) between the regression line and the vertical axis obtained by the Debye plot, the weight average molecular weight Mw'of the styrene resin divided by the molecular size by GPC, and the initial gradient of the regression line, the styrene resin The squared average turning radius <R g 2 > can be obtained.
In GPC measurement, the concentration at each elution time is very dilute. Therefore, when the second virial coefficient A 2 is analyzed as 0, the weight average molecular weight Mw'and the root mean square rotation of the styrene resin divided by the molecular size by GPC. The radius <R g 2 > can be obtained by the following equations (2) and (3), respectively.
K*c/R0:角度θ=0°におけるK*c/R(θ)
dy/dx:回帰直線の初期勾配
K * c / R 0 : K * c / R (θ) at an angle θ = 0 °
dy / dx: Initial gradient of regression line
GPC−MALS法により求められる数平均分子量Mn’、重量平均分子量Mw’、Z平均分子量Mz’は、スチレン系樹脂の絶対分子量である。
一方、直鎖ポリスチレンを標準物質として、GPC法により求められる数平均分子量Mn、重量平均分子量Mw、Z平均分子量Mzは、スチレン系樹脂の相対分子量である。
The number average molecular weight Mn', the weight average molecular weight Mw', and the Z average molecular weight Mz' obtained by the GPC-MALS method are the absolute molecular weights of the styrene resin.
On the other hand, using linear polystyrene as a standard substance, the number average molecular weight Mn, the weight average molecular weight Mw, and the Z average molecular weight Mz obtained by the GPC method are relative molecular weights of the styrene resin.
また、本発明において、スチレン系樹脂の収縮因子gは、次のようにして求める値を用いる。
本発明の分岐構造を有するスチレン系樹脂の二乗平均回転半径<Rg 2>Bと直鎖スチレン系樹脂の二乗平均回転半径<Rg 2>Lの比を収縮因子gとして、下記式(4)〜(8)に基づき、収縮因子gを求めることができる。そして、収縮因子gから、長鎖分岐度Bmを求めることができる。本発明においては、スチレン系樹脂が3本鎖分岐の構造であると仮定して長鎖分岐度を求める。
収縮因子gw、1分子あたりの長鎖分岐度Bm,w、スチレン1000単位あたりの長鎖分岐度Bm,1000は、下記式(4)〜(8)で求められる。
Further, in the present invention, the shrinkage factor g of the styrene resin uses a value obtained as follows.
The ratio of the root mean square turning radius <R g 2 > B of the styrene resin having the branched structure of the present invention and the root mean square turning radius <R g 2 > L of the linear styrene resin is the shrinkage factor g, and the following equation (4) )-(8), the contractile factor g can be obtained. Then, the long chain branching degree B m can be obtained from the contraction factor g. In the present invention, the degree of long-chain branching is determined on the assumption that the styrene-based resin has a three-chain branching structure.
Shrinkage factor g w, 1 degree of long chain branching B m per molecule, w, degree of long chain branching B m, 1000 per styrene 1000 units is obtained by the following formula (4) to (8).
上記式において、giは区間iにおける収縮因子;Bm,iは区間iにおける長鎖分岐度;ciは区間iにおける濃度である。 In the above formula, g i shrinkage factor in the interval i; B m, i is the long chain branching index in the interval i; c i is the concentration in the interval i.
また、本発明の製造方法により得られるスチレン系樹脂は、200℃、剪断速度100sec−1における溶融粘度が2100Pa・s以下であると共に、200℃における溶融張力が350mN以上であり、前記溶融粘度に対する前記溶融張力の比(溶融張力/溶融粘度〔mN/(Pa・s)〕)が0.20以上であるスチレン系樹脂であることが好ましい。 Further, the styrene-based resin obtained by the production method of the present invention has a melt viscosity of 2100 Pa · s or less at 200 ° C. and a shear rate of 100 sec -1 and a melt tension of 350 mN or more at 200 ° C. with respect to the melt viscosity. A styrene-based resin having a melt tension ratio (melt tension / melt viscosity [mN / (Pa · s)]) of 0.20 or more is preferable.
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。「部」及び「%」は、特に記載しない限り重量基準である。オートクレーブ内の温度は、水性媒体の温度を意味する。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. “Part” and “%” are based on weight unless otherwise specified. The temperature in the autoclave means the temperature of the aqueous medium.
〔核粒子の作製〕
(製造例1)
撹拌装置を備えた内容積が1m3のオートクレーブに、脱イオン水350kg、懸濁剤として第三リン酸カルシウム(太平化学産業社製、20.5%スラリー)2.1kg、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(10%水溶液)0.158kg、ドデシルジフェニルエーテルスルホン酸二ナトリウム(花王社製、ペレックスSSH 10%水溶液)0.053kg、電解質として酢酸ナトリウム0.535kgを投入した。
ついで、重合開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート0.975kg(日本油脂社製、パーブチルO)及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート0.284kg(化薬アクゾ社製、トリゴノックス117)、重合禁止剤として4−tert−ブチルカテコール15.4gを、スチレン390kgに溶解させ、110rpmで撹拌しながら、これをオートクレーブ内に供給した。オートクレーブ内を窒素置換した後、昇温を開始し、1時間15分かけて90℃まで昇温した。
[Preparation of nuclear particles]
(Manufacturing Example 1)
In an autoclave with an internal volume of 1 m 3 equipped with a stirrer, 350 kg of deionized water, 2.1 kg of tricalcium phosphate (20.5% slurry manufactured by Taihei Kagaku Sangyo Co., Ltd.) as a suspending agent, and dodecylbenzene sulfonate as a surfactant. 0.158 kg of sodium acid (10% aqueous solution), 0.053 kg of dodecyldiphenyl ether sulfonate disodium (manufactured by Kao,
Then, as a polymerization initiator, 0.975 kg of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Oil & Fats Co., Ltd., perbutylO) and 0.284 kg of t-butylperoxy-2-ethylhexyl monocarbonate 0.284 kg (Akzo Corporation). , Trigonox 117), 15.4 g of 4-tert-butylcatechol as a polymerization inhibitor was dissolved in 390 kg of styrene, and this was supplied into an autoclave while stirring at 110 rpm. After replacing the inside of the autoclave with nitrogen, the temperature was started to rise to 90 ° C over 1 hour and 15 minutes.
