JP6883509B2 - Structure damage judgment method and structure reinforcement method selection method - Google Patents

Structure damage judgment method and structure reinforcement method selection method Download PDF

Info

Publication number
JP6883509B2
JP6883509B2 JP2017240251A JP2017240251A JP6883509B2 JP 6883509 B2 JP6883509 B2 JP 6883509B2 JP 2017240251 A JP2017240251 A JP 2017240251A JP 2017240251 A JP2017240251 A JP 2017240251A JP 6883509 B2 JP6883509 B2 JP 6883509B2
Authority
JP
Japan
Prior art keywords
bridge
pier
strength
fluid force
assumed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240251A
Other languages
Japanese (ja)
Other versions
JP2019108659A (en
Inventor
渡辺 健
健 渡辺
又稔 大野
又稔 大野
俊太朗 轟
俊太朗 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2017240251A priority Critical patent/JP6883509B2/en
Publication of JP2019108659A publication Critical patent/JP2019108659A/en
Application granted granted Critical
Publication of JP6883509B2 publication Critical patent/JP6883509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、構造物の被害判定方法及び構造物の補強工法選定方法に関する。より具体的には、津波や河川の増水による橋梁の被害判定に関するもの、橋梁の新規設計時に被害予想するための判定方法に関するもの及び橋梁の補強設計に関し、どの補強工法を選択するかを決定する選定方法に関する。 The present invention relates to a method for determining damage to a structure and a method for selecting a method for reinforcing a structure. More specifically, it is decided which reinforcement method to select regarding the damage judgment of the bridge due to the tsunami or the flooding of the river, the judgment method for predicting the damage at the time of new design of the bridge, and the reinforcement design of the bridge. Regarding the selection method.

従来、流体によって構造物に対して発生する流体力を算出する手法としてモリソン式等を用いて評価する判定方法が知られている(特許文献1)。ここで、モリソン式とは、構造物が流体から受ける水平流体力を算出する方法であって、次式を用いて算出される。 Conventionally, as a method for calculating the fluid force generated for a structure by a fluid, a determination method for evaluation using a Morrison equation or the like is known (Patent Document 1). Here, the Morrison equation is a method of calculating the horizontal fluid force that the structure receives from the fluid, and is calculated using the following equation.

Figure 0006883509
ここで、ρwは、水の密度(kg/m3)、Cdは、抗力係数,νは、流速(m/s)、Ahは、有効鉛直投影面積(m2)とする。
Figure 0006883509
Here, ρ w is the density of water (kg / m 3 ), C d is the drag coefficient, ν is the flow velocity (m / s), and A h is the effective vertical projected area (m 2 ).

また、モリソン式などを用いて得られた水平流体力を構造物である橋梁の橋桁、橋脚及び支承部等が受けた場合のこれらの構造物の破壊耐力の算定方法が知られている。さらに、地震や津波による被害を防止するための橋梁の落橋防止工法や耐震・津波補強工法が知られている(特許文献2及び3)。 Further, there is known a method for calculating the breaking strength of these structures when the horizontal fluid force obtained by using the Morrison method or the like is received by the bridge girders, piers, bearings, etc. of the bridges which are the structures. Further, bridge collapse prevention methods and seismic / tsunami reinforcement methods for preventing damage caused by earthquakes and tsunamis are known (Patent Documents 2 and 3).

特開2012−149466号公報Japanese Unexamined Patent Publication No. 2012-149466 特開2016−75120号公報Japanese Unexamined Patent Publication No. 2016-75120 特開2016−75121号公報Japanese Unexamined Patent Publication No. 2016-75121

しかしながら、モリソン式による判定方法では、桁高が高く、橋桁の上下流で水位差が生じる場合に橋梁が受ける水平力が過小に評価されており、判定精度が低く適切な評価が困難であった。また、橋桁、橋脚及び支承部等における部位ごとの被害判定方法については、個別に評価することが可能であったが、橋梁全体で橋桁の流出や橋脚の破壊などを適切に評価する判定方法は知られていない。 However, in the Morrison method, the horizontal force received by the bridge when the girder height is high and the water level difference occurs upstream and downstream of the bridge girder is underestimated, and the judgment accuracy is low and appropriate evaluation is difficult. .. In addition, it was possible to evaluate the damage judgment method for each part of the bridge girder, pier, bearing, etc. individually, but the judgment method that appropriately evaluates the outflow of the bridge girder and the destruction of the pier for the entire bridge is unknown.

さらに、地震や津波による橋桁の流出や橋脚の破壊に対して橋桁の流出を防止する橋桁流出補強工法や橋脚を補強する橋脚補強工法は知られているが、橋梁に津波が来襲した場合に想定される増水量や流速に応じて、いずれの補強工法を適用すべきであるか評価することができる方法は知られていなかった。 Furthermore, there are known bridge girder outflow reinforcement methods that prevent the outflow of bridge girders and bridge pier destruction due to earthquakes and tsunamis, and pier reinforcement methods that reinforce piers. There was no known method that could evaluate which reinforcement method should be applied according to the amount of water increase and the flow velocity.

