JP6886641B2 - Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and building materials, cured product and composite material, and manufacturing method of epoxy resin curing agent. - Google Patents

Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and building materials, cured product and composite material, and manufacturing method of epoxy resin curing agent. Download PDF

Info

Publication number
JP6886641B2
JP6886641B2 JP2017509985A JP2017509985A JP6886641B2 JP 6886641 B2 JP6886641 B2 JP 6886641B2 JP 2017509985 A JP2017509985 A JP 2017509985A JP 2017509985 A JP2017509985 A JP 2017509985A JP 6886641 B2 JP6886641 B2 JP 6886641B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
group
resin curing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017509985A
Other languages
Japanese (ja)
Other versions
JPWO2016158871A1 (en
Inventor
菜摘 脇田
菜摘 脇田
達之 熊野
達之 熊野
紗恵子 佐藤
紗恵子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2016158871A1 publication Critical patent/JPWO2016158871A1/en
Application granted granted Critical
Publication of JP6886641B2 publication Critical patent/JP6886641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、エポキシ樹脂硬化剤、それを用いたエポキシ樹脂組成物、塗料、土木建築用部材、硬化物及び複合材料、並びにエポキシ樹脂硬化剤の製造方法に関する。 The present invention relates to an epoxy resin curing agent, an epoxy resin composition using the same, a paint, a member for civil engineering and construction, a cured product and a composite material, and a method for producing an epoxy resin curing agent.

エポキシ樹脂は、種々の硬化剤を用いて硬化させることにより、成形性、機械強度、密着性等に優れた硬化物を与えることから、注型材、接着剤、成形材、積層材、複合材等の形態で、様々な用途に用いられている。例えば、エポキシ樹脂をマトリックス樹脂とした繊維強化複合材料、特に炭素繊維を用いた炭素繊維強化複合材料は、軽量性と優れた力学特性を有するため、ゴルフクラブ、テニスラケット、釣り竿等のスポーツ分野を始め、航空機や車両等の構造材料、コンクリート構造物の補強等、幅広い分野で使用されている。近年は、優れた力学特性のみならず、導電性を有する、炭素繊維との複合材料が優れた電磁波遮断性を有することから、ノートパソコンやビデオカメラ等の電子電気機器の筐体等にも使用され、筐体の薄肉化、機器の重量軽減等に役立っている。このような炭素繊維強化複合材料は、エポキシ樹脂を強化繊維に含浸して得られるプリプレグを積層して得るのが一般的である。 Epoxy resins give cured products with excellent moldability, mechanical strength, adhesion, etc. by curing with various curing agents. Therefore, casting materials, adhesives, molding materials, laminated materials, composite materials, etc. It is used for various purposes in the form of. For example, a fiber-reinforced composite material using epoxy resin as a matrix resin, especially a carbon fiber-reinforced composite material using carbon fiber, has light weight and excellent mechanical properties, so that it can be used in sports fields such as golf clubs, tennis rackets, and fishing rods. It is used in a wide range of fields, including structural materials for aircraft and vehicles, and reinforcement of concrete structures. In recent years, it has been used not only for excellent mechanical properties but also for housings of electronic and electrical equipment such as notebook computers and video cameras because composite materials with carbon fibers have excellent electromagnetic wave blocking properties. This is useful for thinning the housing and reducing the weight of equipment. Such a carbon fiber reinforced composite material is generally obtained by laminating a prepreg obtained by impregnating a reinforcing fiber with an epoxy resin.

各種ポリアミノ化合物が、エポキシ樹脂硬化剤およびその原料として用いられていることは広く知られている。代表的なポリアミノ化合物として、芳香環を持った脂肪族ポリアミノ化合物(例えば、キシリレンジアミン等);脂肪族ポリアミノ化合物(例えば、エチレンジアミン、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)等);脂環式ポリアミノ化合物(例えば、イソホロンジアミン(IPDA)、ビス(アミノメチル)シクロヘキサン等)等が挙げられる。これらのポリアミノ化合物は、それぞれのアミノ基の反応性、すなわち活性水素に起因する固有の特徴を有し、これらのポリアミノ化合物をそのままで或いはそれぞれのポリアミノ化合物に適した変性を加えた後にエポキシ樹脂硬化剤として用いられている。 It is widely known that various polyamino compounds are used as epoxy resin curing agents and their raw materials. As a typical polyamino compound, an aliphatic polyamino compound having an aromatic ring (for example, xylylene diamine); an aliphatic polyamino compound (for example, ethylenediamine, diethylenetriamine (DETA), triethylenetetramine (TETA), etc.); Formula polyamino compounds (for example, isophoronediamine (IPDA), bis (aminomethyl) cyclohexane, etc.) and the like can be mentioned. These polyamino compounds have unique characteristics due to the reactivity of each amino group, that is, active hydrogen, and the epoxy resin is cured by using these polyamino compounds as they are or after subjecting them to modifications suitable for each polyamino compound. It is used as an agent.

脂肪族ポリアミノ化合物の中でも、DETA、TETA等は、他のポリアミノ化合物と比較して、一般に、多く配合する場合には発熱量が多くなることが知られている。また、脂環式ポリアミノ化合物の中で、IPDAは、2つのアミノ基に反応性の差があるため、硬化が遅く、硬化促進剤が併用されるのが一般的である(非特許文献1)。 Among the aliphatic polyamino compounds, DETA, TETA and the like are generally known to have a larger calorific value when a large amount is blended as compared with other polyamino compounds. Further, among alicyclic polyamino compounds, IPDA has a difference in reactivity between two amino groups, so that curing is slow, and a curing accelerator is generally used in combination (Non-Patent Document 1). ..

さらに、1,3−ビス(アミノメチル)シクロヘキサンは、硬化性は良好であるが、エポキシ樹脂との反応性が高く、発熱量が多くなる傾向にある。 Further, 1,3-bis (aminomethyl) cyclohexane has good curability, but has high reactivity with an epoxy resin, and tends to generate a large amount of heat.

例えば、特許文献1においては、ポリアミノ化合物とフェネチル化ポリアミノ化合物とを含有するエポキシ樹脂硬化剤が提案されている。また、特許文献2においては、ポリアミノ化合物とスチレンとの付加反応により得られるアミノ化合物を、エポキシ樹脂硬化剤として用いる技術が提案されている。さらに、特許文献3においても、ポリアミノ化合物とスチレンとの反応により得られるポリアミノ化合物をエポキシ樹脂として用いる技術が提案されている。また、特許文献4においては、ポリアミノ化合物とアクリロニトリルとの付加反応により得られるアミノ化合物を、エポキシ樹脂として用いる技術が提案されている。 For example, Patent Document 1 proposes an epoxy resin curing agent containing a polyamino compound and a phenethylated polyamino compound. Further, Patent Document 2 proposes a technique of using an amino compound obtained by an addition reaction between a polyamino compound and styrene as an epoxy resin curing agent. Further, Patent Document 3 also proposes a technique of using a polyamino compound obtained by reacting a polyamino compound with styrene as an epoxy resin. Further, Patent Document 4 proposes a technique of using an amino compound obtained by an addition reaction of a polyamino compound and acrylonitrile as an epoxy resin.

さらに、例えば、特許文献5においては、1,3−ビス(アミノメチル)シクロヘキサンやその変性物を含むポリアミン化合物と、炭素数が16〜18のアルキルアミン化合物を配合してなるエポキシ樹脂硬化剤が提案されている。特許文献6においては、1,3−ビス(アミノメチル)シクロヘキサン及び/又はその変性物を含むポリアミン化合物、炭素数12のアルキル基を有する成分を含有するか若しくはヨウ素価が50以上である脂肪族アミン化合物、及び硬化促進剤とからなるエポキシ樹脂硬化剤が提案されている。また、芳香環を有さない他の脂肪族ポリアミノ化合物として、DETA、TETA、IPDAを原料とするエポキシ樹脂硬化剤等も用いられている。 Further, for example, in Patent Document 5, an epoxy resin curing agent obtained by blending a polyamine compound containing 1,3-bis (aminomethyl) cyclohexane or a modified product thereof and an alkylamine compound having 16 to 18 carbon atoms is used. Proposed. In Patent Document 6, a polyamine compound containing 1,3-bis (aminomethyl) cyclohexane and / or a modified product thereof, an aliphatic compound containing a component having an alkyl group having 12 carbon atoms or having an iodine value of 50 or more. An epoxy resin curing agent composed of an amine compound and a curing accelerator has been proposed. Further, as another aliphatic polyamino compound having no aromatic ring, an epoxy resin curing agent made from DETA, TETA, IPDA or the like is also used.

特開2012−219115号公報Japanese Unexamined Patent Publication No. 2012-219115 特許第5140900号公報Japanese Patent No. 5140900 特許第5509743号公報Japanese Patent No. 5509743 特公昭47−001114号公報Special Publication No. 47-001114 特開平08−003282号公報Japanese Unexamined Patent Publication No. 08-003282 特開2001−163955号公報Japanese Unexamined Patent Publication No. 2001-163955

総説エポキシ樹脂、垣内弘著(2003)Review Epoxy resin, by Hiroshi Kakiuchi (2003)

しかしながら、上記したエポキシ樹脂やその硬化剤に関する技術は未だ改善の余地がある。まず、硬化発熱温度の抑制と硬化速度の向上とを両立させることについては未だ不十分である。エポキシ樹脂と硬化剤との硬化反応は、通常、発熱反応であり、大量の熱を遊離する。そして、硬化速度を向上させるため、樹脂単位当たりの硬化剤の配合量を多くすること等が試みられているが、硬化剤の配合量を増やすと発熱しやすくなるといった問題がある。かかる問題は、硬化物が肉厚である場合や、大形の成形体である場合等に顕著となる。激しい発熱が生じると、内部応力の歪みのために成形品にクラックが発生して不良品となったり、成形型のコンポーネントが劣化したりする。一方で、発熱を抑制するために硬化剤や硬化促進剤の添加量を少なくすると、成形サイクルが長くなり、生産性や経済性に劣るという問題が生じる。さらに、硬化剤や硬化促進剤の添加量が少ないと、硬化の程度が不十分となり、成形品の強度に劣る場合がある。特にプリプレグの用途とする際には、硬化速度が重要な要素となる傾向にある。硬化速度を向上させることによって硬化時間を短縮できれば、製品を成形する際の成形型(金型)の数を増やすことなく生産性を向上させることも期待できる。このような要望は、特に大形の成形品を製造する際に顕著となる。 However, there is still room for improvement in the above-mentioned techniques for epoxy resins and their curing agents. First, it is still insufficient to achieve both suppression of the curing heat generation temperature and improvement of the curing rate. The curing reaction between the epoxy resin and the curing agent is usually an exothermic reaction and releases a large amount of heat. Then, in order to improve the curing rate, attempts have been made to increase the blending amount of the curing agent per resin unit, but there is a problem that heat is easily generated when the blending amount of the curing agent is increased. Such a problem becomes remarkable when the cured product is thick or when it is a large molded product. When intense heat is generated, the molded product is cracked due to the distortion of internal stress, resulting in a defective product or deterioration of the components of the molding mold. On the other hand, if the amount of the curing agent or curing accelerator added is reduced in order to suppress heat generation, the molding cycle becomes long, and there arises a problem that productivity and economy are inferior. Further, if the amount of the curing agent or curing accelerator added is small, the degree of curing becomes insufficient, and the strength of the molded product may be inferior. Especially when it is used as a prepreg, the curing rate tends to be an important factor. If the curing time can be shortened by improving the curing rate, it can be expected that the productivity can be improved without increasing the number of molding dies (molds) when molding the product. Such a demand becomes remarkable especially when manufacturing a large-sized molded product.