90℃到達後、100℃まで5時間かけて昇温した。100℃到達後、1時間30分かけて115℃まで昇温した。115℃で2時間40分保持し、その後40℃まで2時間かけて冷却した。90℃までの昇温中、60℃到達の時点で、懸濁助剤として過硫酸カリウム1.95gをオートクレーブ内に投入した。
冷却後、内容物を取り出し、スチレン系樹脂粒子の表面に付着した第三リン酸カルシウムを硝酸により溶解させた後、遠心分離機で脱水、洗浄し、さらに気流乾燥装置で粒子の表面に付着した水分を除去して、スチレン系樹脂粒子を得た。
得られたスチレン系樹脂粒子を篩にかけて、直径が0.5〜1.3mmの粒子(平均粒子径0.8mm)を取り出し、核粒子1とした。
なお、スチレン系樹脂粒子(前記核粒子1及び後述する核粒子2)の平均粒子径d63は、日機装株式会社の粒度分布測定装置「ミリトラック JPA」により測定した。
After reaching 90 ° C., the temperature was raised to 100 ° C. over 5 hours. After reaching 100 ° C., the temperature was raised to 115 ° C. over 1 hour and 30 minutes. It was kept at 115 ° C. for 2 hours and 40 minutes, and then cooled to 40 ° C. over 2 hours. During the temperature rise to 90 ° C., when the temperature reached 60 ° C., 1.95 g of potassium persulfate was put into the autoclave as a suspension aid.
After cooling, the contents are taken out, the tricalcium phosphate adhering to the surface of the styrene resin particles is dissolved with nitric acid, dehydrated and washed with a centrifuge, and the moisture adhering to the surface of the particles is removed with an air flow dryer. The particles were removed to obtain styrene resin particles.
The obtained styrene-based resin particles were sieved, and particles having a diameter of 0.5 to 1.3 mm (average particle diameter of 0.8 mm) were taken out and used as
The average particle size d63 of the styrene-based resin particles (the
(製造例2)
撹拌装置を備えた内容積が1m3のオートクレーブに、脱イオン水380kg、懸濁剤として第三リン酸カルシウム(太平化学産業社製、20.5%スラリー)6.15kg、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(10%水溶液)0.499kg、ドデシルジフェニルエーテルスルホン酸二ナトリウム(花王社製、ペレックスSSH 10%水溶液)0.166kg、懸濁助剤として過硫酸カリウム4gを供給した。
次いで、重合開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート0.440kg(日本油脂社製、パーブチルO)及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート0.520kg(化薬アクゾ社製、トリゴノックス117)をスチレン360kgに溶解させ、110rpmで撹拌しながら、これをオートクレーブに供給した。オートクレーブ内を窒素置換した後、昇温を開始し、1時間15分かけて90℃まで昇温した。
(Manufacturing Example 2)
In an autoclave with an internal volume of 1 m 3 equipped with a stirrer, 380 kg of deionized water, 6.15 kg of tricalcium phosphate (20.5% slurry manufactured by Taihei Kagaku Sangyo Co., Ltd.) as a suspending agent, and dodecylbenzene sulfonate as a surfactant. 0.499 kg of sodium acid (10% aqueous solution), 0.166 kg of disodium dodecyldiphenyl ether sulfonate (manufactured by Kao,
Then, as a polymerization initiator, 0.440 kg of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Oil & Fats Co., Ltd., perbutyl O) and 0.520 kg of t-butylperoxy-2-ethylhexyl monocarbonate 0.520 kg (chemical drug Axo) Trigonox 117) was dissolved in 360 kg of styrene and supplied to an autoclave while stirring at 110 rpm. After replacing the inside of the autoclave with nitrogen, the temperature was started to rise to 90 ° C over 1 hour and 15 minutes.
90℃到達後、120℃まで6時間かけて昇温し、120℃で3時間保持し、40℃まで3時間かけて冷却した。
冷却後、内容物を取り出し、スチレン系樹脂粒子の表面に付着した第三リン酸カルシウムを硝酸により溶解させた後、遠心分離機で脱水、洗浄し、さらに気流乾燥装置で表面に付着した水分を除去して、スチレン系樹脂粒子を得た。
得られたスチレン系樹脂粒子を篩にかけて、直径が0.3〜0.5mmの粒子(平均粒子径0.4mm)を取り出し、核粒子2とした。
After reaching 90 ° C., the temperature was raised to 120 ° C. over 6 hours, held at 120 ° C. for 3 hours, and cooled to 40 ° C. over 3 hours.
After cooling, the contents are taken out, the tricalcium phosphate adhering to the surface of the styrene resin particles is dissolved with nitric acid, dehydrated and washed with a centrifuge, and the moisture adhering to the surface is removed with an air flow dryer. To obtain styrene-based resin particles.
The obtained styrene-based resin particles were sieved, and particles having a diameter of 0.3 to 0.5 mm (average particle diameter of 0.4 mm) were taken out and used as
〔スチレン系樹脂の製造〕
(実施例1)
[分散工程]
撹拌装置を備えた内容積が1.5m3のオートクレーブに、脱イオン水421kg、ピロリン酸ナトリウム2.63kg、硝酸マグネシウム6.56kgを供給し、塩交換によりオートクレーブ内で懸濁剤としてのピロリン酸マグネシウムを合成した。界面活性剤としてアルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.131kg、核粒子として製造例1で得られたスチレン系樹脂粒子(核粒子1)112kgをオートクレーブに供給した後、オートクレーブ内を窒素置換した。具体的には窒素によりオートクレーブ内を0.3MPa(G)まで加圧し、その後オートクレーブ内の圧力が大気圧になるまでオートクレーブ内の気体を放出した。
[Manufacturing of styrene resin]
(Example 1)
[Dispersion process]
421 kg of deionized water, 2.63 kg of sodium pyrophosphate, and 6.56 kg of magnesium nitrate were supplied to an autoclave having an internal volume of 1.5 m 3 equipped with a stirrer, and pyrophosphate as a suspending agent was supplied in the autoclave by salt exchange. Magnesium was synthesized. After supplying 0.131 kg of sodium alkylsulfonate (manufactured by Kao Co., Ltd., Latemul PS, 40% aqueous solution) as a surfactant and 112 kg of the styrene-based resin particles (nuclear particles 1) obtained in Production Example 1 as nuclear particles to an autoclave. , The inside of the autoclave was replaced with nitrogen. Specifically, the inside of the autoclave was pressurized to 0.3 MPa (G) with nitrogen, and then the gas in the autoclave was released until the pressure in the autoclave reached atmospheric pressure.