そこで、本発明は上記課題に鑑みてなされたものであり、津波や河川の大雨などによる増水に対する橋梁の被害軽減や、早期復旧を実現するために、事前に被害の有無や損傷部位を特定するといった、被害判定を実施可能な被害判定方法及び、既設の橋梁などの構造物に対し、優先的に対策すべき構造物の選定や橋桁流出補強工法及び橋脚補強工法を適切に選定することができる補強工法選定方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and in order to reduce damage to bridges due to flooding caused by tsunamis and heavy rains in rivers, and to realize early restoration, the presence or absence of damage and damaged parts are specified in advance. It is possible to appropriately select a damage judgment method that can perform damage judgment, a structure that should be prioritized for existing structures such as bridges, a bridge girder outflow reinforcement method, and a pier reinforcement method. The purpose is to provide a method for selecting a reinforcement method.

上記課題を解決するための本発明にかかる構造物の被害判定方法は、想定水位及び想定流速を決定する工程と、前記想定水位及び前記想定流速を用いて、構造物に対して作用する水平流体力及び鉛直流体力を求める工程と、前記鉛直流体力を用いて、前記構造物の支承・落橋防止の破壊耐力を求める工程と、前記構造物の橋脚の破壊耐力を求める工程と、前記水平流体力と前記支承・落橋防止の破壊耐力を比較する工程と、前記水平流体力と前記橋脚の破壊耐力を比較する工程と、を備えることを特徴とする。 The method for determining damage to a structure according to the present invention for solving the above problems is a step of determining an assumed water level and an assumed flow velocity, and a horizontal flow acting on the structure using the assumed water level and the assumed flow velocity. The step of obtaining the physical strength and the lead DC physical strength, the step of obtaining the breaking resistance of the structure to support and prevent the bridge from falling, the step of obtaining the breaking resistance of the pier of the structure, and the horizontal flow. It is characterized by including a step of comparing physical strength and the breaking resistance of the support / bridge fall prevention, and a step of comparing the horizontal fluid force and the breaking strength of the pier.

また、本発明に係る構造物の補強工法選定方法は、想定水位及び想定流速を決定する工程と、前記想定水位及び前記想定流速を用いて、構造物に対して作用する水平流体力及び鉛直流体力を求める工程と、前記鉛直流体力を用いて、前記構造物の支承・落橋防止の破壊耐力を求める工程と、前記構造物の橋脚の破壊耐力を求める工程と、前記水平流体力と前記支承・落橋防止の破壊耐力又は前記橋脚の破壊耐力とを比較して構造物の補強工法を選択する工程とを備えることを特徴とする。 Further, in the method for selecting a reinforcement method for a structure according to the present invention, a step of determining an assumed water level and an assumed flow velocity, and a horizontal fluid force acting on the structure and a lead DC using the assumed water level and the assumed flow velocity are used. The step of obtaining the physical strength, the step of obtaining the breaking resistance of the structure to support and prevent the bridge from falling using the lead DC physical strength, the step of obtaining the breaking strength of the pier of the structure, the horizontal fluid force and the support. of-girder prevent breakdown strength or by comparing the breaking strength of the previous SL pier, characterized in that it comprises the step of selecting the reinforcing method of the structure.

また、本発明に係る構造物の補強工法選定方法において、前記水平流体力が前記支承・落橋防止の破壊耐力よりも大きい場合に、橋桁流出補強工法を選択すると好適である。 Further, in the method for selecting the reinforcement method for the structure according to the present invention, it is preferable to select the bridge girder outflow reinforcement method when the horizontal fluid force is larger than the fracture strength for preventing the bearing / collapse.

また、本発明に係る構造物の補強工法選定方法において、前記水平流体力が前記橋脚の破壊耐力よりも大きい場合に、橋脚補強工法を選択すると好適である。 Further, in the reinforcing method selecting method of a structure according to the present invention, when the horizontal fluid force is greater than the breakdown strength of the previous SL pier, it is preferable to select a pier reinforcement method.

本発明に係る構造物の被害判定方法によれば、鉛直流体力を用いて、構造物の支承・落橋防止の破壊耐力を求め、構造物の橋脚の破壊耐力を求める工程を備えているので、鉛直方向の流体力である揚力、浮力及びダウンフォースを加味した抵抗力算定を行うことができ、従来のモリソン式を用いた判定方法では適切な評価が難しかった桁高が高い橋桁を有する橋梁についても適切な被害判定を行うことが可能となる。 According to the method for determining damage to a structure according to the present invention, there is a step of obtaining the breaking strength of the bridge pier of the structure by using the vertical DC physical strength to obtain the breaking strength of supporting the structure and preventing the bridge from falling. It is possible to calculate the yield strength by adding the lift, buoyancy and down force, which are the fluid forces in the vertical direction, and it is difficult to make an appropriate evaluation by the judgment method using the conventional Morrison method. It is possible to make an appropriate damage judgment.