この点、例えば、特許文献1に開示されている技術は、硬化剤とエポキシ樹脂の硬化速度が遅く、プリプレグの成形等に用いる場合、生産性が低いといった問題がある。また、特許文献2に開示されている技術は、硬化速度が遅く、生産性が低下するという問題がある。さらに、未反応のアミノ化合物の残留量を低減させることが難しいので、かかる硬化剤を用いてエポキシ樹脂を硬化させる際に、残留する未反応のアミノ化合物に由来する激しい発熱が起こるという問題もある。さらに、特許文献3に開示されている技術は、硬化発熱温度に改善が見られるものの、機械物性に劣るという問題がある。さらに、特許文献4に開示されている技術は、良好な塗膜外観を与えるものの、機械物性に劣るという問題がある。 In this respect, for example, the technique disclosed in Patent Document 1 has a problem that the curing rate of the curing agent and the epoxy resin is slow, and the productivity is low when used for molding a prepreg or the like. Further, the technique disclosed in Patent Document 2 has a problem that the curing rate is slow and the productivity is lowered. Further, since it is difficult to reduce the residual amount of the unreacted amino compound, there is also a problem that when the epoxy resin is cured with such a curing agent, intense heat generation due to the remaining unreacted amino compound occurs. .. Further, the technique disclosed in Patent Document 3 has a problem that it is inferior in mechanical properties, although the curing heat generation temperature is improved. Further, the technique disclosed in Patent Document 4 gives a good coating film appearance, but has a problem that it is inferior in mechanical properties.

また、特許文献5に開示されているエポキシ樹脂硬化剤は、硬化時の発熱抑制や硬化速度の向上が不十分であるという問題がある。それに加えて、保存中にアルキルアミン等の結晶が析出することによって硬化剤としても固化してしまい、保存安定性に劣るという問題もある。特許文献6に開示されているエポキシ樹脂硬化剤は、保存安定性はある程度改善されているが、やはり硬化時の発熱抑制や硬化速度の向上が不十分であるという問題がある。さらに、DETA、TETA及びIPDA等の脂肪族アミン化合物を原料とするエポキシ樹脂硬化剤においても、硬化時の発熱抑制や硬化速度の向上が不十分である。このように、過剰な発熱を伴わずに速硬化し、かつ、良好な機械物性を与えるエポキシ樹脂硬化剤は未だ実現されていない。 Further, the epoxy resin curing agent disclosed in Patent Document 5 has a problem that heat generation suppression at the time of curing and improvement of curing speed are insufficient. In addition to that, there is also a problem that crystals such as alkylamine are precipitated during storage and solidify as a curing agent, resulting in inferior storage stability. The epoxy resin curing agent disclosed in Patent Document 6 has improved storage stability to some extent, but also has a problem that heat generation suppression during curing and improvement in curing speed are insufficient. Further, even with an epoxy resin curing agent made from an aliphatic amine compound such as DETA, TETA and IPDA, it is insufficient to suppress heat generation during curing and improve the curing rate. As described above, an epoxy resin curing agent that cures quickly without excessive heat generation and gives good mechanical properties has not yet been realized.

本発明は、上記事情に鑑みなされたものであって、過剰な発熱を伴わずに速硬化し、かつ、良好な機械物性を与えるエポキシ樹脂硬化剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an epoxy resin curing agent that cures quickly without excessive heat generation and gives good mechanical properties.

本発明者らは鋭意検討した結果、少なくともアミノプロピル基を有する特定のアミノ化合物を含むエポキシ樹脂硬化剤を用いることで、意外にも、過剰な発熱を伴わずに速硬化させることができることを見出し、本発明を完成させるに至った。 As a result of diligent studies, the present inventors have found that, surprisingly, rapid curing can be performed without excessive heat generation by using an epoxy resin curing agent containing a specific amino compound having at least an aminopropyl group. , The present invention has been completed.

すなわち、本発明は以下のとおりである。
[1]
下記式(1)で示されるアミノ化合物を含むエポキシ樹脂硬化剤。

HN−HC−A−CH−NHR (1)

(式(1)中、Aは、o−フェニレン基、m−フェニレン基、p−フェニレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基であり、R及びRは、水素原子又はアミノプロピル基である。RとRは同一でも異なっていてもよいが、RとRの少なくとも1つは、アミノプロピル基である。)
[2]
前記Aは、o−フェニレン基、m−フェニレン基又はp−フェニレン基である、上記[1]に記載のエポキシ樹脂硬化剤。
[3]
前記Aは、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基である、上記[1]に記載のエポキシ樹脂硬化剤。
[4]
エポキシ樹脂と、
上記[1]〜[3]のいずれかに記載のエポキシ樹脂硬化剤と、
を含むエポキシ樹脂組成物。
[5]
上記[4]に記載のエポキシ樹脂組成物を含む塗料。
[6]
上記[4]に記載のエポキシ樹脂組成物を含む土木建築用部材。
[7]
上記[4]に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。
[8]
上記[7]に記載の硬化物と、
繊維と、
を含む複合材料。
[9]
o−キシリレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン及び1,4−ビス(アミノメチル)シクロヘキサンからなる群より選ばれる少なくとも1種と、アクリロニトリルとを付加反応させて、シアノ化合物を得る工程と、
前記シアノ化合物を水素添加することにより、式(1)で示されるアミノ化合物を得る工程と、
を含む、前記アミノ化合物を含む、エポキシ樹脂硬化剤の製造方法。

HN−HC−A−CH−NHR (1)

(式(1)中、Aは、o−フェニレン基、m−フェニレン基、p−フェニレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基であり、R及びRは、水素原子又はアミノプロピル基である。RとRは同一でも異なっていてもよいが、RとRの少なくとも1つは、アミノプロピル基である。)
That is, the present invention is as follows.
[1]
An epoxy resin curing agent containing an amino compound represented by the following formula (1).

R 1 HN-H 2 C- A-CH 2 -NHR 2 (1)

(In the formula (1), A is an o-phenylene group, an m-phenylene group, a p-phenylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. , R 1 and R 2 are hydrogen atoms or aminopropyl groups. R 1 and R 2 may be the same or different, but at least one of R 1 and R 2 is an aminopropyl group.)
[2]
The epoxy resin curing agent according to the above [1], wherein A is an o-phenylene group, an m-phenylene group or a p-phenylene group.
[3]
The epoxy resin curing agent according to the above [1], wherein A is a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group.
[4]
Epoxy resin and
The epoxy resin curing agent according to any one of [1] to [3] above,
Epoxy resin composition containing.
[5]
A paint containing the epoxy resin composition according to the above [4].
[6]
A member for civil engineering and construction containing the epoxy resin composition according to the above [4].
[7]
A cured product obtained by curing the epoxy resin composition according to the above [4].
[8]
With the cured product described in [7] above,
With fiber
Composite material including.
[9]
o-Xylylenediamine, p-xylylenediamine, m-xylylenediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane A step of adding acrylonitrile to at least one selected from the group consisting of cyano compound to obtain a cyano compound.
The step of obtaining the amino compound represented by the formula (1) by hydrogenating the cyano compound, and
A method for producing an epoxy resin curing agent, which comprises the above amino compound.

R 1 HN-H 2 C- A-CH 2 -NHR 2 (1)

(In the formula (1), A is an o-phenylene group, an m-phenylene group, a p-phenylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. , R 1 and R 2 are hydrogen atoms or aminopropyl groups. R 1 and R 2 may be the same or different, but at least one of R 1 and R 2 is an aminopropyl group.)

本発明に係るエポキシ樹脂硬化剤は、硬化発熱温度が低く、かつ、硬化速度が速い。また、本発明に係るエポキシ樹脂硬化剤を用いたエポキシ樹脂組成物は、良好なエポキシ樹脂硬化物物性を与え、エポキシ樹脂土木・建築用途、及び繊維強化複合材料用途に好適である。 The epoxy resin curing agent according to the present invention has a low curing heat generation temperature and a high curing rate. Further, the epoxy resin composition using the epoxy resin curing agent according to the present invention gives good epoxy resin cured physical properties and is suitable for epoxy resin civil engineering / building applications and fiber-reinforced composite material applications.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, embodiments for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist thereof.

本実施形態のエポキシ樹脂硬化剤は、下記式(1)で表されるアミノ化合物を含むエポキシ樹脂硬化剤である。

HN−HC−A−CH−NHR (1)

(式(1)中、Aは、o−フェニレン基、m−フェニレン基、p−フェニレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基であり、R及びRは、水素原子又はアミノプロピル基である。RとRは同一でも異なっていてもよいが、RとRの少なくとも1つは、アミノプロピル基である。)
The epoxy resin curing agent of the present embodiment is an epoxy resin curing agent containing an amino compound represented by the following formula (1).

R 1 HN-H 2 C- A-CH 2 -NHR 2 (1)

(In the formula (1), A is an o-phenylene group, an m-phenylene group, a p-phenylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. , R 1 and R 2 are hydrogen atoms or aminopropyl groups. R 1 and R 2 may be the same or different, but at least one of R 1 and R 2 is an aminopropyl group.)

本実施形態のエポキシ樹脂硬化剤は、式(1)で表されるアミノ化合物を含むことにより、エポキシ樹脂を硬化させる際に、過剰な発熱を抑制でき、且つ、硬化速度が速い。従来のエポキシ樹脂硬化剤では、主成分としてメタキシリレンジアミン等が汎用されているが、かかる従来のエポキシ樹脂硬化剤では、大気中の二酸化炭素や水蒸気を吸収して、カルバミン酸塩や炭酸塩を生成し易いため、エポキシ樹脂硬化物物性の低下等が生じやすい。特に硬化物の白化現象を生じ、外観に劣るという欠点も起こりうる。この点、本実施形態のエポキシ樹脂硬化剤は、とりわけ速硬化性に優れ、外観や可撓性に優れた硬化物を与えることが可能である。 By containing the amino compound represented by the formula (1), the epoxy resin curing agent of the present embodiment can suppress excessive heat generation when curing the epoxy resin, and the curing speed is high. In conventional epoxy resin curing agents, metaxylylenediamine and the like are widely used as the main component, but in such conventional epoxy resin curing agents, carbon dioxide and water vapor in the atmosphere are absorbed, and carbamic acids and carbonates are used. Is likely to occur, so that the physical properties of the cured epoxy resin are likely to deteriorate. In particular, a whitening phenomenon of the cured product may occur, and a drawback of inferior appearance may occur. In this respect, the epoxy resin curing agent of the present embodiment is particularly excellent in quick-curing property, and can give a cured product having excellent appearance and flexibility.