[含浸工程]
次いで、50rpmで撹拌しながら、80℃まで昇温した。80℃に到達後、脱イオン水84kg、アルキルスルホン酸ナトリウム(花王社製、ラテムルPS、40%水溶液)0.171kg、スチレン(スチレン単量体)80kg、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社製、トリゴノックス117;表中は「BE」と記載、10時間半減期温度T1/299.0℃)1.58kgの混合物をホモジナイザーにより乳化液に調製し、乳化液をオートクレーブ内に供給した。その後、オートクレーブ内を0.1MPa(G)になるまで窒素で加圧し、80℃で1時間保持した。
[Immersion process]
Then, the temperature was raised to 80 ° C. with stirring at 50 rpm. After reaching 80 ° C, 84 kg of deionized water, 0.171 kg of sodium alkylsulfonate (manufactured by Kao, Latemul PS, 40% aqueous solution), 80 kg of styrene (styrene monomer), t-butylperoxy-2-ethylhexyl mono A mixture of 1.58 kg of carbonate (Trigonox 117 manufactured by Kayaku Akzo Corporation; described as "BE" in the table, 10-hour half-life temperature T 1/2 99.0 ° C.) was prepared as an emulsion by a homogenizer, and the emulsion was prepared. Was supplied into the autoclave. Then, the inside of the autoclave was pressurized with nitrogen until it became 0.1 MPa (G), and kept at 80 ° C. for 1 hour.
[重合開始工程]
その後、2時間かけて105℃まで昇温した。
[Polymerization start process]
Then, the temperature was raised to 105 ° C. over 2 hours.
[追加含浸重合工程]
105℃到達後、5.5時間保持した。オートクレーブ内の温度が105℃に到達時から5時間10分かけて、スチレン(スチレン単量体)254kgを0.8kg/分の割合でオートクレーブ内に連続的に添加した。
なお、スチレンの添加に当たっては、上記添加条件、重合に用いた重合開始剤の化学的特性、及び重合温度から計算したスチレンの重合速度をもとに、シミュレーションにより経過時間に対する核粒子中のスチレン含有量変化と温度変化を確認し、そのシミュレーションに基づき、スチレンの添加中の核粒子中のスチレン含有量が10重量%以下となるようにスチレンを追加添加した。
スチレンの追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法(「追加含浸重合工程中のスチレン単量体添加中の核粒子中のスチレン含有量の測定方法」)によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量はいずれも6重量%であった。
[Additional impregnation polymerization step]
After reaching 105 ° C., it was kept for 5.5 hours. Over 5 hours and 10 minutes after the temperature in the autoclave reached 105 ° C., 254 kg of styrene (styrene monomer) was continuously added into the autoclave at a rate of 0.8 kg / min.
When adding styrene, the styrene content in the nuclear particles with respect to the elapsed time was simulated by simulation based on the above addition conditions, the chemical properties of the polymerization initiator used for the polymerization, and the polymerization rate of styrene calculated from the polymerization temperature. The amount change and the temperature change were confirmed, and based on the simulation, styrene was additionally added so that the styrene content in the core particles during the addition of styrene was 10% by weight or less.
At the start of the additional addition of styrene, 2.5 hours after the start of the addition, and at the end of the additional addition, the methods described later (“Styrene content in the nuclei during the addition of the styrene monomer during the additional impregnation polymerization step” When the styrene content in the styrene-based resin particles was measured by the above-mentioned method, the styrene content in the nuclei particles was 6% by weight.
図1〜7に、実施例及び比較例におけるシミュレーション結果のグラフを示した。グラフは、横軸に経過時間〔Time(hr)〕、左側の縦軸に追加含浸重合工程における核粒子中のスチレン単量体の含有量〔Amount of Styrene monomer in a core particle (wt.%)〕、右側の縦軸に重合温度〔Temperature(℃)〕をとった。グラフ中、経過時間に対する核粒子中のスチレン含有量変化を実線で示し、経過時間に対する重合温度変化を破線で示した。 Figures 1 to 7 show graphs of simulation results in Examples and Comparative Examples. In the graph, the horizontal axis is the elapsed time [Time (hr)], and the left vertical axis is the content of styrene monomer in the nuclear particles in the additional impregnation polymerization step [Amount of Style monomer in a core particle (wt.%). ], The vertical axis on the right side is the polymerization temperature [Temperature (° C.)]. In the graph, the change in the styrene content in the nuclear particles with respect to the elapsed time is shown by a solid line, and the change in the polymerization temperature with respect to the elapsed time is shown by a broken line.
[残重合工程]
追加含浸重合工程後、水性媒体を120℃まで2時間かけて昇温し、120℃で3時間保持することで未反応のスチレン単量体を重合させた。
[冷却工程]
残重合工程後、6時間かけて水性媒体を35℃まで冷却した。
[Residual polymerization step]
After the additional impregnation polymerization step, the aqueous medium was heated to 120 ° C. over 2 hours and kept at 120 ° C. for 3 hours to polymerize the unreacted styrene monomer.
[Cooling process]
After the residual polymerization step, the aqueous medium was cooled to 35 ° C. over 6 hours.
オートクレーブ内を冷却後、オートクレーブから取り出したスチレン系樹脂粒子を希硝酸で洗浄して樹脂粒子表面に付着した懸濁剤を溶解除去した後、水洗を行い、さらに遠心分離機で脱水した。帯電防止剤としてのポリオキシエチレンラウリルエーテル0.01重量部(スチレン系樹脂100重量部に対する値)で被覆後、流動乾燥(室温空気、10分間)により樹脂粒子表面の水分を除去した。 After cooling the inside of the autoclave, the styrene-based resin particles taken out from the autoclave were washed with dilute nitrate to dissolve and remove the suspending agent adhering to the surface of the resin particles, washed with water, and further dehydrated by a centrifuge. After coating with 0.01 part by weight of polyoxyethylene lauryl ether as an antistatic agent (value with respect to 100 parts by weight of styrene resin), moisture on the surface of the resin particles was removed by fluid drying (room temperature air, 10 minutes).