また、本発明に係る構造物の補強工法選定方法によれば、想定される水位や流速に対して構造物がどのような補強工法を必要とするか精度よく被害判定を行うことができるので、この判定結果に基づいて適切な工法を選定することが可能となる。 Further, according to the method for selecting a reinforcement method for a structure according to the present invention, it is possible to accurately determine what kind of reinforcement method the structure requires for the assumed water level and flow velocity. It is possible to select an appropriate construction method based on this determination result.

橋梁に加わる流体力を説明するための図。The figure for demonstrating the fluid force applied to a bridge. 本実施形態に係る構造物の被害判定方法及び補強工法選定方法のフロー図。The flow chart of the damage determination method and the reinforcement method selection method of the structure which concerns on this embodiment. 橋梁の橋桁の流出を説明するための図。The figure for demonstrating the outflow of a bridge girder of a bridge. 橋梁の橋脚の破壊を説明するための図。The figure for demonstrating the destruction of the pier of a bridge.

以下に、本願発明の実施形態にかかる構造物の被害判定方法及び補強工法選定方法について図面を用いて詳細に説明する。 Hereinafter, the method for determining damage to the structure and the method for selecting the reinforcing method according to the embodiment of the present invention will be described in detail with reference to the drawings.

図1は、橋梁に加わる流体力を説明するための図であり、図2は、本実施形態に係る構造物の被害判定方法及び補強工法選定方法のフロー図であり、図3は、橋梁の橋桁の流出を説明するための図であり、図4は、橋梁の橋脚の破壊を説明するための図である。 FIG. 1 is a diagram for explaining a fluid force applied to a bridge, FIG. 2 is a flow diagram of a method for determining damage to a structure and a method for selecting a reinforcement method according to the present embodiment, and FIG. 3 is a flow diagram of a bridge. It is a figure for demonstrating the outflow of a bridge girder, and FIG. 4 is a figure for demonstrating the destruction of a pier of a bridge.

図1に示すように、本実施形態にかかる構造物の被害判定方法及び構造物の補強工法選定方法は、例えば、構造物としての橋梁10に津波が来襲した場合を想定して、該津波による被害を想定し、その想定される被害に応じた補強工法を選定するものである。 As shown in FIG. 1, the method for determining damage to a structure and the method for selecting a reinforcement method for a structure according to the present embodiment are based on, for example, assuming that a tsunami hits a bridge 10 as a structure. The damage is assumed, and the reinforcement method is selected according to the assumed damage.

橋梁10は、下部工としての橋脚11と、上部工としての橋桁12とを有しており、橋桁12は、橋脚11の上部に載置された支承部14を介して橋脚11に載置された構成となっている。また、橋脚11と橋桁12とは、落橋防止装置13によって連結固定されている。この落橋防止装置13は、従来周知の種々の構成が採用される。 The bridge 10 has a pier 11 as a substructure and a bridge girder 12 as a superstructure, and the bridge girder 12 is mounted on the pier 11 via a support portion 14 mounted on the upper part of the pier 11. It has a structure like this. Further, the pier 11 and the bridge girder 12 are connected and fixed by the bridge collapse prevention device 13. The bridge collapse prevention device 13 adopts various conventionally known configurations.

ここで、本実施形態に係る構造物の被害判定方法は、図2に示すように、想定水位H0及び想定流速V0を決定する工程(S101)と、想定水位H0及び想定流速V0を用いて橋梁10に対して作用する水平流体力Fxを求める工程(S102)と、想定水位H0及び想定流速V0を用いて橋梁10に対して作用する鉛直流体力Fzを求める工程(S103)と、鉛直流体力Fzを用いて橋梁10の支承・落橋防止の破壊耐力Rを算出する工程(S104)と橋梁10の橋脚11の破壊耐力Rを算出する工程(S105)と、水平流体力Fxと支承・落橋防止の破壊耐力Rを比較する工程(S106)と、水平流体力Fxと橋脚11の破壊耐力Rを比較する工程(S107)とを備えている。 Here, the damage determination method of a structure according to the present embodiment, as shown in FIG. 2, the step of determining an assumed water level H 0 and assuming a flow rate V 0 (S101), assuming the water level H 0 and assuming flow velocity V 0 (S102) to obtain the horizontal fluid force F x acting on the bridge 10 using the above, and the step to obtain the lead DC physical force F z acting on the bridge 10 using the assumed water level H 0 and the assumed flow velocity V 0. (S103), a step of calculating the breaking strength R girder for bearing / collapse prevention of the bridge 10 using the lead DC physical strength F z (S104), and a step of calculating the breaking strength R column of the pier 11 of the bridge 10 (S105). A step of comparing the horizontal fluid force F x with the breaking strength R girder for bearing / bridge collapse prevention (S106) and a step of comparing the horizontal fluid force F x with the breaking strength R column of the pier 11 (S107) are provided. There is.