本実施形態におけるアミノ化合物は、例えば、以下の方法によって得ることができる。まず、o−キシリレンジアミン、p−キシリレンジアミン及びm−キシリレンジアミンからなる群より選ばれる少なくとも1種(以下、これらを「キシリレンジアミン」と総称する場合がある。)、又は1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン及び1,4−ビス(アミノメチル)シクロヘキサンからなる群より選ばれる少なくとも1種(以下、これらを「ビス(アミノメチル)シクロヘキサン」と総称する場合がある。)と、アクリロニトリルを付加反応させてニトリル基を含むシアノ化合物を得る。次いで、このシアノ化合物を水素化することでアミノ化合物を得ることができる。この場合、アミノ化合物は、各付加物の混合物であってもよい。ここで、各付加物とは、式(1)において、R、Rのいずれか1つがアミノプロピル基であり残り1つが水素原子である付加物(1付加物)と、いずれもがアミノプロピル基である付加物(2付加物)とを意味する。本実施形態のエポキシ樹脂硬化剤中、2付加物の含有量は25質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、85質量%以上であることが特に好ましい。エポキシ樹脂硬化剤中の2付加物の含有量が25質量%以上であると、速硬化性が発現しやすい傾向にある。The amino compound in this embodiment can be obtained, for example, by the following method. First, at least one selected from the group consisting of o-xylylenediamine, p-xylylenediamine and m-xylylenediamine (hereinafter, these may be collectively referred to as "xylylylenediamine"), or 1, At least one selected from the group consisting of 2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane (hereinafter, these are referred to as "bis (aminomethyl)". (Sometimes collectively referred to as "cyclohexane") and acrylonitrile are subjected to an addition reaction to obtain a cyano compound containing a nitrile group. Then, the amino compound can be obtained by hydrogenating this cyano compound. In this case, the amino compound may be a mixture of each adduct. Here, each adduct is an adduct (1 adduct) in which any one of R 1 and R 2 is an aminopropyl group and the remaining one is a hydrogen atom in the formula (1), and all of them are amino. It means an adduct (2 adduct) which is a propyl group. In the epoxy resin curing agent of the present embodiment, the content of the diadduct is preferably 25% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, and 85% by mass. It is particularly preferable that the mass is% or more. When the content of the diadduct in the epoxy resin curing agent is 25% by mass or more, quick curing tends to be easily exhibited.

本実施形態のエポキシ樹脂硬化剤中における式(1)で表される化合物(1付加物及び2付加物の合計)の総含有量は、速硬化性の発現の観点から、60〜100質量%であることが好ましく、70〜100質量%であることがより好ましく、80〜100質量%であることが更に好ましい。 The total content of the compound represented by the formula (1) (total of 1 adduct and 2 adducts) in the epoxy resin curing agent of the present embodiment is 60 to 100% by mass from the viewpoint of developing quick curability. It is preferably 70 to 100% by mass, more preferably 80 to 100% by mass.

本実施形態のエポキシ樹脂硬化剤には、上記したアミノ化合物の他に、未反応のキシリレンジアミン又はビス(アミノメチル)シクロヘキサン等が含まれていてもよい。エポキシ樹脂硬化剤中のキシリレンジアミン又はビス(アミノメチル)シクロヘキサンの含有量は、30質量%未満であることが好ましく、20質量%未満であることがより好ましく、5質量%未満であることが更に好ましい。キシリレンジアミン又はビス(アミノメチル)シクロヘキサンの含有量の下限は特に限定されない。このキシリレンジアミン又はビス(アミノメチル)シクロヘキサンの含有量を30質量%未満とすることにより、エポキシ樹脂硬化剤として用いてエポキシ樹脂組成物を調製する際に、エポキシ樹脂組成物の硬化遅延を一層抑制することができる傾向にある。 The epoxy resin curing agent of the present embodiment may contain unreacted xylylenediamine, bis (aminomethyl) cyclohexane, or the like in addition to the above-mentioned amino compounds. The content of xylylenediamine or bis (aminomethyl) cyclohexane in the epoxy resin curing agent is preferably less than 30% by mass, more preferably less than 20% by mass, and less than 5% by mass. More preferred. The lower limit of the content of xylylenediamine or bis (aminomethyl) cyclohexane is not particularly limited. By setting the content of this xylylenediamine or bis (aminomethyl) cyclohexane to less than 30% by mass, the curing delay of the epoxy resin composition is further increased when the epoxy resin composition is prepared by using it as an epoxy resin curing agent. It tends to be suppressed.

本実施形態におけるエポキシ樹脂硬化剤の製造方法としては、特に限定されないが、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンをアクリロニトリルと付加反応させてシアノ化合物を得る工程(第1工程)と、このシアノ化合物を水素添加することにより、式(1)で示されるアミノ化合物を得る工程(第2工程)とを含む方法が好ましい。 The method for producing the epoxy resin curing agent in the present embodiment is not particularly limited, but is a step (first step) of obtaining a cyano compound by addition-reacting xylylenediamine or bis (aminomethyl) cyclohexane with acrylonitrile, and this cyano. A method including a step (second step) of obtaining an amino compound represented by the formula (1) by hydrogenating the compound is preferable.

キシリレンジアミンとしては、オルソ(o−)キシリレンジアミン、メタ(m−)キシリレンジアミン、パラ(p−)キシリレンジアミン等が挙げられる。これらの中でも、メタ(m−)キシリレンジアミンが好ましい。 Examples of the xylylenediamine include ortho (o-) xylylenediamine, meta (m-) xylylenediamine, para (p-) xylylenediamine and the like. Among these, meta (m-) xylylenediamine is preferable.

ビス(アミノメチル)シクロヘキサンとしては、1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等が挙げられるが、これらの中でも、1,3−ビス(アミノメチル)シクロヘキサンが好ましい。 Examples of bis (aminomethyl) cyclohexane include 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, and 1,4-bis (aminomethyl) cyclohexane. , 1,3-bis (aminomethyl) cyclohexane is preferred.

第1工程で行われる上記反応は、均一系反応であってもよいし、二層系反応等の不均一系反応であってもよいが、副生成物の抑制の観点から、均一系反応であることが好ましい。均一系反応は、無溶媒でも行えるが、反応温度を高い精度で制御できるという観点から、溶媒を用いることが好ましい。 The above reaction carried out in the first step may be a homogeneous reaction or a heterogeneous reaction such as a two-layer reaction, but from the viewpoint of suppressing by-products, it is a homogeneous reaction. It is preferable to have. The homogeneous reaction can be carried out without a solvent, but it is preferable to use a solvent from the viewpoint that the reaction temperature can be controlled with high accuracy.

第1工程で使用される溶媒としては、特に限定されないが、例えば、イソプロパノール等のアルコール系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン等の芳香族系溶媒等を用いることが好ましい。これらの中でも、原料であるキシリレンジアミン又はビス(アミノメチル)シクロヘキサンの溶解性や、第2工程においても使用可能である溶媒であるという観点から、アルコール系溶媒がより好ましく、イソプロパノールが更に好ましい。溶媒の使用量は、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンとアクリロニトリルの総質量に対し、通常、0〜200質量%であることが好ましく、50〜180質量%であることがより好ましく、80〜160質量%であることが更に好ましい。 The solvent used in the first step is not particularly limited, but for example, it is preferable to use an alcohol solvent such as isopropanol, an ether solvent such as tetrahydrofuran, an aromatic solvent such as toluene, and the like. Among these, an alcohol solvent is more preferable, and isopropanol is further preferable, from the viewpoint of solubility of xylylenediamine or bis (aminomethyl) cyclohexane as a raw material and a solvent that can be used in the second step. The amount of the solvent used is usually preferably 0 to 200% by mass, more preferably 50 to 180% by mass, and more preferably 80, based on the total mass of xylylenediamine or bis (aminomethyl) cyclohexane and acrylonitrile. It is more preferably ~ 160% by mass.

第1工程におけるキシリレンジアミン又はビス(アミノメチル)シクロヘキサンに対するアクリロニトリルの反応モル比(アクリロニトリル/キシリレンジアミン又はビス(アミノメチル)シクロヘキサン)は0.5〜3.0であることが好ましく、0.8〜2.5であることがより好ましく、1.0〜2.0であることが更に好ましい。反応モル比の下限が0.5以上であることで、未反応のキシリレンジアミン又はビス(アミノメチル)シクロヘキサンの量を抑制できるため、未反応キシリレンジアミン又はビス(アミノメチル)シクロヘキサンの除去が容易となる傾向にある。さらには、蒸留によってシアノ化合物を精製する場合においては、未反応のキシリレンジアミン又はビス(アミノメチル)シクロヘキサンを効率よく除去できる傾向にある。一方、反応モル比の上限が3.0以下であることで、好ましくない副反応を効果的に抑制できる傾向にある。 The reaction molar ratio of acrylonitrile to xylylenediamine or bis (aminomethyl) cyclohexane in the first step (acrylonitrile / xylylenediamine or bis (aminomethyl) cyclohexane) is preferably 0.5 to 3.0, and 0. It is more preferably 8 to 2.5, and even more preferably 1.0 to 2.0. When the lower limit of the reaction molar ratio is 0.5 or more, the amount of unreacted xylylenediamine or bis (aminomethyl) cyclohexane can be suppressed, so that unreacted xylylenediamine or bis (aminomethyl) cyclohexane can be removed. It tends to be easier. Furthermore, when purifying a cyano compound by distillation, there is a tendency that unreacted xylylenediamine or bis (aminomethyl) cyclohexane can be efficiently removed. On the other hand, when the upper limit of the reaction molar ratio is 3.0 or less, there is a tendency that an unfavorable side reaction can be effectively suppressed.

第1工程における反応温度は特に限定されないが、原料の溶解性及び溶媒等の沸点等の観点から、20〜85℃であることが好ましい。さらに、反応温度の制御容易性の観点から、25〜75℃であることがより好ましい。 The reaction temperature in the first step is not particularly limited, but is preferably 20 to 85 ° C. from the viewpoint of the solubility of the raw material and the boiling point of the solvent or the like. Further, from the viewpoint of ease of controlling the reaction temperature, it is more preferably 25 to 75 ° C.

第1工程では、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンと、アクリロニトリルが少なくとも用いられるが、キシリレンジアミン又はビス(アミノメチル)シクロヘキサンと、アクリロニトリルとの反応は発熱反応である。そのため、反応温度を一定に保つために、発熱により生じる温度上昇を制御することが好ましく、例えば、アクリロニトリルを一定の反応温度の範囲内で滴下して添加することによって温度上昇を制御することができる。アクリロニトリルの滴下に要する時間は特に限定されないが、反応温度が急激に上昇することがないように滴下することで、目的のシアノ化合物を簡便かつ高収率で得ることが可能となる傾向にある。 In the first step, at least xylylenediamine or bis (aminomethyl) cyclohexane and acrylonitrile are used, but the reaction between xylylenediamine or bis (aminomethyl) cyclohexane and acrylonitrile is an exothermic reaction. Therefore, in order to keep the reaction temperature constant, it is preferable to control the temperature rise caused by heat generation. For example, the temperature rise can be controlled by dropping acrylonitrile within a constant reaction temperature range and adding it. .. The time required for dropping acrylonitrile is not particularly limited, but it tends to be possible to obtain the desired cyanide compound easily and in a high yield by dropping the acrylonitrile so that the reaction temperature does not rise sharply.