(実施例2)
実施例1とは、以下の点を変更した。具体的には、核粒子を、核粒子1から製造例2で得られたスチレン系樹脂粒子(核粒子2)66.9kgに変更した。また、追加含浸重合工程において、105℃での保持時間を6時間10分に変更し、追加添加するスチレンの量を299kgに変更し、スチレンを6時間10分かけて0.8kg/分の割合で連続的に添加した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時及び追加添加終了時は6重量%であった。
(Example 2)
The following points were changed from the first embodiment. Specifically, the nuclear particles were changed from the
(実施例3)
含浸工程後80℃から2時間かけて100℃に昇温し、追加含浸重合工程の温度を100℃に変更したことを除いては実施例1と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時は9重量%、追加添加終了時は8重量%であった。
(Example 3)
A styrene-based resin was produced in the same manner as in Example 1 except that the temperature was raised from 80 ° C. to 100 ° C. over 2 hours after the impregnation step and the temperature of the additional impregnation polymerization step was changed to 100 ° C. When the styrene content in the styrene resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 2.5 hours after the start of the addition, and at the end of the additional addition, the styrene content in the styrene resin particles was measured. The styrene content was 10% by weight at the start of the additional addition, 9% by weight after 2.5 hours from the start of the addition, and 8% by weight at the end of the additional addition.
(実施例4)
実施例1とは、以下の点を変更した。具体的には、分散工程において、核粒子(核粒子1)の供給量を183kgに変更した。また、追加含浸重合工程において、105℃での保持時間を3時間に変更し、追加添加するスチレンの量を103kgに変更し、スチレンを3時間かけて0.8kg/分の割合で連続的に添加した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は3重量%、添加開始から2.5時間経過時及び追加添加終了時は5重量%であった。
(Example 4)
The following points were changed from the first embodiment. Specifically, in the dispersion step, the supply amount of nuclear particles (nuclear particles 1) was changed to 183 kg. Further, in the additional impregnation polymerization step, the holding time at 105 ° C. was changed to 3 hours, the amount of styrene to be additionally added was changed to 103 kg, and styrene was continuously added at a ratio of 0.8 kg / min over 3 hours. Added. When the styrene content in the styrene resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 2.5 hours after the start of the addition, and at the end of the additional addition, the styrene content in the styrene resin particles was measured. The styrene content was 3% by weight at the start of the additional addition, and 5% by weight at the lapse of 2.5 hours from the start of the addition and at the end of the additional addition.
(実施例5)
実施例1とは、以下の点を変更した。分散工程において、昇温前にオートクレーブ内の空気を窒素にて置換する際、窒素によりオートクレーブ内を0.5MPa(G)まで加圧し、オートクレーブ内の圧力が大気圧になるまでオートクレーブ内の気体を放出する操作を3回繰り返した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量はいずれも6重量%であった。
(Example 5)
The following points were changed from the first embodiment. In the dispersion step, when the air in the autoclave is replaced with nitrogen before the temperature rise, the inside of the autoclave is pressurized to 0.5 MPa (G) with nitrogen, and the gas in the autoclave is released until the pressure in the autoclave reaches atmospheric pressure. The release operation was repeated 3 times. When the styrene content in the styrene-based resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 2.5 hours after the start of the addition, and at the end of the additional addition, the styrene content in the styrene-based resin particles was measured. The styrene content was 6% by weight in each case.
(実施例6)
実施例1とは、以下の点を変更した。具体的には、核粒子(核粒子1)の供給量を67kgに変更した。また、追加含浸重合工程において、105℃での保持時間を6時間30分に変更し、追加添加するスチレンの量を299kgに変更し、スチレンを6時間10分かけて0.8kg/分の割合で連続的添加にした。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は10重量%、添加開始から2.5時間経過時及び追加添加終了時は6重量%であった。
(Example 6)
The following points were changed from the first embodiment. Specifically, the supply amount of nuclear particles (nuclear particles 1) was changed to 67 kg. Further, in the additional impregnation polymerization step, the holding time at 105 ° C. was changed to 6 hours and 30 minutes, the amount of styrene to be additionally added was changed to 299 kg, and the ratio of styrene was 0.8 kg / min over 6 hours and 10 minutes. Was added continuously. When the styrene content in the styrene resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 2.5 hours after the start of the addition, and at the end of the additional addition, the styrene content in the styrene resin particles was measured. The styrene content was 10% by weight at the start of the additional addition, and 6% by weight at the lapse of 2.5 hours from the start of the addition and at the end of the additional addition.
(比較例1)
含浸工程後80℃から2時間かけて90℃に昇温し、追加含浸重合工程の温度を90℃に変更したことを除いては実施例1と同様にスチレン系樹脂を作製した。スチレン単量体の追加添加開始時、添加開始から2.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は19重量%、添加開始から2.5時間経過時は25重量%、追加添加終了時は24重量%であった。
(Comparative Example 1)
A styrene-based resin was produced in the same manner as in Example 1 except that the temperature was raised from 80 ° C. to 90 ° C. over 2 hours after the impregnation step and the temperature of the additional impregnation polymerization step was changed to 90 ° C. When the styrene content in the styrene resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 2.5 hours after the start of the addition, and at the end of the additional addition, the styrene content in the styrene resin particles was measured. The styrene content was 19% by weight at the start of the additional addition, 25% by weight when 2.5 hours had passed since the start of the additional addition, and 24% by weight at the end of the additional addition.