想定水位H0及び想定流速V0を決定する工程(S101)では、被害判定を行う対象である橋梁10の周辺環境や地震や大雨などの要因によってどの程度の増水が生じるのか、その際の流速はどの程度であるのか、を決定する。 In the step (S101) of determining the assumed water level H 0 and the assumed flow velocity V 0 , how much water increase occurs due to factors such as the surrounding environment of the bridge 10 to be damaged and an earthquake or heavy rain, and the flow velocity at that time. Determine how much is.

想定水位H0及び想定流速V0を用いて橋梁10に対して作用する水平流体力Fxを求める工程(S102)では、桁高が高い場合も含めて、橋梁10の形状に基づいて水平方向に働く水平流体力Fxを算出する。この算出方法については、水平方向の流体力を算出することができれば、どのような算出方法を採用しても構わないが、桁高を考慮すると、以下の数式を用いて算出されると好適である。 In the step (S102) of obtaining the horizontal fluid force F x acting on the bridge 10 using the assumed water level H 0 and the assumed flow velocity V 0 , the horizontal direction is based on the shape of the bridge 10, including the case where the girder height is high. Calculate the horizontal fluid force F x acting on. As for this calculation method, any calculation method may be adopted as long as the horizontal fluid force can be calculated, but considering the girder height, it is preferable to calculate using the following formula. is there.

Figure 0006883509
ここで、ρは、水の密度(kg/m3)、gは、重力加速度(m/sec2)、H1は、上流側水位(m)、νは、流速(m/s)、Ccは、縮脈係数とする。また、qは、流量(m2/S)であって、流速νと上流側水位H1の積である。
Figure 0006883509
Here, ρ is the density of water (kg / m 3 ), g is the gravitational acceleration (m / sec 2 ), H 1 is the upstream water level (m), ν is the flow velocity (m / s), and C. Let c be the contraction coefficient. Further, q is the flow rate (m 2 / S), which is the product of the flow velocity ν and the upstream water level H 1.

想定水位H0及び想定流速V0を用いて橋梁10に対して作用する鉛直流体力Fzを求める工程(S103)は、桁高が高い場合も含めて、橋梁10の形状に基づいて鉛直方向に働く鉛直流体力Fzを算出する。この算出方法については、鉛直方向の流体力を算出することができれば、どのような算出方法を採用しても構わないが、桁高を考慮すると、以下の数式を用いて算出されると好適である。 The step (S103) of obtaining the vertical DC physical force F z acting on the bridge 10 using the assumed water level H 0 and the assumed flow velocity V 0 is in the vertical direction based on the shape of the bridge 10, including the case where the girder height is high. Calculate the plumb bob physical strength F z that acts on. As for this calculation method, any calculation method may be adopted as long as the fluid force in the vertical direction can be calculated, but considering the girder height, it is preferable to calculate using the following formula. is there.

Figure 0006883509
ここで、p上(x,z)は、任意点の上面圧力(N/m2)であり、p下(x,z)は、任意点の下面圧力(N/m2)であり、Aは、任意点の面積(m2)であり、ρは、水の密度(kg/m3)であり、gは、重力加速度(m/sec2)であり、h▲1▼、桁上流側水位(m)であり、Hは、柱高さ(m)であり、Hは、桁高(m)であり、H防音壁は、防音壁高さ(m)であり、h(x)は、x位置の水位(m)であり、νx(x,z)は、座標(x,z)における水平方向の流速(m/s)であり、νx1▼は、桁上流側水面の水平方向の流速(m/s)であり、νx2▼は、桁下流側桁下の水平方向の最大流速(m/s)であり、νx3▼は、桁下流側桁下面の水平方向の流速(m/s)であり、x0は、最大流速線の起点のx座標(m)である。
Figure 0006883509
Here, above p (x, z) is the upper surface pressure (N / m 2 ) at an arbitrary point, and below p (x, z) is the lower surface pressure (N / m 2 ) at an arbitrary point. Is the area of an arbitrary point (m 2 ), ρ is the density of water (kg / m 3 ), g is the gravity acceleration (m / sec 2 ), h ▲ 1 ▼, upstream side of the girder. Water level (m), H pillar is pillar height (m), H girder is girder height (m), H soundproof wall is soundproof wall height (m), h (x ) Is the water level (m) at the x position, ν x (x, z) is the horizontal flow velocity (m / s) at the coordinates (x, z), and ν x1 ▼ is the girder upstream. The horizontal flow velocity (m / s) on the water surface on the side, ν x2 ▼ is the maximum horizontal flow velocity (m / s) under the girder downstream of the girder, and ν x3 ▼ is the downstream flow path of the girder. It is the horizontal flow velocity (m / s) of the lower surface of the side girder, and x 0 is the x coordinate (m) of the starting point of the maximum flow velocity line.