第2工程は、第1工程で得られたシアノ化合物のニトリル基をアミノ基に還元する工程であり、例えば、不均一系接触水素化(水素添加)反応によって行うことができる。水素添加反応としては、特に限定されないが、遷移金属触媒の存在下で行う反応であることが好ましい。かかる触媒としては、スポンジニッケル、スポンジコバルト等のスポンジ金属触媒等や、コバルト、パラジウム、白金、ロジウム、ルテニウム等の触媒金属を炭素等の担体に担持した担持触媒が挙げられる。これらの中でも、反応時間の短縮及び反応選択性の観点から、スポンジニッケル触媒が好ましい。 The second step is a step of reducing the nitrile group of the cyano compound obtained in the first step to an amino group, and can be carried out, for example, by a heterogeneous catalytic hydrogenation (hydrogenation) reaction. The hydrogenation reaction is not particularly limited, but is preferably a reaction carried out in the presence of a transition metal catalyst. Examples of such a catalyst include a sponge metal catalyst such as sponge nickel and sponge cobalt, and a supported catalyst in which a catalyst metal such as cobalt, palladium, platinum, rhodium and ruthenium is supported on a carrier such as carbon. Among these, a sponge nickel catalyst is preferable from the viewpoint of shortening the reaction time and reaction selectivity.

触媒の使用量は、通常は原料化合物の総量に対して10〜50質量%であることが好ましく、15〜45質量%であることがより好ましい。触媒の使用量を上記範囲とすることで、反応速度を好適な速度に制御することができ、かつ経済性にも優れる傾向にある。 The amount of the catalyst used is usually preferably 10 to 50% by mass, more preferably 15 to 45% by mass, based on the total amount of the raw material compounds. By setting the amount of the catalyst used within the above range, the reaction rate can be controlled to a suitable rate, and the economy tends to be excellent.

第2工程で使用される溶媒としては、反応選択性の観点から、イソプロパノール等のアルコール系溶媒やテトラヒドロフラン等のエーテル系溶媒、アンモニア系溶媒等が好ましく、アルコール系溶媒がより好ましく、イソプロパノールが更に好ましい。なお、第1工程で使用する溶媒が、第2工程でも使用できる溶媒である場合、第1工程で使用した溶媒を引き続き第2工程で使用することもできる。溶媒の使用量は、シアノ化合物の総質量に対して0〜200質量%であることが好ましく、50〜180質量%であることがより好ましく、80〜160質量%であることが更に好ましい。 As the solvent used in the second step, an alcohol solvent such as isopropanol, an ether solvent such as tetrahydrofuran, an ammonia solvent and the like are preferable, an alcohol solvent is more preferable, and isopropanol is further preferable, from the viewpoint of reaction selectivity. .. When the solvent used in the first step is a solvent that can also be used in the second step, the solvent used in the first step can be continuously used in the second step. The amount of the solvent used is preferably 0 to 200% by mass, more preferably 50 to 180% by mass, and even more preferably 80 to 160% by mass with respect to the total mass of the cyano compound.

第2工程における反応温度は特に限定されないが、通常、30〜150℃であることが好ましく、40〜100℃であることがより好ましく、40〜80℃であることが更に好ましい。反応温度の下限を30℃以上とすることで、シアノ化合物の水素化反応速度を速めることができる傾向にある。反応温度の上限を150℃以下とすることで、好ましくない副反応を効果的に抑制できる傾向にある。なお、第2工程で用いる各成分の反応比率、触媒の種類や使用量等も考慮して、適宜に反応温度を選択することが好ましい。 The reaction temperature in the second step is not particularly limited, but is usually preferably 30 to 150 ° C, more preferably 40 to 100 ° C, and even more preferably 40 to 80 ° C. By setting the lower limit of the reaction temperature to 30 ° C. or higher, the hydrogenation reaction rate of the cyano compound tends to be increased. By setting the upper limit of the reaction temperature to 150 ° C. or lower, there is a tendency that adverse side reactions can be effectively suppressed. It is preferable to appropriately select the reaction temperature in consideration of the reaction ratio of each component used in the second step, the type of catalyst, the amount used, and the like.

本実施形態のエポキシ樹脂硬化剤としては、式(1)で示されるアミノ化合物を単独で使用してもよいし、他のアミノ化合物と混合して使用してもよい。混合する他のアミノ化合物としては、脂肪族ポリアミン化合物(例えば、エチレンジアミン、ジエチレントリアミン等);芳香環を有する脂肪族ポリアミン化合物(例えば、キシリレンジアミン等);脂環式ポリアミン化合物(例えば、メンセンジアミン等);芳香族ポリアミン化合物(例えば、フェニレンジアミン、ジアミノジフェニルメタン等);その他ポリエーテル骨格のポリアミノ化合物(例えば、ノルボルナン骨格のポリアミノ化合物等)等が挙げられる。これらは変性せずに混合してもよいし、カルボキシル基を有する化合物との反応によるアミド変性、エポキシ化合物との付加反応によるアダクト変性、ホルムアルデヒドとフェノール類との反応によるマンニッヒ変性等の変性を行った後に混合してもよい。 As the epoxy resin curing agent of the present embodiment, the amino compound represented by the formula (1) may be used alone or mixed with other amino compounds. Other amino compounds to be mixed include aliphatic polyamine compounds (for example, ethylenediamine, diethylenetriamine, etc.); aliphatic polyamine compounds having an aromatic ring (for example, xylylene diamine, etc.); alicyclic polyamine compounds (for example, mensendiamine). Etc.); Aromatic polyamine compounds (for example, phenylenediamine, diaminodiphenylmethane, etc.); Other polyether skeleton polyamino compounds (for example, norbornan skeleton polyamino compounds, etc.) and the like can be mentioned. These may be mixed without modification, or modified such as amide modification by reaction with a compound having a carboxyl group, adduct modification by addition reaction with an epoxy compound, and Mannich modification by reaction between formaldehyde and phenols. After that, it may be mixed.

本実施形態のエポキシ樹脂組成物は、エポキシ樹脂とエポキシ樹脂硬化剤とを含むものである。本実施形態のエポキシ樹脂組成物に使用されるエポキシ樹脂は、本実施形態のエポキシ樹脂硬化剤のアミノ基由来の活性水素と反応して架橋することが可能なグリシジル基を持つエポキシ樹脂であり、飽和又は不飽和の脂肪族化合物や、脂環式化合物、芳香族化合物、あるいは複素環式化合物のいずれであってもよい。具体的には、ビスフェノールA型から誘導されたグリシジルエーテル部位を有するエポキシ樹脂、ビスフェノールF型から誘導されたグリシジルエーテル部位を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミン部位を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミン部位を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルエーテル部位を有するエポキシ樹脂、及びレゾルシノールから誘導されたグリシジルエーテル部位を有するエポキシ樹脂からなる群から選ばれる少なくとも1つのエポキシ樹脂が挙げられる。この中でも、ビスフェノールA型から誘導されたグリシジルエーテル部位を有するエポキシ樹脂が特に好ましい。 The epoxy resin composition of the present embodiment contains an epoxy resin and an epoxy resin curing agent. The epoxy resin used in the epoxy resin composition of the present embodiment is an epoxy resin having a glycidyl group capable of reacting with active hydrogen derived from an amino group of the epoxy resin curing agent of the present embodiment and cross-linking. It may be a saturated or unsaturated aliphatic compound, an alicyclic compound, an aromatic compound, or a heterocyclic compound. Specifically, an epoxy resin having a glycidyl ether moiety derived from bisphenol A type, an epoxy resin having a glycidyl ether moiety derived from bisphenol F type, and glycidyl derived from 1,3-bis (aminomethyl) cyclohexane. Epoxy resin with amine moiety, epoxy resin with glycidylamine moiety derived from diaminodiphenylmethane, epoxy resin with glycidylamine moiety derived from paraaminophenol, epoxy resin with glycidyl ether moiety derived from phenol novolac, and Included is at least one epoxy resin selected from the group consisting of epoxy resins having glycidyl ether moieties derived from resorcinol. Among these, an epoxy resin having a glycidyl ether moiety derived from bisphenol A type is particularly preferable.

さらに本実施形態のエポキシ樹脂組成物には、用途に応じて、充填剤、可塑剤等の改質成分、反応性又は非反応性の希釈剤、揺変性付与剤等の流動調整成分、顔料、粘着付与剤等の成分や、ハジキ防止剤、流展剤、消泡剤、紫外線吸収剤、光安定剤、硬化促進剤等の添加剤を、本発明の効果を損なわない範囲で用いることができる。 Further, the epoxy resin composition of the present embodiment includes a filler, a modifying component such as a plasticizer, a reactive or non-reactive diluent, a flow adjusting component such as a shaking modifier, and a pigment, depending on the intended use. Ingredients such as a tackifier and additives such as an epoxy inhibitor, a spreading agent, a defoaming agent, an ultraviolet absorber, a light stabilizer, and a curing accelerator can be used as long as the effects of the present invention are not impaired. ..

本実施形態のエポキシ樹脂組成物におけるエポキシ樹脂硬化剤の配合量は、エポキシ樹脂のエポキシ当量に対するエポキシ樹脂硬化剤の活性水素当量の比として、0.6〜1.2であることが好ましく、0.7〜1.0であることがより好ましい。活性水素当量の比が0.6以上であると、硬化物の架橋度を十分な程度とすることができる傾向にある。活性水素当量の比が1.2以下であると、親水性のアミノ基の導入を適切に抑制することができるため、耐水性が一層向上する傾向にある。 The blending amount of the epoxy resin curing agent in the epoxy resin composition of the present embodiment is preferably 0.6 to 1.2 as the ratio of the active hydrogen equivalent of the epoxy resin curing agent to the epoxy equivalent of the epoxy resin, and is 0. It is more preferably .7 to 1.0. When the ratio of active hydrogen equivalents is 0.6 or more, the degree of cross-linking of the cured product tends to be sufficient. When the ratio of active hydrogen equivalents is 1.2 or less, the introduction of hydrophilic amino groups can be appropriately suppressed, so that the water resistance tends to be further improved.

エポキシ樹脂組成物は、特に船舶・橋梁・陸海上鉄構築物用防食塗料等の塗料分野、コンクリート構造物のライニング・補強・補修、建築物の床材、上下水道設備のライニング、舗装材、接着剤等の土木・建築分野、繊維強化複合材料用途等に広く利用されている。本実施形態のエポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物は、可撓性に優れ、脆性も低減できるので、良好な機械物性を有する成形体の提供を可能とする。特に、プリプレグ等の繊維強化複合材料分野等での要求特性は近年ますます厳しくなってきているが、本実施形態のエポキシ樹脂組成物を用いることにより、更なる機械的強度の向上や低弾性率化等の物性改良等も十分に期待できる。 Epoxy resin compositions are used in the fields of paints such as anticorrosion paints for ships, bridges, and land and sea iron structures, lining, reinforcement, and repair of concrete structures, flooring materials for buildings, linings for water and sewage facilities, paving materials, and adhesives. It is widely used in civil engineering and construction fields, fiber-reinforced composite materials, etc. The epoxy resin cured product obtained by curing the epoxy resin composition of the present embodiment has excellent flexibility and can reduce brittleness, so that it is possible to provide a molded product having good mechanical characteristics. In particular, the required characteristics in the field of fiber-reinforced composite materials such as prepregs have become stricter in recent years, but by using the epoxy resin composition of the present embodiment, the mechanical strength is further improved and the elastic modulus is low. It can be fully expected to improve the physical properties such as chemical conversion.