(比較例2)
実施例1とは、以下の点を変更した。具体的には、分散工程において、核粒子(核粒子1)の供給量を105kgに変更した。含浸工程の温度を75℃に変更し、75℃に到達後、スチレンの量を53kgに変更し、重合開始剤を過酸化ベンゾイル(日本油脂社製 ナイパーBW、水希釈粉体品;表中は「BPO」と記載、10時間半減期温度73.6℃)1.79kg、及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(化薬アクゾ社、トリゴノックス117、10時間半減期温度99.0℃)0.18kgに変更し、分岐剤(多官能性単量体)としてジビニルベンゼン11gを添加した乳化液をオートクレーブ内に供給した。その後、75℃で2時間保持した。75℃で2時間保持した後、温度はそのままにして2時間30分かけてスチレン321kgとジビニルベンゼン89gの混合物を2.1kg/分の割合で連続的に添加した。スチレン単量体の追加添加開始時、添加開始から1.5時間経過時、追加添加終了時のそれぞれにおいて、後述する方法によりスチレン系樹脂粒子中のスチレン含有量を測定したところ、核粒子中のスチレン含有量は、追加添加開始時は8重量%、添加開始から1.5時間経過時は58重量%、追加添加終了時は66重量%であった。次いで、2時間かけて108℃まで昇温し、20分かけて112℃まで昇温し、2時間かけて125℃まで昇温した。その後、125℃で1時間30分保持し、6時間かけて35℃まで冷却した。
(Comparative Example 2)
The following points were changed from the first embodiment. Specifically, in the dispersion step, the supply amount of nuclear particles (nuclear particles 1) was changed to 105 kg. The temperature of the impregnation process was changed to 75 ° C, and after reaching 75 ° C, the amount of styrene was changed to 53 kg, and the polymerization initiator was benzoyl peroxide (Niper BW manufactured by Nippon Oil & Fats Co., Ltd., water-diluted powder product; in the table. Described as "BPO", 10-hour half-life temperature 73.6 ° C.) 1.79 kg, and t-butylperoxy-2-ethylhexyl monocarbonate (Chemical Axo, Trigonox 117, 10-hour half-life temperature 99.0 ° C.) ) Was changed to 0.18 kg, and an emulsion to which 11 g of divinylbenzene was added as a branching agent (polyfunctional monomer) was supplied into the autoclave. Then, it was kept at 75 degreeC for 2 hours. After holding at 75 ° C. for 2 hours, a mixture of 321 kg of styrene and 89 g of divinylbenzene was continuously added at a ratio of 2.1 kg / min over 2 hours and 30 minutes while keeping the temperature unchanged. When the styrene content in the styrene resin particles was measured by the method described later at the start of the additional addition of the styrene monomer, 1.5 hours after the start of the addition, and the end of the additional addition, the styrene content in the styrene resin particles was measured. The styrene content was 8% by weight at the start of the additional addition, 58% by weight after 1.5 hours from the start of the addition, and 66% by weight at the end of the additional addition. Then, the temperature was raised to 108 ° C. over 2 hours, 112 ° C. over 20 minutes, and 125 ° C. over 2 hours. Then, it was held at 125 ° C. for 1 hour and 30 minutes, and cooled to 35 ° C. over 6 hours.
(比較例3)
スチレン系樹脂として、市販品(DIC社製HP780AN)を用いて評価を行なった。
(Comparative Example 3)
As a styrene resin, a commercially available product (HP780AN manufactured by DIC Corporation) was used for evaluation.
<評価>
下記方法にて実施例及び比較例のスチレン系樹脂の物性を測定した。結果を表1及び2に示す。
<Evaluation>
The physical characteristics of the styrene resins of Examples and Comparative Examples were measured by the following methods. The results are shown in Tables 1 and 2.
〔残存スチレン単量体(残留モノマー)の測定〕
スチレン系樹脂約1gを精秤し、N,N−ジメチルホルムアミド(DMF)25mlに溶解させ、ガスクロマトグラフィー(GC)で測定し、検量線で校正して、残存スチレンを定量した。なお、ガスクロマトグラフィーの測定条件は次の通りである。
使用機器:島津製作所社製ガスクロマトグラフGC−9A
カラム充填剤:
〔液相名〕PEG−20M
〔液相含浸率〕25重量%
〔担体粒度〕60/80メッシュ
〔担体処理方法〕AW−DMCS(水洗、焼成、酸処理、シラン処理)
カラム材質:内径3mm、長さ3000mmのガラスカラム
キャリアガス:N2
検出器:FID(水素炎イオン化検出器)
定量:内部標準法
[Measurement of residual styrene monomer (residual monomer)]
Approximately 1 g of styrene-based resin was precisely weighed, dissolved in 25 ml of N, N-dimethylformamide (DMF), measured by gas chromatography (GC), calibrated by a calibration curve, and residual styrene was quantified. The measurement conditions for gas chromatography are as follows.
Equipment used: Gas chromatograph GC-9A manufactured by Shimadzu Corporation
Column packing material:
[Liquid phase name] PEG-20M
[Liquid phase impregnation rate] 25% by weight
[Carrier particle size] 60/80 mesh [Carrier treatment method] AW-DMCS (washing with water, firing, acid treatment, silane treatment)
Column material: Glass column carrier gas with an inner diameter of 3 mm and a length of 3000 mm: N 2
Detector: FID (Flame Ionization Detector)
Quantitative: internal standard method
〔残存スチレンオリゴマー(スチレンダイマー+スチレントリマー;残留オリゴマー)の測定〕
スチレン系樹脂約0.1gを精秤し、テトラヒドロフラン10mlに溶解させ、23℃のn−ヘプタン約250ml中に滴下して樹脂を析出させた。樹脂を濾別した濾液をガスクロマトグラフ質量分析計で測定した。なお、ガスクロマトグラフ質量分析の測定条件は次の通りである。
使用機器:島津製作所社製ガスクロマトグラフ質量分析計GC/MS−QP5050A
カラム:J&W Scientific社製DB−5MS、0.25mm×30m(固定相:5%ジフェニル−95%ジメチル−ポリシロキサン)
キャリアガス:ヘリウム、カラム流量1.6ml/min
試料注入量:1μL
[Measurement of residual styrene oligomer (styrene dimer + styrene trimmer; residual oligomer)]
About 0.1 g of the styrene-based resin was precisely weighed, dissolved in 10 ml of tetrahydrofuran, and added dropwise to about 250 ml of n-heptane at 23 ° C. to precipitate the resin. The filtrate obtained by filtering the resin was measured with a gas chromatograph mass spectrometer. The measurement conditions for gas chromatograph mass spectrometry are as follows.
Equipment used: Gas chromatograph mass spectrometer GC / MS-QP5050A manufactured by Shimadzu Corporation
Column: DB-5MS manufactured by J & W Scientific, 0.25 mm x 30 m (stationary phase: 5% diphenyl-95% dimethyl-polysiloxane)
Carrier gas: helium, column flow rate 1.6 ml / min
Sample injection volume: 1 μL
〔水性媒体中の酸素濃度測定〕
昇温直前の30℃の水性媒体中の酸素濃度をハンディタイプ溶存酸素計DO−110(ニッコー・ハンセン社製)により測定した。
[Measurement of oxygen concentration in aqueous medium]
The oxygen concentration in the aqueous medium at 30 ° C. immediately before the temperature rise was measured with a handy type dissolved oxygen meter DO-110 (manufactured by Nikko Hansen).