鉛直流体力Fzを用いて橋梁10の支承・落橋防止の破壊耐力Rを算出する工程(S104)は、既に算出した鉛直流体力Fzを用いて橋梁10の支承・落橋防止の破壊耐力Rを算出する。ここで、橋梁10の支承・落橋防止の破壊耐力Rとは、橋梁10が流体力を受けた場合に、橋梁10から橋桁12が流出しない流体力の最大値をいい、橋桁12の流出とは、図3に示すように橋梁10が流体力を受けた場合に、橋脚11は破損に至らないが、橋桁12と橋脚11を連結している落橋防止装置13が破損して支承部14から橋桁12が脱落することをいう。この支承・落橋防止の破壊耐力Rの算出方法については、橋梁10の支承・落橋防止の破壊耐力を算出することができれば、どのような算出方法を採用しても構わないが、以下の式を用いて支承摩擦抵抗を算出し、当該支承摩擦抵抗を支承・落橋防止の破壊耐力とみなして算出すると好適である。 Calculating a fracture strength R digits of the bearing-girder prevention of bridge 10 with vertical fluid force F z (S104) has already destroyed strength of bearing-girder prevention of bridge 10 with vertical fluid force F z calculated Calculate the R digit. Here, the destructive resistance R girder for bearing and collapse prevention of the bridge 10 means the maximum value of the fluid force at which the bridge girder 12 does not flow out from the bridge 10 when the bridge 10 receives the fluid force, and is referred to as the outflow of the bridge girder 12. As shown in FIG. 3, when the bridge 10 receives a fluid force, the pier 11 is not damaged, but the bridge collapse prevention device 13 connecting the bridge girder 12 and the pier 11 is damaged and the bridge collapse prevention device 13 is damaged from the bearing portion 14. It means that the bridge girder 12 falls off. Regarding the calculation method of the breaking strength R girder for bearing / collapse prevention, any calculation method may be adopted as long as the breaking strength for bearing / collapse prevention of the bridge 10 can be calculated. It is preferable to calculate the bearing friction resistance using the above, and to calculate the bearing friction resistance by regarding it as the breaking strength of the bearing / bridge collapse prevention.

Figure 0006883509
ここで、μは、摩擦抵抗であり、Wは、上部工である橋桁12の重量(N)である。
Figure 0006883509
Here, μ is the frictional resistance, and W is the weight (N) of the bridge girder 12 which is the superstructure.

橋梁10の橋脚11の破壊耐力Rを算出する工程(S105)は、橋梁10が流体力を受けた場合に橋脚11が破損しない流体力の最大値をいい、橋脚11の破損とは、図4に示すように、橋桁12の流出には至らないが、橋脚11が破損することをいう。この破壊耐力の算出方法については、橋脚11の破壊耐力を算出することができれば、どのような算出方法を採用しても構わないが、以下の式を用いて橋脚11が受ける曲げ・せん断耐力を算出し、当該曲げ・せん断耐力を破壊耐力とみなして算出すると好適である。 The step (S105) of calculating the breaking strength R column of the pier 11 of the bridge 10 refers to the maximum value of the fluid force at which the pier 11 is not damaged when the bridge 10 receives the fluid force. As shown in 4, it means that the bridge girder 12 does not flow out, but the pier 11 is damaged. As for the calculation method of the fracture strength, any calculation method may be adopted as long as the fracture strength of the bridge pier 11 can be calculated, but the bending / shear strength received by the bridge pier 11 is calculated by using the following formula. It is preferable to calculate and calculate the bending / shear strength as the fracture strength.

Figure 0006883509
ここで、Mudは、橋脚の設計曲げ耐力(kN・m)であり、Laは、橋脚のせん断スパン(m)であり、Vydは、橋脚の設計せん断耐力(kN)である。
Figure 0006883509
Here, M ud is a bridge pier design Bending Strength of (kN · m), L a is a bridge pier shear span (m), V yd is the pier design shear capacity (kN).