エポキシ樹脂組成物は、種々の用途に用いることができるが、その中でも、良好な塗膜外観を有するという観点から、塗料として好適に用いることができる。すなわち、本実施形態の塗料は、このエポキシ樹脂組成物を含む塗料である。塗料については、光沢や透明性といった、塗膜とした際の外観に優れることが特に望まれているが、本実施形態の塗料は、塗膜とした際にこのような外観にも優れている。 The epoxy resin composition can be used for various purposes, and among them, it can be suitably used as a coating material from the viewpoint of having a good coating film appearance. That is, the paint of the present embodiment is a paint containing this epoxy resin composition. It is particularly desired that the paint has an excellent appearance when it is made into a coating film, such as gloss and transparency, but the paint of the present embodiment is also excellent in such an appearance when it is made into a coating film. ..

また、エポキシ樹脂組成物は、良好な硬化物物性を有するという観点から、土木建築用部材として好適に用いることができる。すなわち、本実施形態の土木建築用部材は、このエポキシ樹脂組成物を含む土木建築用部材である。土木建築用部材については、機械的強度に優れることが特に望まれているが、本実施形態の土木建築用部材は、特に機械的強度にも優れている。 Further, the epoxy resin composition can be suitably used as a member for civil engineering and construction from the viewpoint of having good cured physical characteristics. That is, the civil engineering / building member of the present embodiment is a civil engineering / building member containing this epoxy resin composition. It is particularly desired that the civil engineering and building members have excellent mechanical strength, but the civil engineering and building members of the present embodiment are particularly excellent in mechanical strength.

本実施形態のエポキシ樹脂組成物は、公知の方法で硬化させ、エポキシ樹脂硬化物(以下、「硬化物」ともいう。)とすることができる。硬化条件としては、本発明の効果を損なわない範囲で用途に応じて適宜選択され、特に限定されない。 The epoxy resin composition of the present embodiment can be cured by a known method to obtain an epoxy resin cured product (hereinafter, also referred to as “cured product”). The curing conditions are appropriately selected according to the intended use as long as the effects of the present invention are not impaired, and are not particularly limited.

本実施形態のエポキシ樹脂複合材料(以下、「複合材料」ともいう。)は、上記硬化物と繊維とを含む。具体的には、エポキシ樹脂組成物と繊維基材からなり、繊維基材としては、ガラス、ボロン繊維織布等の無機質繊維の織布もしくは不織布、ポリエステル、アラミド等の有機質繊維の織布もしくは不織布等が挙げられる。そして、ストランド、織物、マット、ニット、ブレイド等の強化繊維基材を、樹脂注入に先立ち型内に配置する。強化繊維基材は、所望の形状に裁断、積層して、必要であればコア材等のその他の材料と共に直接型内に配置してもよい。さらには、裁断、積層後、ステッチや、少量の結着性樹脂を付与して加熱・加圧する方法等により、強化繊維基材を所望の形状に賦活したプリフォームを型内に配置してもよい。また、プリフォームには強化繊維基材と、コア材等の強化繊維基材以外の材料とを組み合わせたものを用いることもできる。 The epoxy resin composite material of the present embodiment (hereinafter, also referred to as “composite material”) includes the cured product and fibers. Specifically, it is composed of an epoxy resin composition and a fiber base material, and the fiber base material is an inorganic fiber woven fabric or non-woven fabric such as glass or boron fiber woven fabric, or an organic fiber woven fabric or non-woven fabric such as polyester or aramid. And so on. Then, a reinforcing fiber base material such as a strand, a woven fabric, a mat, a knit, or a blade is placed in the mold prior to resin injection. The reinforcing fiber base material may be cut into a desired shape, laminated, and if necessary, placed directly in the mold together with other materials such as a core material. Furthermore, even if a preform in which the reinforcing fiber base material is activated in a desired shape is placed in the mold by stitching after cutting and laminating, or by applying a small amount of binding resin and heating / pressurizing. Good. Further, as the preform, a combination of a reinforcing fiber base material and a material other than the reinforcing fiber base material such as a core material can also be used.

以下の実施例及び比較例により本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、本実施例及び比較例で採用した評価法は以下の通りである。 The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to the following examples. The evaluation methods adopted in this example and the comparative example are as follows.

<未反応アミン及び各付加物>
ガスクロマトグラフィー(以下、GC)を用いて分析した。
カラム:Agilent製 DB−1(長さ30m、内径0.53mm、Film厚1.5μm)
カラム温度:100℃/15分→(5℃/分)→150℃→(10℃/分)→280℃/15分
<Unreacted amine and each adduct>
Analysis was performed using gas chromatography (hereinafter referred to as GC).
Column: Agilent DB-1 (length 30 m, inner diameter 0.53 mm, film thickness 1.5 μm)
Column temperature: 100 ° C / 15 minutes → (5 ° C / min) → 150 ° C → (10 ° C / min) → 280 ° C / 15 minutes

<アミノ化合物の同定>
ガスクロマトグラフ/質量スペクトル(以下、GC/MS)を用いて同定した。
カラム:Agilent製 DB−1MS(長さ30m、内径0.25mm、Film厚0.25μm)
カラム温度:100℃/15分→(5℃/分)→150℃→(10℃/分)→280℃/15分
イオン源温度:200℃
インターフェイス温度:250℃
<Identification of amino compounds>
It was identified using a gas chromatograph / mass spectrum (hereinafter, GC / MS).
Column: Agilent DB-1MS (length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Column temperature: 100 ° C / 15 minutes → (5 ° C / min) → 150 ° C → (10 ° C / min) → 280 ° C / 15 minutes Ion source temperature: 200 ° C
Interface temperature: 250 ° C

<外観評価>
エポキシ樹脂組成物を、23℃、50%RHの条件下で、鋼板に200μmの厚みで塗装した。硬化7日後の塗膜外観(光沢、透明性)を目視で評価し、べたつき(乾燥性)は指触により評価した。
◎:優秀
○:良好
△:やや不良
×:不良
<Appearance evaluation>
The epoxy resin composition was coated on the steel sheet to a thickness of 200 μm under the conditions of 23 ° C. and 50% RH. The appearance (gloss, transparency) of the coating film 7 days after curing was visually evaluated, and the stickiness (dryness) was evaluated by touch.
◎: Excellent ○: Good △: Slightly bad ×: Bad

<速硬化性、硬化発熱温度>
エポキシ樹脂組成物50gを100mLのポリプロピレン製カップに入れ、約1分間混合した後、直ちに白金熱電対で硬化発熱−時間曲線を測定した。この曲線の最高発熱温度までの時間により、速硬化性を評価した。
<Fast curing, curing heat generation temperature>
50 g of the epoxy resin composition was placed in a 100 mL polypropylene cup, mixed for about 1 minute, and immediately the curing exotherm-time curve was measured with a platinum thermocouple. The fast curing property was evaluated by the time to the maximum heat generation temperature of this curve.

<硬化物の機械物性評価>
エポキシ樹脂組成物を、23℃、50%RHの条件下で、7日間硬化させた後、80℃で1時間硬化させ、各試験片を作製した。具体的には以下のとおりに試験片を作製した。
2枚のアルミ板の間にエポキシ樹脂組成物を流し込み、上記条件で硬化させて1枚の板を作製した。その後、切削機で試験片の形に加工した。
引張強度:JIS K7161に準拠した。
曲げ弾性率:JIS K7171に準拠した。
<Evaluation of mechanical properties of cured product>
The epoxy resin composition was cured under the conditions of 23 ° C. and 50% RH for 7 days, and then cured at 80 ° C. for 1 hour to prepare each test piece. Specifically, test pieces were prepared as follows.
An epoxy resin composition was poured between two aluminum plates and cured under the above conditions to prepare one plate. After that, it was processed into the shape of a test piece with a cutting machine.
Tensile strength: Compliant with JIS K7161.
Flexural modulus: Compliant with JIS K7171.

<合成例1>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、メタキシリレンジアミン(三菱瓦斯化学株式会社製、以下「MXDA」と記す。)9.5g、2−プロパノール(和光純薬工業株式会社製)20.0gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)7.4gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却した。
(2)管状縦型水素化反応器(ガラス製、内径10mmφ)に、コバルト含有量15質量%である水素化触媒(三つ葉型、直径1.2mmφ、ジョンソン・マッセイ・ジャパン製;HTC Co 2000)を7.0g充填し、水素気流下120℃で1時間保持した後、240℃まで昇温させて4時間以上保持し、還元、活性化させた。冷却後、攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、2−プロパノール14.8g、上記触媒及び(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を80℃にした後、圧力を8.0MPaGに調整した。その後、液温80℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Aを17.2g得た。
濃縮物Aの粘度は53mPa・s/25℃であった。分子内にアミノプロピル基を2つ有する2付加物(下記式(i)に示すアミノ化合物)の含有量は濃縮物A全量に対し89質量%であった。分子内にアミノプロピル基を1つ有する1付加物(下記式(ii)に示すアミノ化合物)の含有量は濃縮物A全量に対し5質量%であった。
各々のアミノ化合物のGC/MSの同定データを以下に示す。
1付加物;MS(SCI)[M+H]194
2付加物;MS(SCI)[M+H]251
<Synthesis example 1>
(1) M-xylylenediamine (manufactured by Mitsubishi Gas Chemicals Corporation, hereinafter referred to as "MXDA") in a round-bottom flask having an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. 9.5 g and 20.0 g of 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and after sufficiently stirring under an argon stream, 7.4 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 10 minutes. After completion of the dropping, the temperature was raised to 65 ° C., held for 1 hour, and then cooled to room temperature.
(2) A tubular vertical hydrogenation reactor (glass, inner diameter 10 mmφ) and a hydrogenation catalyst having a cobalt content of 15% by mass (three-leaf type, diameter 1.2 mmφ, manufactured by Johnson Massey Japan; HTC Co 2000). Was charged with 7.0 g and held at 120 ° C. under a hydrogen stream for 1 hour, then the temperature was raised to 240 ° C. and held for 4 hours or more to reduce and activate. After cooling, 14.8 g of 2-propanol, the above catalyst and the reaction solution of (1) were charged in an autoclave (capacity: 150 mL, material: SUS316 L) equipped with a stirrer and a heater, and the gas phase portion was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 80 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 80 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 17.2 g of concentrate A.
The viscosity of the concentrate A was 53 mPa · s / 25 ° C. The content of the diadduct having two aminopropyl groups in the molecule (amino compound represented by the following formula (i)) was 89% by mass with respect to the total amount of concentrate A. The content of one adduct having one aminopropyl group in the molecule (amino compound represented by the following formula (ii)) was 5% by mass with respect to the total amount of concentrate A.
The GC / MS identification data for each amino compound is shown below.
1 adduct; MS (SCI) [M + H] + 194
2 Adducts; MS (SCI) [M + H] + 251