スチレン系樹脂のメルトフローレート(MFR)は、JIS K7210−1:2014に準拠して、温度190℃、荷重2.16kgの条件で測定した。 The melt flow rate (MFR) of the styrene resin was measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210-1: 2014.
〔溶融粘度の測定〕
東洋精機社製キャピログラフ1Dにより、200℃、せん断速度100sec−1におけるスチレン系樹脂の溶融粘度を測定した。測定には内径1mm、長さ10mmのオリフィスを用いた。得られたスチレン系樹脂から無作為に採取した5つの測定用試料に対して溶融粘度の測定を行い、それらの測定値の算術平均値をスチレン系樹脂の溶融粘度とした。
[Measurement of melt viscosity]
The melt viscosity of the styrene resin at 200 ° C. and a shear rate of 100 sec -1 was measured by Capillograph 1D manufactured by Toyo Seiki Co., Ltd. An orifice having an inner diameter of 1 mm and a length of 10 mm was used for the measurement. The melt viscosities were measured on five measurement samples randomly collected from the obtained styrene resin, and the arithmetic mean value of these measured values was taken as the melt viscosity of the styrene resin.
〔溶融張力(MT;Melt Tension)の測定〕
東洋精機社製キャピログラフ1Dにより、200℃におけるスチレン系樹脂の溶融張力を測定した。測定には内径2.095mm、長さ8mmのオリフィスを用いた。ピストン降下速度10mm/分にてオリフィスからストランド状に押出された溶融状態の樹脂を、荷重測定部を通して引取り速度5m/分にて引取り、荷重を測定した。なお、得られたスチレン系樹脂を均質化するために、東洋精機社製ラボプラストミルを用いて行い、スクリュー回転数50rpm、樹脂温度200℃の条件で混練したものを測定用試料として用いた。なお、スチレン系樹脂の溶融張力が高すぎて単体では溶融張力が測定できない場合には、得られたスチレン系樹脂にPSジャパン製ポリスチレン「680」をそれぞれ75重量%、50重量%の割合で混練したものを測定試料として用いてそれらの溶融張力を測定し、外挿することにより「680」配合量0重量%のときの溶融張力を求め、その値をスチレン系樹脂の溶融張力とした。
[Measurement of melt tension (MT)]
The melt tension of the styrene resin at 200 ° C. was measured by Capillograph 1D manufactured by Toyo Seiki Co., Ltd. An orifice having an inner diameter of 2.095 mm and a length of 8 mm was used for the measurement. The molten resin extruded from the orifice in a strand shape at a piston descent speed of 10 mm / min was taken up through a load measuring unit at a take-up speed of 5 m / min, and the load was measured. In order to homogenize the obtained styrene-based resin, a lab plast mill manufactured by Toyo Seiki Co., Ltd. was used, and a sample kneaded under the conditions of a screw rotation speed of 50 rpm and a resin temperature of 200 ° C. was used as a measurement sample. If the melt tension of the styrene resin is too high to measure the melt tension by itself, PS Japan polystyrene "680" is kneaded into the obtained styrene resin at a ratio of 75% by weight and 50% by weight, respectively. The melt tension of these was measured as a measurement sample, and the melt tension was obtained when the blending amount of "680" was 0% by weight by extrapolation, and the value was taken as the melt tension of the styrene resin.
〔テトラヒドロフランへの不溶分(THF不溶分)〕
スチレン系樹脂中のスチレン系樹脂1gを精秤して、テトラヒドロフラン30mlを加え、23℃で24時間浸漬後、5時間振とうし、静置する。次いで上澄みをデカンテーションにより取り除き、再度テトラヒドロフラン10mlを加えて静置し、上澄みをデカンテーションにより取り除き、23℃で24時間乾燥し、乾燥後の重量を求め、次式によりテトラヒドロフラン不溶分を求める。
テトラヒドロフラン不溶分(%)=[乾燥後の不溶分重量/試料の重量]×100
[Insoluble in tetrahydrofuran (THF insoluble)]
1 g of the styrene resin in the styrene resin is precisely weighed, 30 ml of tetrahydrofuran is added, the mixture is immersed at 23 ° C. for 24 hours, shaken for 5 hours, and allowed to stand. Next, the supernatant is removed by decantation, 10 ml of tetrahydrofuran is added again and allowed to stand, the supernatant is removed by decantation, dried at 23 ° C. for 24 hours, the weight after drying is determined, and the tetrahydrofuran insoluble content is determined by the following formula.