水平流体力Fxと支承・落橋防止の破壊耐力Rを比較する工程(S106)は、想定水位H0及び想定流速V0を用いて橋梁10に対して作用する水平流体力Fxを求める工程(S102)と、鉛直流体力Fzを用いて橋梁10の支承・落橋防止の破壊耐力Rを算出する工程(S104)とでそれぞれ算出した水平流体力Fxと支承・落橋防止の破壊耐力Rとを比較する。ここで、水平流体力Fxが支承・落橋防止の破壊耐力Rよりも小さい場合には、橋桁12の流出が起こらないため、次の工程である水平流体力Fxと橋脚11の破壊耐力Rを比較する工程(S107)を実行する。また、水平流体力Fxが支承・落橋防止の破壊耐力Rよりも大きい場合には、津波や大雨増水によって、想定水位H0及び想定流速V0による流体力を橋梁10が受けると橋桁12が橋脚11から流出するという被害判定を行うことができる。 In the step (S106) of comparing the horizontal fluid force F x with the breaking strength R girder for bearing / collapse prevention, the horizontal fluid force F x acting on the bridge 10 is obtained using the assumed water level H 0 and the assumed flow velocity V 0. The horizontal fluid force F x calculated in the step (S102) and the step (S104) of calculating the breaking strength R girder of the bridge 10 for bearing / collapse prevention using the vertical DC physical strength F z and the breaking of the bearing / bridge collapse prevention, respectively. Compare with the bearing R girder. Here, when the horizontal fluid force F x is smaller than the breaking strength R girder for bearing / collapse prevention, the bridge girder 12 does not flow out, so that the horizontal fluid force F x and the breaking strength of the pier 11 are the next steps. The step (S107) of comparing the R columns is executed. When the horizontal fluid force F x is larger than the fracture strength R girder for bearing / collapse prevention, the bridge girder 12 receives the fluid force due to the assumed water level H 0 and the assumed flow velocity V 0 due to the tsunami or heavy rain flooding. It is possible to determine the damage that the tsunami flows out from the bridge pier 11.

また、この場合、橋桁流出補強工法が必要であると選択することができるので、適切な構造物の補強工法を選定することができる。この場合、どのような橋桁流出補強工法を適用するかは、種々の橋桁流出補強工法を採用することができる。 Further, in this case, since it can be selected that the bridge girder outflow reinforcement method is necessary, an appropriate structure reinforcement method can be selected. In this case, various bridge girder outflow reinforcement methods can be adopted as to what kind of bridge girder outflow reinforcement method is applied.

水平流体力Fxと橋脚11の破壊耐力Rを比較する工程(S107)は、想定水位H0及び想定流速V0を用いて橋梁10に対して作用する水平流体力Fxを求める工程(S102)と、橋梁10の橋脚11の破壊耐力Rを算出する工程(S105)とでそれぞれ算出した水平流体力Fxと橋脚11の破壊耐力Rとを比較する。ここで、水平流体力Fxが橋脚11の破壊耐力よりも小さい場合には、橋脚11の破損が起こらないため、想定水位H0及び想定流速V0による津波や大雨増水は発生した場合でも、橋梁の破壊は起こらず、橋梁10の補強は必要ないと判定することができる。 The step of comparing the horizontal fluid force F x and the breaking strength R column of the pier 11 (S107) is a step of obtaining the horizontal fluid force F x acting on the bridge 10 using the assumed water level H 0 and the assumed flow velocity V 0 (S107). S102) and the horizontal fluid force F x calculated in the step (S105) of calculating the breaking strength R column of the pier 11 of the bridge 10 are compared with the breaking strength R column of the pier 11. Here, when the horizontal fluid force F x is smaller than the fracture strength of the pier 11, the pier 11 is not damaged, so that even if a tsunami or heavy rain flood occurs due to the assumed water level H 0 and the assumed flow velocity V 0, It can be determined that the bridge is not destroyed and the bridge 10 does not need to be reinforced.

また、水平流体力Fxが橋脚11の破壊耐力Rよりも大きい場合には、津波や大雨増水によって、想定水位H0及び想定流速V0による流体力を橋梁10が受けると橋脚11が破損するという被害判定を行うことができる。 Further, when the horizontal fluid force F x is larger than the fracture strength R column of the pier 11, the pier 11 is damaged when the bridge 10 receives the fluid force due to the assumed water level H 0 and the assumed flow velocity V 0 due to the tsunami or heavy rain flooding. It is possible to make a damage judgment to do so.

また、この場合、橋脚補強工法が必要であると選択することができるので、適切な構造物の補強工法を選定することができる。この場合、どのような橋脚補強工法を適用するかは、種々の橋脚補強工法を採用することができる。 Further, in this case, since it can be selected that the pier reinforcement method is necessary, an appropriate structure reinforcement method can be selected. In this case, various pier reinforcement methods can be adopted as to what kind of pier reinforcement method is applied.

このように、本実施形態に係る構造物の被害判定方法及び構造物の補強工法選定方法によれば、鉛直流体力を用いて、構造物の支承・落橋防止の破壊耐力を求め、構造物の橋脚の破壊耐力を求める工程を備えているので、鉛直方向の流体力である揚力、浮力及びダウンフォースを加味した抵抗力算定を行うことができ、従来のモリソン式を用いた判定方法では適切な評価が難しかった桁高が高い橋桁を有する橋梁についても適切な被害判定を行うことが可能となり、想定される水位や流速に対して構造物がどのような補強工法を必要とするか精度よく被害判定を行うことができるので、この判定結果に基づいて適切な工法を選定することが可能となる。 As described above, according to the method for determining damage to a structure and the method for selecting a reinforcement method for a structure according to the present embodiment, the vertical DC physical strength is used to obtain the breaking resistance for bearing the structure and preventing the bridge from falling, and the structure is used. Since it is equipped with a process to determine the breaking resistance of the bridge pier, it is possible to calculate the resistance force in consideration of the lifting force, buoyancy force and down force, which are the fluid forces in the vertical direction, and the judgment method using the conventional Morrison method is appropriate. It is possible to make an appropriate damage judgment even for bridges with bridge girders with high girder height, which was difficult to evaluate, and it is possible to accurately damage what kind of reinforcement method the structure requires for the assumed water level and flow velocity. Since the determination can be made, it is possible to select an appropriate construction method based on the determination result.

なお、本実施形態に係る構造物の被害判定方法及び構造物の補強工法選定方法は、上記式2〜5を用いて水平流体力、鉛直流体力、支承・落橋防止の破壊耐力及び橋脚の破壊耐力を算出した場合について説明を行ったが、具体的な算出方法は、これらの数式に限定されず、種々の算出方法が適用可能である。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。 The method for determining damage to the structure and the method for selecting the reinforcement method for the structure according to the present embodiment are the horizontal fluid force, the vertical DC physical strength, the proof stress for supporting / collapse prevention, and the pier destruction using the above formulas 2-5. Although the case where the proof stress is calculated has been described, the specific calculation method is not limited to these mathematical formulas, and various calculation methods can be applied. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

10 橋梁, 11 橋脚, 12 橋桁, 13 落橋防止装置, 14 支承部。 10 bridges, 11 piers, 12 bridge girders, 13 collapse prevention devices, 14 bearings.

Claims (4)

想定水位及び想定流速を決定する工程と、
前記想定水位及び前記想定流速を用いて、構造物に対して作用する水平流体力及び鉛直流体力を求める工程と、
前記鉛直流体力を用いて、前記構造物の支承・落橋防止の破壊耐力を求める工程と、
前記構造物の橋脚の破壊耐力を求める工程と、
前記水平流体力と前記支承・落橋防止の破壊耐力を比較する工程と、
前記水平流体力と前記橋脚の破壊耐力を比較する工程と、
を備えることを特徴とする構造物の被害判定方法。
The process of determining the assumed water level and the assumed flow velocity,
A step of obtaining the horizontal fluid force and the vertical DC physical strength acting on the structure using the assumed water level and the assumed flow velocity.
The process of obtaining the destructive strength of the structure to prevent bearings and bridge collapse using the vertical DC physical strength, and
The process of determining the breaking strength of the pier of the structure and
The process of comparing the horizontal fluid force with the breaking strength of the bearing / bridge collapse prevention,
The process of comparing the horizontal fluid force and the breaking strength of the pier,
A method for determining damage to a structure, which comprises.
想定水位及び想定流速を決定する工程と、
前記想定水位及び前記想定流速を用いて、構造物に対して作用する水平流体力及び鉛直流体力を求める工程と、
前記鉛直流体力を用いて、前記構造物の支承・落橋防止の破壊耐力を求める工程と、
前記構造物の橋脚の破壊耐力を求める工程と、
前記水平流体力と前記支承・落橋防止の破壊耐力又は前記橋脚の破壊耐力とを比較して構造物の補強工法を選択する工程とを備えることを特徴とする構造物の補強工法選定方法。
The process of determining the assumed water level and the assumed flow velocity,
A step of obtaining the horizontal fluid force and the vertical DC physical strength acting on the structure using the assumed water level and the assumed flow velocity.
The process of obtaining the destructive strength of the structure to prevent bearings and bridge collapse using the vertical DC physical strength, and
The process of determining the breaking strength of the pier of the structure and
A method for selecting a structure reinforcement method, which comprises a step of comparing the horizontal fluid force with the fracture strength of the bearing / bridge collapse prevention or the fracture strength of the pier to select a structure reinforcement method.
請求項2に記載の構造物の補強工法選定方法において、
前記水平流体力が前記支承・落橋防止の破壊耐力よりも大きい場合に、橋桁流出補強工法を選択することを特徴とする構造物の補強工法選定方法。
In the method for selecting a reinforcement method for a structure according to claim 2.
A method for selecting a reinforcement method for a structure, which comprises selecting a bridge girder outflow reinforcement method when the horizontal fluid force is larger than the fracture strength of the bearing / bridge collapse prevention.
請求項2に記載の構造物の補強工法選定方法において、
前記水平流体力が前記橋脚の破壊耐力よりも大きい場合に、橋脚補強工法を選択することを特徴とする構造物の補強工法選定方法。
In the method for selecting a reinforcement method for a structure according to claim 2.
A method for selecting a reinforcement method for a structure, which comprises selecting a pier reinforcement method when the horizontal fluid force is larger than the fracture strength of the pier.
JP2017240251A 2017-12-15 2017-12-15 Structure damage judgment method and structure reinforcement method selection method Active JP6883509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240251A JP6883509B2 (en) 2017-12-15 2017-12-15 Structure damage judgment method and structure reinforcement method selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240251A JP6883509B2 (en) 2017-12-15 2017-12-15 Structure damage judgment method and structure reinforcement method selection method

Publications (2)

Publication Number Publication Date
JP2019108659A JP2019108659A (en) 2019-07-04
JP6883509B2 true JP6883509B2 (en) 2021-06-09

Family

ID=67179204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240251A Active JP6883509B2 (en) 2017-12-15 2017-12-15 Structure damage judgment method and structure reinforcement method selection method

Country Status (1)

Country Link
JP (1) JP6883509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404302B2 (en) 2021-03-26 2023-12-25 公益財団法人鉄道総合技術研究所 Bridge girder displacement control structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178591B2 (en) * 2009-03-09 2013-04-10 公益財団法人鉄道総合技術研究所 Pier scour judgment method and pier foundation soundness evaluation system
JP2012149466A (en) * 2011-01-21 2012-08-09 Penta Ocean Construction Co Ltd Breakwater reinforcing method, and breakwater structure
JP2016075121A (en) * 2014-10-09 2016-05-12 公益財団法人鉄道総合技術研究所 Earthquake-resistant and tsunami-resistant reinforcement method for existing bridge pier subjected to action of earthquake and tsunami
JP6297462B2 (en) * 2014-10-09 2018-03-20 公益財団法人鉄道総合技術研究所 A method to prevent the falling of existing bridge girders that are affected by earthquakes and tsunamis

Also Published As

Publication number Publication date
JP2019108659A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Cojean et al. Analysis and modeling of slope stability in the Three-Gorges Dam reservoir (China)—The case of Huangtupo landslide
Qeshta et al. Review of resilience assessment of coastal bridges to extreme wave-induced loads
Dong Advanced finite element analysis of deep excavation case histories
Abdrabbo et al. Behaviour of single pile in consolidating soil
Wang et al. Forensic study on the collapse of a high-rise building in Shanghai: 3D centrifuge and numerical modelling
JP6883509B2 (en) Structure damage judgment method and structure reinforcement method selection method
Squeglia et al. Role of monitoring in historical building restoration: The case of Leaning Tower of Pisa
Carden et al. The new ASCE tsunami design standard applied to mitigate Tohoku tsunami building structural failure mechanisms
Dinakar et al. Behaviour of tie back sheet pile wall for deep excavation using plaxis
Zheng et al. Numerical simulations for response of MSE wall-supported bridge abutments to vertical load
Ooi et al. Field behavior of an integral abutment bridge supported on drilled shafts
Shiau et al. Application of pseudo-static limit analysis in geotechnical earthquake design
Xu et al. Response of full-height frame integral abutments subjected to seismic motions
Sharma Field investigation and performance-based seismic design of rocking shallow foundations in cohesive soil
KR101379216B1 (en) Real-time displacement automatic restoration method for structure
Raj et al. Pseudostatic analysis of a coupled building-foundation-slope system for seismic and gravity actions
Keshab Field investigation and performance-based seismic design of rocking shallow foundations in cohesive soil
Ahmed State-of-the-art report: deformations associated with deep excavation and their effects on nearby structures
Srivastava et al. Stability analyses of 18 m deep excavation using micro piles
Deb et al. Distribution of stress on stone column-reinforced soft soil under cylindrical storage tank
Zheng Numerical simulations and shaking table tests of geosynthetic reinforced soil bridge abutments
Vahdani et al. Evaluating the seismic capacity of a newly designed wharf at the Port of Oakland
Das et al. Seismic response of concrete gravity dam
Carden et al. STRUCTURAL MITIGATION OF BUILDINGS DAMAGED BY THE 2011 TOHOKU TSUNAMI USING THE ASCE 7 TSUNAMI DESIGN PROVISIONS
Salgado et al. Foundation failure case histories reexamined using modern geomechanics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150