Figure 0006886641
Figure 0006886641

Figure 0006886641
Figure 0006886641

<合成例2>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、MXDA9.5g、2−プロパノール(和光純薬工業株式会社製)20.0gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)3.7gを5分かけて滴下した。滴下終了後25℃で1時間保持した。
(2)管状縦型水素化反応器(ガラス製、内径10mmφ)に、コバルト含有量15質量%である水素化触媒(三つ葉型、直径1.2mmφ、ジョンソン・マッセイ・ジャパン製;HTC Co 2000)を5.3g充填し、水素気流下120℃で1時間保持した後、240℃まで昇温させて4時間以上保持し、還元、活性化させた。冷却後、攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、2−プロパノール8.6g、上記触媒及び(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を80℃にした後、圧力を8.0MPaGに調整した。その後、液温80℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Bを13.2g得た。
濃縮物Bの粘度は37mPa・s/25℃であった。分子内にアミノプロピル基を2つ有する2付加物(上記式(i)に示すアミノ化合物)の含有量は濃縮物B全量に対し27質量%であった。分子内にアミノプロピル基を1つ有する1付加物(上記式(ii)に示すアミノ化合物)の含有量は濃縮物B全量に対し50質量%であった。また、メタキシリレンジアミンを濃縮物B全量に対し18質量%含んでいた。
各々のアミノ化合物のGC/MSの同定データを以下に示す。
MXDA;MS(SCI)[M−H]135
1付加物;MS(SCI)[M+H]194
2付加物;MS(SCI)[M+H]251
<Synthesis example 2>
(1) MXDA 9.5 g, 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) 20.0 g in a round bottom flask with an internal volume of 100 mL equipped with a stirrer, thermometer, argon introduction tube, dropping funnel and cooling tube. After charging and stirring sufficiently under an argon stream, 3.7 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 5 minutes. After completion of the dropping, the mixture was held at 25 ° C. for 1 hour.
(2) A tubular vertical hydrogenation reactor (glass, inner diameter 10 mmφ) and a hydrogenation catalyst having a cobalt content of 15% by mass (three-leaf type, diameter 1.2 mmφ, manufactured by Johnson Massey Japan; HTC Co 2000). Was filled with 5.3 g and held at 120 ° C. for 1 hour under a hydrogen stream, then the temperature was raised to 240 ° C. and held for 4 hours or more to reduce and activate. After cooling, 8.6 g of 2-propanol, the catalyst and the reaction solution of (1) were charged in an autoclave (capacity: 150 mL, material: SUS316 L) equipped with a stirrer and a heater, and the gas phase portion was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 80 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 80 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 13.2 g of concentrate B.
The viscosity of the concentrate B was 37 mPa · s / 25 ° C. The content of the diadduct having two aminopropyl groups in the molecule (amino compound represented by the above formula (i)) was 27% by mass with respect to the total amount of concentrate B. The content of one adduct having one aminopropyl group in the molecule (amino compound represented by the above formula (ii)) was 50% by mass based on the total amount of concentrate B. In addition, m-xylylenediamine was contained in an amount of 18% by mass based on the total amount of concentrate B.
The GC / MS identification data for each amino compound is shown below.
MXDA; MS (SCI) [MH] + 135
1 adduct; MS (SCI) [M + H] + 194
2 Adducts; MS (SCI) [M + H] + 251

<合成例3>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、MXDA14.3g、2−プロパノール(和光純薬工業株式会社製)28.6gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)11.1gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却した。
(2)攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、スポンジニッケル触媒10.2g(ジョンソン・マッセイ・ジャパン製;A−4000)、(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を60℃にした後、圧力を8.0MPaGに調整した。その後、液温60℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Cを25.4g得た。
<Synthesis example 3>
(1) 14.3 g of MXDA and 28.6 g of 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a round bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. After charging and stirring sufficiently under an argon stream, 11.1 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 10 minutes. After completion of the dropping, the temperature was raised to 65 ° C., held for 1 hour, and then cooled to room temperature.
(2) In an autoclave equipped with a stirrer and a heater (capacity 150 mL, material: SUS316 L), 10.2 g of a sponge nickel catalyst (manufactured by Johnson Massey Japan; A-4000) and the reaction solution of (1) were charged in the whole amount. The phase part was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 60 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 60 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 25.4 g of concentrate C.

<合成例4>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、MXDA14.3g、2−プロパノール(和光純薬工業株式会社製)28.6gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)5.6gを5分かけて滴下した。滴下終了後25℃で1時間保持した。
(2)攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、スポンジニッケル触媒8.0g(ジョンソン・マッセイ・ジャパン製;A−4000)、(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を60℃にした後、圧力を8.0MPaGに調整した。その後、液温60℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Dを19.9g得た。
<Synthesis example 4>
(1) 14.3 g of MXDA and 28.6 g of 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a round bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. After charging and stirring sufficiently under an argon stream, 5.6 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 5 minutes. After completion of the dropping, the mixture was held at 25 ° C. for 1 hour.
(2) In an autoclave equipped with a stirrer and a heater (capacity 150 mL, material: SUS316 L), 8.0 g of a sponge nickel catalyst (manufactured by Johnson Massey Japan; A-4000) and the reaction solution of (1) are all charged and the mixture is charged. The phase part was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 60 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 60 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 19.9 g of concentrate D.

各合成例で得られた濃縮物をそれぞれ硬化剤として用いて、エポキシ樹脂組成物を作製した(各実施例及び各比較例)。 An epoxy resin composition was prepared by using the concentrate obtained in each synthesis example as a curing agent (each example and each comparative example).

<実施例1>
200mLのポリプロピレン製カップに、合成例1で得られた濃縮物AとビスフェノールA型液状エポキシ樹脂(商品名「エピコート828」、エポキシ当量186、三菱化学株式会社製、以下「エポキシ樹脂(エピコート828)」と記す。)を表1に示す割合で配合し、エポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物の硬化塗膜の外観、速硬化性、最高発熱温度及び機械物性を評価した。評価結果を表1に示す。
<Example 1>
Concentrate A obtained in Synthesis Example 1 and bisphenol A type liquid epoxy resin (trade name "Epicoat 828", epoxy equivalent 186, manufactured by Mitsubishi Chemical Corporation, hereinafter "epoxy resin (Epoxycoat 828)" in a 200 mL polypropylene cup. ”) Was blended in the proportions shown in Table 1 to prepare an epoxy resin composition. The appearance, quick-curing property, maximum heat generation temperature and mechanical properties of the cured coating film of the obtained epoxy resin composition were evaluated. The evaluation results are shown in Table 1.

<実施例2>
200mLのポリプロピレン製カップに、合成例2で得られた濃縮物Bとエポキシ樹脂(エピコート828)を表1に示す割合で配合した点以外は実施例1と同様にして、エポキシ樹脂組成物を調製した。そして、実施例1と同様にして、性能評価を行った。評価結果を表1に示す。
<Example 2>
An epoxy resin composition was prepared in the same manner as in Example 1 except that the concentrate B obtained in Synthesis Example 2 and the epoxy resin (Epicoat 828) were blended in a 200 mL polypropylene cup in the ratio shown in Table 1. did. Then, the performance was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

<比較例1>
200mLのポリプロピレン製カップに、MXDAとエポキシ樹脂(エピコート828)を表1に示す割合で配合し、エポキシ樹脂組成物を調製した。そして、実施例1と同様にして、性能評価を行った。評価結果を表1に示す。
<Comparative example 1>
MXDA and an epoxy resin (Epicoat 828) were blended in a 200 mL polypropylene cup at the ratio shown in Table 1 to prepare an epoxy resin composition. Then, the performance was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

<比較例2>
200mLのポリプロピレン製カップに、エポキシ樹脂硬化剤(MXDAとアクリロニトリルの反応生成物、商品名「ガスカミン229(G−229)」、三菱瓦斯化学株式会社製)とエポキシ樹脂(エピコート828)を表1に示す割合で配合し、エポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物の硬化塗膜の外観、速硬化性、最高発熱温度を評価した。評価結果を表1に示す。
<Comparative example 2>
Table 1 shows an epoxy resin curing agent ( reaction product of MXDA and acrylonitrile , trade name "Gascamin 229 (G-229)", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) and an epoxy resin (Epicoat 828) in a 200 mL polypropylene cup. The epoxy resin composition was prepared by blending in the ratio shown. The appearance, quick-curing property, and maximum heat generation temperature of the cured coating film of the obtained epoxy resin composition were evaluated. The evaluation results are shown in Table 1.

<比較例3>
200mLのポリプロピレン製カップに、エポキシ樹脂硬化剤(MXDAとスチレンの反応生成物、商品名「ガスカミン240(G−240)」、三菱瓦斯化学株式会社製)とエポキシ樹脂(エピコート828)を表1に示す割合で配合し、エポキシ樹脂組成物を調製した。そして、比較例2と同様にして、性能評価を行った。評価結果を表1に示す。
<Comparative example 3>
Table 1 shows an epoxy resin curing agent ( reaction product of MXDA and styrene , trade name "Gascamin 240 (G-240)", manufactured by Mitsubishi Gas Chemicals Co., Ltd.) and an epoxy resin (Epicoat 828) in a 200 mL polypropylene cup. The epoxy resin composition was prepared by blending in the ratio shown. Then, the performance was evaluated in the same manner as in Comparative Example 2. The evaluation results are shown in Table 1.

Figure 0006886641
Figure 0006886641

<合成例5>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3−ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学株式会社製、以下「1,3−BAC」と記す。)10.0g、2−プロパノール(和光純薬工業株式会社製)20.0gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)7.5gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却した。
(2)管状縦型水素化反応器(ガラス製、内径10mmφ)に、コバルト含有量15質量%である水素化触媒(三つ葉型、直径1.2mmφ、ジョンソン・マッセイ・ジャパン製;HTC Co 2000)を7.0g充填し、水素気流下120℃で1時間保持した後、240℃まで昇温させて4時間以上保持し、還元、活性化させた。冷却後、攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、2−プロパノール14.8g、上記触媒及び(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を80℃にした後、圧力を8.0MPaGに調整した。その後、液温80℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Eを17.5g得た。
濃縮物Eの粘度は69mPa・s/25℃であった。分子内にアミノプロピル基を2つ有する2付加物(下記式(iii)に示すアミノ化合物)の含有量は濃縮物E全量に対し89質量%であった。分子内にアミノプロピル基を1つ有する1付加物(下記式(iv)に示すアミノ化合物)の含有量は濃縮物E全量に対し5質量%であった。
各々のアミノ化合物のGC/MSの同定データを以下に示す。
1付加物(立体異性体−1);MS(SCI)[M+H]200
1付加物(立体異性体−2);MS(SCI)[M+H]200
2付加物(立体異性体−1);MS(SCI)[M+H]257
2付加物(立体異性体−2);MS(SCI)[M+H]257
<Synthesis example 5>
(1) In a round-bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube, 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemicals Corporation, hereinafter " It is described as "1,3-BAC".) 10.0 g, 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) 20.0 g was charged, and after sufficiently stirring under an argon stream, 7.5 g of acrylonitrile (manufactured by Aldrich). Was added dropwise over 10 minutes. After completion of the dropping, the temperature was raised to 65 ° C., held for 1 hour, and then cooled to room temperature.
(2) A tubular vertical hydrogenation reactor (glass, inner diameter 10 mmφ) and a hydrogenation catalyst having a cobalt content of 15% by mass (three-leaf type, diameter 1.2 mmφ, manufactured by Johnson Massey Japan; HTC Co 2000). Was charged with 7.0 g and held at 120 ° C. under a hydrogen stream for 1 hour, then the temperature was raised to 240 ° C. and held for 4 hours or more to reduce and activate. After cooling, 14.8 g of 2-propanol, the above catalyst and the reaction solution of (1) were charged in an autoclave (capacity: 150 mL, material: SUS316 L) equipped with a stirrer and a heater, and the gas phase portion was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 80 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 80 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 17.5 g of concentrate E.
The viscosity of the concentrate E was 69 mPa · s / 25 ° C. The content of the diadduct having two aminopropyl groups in the molecule (amino compound represented by the following formula (iii)) was 89% by mass with respect to the total amount of concentrate E. The content of one adduct having one aminopropyl group in the molecule (amino compound represented by the following formula (iv)) was 5% by mass based on the total amount of concentrate E.
The GC / MS identification data for each amino compound is shown below.
1 adduct (stereoisomer-1); MS (SCI) [M + H] + 200
1 adduct (stereoisomer-2); MS (SCI) [M + H] + 200
2 adduct (stereoisomer-1); MS (SCI) [M + H] + 257
2 adduct (stereoisomer-2); MS (SCI) [M + H] + 257

Figure 0006886641
Figure 0006886641

Figure 0006886641
Figure 0006886641

<合成例6>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3−BAC10.0g、2−プロパノール(和光純薬工業株式会社製)20.0gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)3.7gを5分かけて滴下した。滴下終了後25℃で1時間保持した。
(2)管状縦型水素化反応器(ガラス製、内径10mmφ)に、コバルト含有量15質量%である水素化触媒(三つ葉型、直径1.2mmφ、ジョンソン・マッセイ・ジャパン製;HTC Co 2000)を5.7g充填し、水素気流下120℃で1時間保持した後、240℃まで昇温させて4時間以上保持し、還元、活性化させた。冷却後、攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、2−プロパノール8.6g、上記触媒及び(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を80℃にした後、圧力を8.0MPaGに調整した。その後、液温80℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Fを13.7g得た。
濃縮物Fの粘度は39mPa・s/25℃であった。分子内にアミノプロピル基を2つ有する2付加物(上記式(iii)に示すアミノ化合物)の含有量は濃縮物F全量に対し27質量%であった。分子内にアミノプロピル基を1つ有する1付加物(上記式(iv)に示すアミノ化合物)の含有量は濃縮物F全量に対し49質量%であった。また、1,3−BACを濃縮物F全量に対し19質量%含んでいた。
各々のアミノ化合物のGC/MSの同定データを以下に示す。
1,3−BAC(立体異性体−1);MS(SCI)[M+H]143
1,3−BAC(立体異性体−2);MS(SCI)[M+H]143
1付加物(立体異性体−1);MS(SCI)[M+H]200
1付加物(立体異性体−2);MS(SCI)[M+H]200
2付加物(立体異性体−1);MS(SCI)[M+H]257
2付加物(立体異性体−2);MS(SCI)[M+H]257
<Synthesis example 6>
(1) 1,3-BAC 10.0 g, 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a round bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. After 20.0 g was charged and the mixture was sufficiently stirred under an argon stream, 3.7 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 5 minutes. After completion of the dropping, the mixture was held at 25 ° C. for 1 hour.
(2) A tubular vertical hydrogenation reactor (glass, inner diameter 10 mmφ) and a hydrogenation catalyst having a cobalt content of 15% by mass (three-leaf type, diameter 1.2 mmφ, manufactured by Johnson Massey Japan; HTC Co 2000). Was charged with 5.7 g and held at 120 ° C. under a hydrogen stream for 1 hour, then the temperature was raised to 240 ° C. and held for 4 hours or more to reduce and activate. After cooling, 8.6 g of 2-propanol, the catalyst and the reaction solution of (1) were charged in an autoclave (capacity: 150 mL, material: SUS316 L) equipped with a stirrer and a heater, and the gas phase portion was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 80 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 80 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 13.7 g of concentrate F.
The viscosity of the concentrate F was 39 mPa · s / 25 ° C. The content of the diadduct having two aminopropyl groups in the molecule (amino compound represented by the above formula (iii)) was 27% by mass with respect to the total amount of the concentrate F. The content of one adduct having one aminopropyl group in the molecule (amino compound represented by the above formula (iv)) was 49% by mass based on the total amount of concentrate F. In addition, 1,3-BAC was contained in an amount of 19% by mass based on the total amount of concentrate F.
The GC / MS identification data for each amino compound is shown below.
1,3-BAC (stereoisomer-1); MS (SCI) [M + H] + 143
1,3-BAC (stereoisomer-2); MS (SCI) [M + H] + 143
1 adduct (stereoisomer-1); MS (SCI) [M + H] + 200
1 adduct (stereoisomer-2); MS (SCI) [M + H] + 200
2 adduct (stereoisomer-1); MS (SCI) [M + H] + 257
2 adduct (stereoisomer-2); MS (SCI) [M + H] + 257

<合成例7>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3−BAC14.9g、2−プロパノール(和光純薬工業株式会社製)29.8gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)11.1gを10分かけて滴下した。滴下終了後、65℃まで昇温させて1時間保持した後室温まで冷却した。
(2)攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、スポンジニッケル触媒10.4g(ジョンソン・マッセイ・ジャパン製;A−4000)、(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を60℃にした後、圧力を8.0MPaGに調整した。その後、液温60℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Gを26.0g得た。
<Synthesis example 7>
(1) 1,3-BAC 14.9 g, 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a round-bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. 29.8 g was charged, and after sufficiently stirring under an argon stream, 11.1 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 10 minutes. After completion of the dropping, the temperature was raised to 65 ° C., held for 1 hour, and then cooled to room temperature.
(2) In an autoclave equipped with a stirrer and a heater (capacity 150 mL, material: SUS316 L), 10.4 g of a sponge nickel catalyst (manufactured by Johnson Massey Japan; A-4000) and the reaction solution of (1) were charged in the whole amount. The phase part was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 60 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 60 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 26.0 g of concentrate G.

<合成例8>
(1)攪拌装置、温度計、アルゴン導入管、滴下漏斗及び冷却管を備えた内容積100mLの丸底フラスコに、1,3−BAC14.9g、2−プロパノール(和光純薬工業株式会社製)29.8gを仕込み、アルゴン気流下、十分に攪拌した後、アクリロニトリル(Aldrich製)5.6gを5分かけて滴下した。滴下終了後25℃で1時間保持した。
(2)攪拌機及びヒーターを備えたオートクレーブ(容量150mL、材質:SUS316L)に、スポンジニッケル触媒8.2g(ジョンソン・マッセイ・ジャパン製;A−4000)、(1)の反応液を全量仕込み、気相部を水素置換した。水素で3.5MPaGに加圧後、攪拌しながら昇温を開始し、20分間で液温を60℃にした後、圧力を8.0MPaGに調整した。その後、液温60℃の条件下、圧力を8.0MPaGに保つように水素供給を随時行いながら反応を3時間継続させた。反応液を真空下で完全に濃縮し、濃縮物Hを20.5g得た。
<Synthesis Example 8>
(1) 1,3-BAC 14.9 g, 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) in a round-bottom flask with an internal volume of 100 mL equipped with a stirrer, a thermometer, an argon introduction tube, a dropping funnel and a cooling tube. 29.8 g was charged, and after sufficiently stirring under an argon stream, 5.6 g of acrylonitrile (manufactured by Aldrich) was added dropwise over 5 minutes. After completion of the dropping, the mixture was held at 25 ° C. for 1 hour.
(2) In an autoclave (capacity: 150 mL, material: SUS316 L) equipped with a stirrer and a heater, 8.2 g of a sponge nickel catalyst (manufactured by Johnson Massey Japan; A-4000) and the reaction solution of (1) were charged in the total amount. The phase part was replaced with hydrogen. After pressurizing to 3.5 MPaG with hydrogen, the temperature was started while stirring, the liquid temperature was adjusted to 60 ° C. in 20 minutes, and then the pressure was adjusted to 8.0 MPaG. Then, under the condition of the liquid temperature of 60 ° C., the reaction was continued for 3 hours while supplying hydrogen at any time so as to keep the pressure at 8.0 MPaG. The reaction mixture was completely concentrated under vacuum to obtain 20.5 g of concentrate H.

各合成例で得られた濃縮物をそれぞれ硬化剤として用いて、エポキシ樹脂組成物を作製した(各実施例及び各比較例)。 An epoxy resin composition was prepared by using the concentrate obtained in each synthesis example as a curing agent (each example and each comparative example).

<実施例3>
200mLのポリプロピレン製カップに、合成例5で得られた濃縮物Eとエポキシ樹脂(エピコート828)を表2に示す割合で配合し、エポキシ樹脂組成物を調製した。得られたエポキシ樹脂組成物の硬化塗膜の外観、速硬化性、最高発熱温度及び機械物性を評価した。評価結果を表2に示す。
<Example 3>
An epoxy resin composition was prepared by blending the concentrate E obtained in Synthesis Example 5 and an epoxy resin (Epicoat 828) in a ratio shown in Table 2 in a 200 mL polypropylene cup. The appearance, quick-curing property, maximum heat generation temperature and mechanical properties of the cured coating film of the obtained epoxy resin composition were evaluated. The evaluation results are shown in Table 2.

<実施例4>
200mLのポリプロピレン製カップに、合成例6で得られた濃縮物Fとエポキシ樹脂(エピコート828)を表2に示す割合で配合した点以外は実施例3と同様にして、エポキシ樹脂組成物を調製した。そして、実施例3と同様にして、性能評価を行った。評価結果を表2に示す。
<Example 4>
An epoxy resin composition was prepared in the same manner as in Example 3 except that the concentrate F obtained in Synthesis Example 6 and the epoxy resin (Epicoat 828) were blended in a 200 mL polypropylene cup in the ratio shown in Table 2. did. Then, the performance was evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.

<比較例4>
200mLのポリプロピレン製カップに、1,3−BACとエポキシ樹脂(エピコート828)を表2に示す割合で配合し、エポキシ樹脂組成物を調製した。そして実施例3と同様にして、性能評価を行った。評価結果を表2に示す。
<Comparative example 4>
An epoxy resin composition was prepared by blending 1,3-BAC and an epoxy resin (Epicoat 828) in a ratio shown in Table 2 in a 200 mL polypropylene cup. Then, the performance was evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.

<比較例5>
200mLのポリプロピレン製カップに、イソホロンジアミン(IPDA)とエポキシ樹脂(エピコート828)を表2に示す割合で配合し、エポキシ樹脂組成物を調製した。そして実施例3と同様にして、性能評価を行った。評価結果を表2に示す。
<Comparative example 5>
An epoxy resin composition was prepared by blending isophorone diamine (IPDA) and an epoxy resin (Epicoat 828) in a ratio shown in Table 2 in a 200 mL polypropylene cup. Then, the performance was evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.

<比較例6>
200mLのポリプロピレン製カップに、ジエチレントリアミン(DETA;和光純薬工業株式会社製)とエポキシ樹脂(エピコート828)を表2に示す割合で配合し、エポキシ樹脂組成物を調製した。そして、実施例3と同様にして、性能評価を行った。評価結果を表2に示す。
<Comparative Example 6>
A 200 mL polypropylene cup was mixed with diethylenetriamine (DETA; manufactured by Wako Pure Chemical Industries, Ltd.) and an epoxy resin (Epicoat 828) in the proportions shown in Table 2 to prepare an epoxy resin composition. Then, the performance was evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.

<比較例7>
200mLのポリプロピレン製カップに、トリエチレンテトラミン(TETA;東京化成工業株式会社製)とエポキシ樹脂(エピコート828)を表2に示す割合で配合し、エポキシ樹脂組成物を調製した。そして、実施例3と同様にして、性能評価を行った。評価結果を表2に示す。
<Comparative Example 7>
Triethylenetetramine (TETA; manufactured by Tokyo Chemical Industry Co., Ltd.) and an epoxy resin (Epicoat 828) were blended in a 200 mL polypropylene cup at the ratio shown in Table 2 to prepare an epoxy resin composition. Then, the performance was evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.

Figure 0006886641
Figure 0006886641

以上より、各実施例のエポキシ樹脂硬化剤を用いることで、硬化時の発熱温度が抑制でき、かつ硬化速度が速いことが少なくとも確認された。さらには、これによって得られる硬化物の物性も優れていることが確認された。 From the above, it was confirmed at least that the heat generation temperature at the time of curing could be suppressed and the curing rate was high by using the epoxy resin curing agent of each example. Furthermore, it was confirmed that the physical properties of the cured product obtained by this were also excellent.

本出願は、2015年3月31日出願の日本国特許出願(特願2015−073533号及び特願2015−073541号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 31, 2015 (Japanese Patent Application No. 2015-0735333 and Japanese Patent Application No. 2015-073541), the contents of which are incorporated herein by reference.

本発明のエポキシ樹脂硬化剤は、大形や肉厚の成形品を過剰な発熱を伴わず、比較的低い温度で速硬化させることができる。また、得られたエポキシ樹脂硬化物も高い機械的物性や塗膜性能を有することから、熱硬化系樹脂硬化物として有用なものであり、工業的価値は高い。 The epoxy resin curing agent of the present invention can rapidly cure a large-sized or thick-walled molded product at a relatively low temperature without excessive heat generation. Further, since the obtained epoxy resin cured product also has high mechanical properties and coating film performance, it is useful as a thermosetting resin cured product and has high industrial value.

Claims (9)

下記式(1)で示されるアミノ化合物を含むエポキシ樹脂硬化剤であって、

1HN−H2C−A−CH2−NHR2 (1)

(式(1)中、Aは、o−フェニレン基、m−フェニレン基、p−フェニレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基であり、R1及びR2は、水素原子又はアミノプロピル基である。R1とR2は同一でも異なっていてもよいが、R1とR2の少なくとも1つは、アミノプロピル基である。)
1 、R 2 のいずれか1つがアミノプロピル基であり残り1つが水素原子である付加物(1付加物)と、
1 、R 2 のいずれもがアミノプロピル基である付加物(2付加物)と、を含み、
エポキシ樹脂硬化剤中の前記1付加物と前記2付加物の合計の含有量が60〜100質量%である、エポキシ樹脂硬化剤。
An epoxy resin curing agent containing an amino compound represented by the following formula (1) .

R 1 HN-H 2 C- A-CH 2 -NHR 2 (1)

(In the formula (1), A is an o-phenylene group, an m-phenylene group, a p-phenylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. , R 1 and R 2 are hydrogen atoms or aminopropyl groups. R 1 and R 2 may be the same or different, but at least one of R 1 and R 2 is an aminopropyl group.)
An adduct (1 adduct) in which any one of R 1 and R 2 is an aminopropyl group and the remaining one is a hydrogen atom,
Both R 1 and R 2 contain an adduct (2 adduct) in which an aminopropyl group is used.
An epoxy resin curing agent in which the total content of the 1 adduct and the 2 adducts in the epoxy resin curing agent is 60 to 100% by mass.
前記Aは、o−フェニレン基、m−フェニレン基又はp−フェニレン基である、請求項1に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to claim 1, wherein A is an o-phenylene group, an m-phenylene group or a p-phenylene group. 前記Aは、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基である、請求項1に記載のエポキシ樹脂硬化剤。 The epoxy resin curing agent according to claim 1, wherein A is a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. エポキシ樹脂と、
請求項1〜3のいずれか1項に記載のエポキシ樹脂硬化剤と、
を含むエポキシ樹脂組成物。
Epoxy resin and
The epoxy resin curing agent according to any one of claims 1 to 3 and
Epoxy resin composition containing.
請求項4に記載のエポキシ樹脂組成物を含む塗料。 A coating material containing the epoxy resin composition according to claim 4. 請求項4に記載のエポキシ樹脂組成物を含む土木建築用部材。 A member for civil engineering and construction containing the epoxy resin composition according to claim 4. 請求項4に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 4. 請求項7に記載の硬化物と、
繊維と、
を含む複合材料。
The cured product according to claim 7 and
With fiber
Composite material including.
o−キシリレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、1,2−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン及び1,4−ビス(アミノメチル)シクロヘキサンからなる群より選ばれる少なくとも1種と、アクリロニトリルとを付加反応させて、シアノ化合物を得る工程と、
前記シアノ化合物を水素添加することにより、式(1)で示されるアミノ化合物を得る工程と、
を含む、前記アミノ化合物を含む、請求項1〜3のいずれか1項記載のエポキシ樹脂硬化剤の製造方法。

1HN−H2C−A−CH2−NHR2 (1)

(式(1)中、Aは、o−フェニレン基、m−フェニレン基、p−フェニレン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基又は1,4−シクロヘキシレン基であり、R1及びR2は、水素原子又はアミノプロピル基である。R1とR2は同一でも異なっていてもよいが、R1とR2の少なくとも1つは、アミノプロピル基である。)
o-Xylylenediamine, p-xylylenediamine, m-xylylenediamine, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane A step of adding acrylonitrile to at least one selected from the group consisting of cyano compound to obtain a cyano compound.
The step of obtaining the amino compound represented by the formula (1) by hydrogenating the cyano compound, and
The method for producing an epoxy resin curing agent according to any one of claims 1 to 3, which comprises the amino compound.

R 1 HN-H 2 C- A-CH 2 -NHR 2 (1)

(In the formula (1), A is an o-phenylene group, an m-phenylene group, a p-phenylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group or a 1,4-cyclohexylene group. , R 1 and R 2 are hydrogen atoms or aminopropyl groups. R 1 and R 2 may be the same or different, but at least one of R 1 and R 2 is an aminopropyl group.)
JP2017509985A 2015-03-31 2016-03-28 Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and building materials, cured product and composite material, and manufacturing method of epoxy resin curing agent. Active JP6886641B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015073533 2015-03-31
JP2015073533 2015-03-31
JP2015073541 2015-03-31
JP2015073541 2015-03-31
PCT/JP2016/059958 WO2016158871A1 (en) 2015-03-31 2016-03-28 Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and construction member, hardened material and composite material, and method for producing epoxy resin curing agent

Publications (2)

Publication Number Publication Date
JPWO2016158871A1 JPWO2016158871A1 (en) 2018-01-25
JP6886641B2 true JP6886641B2 (en) 2021-06-16

Family

ID=57007233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509985A Active JP6886641B2 (en) 2015-03-31 2016-03-28 Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and building materials, cured product and composite material, and manufacturing method of epoxy resin curing agent.

Country Status (4)

Country Link
JP (1) JP6886641B2 (en)
CN (1) CN107406579B (en)
TW (1) TWI711643B (en)
WO (1) WO2016158871A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571182B1 (en) * 2016-12-05 2022-06-22 Basf Se N,n -diaminopropyl-2-methyl-cyclohexane-1,3-diamine and n,n'-diaminopropyl-4-methyl-cyclohexane-1,3-diamine and their use as hardeners for epoxy resins
JP7221871B2 (en) * 2017-09-29 2023-02-14 日鉄ケミカル&マテリアル株式会社 Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
CN109320919A (en) * 2018-11-09 2019-02-12 陈鹏 A kind of shock-absorbing bridge support composite material and preparation method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070400A (en) * 1975-10-16 1978-01-24 Merck & Co., Inc. Diphenyl polyamides having a cyclohexylene moiety
US4321354A (en) * 1978-07-17 1982-03-23 Milliken Research Corporation Polyamine substituted cycloaliphatic compounds
EP1314716A1 (en) * 2001-11-23 2003-05-28 Sigma Coatings B.V. Amine phenolic compounds and their use as hardener and/or accelerators in epoxy coatings
US6441238B1 (en) * 2001-12-19 2002-08-27 Air Products And Chemicals, Inc. N-(aminopropyl)-toluenediamines and their use as epoxy curing agents
EP1375554B1 (en) * 2002-06-18 2007-09-19 Mitsubishi Gas Chemical Company, Inc. Amino composition and process for producing the same
US6914079B2 (en) * 2002-09-23 2005-07-05 Mediquest Therapeutics, Inc. Polyamine analogs that activate antizyme frameshifting
JP2007537158A (en) * 2004-02-13 2007-12-20 メディクエスト セラピューティックス インク Polyamine analogues that activate antizyme frameshifts
AU2004319105A1 (en) * 2004-03-29 2005-11-10 Mediquest Therapeutics, Inc. Polyamine analogs that activate antizyme frameshifting
ES2292146T3 (en) * 2004-06-21 2008-03-01 Huntsman Advanced Materials (Switzerland) Gmbh CURING AGENTS FOR EPOXIDIC RESINS.
JP4923400B2 (en) * 2004-11-02 2012-04-25 三菱化学株式会社 Epoxy resin composition and cured epoxy resin
US20080114094A1 (en) * 2006-11-13 2008-05-15 Dilipkumar Nandlal Shah Use of a polyamine stream as curing agent in epoxy adhesive and flooring applications
US7993751B2 (en) * 2007-02-07 2011-08-09 Air Products And Chemicals, Inc. Alkylated aminopropylated methylene-di-(cyclohexylamine) and uses thereof
WO2011032877A1 (en) * 2009-09-18 2011-03-24 Basf Se Use of a stereoisomer mixture of diaminomethylcyclohexane as a hardener for epoxy resins

Also Published As

Publication number Publication date
JPWO2016158871A1 (en) 2018-01-25
CN107406579A (en) 2017-11-28
TWI711643B (en) 2020-12-01
CN107406579B (en) 2020-10-30
TW201638138A (en) 2016-11-01
WO2016158871A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6147770B2 (en) Curable epoxy composition and short-time curing method
JP5936556B2 (en) Use of linear triethylenetetraamine as a curing agent for epoxy resins
TWI502008B (en) Use of cyclic carbonates in epoxy resin compositions
JP5969612B2 (en) Benzylated polyamine curing agent
TWI460201B (en) Blends comprising epoxy resins and mixtures of amines with guanidine derivatives
JP2010520924A5 (en)
US10017614B2 (en) Epoxy-resin composition for fiber-matrix semifinished products
US20110218270A1 (en) Use of linear triethylentetramine as curing agent for epoxy resins
JP6886641B2 (en) Epoxy resin curing agent, epoxy resin composition, paint, civil engineering and building materials, cured product and composite material, and manufacturing method of epoxy resin curing agent.
JP2017501288A (en) Curing agent composition
US9650542B2 (en) Use of polypropyleneimine as curing agent for epoxide resins
JP2018502195A5 (en)
JP6939365B2 (en) Method for producing amine composition
JP5509743B2 (en) Heat-curing epoxy resin composition
KR102582502B1 (en) N,N&#39;-diaminopropyl-2-methylcyclohexane-1,3-diamine and N,N&#39;-diaminopropyl-4-methyl-cyclohexane-1,3-diamine and their use as curing agents for epoxy resins Uses of
JP7040683B1 (en) Use of Epoxy Resin Hardeners, Epoxy Resin Compositions, and Amine Compositions
US11976161B2 (en) Epoxy resin curing agent, epoxy resin composition, and use of amine composition
JP2020528101A (en) N, N&#39;-dialkylmethylcyclohexanediamine as a reactive diluent in epoxy resin systems
CA3041925A1 (en) Rapid curing epoxy-resin composition for fiber-matrix semifinished products

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210429

R151 Written notification of patent or utility model registration

Ref document number: 6886641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151