Tetrahydrofuran insoluble matter (%) = [weight of insoluble matter after drying / weight of sample] x 100
〔ポリスチレン換算分子量(GPC)〕
直鎖ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法により、スチレン系樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)を測定した。具体的には、東ソー社製のHLC−8320GPC EcoSECを用いて、溶離液:テトラヒドロフラン(THF)、流量:0.6ml/分、試料濃度:0.1wt%という条件で測定した。カラムとしては、TSKguardcolumn SuperH−H×1本、TSK−GEL SuperHM−H×2本を直列に接続して用いた。すなわち、スチレン系樹脂をテトラヒドロフラン(THF)に溶解させ、ゲルパーミエーションクロマトグラフィ(GPC)で分子量を測定した。そして、測定値を標準ポリスチレン(直鎖)で校正して、スチレン系樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)をそれぞれ求めた。
[Polystyrene equivalent molecular weight (GPC)]
The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) of the styrene resin were measured by a gel permeation chromatography (GPC) method using linear polystyrene as a standard substance. Specifically, the measurement was carried out using HLC-8320GPC EcoSEC manufactured by Tosoh Corporation under the conditions of eluent: tetrahydrofuran (THF), flow rate: 0.6 ml / min, and sample concentration: 0.1 wt%. As the column, TSKguardcolum SuperH-
〔絶対分子量(GPC―MALS)〕
GPC−MALS法〔多角度光散乱検出器(Multi Angle Light Scattering:MALS)〕により、スチレン系樹脂の数平均分子量(Mn’)、重量平均分子量(Mw’)、Z平均分子量(Mz’)を測定した。GPC−MALS法により、スチレン系樹脂の絶対分子量を測定することができる。具体的には、島津製作所社製Prominence LC−20AD(2HGE)/WSシステム、Wyatt Technology社製の多角度光散乱検出器 DAWN HELEOS IIを用いて、溶離液:テトラヒドロフラン(THF)、流量1.0ml/minという条件で測定した。カラムとしては、東ソー社製TSKgel HHR−H×1本、TSKgel GMHHR×2本、を直列に接続して用いた。測定の解析は、Wyatt社の解析ソフト ASTRAにより行い、スチレン系樹脂の数平均分子量(Mn’)、重量平均分子量(Mw’)、Z平均分子量(Mz’)を求めた。屈折率の濃度増分dn/dcには、0.185ml/gを用いて解析を行なった。
[Absolute molecular weight (GPC-MALS)]
The number average molecular weight (Mn'), weight average molecular weight (Mw'), and Z average molecular weight (Mz') of the styrene resin are determined by the GPC-MALS method [Multi Angle Light Scattering (MALS)]. It was measured. The absolute molecular weight of the styrene resin can be measured by the GPC-MALS method. Specifically, using a Prominence LC-20AD (2HGE) / WS system manufactured by Shimadzu Corporation and a multi-angle light scattering detector DAWN HELEOS II manufactured by Waitt Technology, eluent: tetrahydrofuran (THF), flow rate 1.0 ml. It was measured under the condition of / min. As the column, TSKgel HHR-H × 1 and TSKgel GMHHR × 2 manufactured by Tosoh Co., Ltd. were connected in series and used. The measurement was analyzed by the analysis software ASTRA manufactured by Wyatt, and the number average molecular weight (Mn'), weight average molecular weight (Mw'), and Z average molecular weight (Mz') of the styrene resin were determined. The analysis was performed using 0.185 ml / g for the concentration increment dn / dc of the refractive index.
〔収縮因子及び長鎖分岐度〕
記述の式(4)〜(8)に基づき、収縮因子gw、1分子あたりの長鎖分岐度Bm,w、スチレン1000単位あたりの長鎖分岐度Bm,1000を下記式により求めた。本解析では3本鎖分岐と仮定して長鎖分岐度を求めた。直鎖ポリスチレンとしては、製造例1で得られたスチレン系樹脂粒子のデータを用いた。
[Shrink factor and long chain branching degree]
Based on the description of the formula (4) to (8), shrinkage factor g w, 1 per molecule degree of long chain branching B m, w, the degree of long chain branching B m, 1000 per styrene 1000 units was determined by the following formula .. In this analysis, the degree of long-chain branching was calculated on the assumption that it was a three-chain branch. As the linear polystyrene, the data of the styrene-based resin particles obtained in Production Example 1 was used.
〔追加含浸重合工程中のスチレン単量体添加中の核粒子中のスチレン含有量の測定方法〕
スチレン単量体の追加添加開始、開始2.5時間目、終了時のそれぞれの系において、反応器の温度を10分以内に30℃まで冷却し、重合中のスチレン系樹脂粒子を取り出した。
スチレン系樹脂粒子をN,N−ジメチルホルムアミド(DMF)に溶解させ、ガスクロマトグラフィー(GC)で測定し、検量線で校正して、スチレン系樹脂粒子中の残存スチレンを定量した。
なお、ガスクロマトグラフィーの測定条件は次の通りである。
使用機器:島津製作所製のガスクロマトグラフGC−9A
カラム充填剤:
〔液相名〕PEG−20M
〔液相含浸率〕25重量%
〔担体粒度〕60/80メッシュ
〔担体処理方法〕AW−DMCS(水洗、焼成、酸処理、シラン処理)
カラム材質:内径3mm、長さ3000mmのガラスカラム
キャリアガス:N2
検出器:FID(水素炎イオン化検出器)
定量:内部標準法
[Method for measuring styrene content in nuclei particles during addition of styrene monomer during additional impregnation polymerization step]
In each system at the start, 2.5 hours, and end of the additional addition of the styrene monomer, the temperature of the reactor was cooled to 30 ° C. within 10 minutes, and the styrene resin particles being polymerized were taken out.
Styrene-based resin particles were dissolved in N, N-dimethylformamide (DMF), measured by gas chromatography (GC), calibrated by a calibration curve, and residual styrene in the styrene-based resin particles was quantified.
The measurement conditions for gas chromatography are as follows.
Equipment used: Gas chromatograph GC-9A manufactured by Shimadzu Corporation
Column packing material:
[Liquid phase name] PEG-20M
[Liquid phase impregnation rate] 25% by weight
[Carrier particle size] 60/80 mesh [Carrier treatment method] AW-DMCS (washing with water, firing, acid treatment, silane treatment)
Column material: Glass column carrier gas with an inner diameter of 3 mm and a length of 3000 mm: N 2
Detector: FID (Flame Ionization Detector)
Quantitative: internal standard method
表1及び2からわかるように、市販のスチレン系樹脂(比較例3)では、流動性が良くても、溶融張力が小さくなった。また、製造過程の追加含浸重合工程全てにおいて、核粒子中のスチレン単量体の含有量が10重量%を超える条件で製造されたスチレン系樹(比較例1及び2)は、流動性が高いが、溶融張力が低いか(実施例1)、溶融張力が高いが、流動性が低い(実施例2)といったように、高流動性と高溶融張力とを両立することができなかった。 As can be seen from Tables 1 and 2, in the commercially available styrene resin (Comparative Example 3), the melt tension was small even though the fluidity was good. Further, in all the additional impregnation polymerization steps of the production process, the styrene-based trees (Comparative Examples 1 and 2) produced under the condition that the content of the styrene monomer in the nuclear particles exceeds 10% by weight has high fluidity. However, high fluidity and high melt tension could not be achieved at the same time, such as low melt tension (Example 1) or high melt tension but low fluidity (Example 2).
本発明のスチレン系樹脂の製造方法によれば、流動性が高く、かつ、溶融張力が高い、分岐構造を有するスチレン系樹脂を製造することができるため、スチレン系樹脂を押出成形、発泡成形、ブロー成形等に用いる、或はこれらの成形時の加工助剤として用いることで、延伸加工時に樹脂を破断しにくくすることができる。 According to the method for producing a styrene-based resin of the present invention, a styrene-based resin having a branched structure having high fluidity and high melt tension can be produced. By using it for blow molding or the like, or as a processing aid during these moldings, it is possible to make it difficult for the resin to break during stretching.
Claims (4)
前記水性媒体中に、有機過酸化物を含む重合開始剤及びスチレン単量体を添加し、実質的にスチレン単量体の重合が進行しない温度で前記核粒子に前記重合開始剤及び前記スチレン単量体を含浸させる含浸工程と、
前記水性媒体を昇温して、前記スチレン単量体の重合を開始させる重合開始工程と、
前記水性媒体中に、スチレン単量体を追加して添加し、前記核粒子に該スチレン単量体を含浸させて、スチレン系樹脂にスチレン単量体をグラフト重合させる追加含浸重合工程と、
を含み、
前記含浸工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対し20〜200重量部であり、
前記追加含浸重合工程におけるスチレン単量体の添加量は、前記核粒子100重量部に対して50〜700重量であるとともに、前記追加含浸重合工程における前記核粒子中のスチレン単量体の含有量を10重量%以下に維持するスチレン系樹脂の製造方法。 A dispersion step of dispersing nuclear particles containing 85% by weight or more of a styrene resin in an aqueous medium,
A polymerization initiator containing an organic peroxide and a styrene monomer are added to the aqueous medium, and the polymerization initiator and the styrene monomer are added to the nuclear particles at a temperature at which the polymerization of the styrene monomer does not substantially proceed. The impregnation process of impregnating the monomer and
A polymerization initiation step of raising the temperature of the aqueous medium to initiate polymerization of the styrene monomer, and
An additional impregnation polymerization step of adding a styrene monomer to the aqueous medium, impregnating the nuclei with the styrene monomer, and graft-polymerizing the styrene monomer to the styrene resin.
Including
The amount of the styrene monomer added in the impregnation step is 20 to 200 parts by weight with respect to 100 parts by weight of the nuclear particles.
The amount of the styrene monomer added in the additional impregnation polymerization step is 50 to 700 weight with respect to 100 parts by weight of the nuclear particles, and the content of the styrene monomer in the nuclear particles in the additional impregnation polymerization step. A method for producing a styrene-based resin, which maintains the content at 10% by weight or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142147A JP6886883B2 (en) | 2017-07-21 | 2017-07-21 | Manufacturing method of styrene resin |
CN201880048037.8A CN110945043B (en) | 2017-07-21 | 2018-07-20 | Styrene-based resin and method for producing styrene-based resin |
US16/631,415 US11254774B2 (en) | 2017-07-21 | 2018-07-20 | Styrene resin and method for producing styrene resin |
PCT/JP2018/027314 WO2019017482A1 (en) | 2017-07-21 | 2018-07-20 | Styrene resin and method for producing styrene resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142147A JP6886883B2 (en) | 2017-07-21 | 2017-07-21 | Manufacturing method of styrene resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019019294A JP2019019294A (en) | 2019-02-07 |
JP6886883B2 true JP6886883B2 (en) | 2021-06-16 |
Family
ID=65354016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017142147A Active JP6886883B2 (en) | 2017-07-21 | 2017-07-21 | Manufacturing method of styrene resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6886883B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7011167B2 (en) * | 2018-04-12 | 2022-01-26 | 株式会社ジェイエスピー | Styrene resin manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6170703B2 (en) * | 2013-03-29 | 2017-07-26 | 積水化成品工業株式会社 | POLYSTYRENE COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE AND FOAM MOLDED |
-
2017
- 2017-07-21 JP JP2017142147A patent/JP6886883B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019019294A (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heuts et al. | Catalytic chain transfer and its derived macromonomers | |
JP6858661B2 (en) | Styrene resin | |
Pietrasik et al. | Silica‐Polymethacrylate Hybrid Particles Synthesized Using High‐Pressure Atom Transfer Radical Polymerization | |
Aguilar et al. | Narrow size‐distribution poly (methyl methacrylate) nanoparticles made by semicontinuous heterophase polymerization | |
Pineda‐Contreras et al. | Importance of compositional homogeneity of macromolecular chains for UCST‐type transitions in water: Controlled versus conventional radical polymerization | |
JP2018510248A (en) | Production of microporous PMMA foams by use of nucleating agents | |
JP7310140B2 (en) | Rubber polymer, graft copolymer and thermoplastic resin composition | |
WO2011069983A1 (en) | Process for the polymerization of styrene | |
Chen et al. | Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial RAFT miniemulsion polymerization | |
JP2022539514A (en) | Allyl-functional thermoplastic additive for thermoset polymers | |
Tan et al. | Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization | |
JP6886883B2 (en) | Manufacturing method of styrene resin | |
JP7089177B2 (en) | Styrene resin | |
Nuño-Donlucas et al. | Microstructured polyacrylamide hydrogels made with hydrophobic nanoparticles | |
JP6816656B2 (en) | Composite resin particles, composite resin foam particles, composite resin foam particle molded products | |
Smeets et al. | A new method for the preparation of concentrated translucent polymer nanolatexes from emulsion polymerization | |
Hacioğlu et al. | Polymerization kinetics of HEMA/DEGDMA: using changes in initiation and chain transfer rates to explore the effects of chain-length-dependent termination | |
Cuneo et al. | Synthesis of highly branched copolymers in microemulsion | |
JP7011167B2 (en) | Styrene resin manufacturing method | |
Yadav et al. | Effect of the Polymerization Technique and Reactor Type on the Poly (n‐butyl acrylate) Microstructure | |
Coelho et al. | Synthesis of poly (2‐methoxyethyl acrylate) by single electron transfer—Degenerative transfer living radical polymerization catalyzed by Na2S2O4 in water | |
JP2014189766A (en) | Polystyrenic resin composition for foaming, polystyrenic resin foam sheet, and foam molding | |
Li et al. | Synthesis of Well‐Defined Amphiphilic Core–Shell Particles Containing Amine‐Rich Shells | |
JP7009562B2 (en) | Methods for preparing (meth) acrylate additives, methods for improving the sagging resistance of polyolefins, and sagging-resistant polyolefins. | |
WO2019017482A1 (en) | Styrene resin and method for producing styrene resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200304 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6886883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |