JP6881604B2 - Optical system and optical equipment - Google Patents

Optical system and optical equipment Download PDF

Info

Publication number
JP6881604B2
JP6881604B2 JP2019558855A JP2019558855A JP6881604B2 JP 6881604 B2 JP6881604 B2 JP 6881604B2 JP 2019558855 A JP2019558855 A JP 2019558855A JP 2019558855 A JP2019558855 A JP 2019558855A JP 6881604 B2 JP6881604 B2 JP 6881604B2
Authority
JP
Japan
Prior art keywords
lens
conditional expression
νdp2
optical system
positive lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019558855A
Other languages
Japanese (ja)
Other versions
JPWO2019116565A1 (en
Inventor
雅史 山下
雅史 山下
智希 伊藤
智希 伊藤
洋 籔本
洋 籔本
山本 浩史
浩史 山本
哲史 三輪
哲史 三輪
啓介 坪野谷
啓介 坪野谷
歩 槇田
歩 槇田
健 上原
健 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66819166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6881604(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2019116565A1 publication Critical patent/JPWO2019116565A1/en
Priority to JP2021073057A priority Critical patent/JP2021105746A/en
Application granted granted Critical
Publication of JP6881604B2 publication Critical patent/JP6881604B2/en
Priority to JP2023032734A priority patent/JP2023060138A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Description

本発明は、光学系および光学機器に関する。 The present invention relates to optical systems and optical instruments .

近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。 In recent years, the number of pixels of image pickup devices used in image pickup devices such as digital cameras and video cameras has been increasing. A photographing lens provided in an imaging device using such an imaging element has good chromatic aberration in addition to reference aberrations (single wavelength aberrations) such as spherical aberration and coma, so that there is no color bleeding of an image in a white light source. It is desired that the lens has a high resolution and is corrected to the above. In particular, in the correction of chromatic aberration, it is desirable that the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity. As a means for correcting chromatic aberration, for example, a method using a resin material having anomalous dispersibility (see, for example, Patent Document 1) is known. As described above, with the recent increase in the number of pixels of the image pickup device, a photographing lens in which various aberrations are satisfactorily corrected is desired.

特開2016−194609号公報Japanese Unexamined Patent Publication No. 2016-194609

第1の態様に係る光学系は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する。
ndP2+(0.01425×νdP2)<2.12
18.0<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
ndP2−(0.020×νdP2−1.080)×νdP2<14.500
但し、ndP2:前記正レンズのd線に対する屈折率
νdP2:前記正レンズのd線を基準とするアッベ数
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2−nFP2)/(nFP2−nCP2)
The optical system according to the first aspect includes an aperture diaphragm and a positive lens arranged on the image side of the aperture diaphragm and satisfying the following conditional expression.
ndP2 + (0.01425 × νdP2) <2.12
18.0 <νdP2 <35.0
0.702 <θgFP2 + (0.00316 × νdP2)
ndP2- (0.020 × νdP2-1.080) × νdP2 <14.500
However, ndP2: the refractive index of the positive lens with respect to the d-line ν dP2: the Abbe number θgFP2 based on the d-line of the positive lens: the partial dispersion ratio of the positive lens, and the refractive index of the positive lens with respect to the g-line is ngP2. When the refractive index of the positive lens with respect to the F line is nFP2 and the refractive index of the positive lens with respect to the C line is nCP2, θgFP2 = (ngP2-nFP2) / (nFP2-nCP2) defined by the following equation.

第2の態様に係る光学系は、開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する。
ndP2+(0.01425×νdP2)<2.07
23.5<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
1.86<ndP2+(0.00787×νdP2)
但し、ndP2:前記正レンズのd線に対する屈折率
νdP2:前記正レンズのd線を基準とするアッベ数
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2−nFP2)/(nFP2−nCP2)
The optical system according to the second aspect includes an aperture diaphragm and a positive lens arranged on the image side of the aperture diaphragm and satisfying the following conditional expression.
ndP2 + (0.01425 × νdP2) <2.07
23.5 <νdP2 <35.0
0.702 <θgFP2 + (0.00316 × νdP2)
1.86 <ndP2 + (0.00787 × νdP2)
However, ndP2: the refractive index of the positive lens with respect to the d line.
νdP2: Abbe number based on the d line of the positive lens
θgFP2: Partial dispersion ratio of the positive lens, the refractive index of the positive lens with respect to the g line is ngP2, the refractive index of the positive lens with respect to the F line is nFP2, and the refractive index of the positive lens with respect to the C line is nCP2. When you do, it is defined by the following equation
θgFP2 = (ngP2-nFP2) / (nFP2-nCP2)

第3の態様に係る光学機器は、上記光学系を備えて構成される。 The optical device according to the third aspect includes the above optical system.

第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 1st Example. 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。It is a diagram of various aberrations in the infinity focusing state of the optical system according to the first embodiment. 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の無限遠合焦状態における諸収差図である。It is a diagram of various aberrations in the infinity focusing state of the optical system according to the second embodiment. 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 3rd Example. 図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。6 (A), 6 (B), and 6 (C) show various aspects of the optical system according to the third embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 4th Example. 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。8 (A), 8 (B), and 8 (C) show various aspects of the optical system according to the fourth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 5th Example. 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。10 (A), 10 (B), and 10 (C) show various aspects of the optical system according to the fifth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 6th Example. 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。12 (A), 12 (B), and 12 (C) show various aspects of the optical system according to the sixth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 7th Example. 第7実施例に係る光学系の無限遠合焦状態における諸収差図である。It is a diagram of various aberrations in the infinity focusing state of the optical system according to the seventh embodiment. 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinity focusing state of the optical system which concerns on 8th Example. 第8実施例に係る光学系の無限遠合焦状態における諸収差図である。It is a diagram of various aberrations in the infinity focusing state of the optical system according to the eighth embodiment. 本実施形態に係る光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system which concerns on this embodiment. 本実施形態に係る光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.

以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図17に基づいて説明する。このカメラ1は、図17に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。 Hereinafter, the optical system and the optical device according to the present embodiment will be described with reference to the drawings. First, a camera (optical device) provided with an optical system according to the present embodiment will be described with reference to FIG. As shown in FIG. 17, the camera 1 is a digital camera provided with an optical system according to the present embodiment as a photographing lens 2. In the camera 1, the light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. As a result, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.

本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、開口絞りSと、開口絞りSより像側に配置された以下の条件式(1)〜(3)を満足する正レンズ(L22)とを有している。 As shown in FIG. 1, the optical system LS (1) as an example of the optical system (photographing lens) LS according to the present embodiment has an aperture diaphragm S and the following conditional expression arranged on the image side of the aperture diaphragm S. It has a positive lens (L22) that satisfies (1) to (3).

ndP2+(0.01425×νdP2)<2.12 ・・・(1)
18.0<νdP2<35.0 ・・・(2)
0.702<θgFP2+(0.00316×νdP2) ・・・(3)
但し、ndP2:正レンズのd線に対する屈折率
νdP2:正レンズのd線を基準とするアッベ数
θgFP2:正レンズの部分分散比であり、正レンズのg線に対する屈折率をngP2とし、正レンズのF線に対する屈折率をnFP2とし、正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2−nFP2)/(nFP2−nCP2)
なお、正レンズのd線を基準とするアッベ数νdP2は、次式で定義される
νdP2=(ndP2−1)/(nFP2−nCP2)
ndP2 + (0.01425 × νdP2) <2.12 ・ ・ ・ (1)
18.0 <νdP2 <35.0 ... (2)
0.702 <θgFP2 + (0.00316 × νdP2) ・ ・ ・ (3)
However, ndP2: the refractive index of the positive lens with respect to the d-line ν dP2: the Abbe number θgFP2 based on the d-line of the positive lens, and the partial dispersion ratio of the positive lens. When the refractive index for the F line is nFP2 and the refractive index for the C line of the positive lens is nCP2, θgFP2 = (ngP2-nFP2) / (nFP2-nCP2) defined by the following equation.
The Abbe number νdP2 based on the d-line of the positive lens is defined by the following equation: νdP2 = (ndP2-1) / (nFP2-nCP2).

本実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系LSは、図3に示す光学系LS(2)でも良く、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良く、図9に示す光学系LS(5)でも良い。また、本実施形態に係る光学系LSは、図11に示す光学系LS(6)でも良く、図13に示す光学系LS(7)でも良く、図15に示す光学系LS(8)でも良い。 According to the present embodiment, in the correction of chromatic aberration, it is possible to obtain an optical system in which the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity, and an optical device provided with this optical system. The optical system LS according to the present embodiment may be the optical system LS (2) shown in FIG. 3, the optical system LS (3) shown in FIG. 5, or the optical system LS (4) shown in FIG. The optical system LS (5) shown in 9 may be used. Further, the optical system LS according to the present embodiment may be the optical system LS (6) shown in FIG. 11, the optical system LS (7) shown in FIG. 13, or the optical system LS (8) shown in FIG. ..

条件式(1)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (1) defines an appropriate relationship between the refractive index of the positive lens with respect to the d-line and the Abbe number with respect to the d-line. By satisfying the conditional equation (1), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).

条件式(1)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(1)の上限値を2.11に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、2.10、2.09、2.08、2.07、さらに2.06とすることが好ましい。 If the corresponding value of the conditional expression (1) exceeds the upper limit value, for example, the Petzval sum becomes small, which makes it difficult to correct the curvature of field, which is not preferable. By setting the upper limit value of the conditional expression (1) to 2.11, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (1) is preferably 2.10, 2.09, 2.08, 2.07, and further 2.06.

条件式(2)は、正レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 Conditional expression (2) defines an appropriate range of Abbe numbers with respect to the d-line of a positive lens. By satisfying the conditional expression (2), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).

条件式(2)の対応値が上限値を上回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。 If the corresponding value of the conditional expression (2) exceeds the upper limit value, for example, it becomes difficult to correct the axial chromatic aberration in the subgroup on the image side of the aperture stop S, which is not preferable. By setting the upper limit value of the conditional expression (2) to 32.5, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (2) is set to 32.0, 31.5, 31.0, 30.5, 30.0, and further 29.5. Is preferable.

条件式(2)の対応値が下限値を下回ると、例えば、開口絞りSより像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(2)の下限値を20.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、さらに27.7とすることが好ましい。 If the corresponding value of the conditional expression (2) is less than the lower limit value, for example, it becomes difficult to correct the axial chromatic aberration in the subgroup on the image side of the aperture stop S, which is not preferable. By setting the lower limit value of the conditional expression (2) to 20.0, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the lower limit of the conditional expression (2) is set to 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0. , 26.5, 27.0, 27.5, and more preferably 27.7.

条件式(3)は、正レンズの異常分散性を適切に規定するものである。条件式(3)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。 The conditional expression (3) appropriately defines the anomalous dispersibility of the positive lens. By satisfying the conditional expression (3), in the correction of chromatic aberration, in addition to the first-order achromaticity, the second-order spectrum can be satisfactorily corrected.

条件式(3)の対応値が下限値を下回ると、正レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(3)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を、0.708、0.710、0.712、さらに0.715とすることが好ましい。 When the corresponding value of the conditional expression (3) is less than the lower limit value, the abnormal dispersibility of the positive lens becomes small, and it becomes difficult to correct the chromatic aberration. By setting the lower limit value of the conditional expression (3) to 0.704, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the lower limit of the conditional expression (3) is preferably 0.708, 0.710, 0.712, and further 0.715.

本実施形態の光学系において、正レンズは、以下の条件式(4)を満足することが望ましい。
1.83<ndP2+(0.00787×νdP2) ・・・(4)
In the optical system of the present embodiment, it is desirable that the positive lens satisfies the following conditional expression (4).
1.83 <ndP2 + (0.00787 × νdP2) ・ ・ ・ (4)

条件式(4)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (4) defines an appropriate relationship between the refractive index of the positive lens with respect to the d-line and the Abbe number with respect to the d-line. By satisfying the conditional equation (4), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).

条件式(4)の対応値が下限値を下回ると、例えば正レンズの屈折率が小さくなることで、基準収差、特に球面収差の補正が困難になるため、好ましくない。条件式(4)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、1.85、さらに1.86とすることが好ましい。 If the corresponding value of the conditional expression (4) is less than the lower limit value, for example, the refractive index of the positive lens becomes small, which makes it difficult to correct the reference aberration, particularly the spherical aberration, which is not preferable. By setting the lower limit value of the conditional expression (4) to 1.84, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the lower limit of the conditional expression (4) is 1.85 and further 1.86.

本実施形態の光学系において、正レンズは、以下の条件式(2−1)および条件式(4−1)を満足してもよい。
18.0<νdP2<26.5 ・・・(2−1)
1.83<ndP2+(0.00787×νdP2) ・・・(4−1)
In the optical system of the present embodiment, the positive lens may satisfy the following conditional expression (2-1) and conditional expression (4-1).
18.0 <νdP2 <26.5 ... (2-1)
1.83 <ndP2 + (0.00787 × νdP2) ・ ・ ・ (4-1)

条件式(2−1)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2−1)の上限値を26.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2−1)の上限値を、25.5、さらに25.0とすることが好ましい。一方、条件式(2−1)の下限値を23.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2−1)の下限値を、24.0、さらに24.5とすることが好ましい。 The conditional expression (2-1) is the same expression as the conditional expression (2), and the same effect as the conditional expression (2) can be obtained. By setting the upper limit value of the conditional expression (2-1) to 26.0, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the upper limit of the conditional expression (2-1) is 25.5 and further 25.0. On the other hand, by setting the lower limit value of the conditional expression (2-1) to 23.5, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the lower limit of the conditional expression (2-1) is 24.0 and further 24.5.

条件式(4−1)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4−1)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4−1)の下限値を、1.92、さらに1.94とすることが好ましい。 The conditional expression (4-1) is the same expression as the conditional expression (4), and the same effect as the conditional expression (4) can be obtained. By setting the lower limit value of the conditional expression (4-1) to 1.90, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the lower limit of the conditional expression (4-1) is 1.92 and further 1.94.

本実施形態の光学系において、正レンズは、以下の条件式(2−2)および条件式(4−2)を満足してもよい。
25.0<νdP2<35.0 ・・・(2−2)
1.83<ndP2+(0.00787×νdP2) ・・・(4−2)
In the optical system of the present embodiment, the positive lens may satisfy the following conditional expression (2-2) and conditional expression (4-2).
25.0 <νdP2 <35.0 ... (2-2)
1.83 <ndP2 + (0.00787 × νdP2) ・ ・ ・ (4-2)

条件式(2−2)は、条件式(2)と同様の式であり、条件式(2)と同様の効果を得ることができる。条件式(2−2)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2−2)の上限値を、31.5、さらに29.5とすることが好ましい。一方、条件式(2−2)の下限値を26.2に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2−2)の下限値を、26.7、さらに27.7とすることが好ましい。 The conditional expression (2-2) is the same expression as the conditional expression (2), and the same effect as the conditional expression (2) can be obtained. By setting the upper limit value of the conditional expression (2-2) to 32.5, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the upper limit of the conditional expression (2-2) is 31.5 and further 29.5. On the other hand, by setting the lower limit value of the conditional expression (2-2) to 26.2, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable that the lower limit of the conditional expression (2-2) is 26.7 and further 27.7.

条件式(4−2)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4−2)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4−2)の下限値を1.85とすることが好ましい。 The conditional expression (4-2) is the same expression as the conditional expression (4), and the same effect as the conditional expression (4) can be obtained. By setting the lower limit value of the conditional expression (4-2) to 1.84, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, it is preferable to set the lower limit value of the conditional expression (4-2) to 1.85.

本実施形態の光学系において、正レンズは、以下の条件式(5)を満足することが望ましい。
DP2>0.80 ・・・(5)
但し、DP2:正レンズの光軸上の厚さ[mm]
In the optical system of the present embodiment, it is desirable that the positive lens satisfies the following conditional expression (5).
DP2> 0.80 ・ ・ ・ (5)
However, DP2: thickness [mm] on the optical axis of the positive lens

条件式(5)は、正レンズの光軸上の厚さの適切な範囲を規定するものである。条件式(5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。 Conditional expression (5) defines an appropriate range of thickness on the optical axis of a positive lens. By satisfying the conditional equation (5), various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification) can be satisfactorily corrected.

条件式(5)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(5)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、1.00、1.10、1.20、さらに1.30とすることが好ましい。 If the corresponding value of the conditional expression (5) is less than the lower limit value, it becomes difficult to correct various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification), which is not preferable. By setting the lower limit value of the conditional expression (5) to 0.90, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, it is preferable that the lower limit of the conditional expression (5) is 1.00, 1.10, 1.20, and further 1.30.

本実施形態の光学系は、最も像側に配置された像側レンズを有し、開口絞りSが像側レンズより物体側に配置され、像側レンズより物体側で、正レンズが開口絞りSより像側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。 The optical system of the present embodiment has an image-side lens arranged most on the image side, the aperture diaphragm S is arranged on the object side of the image-side lens, the positive lens is on the object side of the image-side lens, and the aperture diaphragm S is. It is desirable to arrange it closer to the image side. Thereby, various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and magnifying chromatic aberration) can be satisfactorily corrected.

本実施形態の光学系において、正レンズは、ガラスレンズであることが望ましい。これにより、材料が樹脂である場合と比較して、経年変化に強く、温度変化等の環境変化に強いレンズを得ることができる。 In the optical system of the present embodiment, the positive lens is preferably a glass lens. As a result, it is possible to obtain a lens that is resistant to aging and environmental changes such as temperature changes, as compared with the case where the material is resin.

本実施形態の光学系において、正レンズは、以下の条件式(6)〜(7)を満足することが望ましい。
ndP2<1.63 ・・・(6)
ndP2−(0.040×νdP2−2.470)×νdP2<39.809・・・(7)
In the optical system of the present embodiment, it is desirable that the positive lens satisfies the following conditional expressions (6) to (7).
ndP2 <1.63 ... (6)
ndP2- (0.040 × νdP2-2.470) × νdP2 <39.809 ... (7)

条件式(6)は、正レンズのd線に対する屈折率の適切な範囲を規定するものである。条件式(6)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。 The conditional expression (6) defines an appropriate range of the refractive index of the positive lens with respect to the d-line. By satisfying the conditional equation (6), various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification) can be satisfactorily corrected.

条件式(6)の対応値が上限値を上回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(6)の上限値を1.62に設定することで、本実施形態の効果をより確実なものとすることができる。 If the corresponding value of the conditional expression (6) exceeds the upper limit value, it becomes difficult to correct various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification), which is not preferable. By setting the upper limit value of the conditional expression (6) to 1.62, the effect of the present embodiment can be made more reliable.

条件式(7)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(7)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (7) defines an appropriate relationship between the refractive index of the positive lens with respect to the d-line and the Abbe number with respect to the d-line. By satisfying the conditional equation (7), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).

条件式(7)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(7)の上限値を39.800に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、39.500、39.000、38.500、38.000、37.500、さらに36.800とすることが好ましい。 If the corresponding value of the conditional expression (7) exceeds the upper limit value, for example, the Petzval sum becomes small, which makes it difficult to correct the curvature of field, which is not preferable. By setting the upper limit value of the conditional expression (7) to 39.800, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (7) is set to 39.500, 39.000, 38.500, 38.000, 37.500, and further 36.800. Is preferable.

本実施形態の光学系において、正レンズは、以下の条件式(8)を満足することが望ましい。
ndP2−(0.020×νdP2−1.080)×νdP2<16.260・・・(8)
In the optical system of the present embodiment, it is desirable that the positive lens satisfies the following conditional expression (8).
ndP2- (0.020 × νdP2-1.080) × νdP2 <16.260 ... (8)

条件式(8)は、正レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。 The conditional expression (8) defines an appropriate relationship between the refractive index of the positive lens with respect to the d-line and the Abbe number with respect to the d-line. By satisfying the conditional expression (8), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).

条件式(8)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(8)の上限値を16.240に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、16.000、15.800、15.500、15.300、15.000、14.800、14.500、14.000、さらに13.500とすることが好ましい。 If the corresponding value of the conditional expression (8) exceeds the upper limit value, for example, the Petzval sum becomes small, which makes it difficult to correct the curvature of field, which is not preferable. By setting the upper limit value of the conditional expression (8) to 16.240, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (8) is set to 16.000, 15.800, 15.500, 15.300, 15.000, 14.800, 14.500. , 14.000, and more preferably 13.500.

続いて、図18を参照しながら、上述の光学系LSの製造方法について概説する。まず、開口絞りSと、少なくとも開口絞りSより像側に正レンズを配置する(ステップST1)。このとき、開口絞りSより像側に配置された正レンズのうち少なくとも1枚が上記条件式(1)〜(3)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。 Subsequently, the method for manufacturing the above-mentioned optical system LS will be outlined with reference to FIG. First, the aperture diaphragm S and at least a positive lens are arranged on the image side of the aperture diaphragm S (step ST1). At this time, each lens is arranged in the lens barrel so that at least one of the positive lenses arranged on the image side of the aperture diaphragm S satisfies the above conditional expressions (1) to (3) and the like (step). ST2). According to such a manufacturing method, in the correction of chromatic aberration, it is possible to manufacture an optical system in which the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity.

以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13、図15は、第1〜第8実施例に係る光学系LS{LS(1)〜LS(8)}の構成及び屈折力配分を示す断面図である。第1〜第2実施例に係る光学系LS(1)〜LS(2)および第7〜第8実施例に係る光学系LS(7)〜LS(8)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第3〜第6実施例に係る光学系LS(3)〜LS(6)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。 Hereinafter, the optical system LS according to the embodiment of the present embodiment will be described with reference to the drawings. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 11, FIG. 13, and FIG. 15 show the configuration of the optical system LS {LS (1) to LS (8)} according to the first to eighth embodiments. And is a cross-sectional view showing the refractive power distribution. In the cross-sectional views of the optical systems LS (1) to LS (2) according to the first to second embodiments and the optical systems LS (7) to LS (8) according to the seventh to eighth embodiments, the focusing lens group The direction of movement when focusing on a short-range object from infinity is indicated by an arrow with the letters "focus". In the cross-sectional views of the optical systems LS (3) to LS (6) according to the third to sixth embodiments, the optical axis of each lens group when the magnification is changed from the wide-angle end state (W) to the telephoto end state (T). The direction of movement along is indicated by an arrow.

これら図1、図3、図5、図7、図9、図11、図13、図15において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。 In FIGS. 1, 3, 5, 7, 7, 9, 11, 13, and 15, each lens group is represented by a combination of reference numerals G and numbers, and each lens is designated by a combination of reference numerals L and numbers. Represents. In this case, in order to prevent the types and numbers of the symbols and numbers from becoming large and complicated, the lens group and the like are represented by independently using combinations of the symbols and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.

以下に表1〜表8を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。 Tables 1 to 8 are shown below. Among them, Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the first embodiment. 5 Examples, Table 6 is a table showing 6th Example, Table 7 is a table showing 7th Example, and Table 8 is a table showing each specification data in the 8th Example. In each embodiment, d-line (wavelength λ = 587.6 nm), g-line (wavelength λ = 435.8 nm), C-line (wavelength λ = 656.3 nm), and F-line (wavelength λ =) are calculated as aberration characteristics. 486.1 nm) is selected.

[全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。 In the [Overall Specifications] table, f is the focal length of the entire lens system, FNO is the F number, 2ω is the angle of view (unit is ° (degrees), and ω is the half angle of view), and Y is the image height. Shown. TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity, plus BF, and BF is the image from the final surface of the lens on the optical axis at infinity. The distance to the surface I (back focus) is shown. When the optical system is a variable magnification optical system, these values are shown for each of the wide-angle end (W), intermediate focal length (M), and telephoto end (T) in each variable magnification state.

[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*a印を付して、曲率半径Rの欄には近軸曲率半径を示している。 In the [Lens Specifications] table, the surface numbers indicate the order of the optical surfaces from the object side along the direction in which the light beam travels, and R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side). (Positive value), D is the distance on the optical axis from each optical surface to the next optical surface (or image surface), nd is the refractive index of the material of the optical member with respect to the d line, and νd is optical. The Abbe number with respect to the d-line of the material of the member is shown, and θgF is the partial dispersion ratio of the material of the optical member. “∞” of the radius of curvature indicates a plane or an aperture, and (aperture S) indicates an aperture stop S. The description of the refractive index of air nd = 1.00000 is omitted. When the optical surface is aspherical, the surface number is marked with * a, and the column of radius of curvature R indicates the paraxial radius of curvature.

光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。 The refractive index of the material of the optical member with respect to the g line (wavelength λ = 435.8 nm) is ng, the refractive index of the material of the optical member with respect to the F line (wavelength λ = 486.1 nm) is nF, and the refractive index of the material of the optical member is C. Let nC be the refractive index for the line (wavelength λ = 656.3 nm). At this time, the partial dispersion ratio θgF of the material of the optical member is defined by the following equation (A).

θgF=(ng−nF)/(nF−nC) …(A) θgF = (ng-nF) / (nF-nC) ... (A)

[非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。In the table of [Aspherical surface data], the shape of the aspherical surface shown in [Lens specifications] is shown by the following equation (B). X (y) is the distance (zag amount) along the optical axis direction from the tangent plane at the aspherical apex to the position on the aspherical surface at the height y, and R is the radius of curvature of the reference sphere (near-axis radius of curvature). , Κ indicates the conical constant, and Ai indicates the i-th order aspherical coefficient. "E-n" indicates " x10 -n". For example, 1.234E-05 = 1.234 × 10 -5 . The second-order aspherical coefficient A2 is 0, and the description thereof is omitted.

X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(B)X (y) = (y 2 / R) / {1 + (1-κ × y 2 / R 2 ) 1/2 } + A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 … (B)

光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。 When the optical system is not a variable magnification optical system, f indicates the focal length of the entire lens system and β indicates the photographing magnification as [variable interval data at the time of short-distance shooting]. In addition, the table of [Variable Interval Data for Short-distance Shooting] shows the surface spacing with the surface number in which the surface spacing is "variable" in [Lens Specifications] corresponding to each focal length and shooting magnification. ..

光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。また、[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。 When the optical system is a variable magnification optical system, the [variable interval data at the time of variable magnification shooting] corresponds to each variable magnification state of the wide-angle end (W), the intermediate focal length (M), and the telephoto end (T). Lens specifications] indicates the surface spacing at the surface number where the surface spacing is "variable". In addition, the table of [lens group data] shows the starting surface (the surface closest to the object) and the focal length of each lens group.

[条件式対応値]の表には、各条件式に対応する値を示す。 The table of [Conditional expression corresponding values] shows the values corresponding to each conditional expression.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。 Hereinafter, in all the specification values, "mm" is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.

ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。 The description of the table so far is common to all the examples, and the duplicate description below is omitted.

(第1実施例)
第1実施例について、図1〜図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2内に配設されている。各レンズ群記号に付けている符号(+)もしくは(−)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
(First Example)
The first embodiment will be described with reference to FIGS. 1 to 2 and Table 1. FIG. 1 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the first embodiment of the present embodiment. The optical system LS (1) according to the first embodiment is composed of a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power arranged in order from the object side. There is. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis. The aperture diaphragm S is arranged in the second lens group G2. The symbol (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14および両凹形状の負レンズL15からなる接合レンズと、から構成される。負レンズL13は、像側のレンズ面が非球面である。 The first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a biconvex positive lens L12, a biconcave negative lens L13, and a biconvex positive lens arranged in order from the object side. It is composed of a bonded lens composed of a lens L14 and a biconcave negative lens L15. The negative lens L13 has an aspherical lens surface on the image side.

第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22および物体側に凸面を向けた負メニスカスレンズL23からなる接合レンズと、両凹形状の負レンズL24および両凸形状の正レンズL25からなる接合レンズと、像側に凸面を向けた片平形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27と、から構成される。第2レンズ群G2の像側に、像面Iが配置される。第2レンズ群G2における正レンズL21と正メニスカスレンズL22との間に、開口絞りSが配置される。本実施例では、第2レンズ群G2の正メニスカスレンズL27が像側レンズに該当し、第2レンズ群G2の正メニスカスレンズL22が条件式(1)〜(3)等を満足する正レンズに該当する。正レンズL26は、像側のレンズ面が非球面である。 The second lens group G2 is a junction lens composed of a biconvex positive lens L21 arranged in order from the object side, a positive meniscus lens L22 with a convex surface facing the object side, and a negative meniscus lens L23 with a convex surface facing the object side. A junction lens consisting of a biconcave negative lens L24 and a biconvex positive lens L25, a flat positive lens L26 with a convex surface facing the image side, and a positive meniscus lens L27 with a concave surface facing the object side. , Consists of. The image plane I is arranged on the image side of the second lens group G2. An aperture diaphragm S is arranged between the positive lens L21 and the positive meniscus lens L22 in the second lens group G2. In this embodiment, the positive meniscus lens L27 of the second lens group G2 corresponds to the image side lens, and the positive meniscus lens L22 of the second lens group G2 is a positive lens satisfying the conditional equations (1) to (3) and the like. Applicable. The positive lens L26 has an aspherical lens surface on the image side.

以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。 Table 1 below lists the values of the specifications of the optical system according to the first embodiment.

(表1)
[全体諸元]
f 28.773
FNO 1.8796
2ω 75.3311
Y 21.60
TL 131.9655
BF 36.457
[レンズ諸元]
面番号 R D nd νd θgF
1 57.6700 1.7000 1.713000 53.94 0.5441
2 23.6385 10.630
3 360.0000 3.4200 1.846660 23.78
4 -149.5844 2.1000
5 -91.6110 1.7000 1.487490 70.31
6 34.8169 0.1000 1.520500 51.02
7*a 31.0734 7.4700
8 54.5000 8.5700 1.834000 37.18
9 -43.5000 1.7000 1.749714 24.66 0.6272
10 475.5646 D10(可変)
11 41.6500 6.2000 1.589130 61.24
12 -79.7342 8.8800
13 ∞ 1.0000 (絞りS)
14 71.7000 1.3000 1.659398 26.87 0.6323
15 165.1470 1.0000 1.672700 32.19
16 41.0000 6.0900
17 -19.3844 1.5200 1.805180 25.46
18 400.0000 2.4200 1.772500 49.65
19 -67.0000 0.6000
20 ∞ 3.0800 1.729160 54.66
21 -50.8920 0.2000 1.520500 51.02
22*a -37.6986 1.1400
23 -98.0000 5.2100 1.834810 42.72 0.5651
24 -26.8452 2.3629
25 ∞ BF
[非球面データ]
第7面
κ=0.0000
A4=-2.99E-06,A6=-2.39E-08,A8=1.13E-10,A10=-3.69E-13
第22面
κ=0.0000
A4=2.03E-05,A6=4.37E-09,A8=1.85E-10,A10=-1.33E-12
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=28.7734 β=-0.2174
D10 9.5660 2.3031
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7172
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=1.3000
条件式(6)
ndP2=1.659398
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.830
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 1)
[Overall specifications]
f 28.773
FNO 1.8796
2ω 75.3311
Y 21.60
TL 131.9655
BF 36.457
[Lens specifications]
Surface number R D nd ν d θ gF
1 57.6700 1.7000 1.713000 53.94 0.5441
2 23.6385 10.630
3 360.0000 3.4200 1.846660 23.78
4 -149.5844 2.1000
5 -91.6110 1.7000 1.487490 70.31
6 34.8169 0.1000 1.520500 51.02
7 * a 31.0734 7.4700
8 54.5000 8.5700 1.834000 37.18
9 -43.5000 1.7000 1.749714 24.66 0.6272
10 475.5646 D10 (variable)
11 41.6500 6.2000 1.589130 61.24
12 -79.7342 8.8800
13 ∞ 1.0000 (Aperture S)
14 71.7000 1.3000 1.659398 26.87 0.6323
15 165.1470 1.0000 1.672700 32.19
16 41.0000 6.0900
17 -19.3844 1.5200 1.805180 25.46
18 400.0000 2.4200 1.772500 49.65
19 -67.0000 0.6000
20 ∞ 3.0800 1.729160 54.66
21 -50.8920 0.2000 1.520500 51.02
22 * a -37.6986 1.1400
23 -98.0000 5.2100 1.834810 42.72 0.5651
24-26.8452 2.3629
25 ∞ BF
[Aspherical data]
Side 7 κ = 0.000
A4 = -2.99E-06, A6 = -2.39E-08, A8 = 1.13E-10, A10 = -3.69E-13
Side 22 κ = 0.000
A4 = 2.03E-05, A6 = 4.37E-09, A8 = 1.85E-10, A10 = -1.33E-12
[Variable interval data for short-distance shooting]
Infinity in-focus state Short-distance in-focus state
f = 28.7734 β = -0.2174
D10 9.5660 2.3031
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.87
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7172
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 1.3000
Conditional expression (6)
ndP2 = 1.659398
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.830
Conditional expression (8)
ndP2- (0.020 × νdP2-1.080) × νdP2 = 12.920

図2は、第1実施例に係る光学系の無限遠合焦状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。 FIG. 2 is a diagram of various aberrations of the optical system according to the first embodiment in the infinity in-focus state. In each aberration diagram, FNO indicates an F number and Y indicates an image height. The spherical aberration diagram shows the F number or numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma aberration diagram shows the value of each image height. .. d is the d line (wavelength λ = 587.6 nm), g is the g line (wavelength λ = 435.8 nm), C is the C line (wavelength λ = 656.3 nm), and F is the F line (wavelength λ = 486.1 nm). ) Are shown respectively. In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. In the aberration diagrams of each of the following examples, the same reference numerals as those of the present embodiment will be used, and duplicate description will be omitted.

各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the optical system according to the first embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第2実施例)
第2実施例について、図3〜図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
(Second Example)
The second embodiment will be described with reference to FIGS. 3 to 4 and Table 2. FIG. 3 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the second embodiment of the present embodiment. In the optical system LS (2) according to the second embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the image side along the optical axis. The aperture diaphragm S is arranged near the object side of the third lens group G3, and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.

第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。 The first lens group G1 includes a protective glass HG having an extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13 arranged in order from the object side. The lens is composed of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。 The second lens group G2 is composed of a biconcave negative lens L21 arranged in order from the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a junction lens consisting of a biconcave negative lens L23. Will be done.

第3レンズ群G3は、物体側から順に並んだ、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、正の屈折力を有する第3部分群G33とを有している。第1部分群G31は、物体側から順に並んだ、両凸形状の正レンズL31および物体側に凹面を向けた負メニスカスレンズL32からなる接合レンズ、から構成される。第2部分群G32は、物体側から順に並んだ、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、から構成される。第3部分群G33は、物体側から順に並んだ、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負レンズL38が像側レンズに該当し、第3レンズ群G3の正レンズL33が条件式(1)〜(3)等を満足する正レンズに該当する。第3レンズ群G3の第2部分群G33は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。なお、第3レンズ群G3における第2部分群G32と第3部分群G33との間に、固定絞り(フレアカット絞り)Saが配置される。 The third lens group G3 includes a first subgroup G31 having a positive refractive power, a second subgroup G32 having a negative power, and a third subgroup having a positive power, which are arranged in order from the object side. It has G33. The first subgroup G31 is composed of a biconvex positive lens L31 arranged in order from the object side and a junction lens composed of a negative meniscus lens L32 with a concave surface facing the object side. The second subgroup G32 is composed of a junction lens composed of a biconvex positive lens L33 and a biconcave negative lens L34 arranged in order from the object side, and a biconcave negative lens L35. The third subgroup G33 is composed of a biconvex positive lens L36, a biconvex positive lens L37, and a biconcave negative lens L38 arranged in order from the object side. In this embodiment, the negative lens L38 of the third lens group G3 corresponds to the image side lens, and the positive lens L33 of the third lens group G3 corresponds to the positive lens satisfying the conditional equations (1) to (3) and the like. .. The second subgroup G33 of the third lens group G3 constitutes a vibration-proof lens group (subgroup) that can move in a direction perpendicular to the optical axis, and the displacement of the imaging position due to camera shake or the like (on the image plane I). Image blur) is corrected. A fixed diaphragm (flare cut diaphragm) Sa is arranged between the second subgroup G32 and the third subgroup G33 in the third lens group G3.

第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。 The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the third lens group G3 and the image plane I. As the interchangeable optical filter FL, for example, an NC filter (neutral color filter), a color filter, a polarizing filter, an ND filter (dimming filter), an IR filter (infrared cut filter) and the like are used.

以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the optical system according to the second embodiment.

(表2)
[全体諸元]
f 392.000
FNO 2.881
2ω 6.245
Y 21.63
TL 396.319
BF 74.502
[レンズ諸元]
面番号 R D nd νd θgF
1 1200.37020 5.000 1.51680 63.88 0.536
2 1199.78950 1.000
3 250.71590 16.414 1.43385 95.25 0.540
4 -766.97150 45.000
5 158.99440 18.720 1.43385 95.25 0.540
6 -400.00000 2.261
7 -377.29180 6.000 1.61266 44.46 0.564
8 461.79700 95.451
9 70.05760 4.000 1.79500 45.31 0.560
10 47.57190 11.944 1.49782 82.57 0.539
11 1223.84820 D11(可変)
12 -546.41280 2.500 1.80610 40.97 0.569
13 76.73180 6.996
14 -241.81680 4.500 1.65940 26.87 0.633
15 -56.62280 2.500 1.48749 70.32 0.529
16 234.80990 D16(可変)
17 ∞ 5.100 (絞りS)
18 95.57020 6.000 1.75500 52.33 0.548
19 -75.36620 1.800 1.80809 22.74 0.629
20 -757.80810 4.500
21 279.80870 4.700 1.74971 24.66 0.627
22 -82.76070 1.800 1.59319 67.90 0.544
23 50.04470 3.390
24 -226.07440 1.800 1.83481 42.73 0.565
25 105.63280 4.250
26 ∞ 0.250
27 105.07290 3.700 1.69680 55.52 0.543
28 -158.46840 0.100
29 92.25180 4.000 1.72047 34.71 0.583
30 -129.17240 1.800 1.92119 23.96 0.620
31 404.52160 7.500
32 ∞ 1.500 1.51680 63.88 0.536
33 ∞ BF
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=392.000 β=-0.173
D11 13.847 29.047
D16 33.495 18.295
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.101
条件式(2),(2−1),(2−2)
νdP2=24.66
条件式(3)
θgFP2+(0.00316×νdP2)=0.7049
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.944
条件式(5)
DP2=4.700
条件式(6)
ndP2=1.74971
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=34.836
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.721
(Table 2)
[Overall specifications]
f 392.000
FNO 2.881
2ω 6.245
Y 21.63
TL 396.319
BF 74.502
[Lens specifications]
Surface number R D nd ν d θ gF
1 1200.37020 5.000 1.51680 63.88 0.536
2 1199.78950 1.000
3 250.71590 16.414 1.43385 95.25 0.540
4 -766.97150 45.000
5 158.99440 18.720 1.43385 95.25 0.540
6 -400.00000 2.261
7 -377.29180 6.000 1.61266 44.46 0.564
8 461.79700 95.451
9 70.05760 4.000 1.79500 45.31 0.560
10 47.57190 11.944 1.49782 82.57 0.539
11 1223.84820 D11 (variable)
12 -546.41280 2.500 1.80610 40.97 0.569
13 76.73180 6.996
14 -241.81680 4.500 1.65940 26.87 0.633
15 -56.62280 2.500 1.48749 70.32 0.529
16 234.80990 D16 (variable)
17 ∞ 5.100 (Aperture S)
18 95.57020 6.000 1.75500 52.33 0.548
19 -75.36620 1.800 1.80809 22.74 0.629
20 -757.80810 4.500
21 279.80870 4.700 1.74971 24.66 0.627
22 -82.76070 1.800 1.59319 67.90 0.544
23 50.04470 3.390
24 -226.07440 1.800 1.83481 42.73 0.565
25 105.63280 4.250
26 ∞ 0.250
27 105.07290 3.700 1.69680 55.52 0.543
28 -158.46840 0.100
29 92.25180 4.000 1.72047 34.71 0.583
30 -129.17240 1.800 1.92119 23.96 0.620
31 404.52160 7.500
32 ∞ 1.500 1.51680 63.88 0.536
33 ∞ BF
[Variable interval data for short-distance shooting]
Infinity in-focus state Short-distance in-focus state
f = 392.000 β = -0.173
D11 13.847 29.047
D16 33.495 18.295
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.101
Conditional expressions (2), (2-1), (2-2)
νdP2 = 24.66
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7049
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 x νdP2) = 1.944
Conditional expression (5)
DP2 = 4.700
Conditional expression (6)
ndP2 = 1.74971
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 34.836
Conditional expression (8)
ndP2- (0.020 x νdP2-1.080) x νdP2 = 12.721

図4は、第2実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 4 is a diagram of various aberrations of the optical system according to the second embodiment in the infinity in-focus state. From each aberration diagram, it can be seen that the optical system according to the second embodiment has various aberrations corrected well and has excellent imaging performance.

(第3実施例)
第3実施例について、図5〜図6並びに表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1〜第4レンズ群G1〜G4がそれぞれ図5の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
(Third Example)
The third embodiment will be described with reference to FIGS. 5 to 6 and Table 3. FIG. 5 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the third embodiment of the present embodiment. In the optical system LS (3) according to the third embodiment, the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, and the negative refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force and a fourth lens group G4 having a positive refractive power. When the magnification is changed from the wide-angle end state (W) to the telephoto end state (T), the first to fourth lens groups G1 to G4 move in the directions indicated by the arrows in FIG. The aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3, and moves along the optical axis together with the third lens group G3 at the time of scaling.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。負メニスカスレンズL11は、両側のレンズ面が非球面である。負レンズL13は、像側のレンズ面が非球面である。 The first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, a biconcave negative lens L13, and a biconvex positive lens arranged in order from the object side. It is composed of a lens L14. The negative meniscus lens L11 has aspherical lens surfaces on both sides. The negative lens L13 has an aspherical lens surface on the image side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凸形状の正レンズL23と、から構成される。 The second lens group G2 is a junction lens composed of a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side arranged in order from the object side, and a biconvex positive lens L23. And consists of.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31および両凹形状の負レンズL32からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。本実施例では、第3レンズ群G3の正レンズL34が条件式(1)〜(3)等を満足する正レンズに該当する。また、本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の負メニスカスレンズL33および正レンズL34が光軸に沿って像側に移動する。 The third lens group G3 includes a junction lens composed of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side, a negative meniscus lens L33 with a concave surface facing the object side, and biconvex. It is composed of a positive lens L34 having a shape. In this embodiment, the positive lens L34 of the third lens group G3 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like. Further, in this embodiment, when focusing from an infinity object to a short-distance (finite distance) object, the negative meniscus lens L33 and the positive lens L34 of the third lens group G3 move toward the image side along the optical axis. ..

第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズと、両凸形状の正レンズL43と、物体側に凹面を向けた正メニスカスレンズL44および物体側に凹面を向けた負レンズL45からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。本実施例では、第4レンズ群G4の負レンズL45が像側レンズに該当する。負レンズL45は、像側のレンズ面が非球面である。 The fourth lens group G4 includes a junction lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side, a biconvex positive lens L43, and a concave surface facing the object side. It is composed of a positive meniscus lens L44 and a junction lens consisting of a negative lens L45 with a concave surface facing the object side. The image plane I is arranged on the image side of the fourth lens group G4. In this embodiment, the negative lens L45 of the fourth lens group G4 corresponds to the image side lens. The negative lens L45 has an aspherical lens surface on the image side.

以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。 Table 3 below lists the values of the specifications of the optical system according to the third embodiment.

(表3)
[全体諸元]
変倍比 2.07
W M T
f 16.65 24.00 34.43
FNO 4.12 4.12 4.18
2ω 107.58 83.63 63.19
Y 21.60 21.60 21.60
TL 168.91 162.86 167.14
BF 39.00 48.62 65.18
[レンズ諸元]
面番号 R D nd νd θgF
1*a 145.31700 3.000 1.76684 46.78 0.5576
2*a 18.85670 9.851
3 -326.23140 1.550 1.88300 40.66 0.5668
4 85.38900 4.225
5 -53.70640 1.500 1.88300 40.66 0.5668
6 51.34430 0.400 1.55389 38.09 0.5928
7*a 63.00250 2.357
8 53.19070 6.801 1.69895 30.13 0.6021
9 -42.56470 D9(可変)
10 36.83870 1.050 1.84666 23.80 0.6215
11 18.12050 4.250 1.62004 36.40 0.5833
12 63.71820 0.100
13 32.00210 4.533 1.51696 52.40 0.5544
14 -68.04600 D14(可変)
15 ∞ 3.263 (絞りS)
16 745.37430 2.545 1.62004 36.40 0.5833
17 -30.65950 1.000 1.88300 40.66 0.5668
18 69.53870 2.388
19 -23.28320 0.800 1.88300 40.66 0.5668
20 -69.51460 0.150
21 86.42750 4.549 1.65940 26.87 0.6327
22 -29.47240 D22(可変)
23 35.16640 10.376 1.49782 82.57 0.5386
24 -24.74900 1.100 1.83400 37.18 0.5778
25 1215.04870 0.100
26 38.11360 9.425 1.49782 82.57 0.5386
27 -36.58240 0.100
28 -136.80970 8.294 1.67221 54.76 0.5503
29 -20.68170 1.600 1.80610 40.97 0.5688
30*a -654.08670 BF
[非球面データ]
第1面
κ=1.0000
A4=3.82E-06,A6=3.24E-09,A8=0.00E+00,A10=0.00E+00
第2面
κ=1.0000
A4=-2.08E-05,A6=0.00E+00,A8=0.00E+00,A10=0.00E+00
第7面
κ=1.0000
A4=1.57E-05,A6=-3.97E-08,A8=3.99E-11,A10=0.00E+00
第30面
κ=1.0000
A4=1.77E-05,A6=1.40E-08,A8=0.00E+00,A10=0.00E+00
[変倍撮影時可変間隔データ]
W M T
D9 31.875 14.203 2.000
D14 3.000 8.901 13.460
D22 9.727 5.825 1.200
[レンズ群データ]
群 始面 焦点距離
G1 1 -23.700
G2 10 42.200
G3 15 -84.900
G4 23 60.900
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7176
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=4.549
条件式(6)
ndP2=1.65940
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.830
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 3)
[Overall specifications]
Variable ratio 2.07
WMT
f 16.65 24.00 34.43
FNO 4.12 4.12 4.18
2ω 107.58 83.63 63.19
Y 21.60 21.60 21.60
TL 168.91 162.86 167.14
BF 39.00 48.62 65.18
[Lens specifications]
Surface number R D nd ν d θ gF
1 * a 145.31700 3.000 1.76684 46.78 0.5576
2 * a 18.85670 9.851
3-326.23140 1.550 1.88300 40.66 0.5668
4 85.38900 4.225
5 -53.70640 1.500 1.88300 40.66 0.5668
6 51.34430 0.400 1.55389 38.09 0.5928
7 * a 63.00250 2.357
8 53.19070 6.801 1.69895 30.13 0.6021
9 -42.56470 D9 (variable)
10 36.83870 1.050 1.84666 23.80 0.6215
11 18.12050 4.250 1.62004 36.40 0.5833
12 63.71820 0.100
13 32.00210 4.533 1.51696 52.40 0.5544
14 -68.04600 D14 (variable)
15 ∞ 3.263 (Aperture S)
16 745.37430 2.545 1.62004 36.40 0.5833
17 -30.65950 1.000 1.88300 40.66 0.5668
18 69.53870 2.388
19 -23.28320 0.800 1.88300 40.66 0.5668
20 -69.51460 0.150
21 86.42750 4.549 1.65940 26.87 0.6327
22 -29.47240 D22 (variable)
23 35.16640 10.376 1.49782 82.57 0.5386
24 -24.74900 1.100 1.83400 37.18 0.5778
25 1215.04870 0.100
26 38.11360 9.425 1.49782 82.57 0.5386
27 -36.58240 0.100
28 -136.80970 8.294 1.67221 54.76 0.5503
29 -20.68170 1.600 1.80610 40.97 0.5688
30 * a -654.08670 BF
[Aspherical data]
First side κ = 1.0000
A4 = 3.82E-06, A6 = 3.24E-09, A8 = 0.00E + 00, A10 = 0.00E + 00
Second side κ = 1.0000
A4 = -2.08E-05, A6 = 0.00E + 00, A8 = 0.00E + 00, A10 = 0.00E + 00
Side 7 κ = 1.0000
A4 = 1.57E-05, A6 = -3.97E-08, A8 = 3.99E-11, A10 = 0.00E + 00
Side 30 κ = 1.0000
A4 = 1.77E-05, A6 = 1.40E-08, A8 = 0.00E + 00, A10 = 0.00E + 00
[Variable interval data during variable magnification shooting]
WMT
D9 31.875 14.203 2.000
D14 3.000 8.901 13.460
D22 9.727 5.825 1.200
[Lens group data]
Focal length
G1 1 -23.700
G2 10 42.200
G3 15 -84.900
G4 23 60.900
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.87
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7176
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 4.549
Conditional expression (6)
ndP2 = 1.65940
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.830
Conditional expression (8)
ndP2- (0.020 × νdP2-1.080) × νdP2 = 12.920

図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 6 (A), 6 (B), and 6 (C) show various aspects of the optical system according to the third embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. From each aberration diagram, it can be seen that the optical system according to the third embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第4実施例)
第4実施例について、図7〜図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1〜第4レンズ群G1〜G4がそれぞれ図7の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の最も物体側に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
(Fourth Example)
The fourth embodiment will be described with reference to FIGS. 7 to 8 and Table 4. FIG. 7 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the fourth embodiment of the present embodiment. In the optical system LS (4) according to the fourth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. When the magnification is changed from the wide-angle end state (W) to the telephoto end state (T), the first to fourth lens groups G1 to G4 move in the directions indicated by the arrows in FIG. The aperture diaphragm S is arranged on the most object side of the third lens group G3, and moves along the optical axis together with the third lens group G3 at the time of scaling.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および物体側に凸面を向けた正メニスカスレンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。 The first lens group G1 is a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side arranged in order from the object side, and a convex surface facing the object side. It is composed of a positive meniscus lens L13.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, and a positive meniscus lens L22 having a concave surface facing the object side, which are arranged in order from the object side. It is composed of L23 and a negative meniscus lens L24 with a concave surface facing the object side. The negative meniscus lens L21 has an aspherical lens surface on the object side. The negative meniscus lens L24 has an aspherical lens surface on the image side.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた正メニスカスレンズL32および物体側に凹面を向けた負メニスカスレンズL33からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL34および両凸形状の正レンズL35からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の正レンズL31が条件式(1)〜(3)等を満足する正レンズに該当する。正レンズL35は、像側のレンズ面が非球面である。 The third lens group G3 is a junction lens composed of a biconvex positive lens L31 arranged in order from the object side, a positive meniscus lens L32 with a concave surface facing the object side, and a negative meniscus lens L33 with a concave surface facing the object side. It is composed of a negative meniscus lens L34 having a convex surface facing the object side and a junction lens consisting of a biconvex positive lens L35. In this embodiment, the positive lens L31 of the third lens group G3 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like. The positive lens L35 has an aspherical lens surface on the image side.

第4レンズ群G4は、物体側から順に並んだ、両凹形状の負レンズL41および両凸形状の正レンズL42からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL43と、から構成される。本実施例では、第4レンズ群G4の負メニスカスレンズL43を光軸に沿って移動させることにより、合焦を行う。 The fourth lens group G4 is composed of a junction lens composed of a biconcave negative lens L41 and a biconvex positive lens L42 arranged in order from the object side, and a negative meniscus lens L43 with a convex surface facing the object side. Will be done. In this embodiment, focusing is performed by moving the negative meniscus lens L43 of the fourth lens group G4 along the optical axis.

第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の負メニスカスレンズL52が像側レンズに該当する。 The fifth lens group G5 is composed of a biconvex positive lens L51 arranged in order from the object side and a negative meniscus lens L52 with a convex surface facing the object side. The image plane I is arranged on the image side of the fifth lens group G5. In this embodiment, the negative meniscus lens L52 of the fifth lens group G5 corresponds to the image side lens.

以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。 Table 4 below lists the values of the specifications of the optical system according to the fourth embodiment.

(表4)
[全体諸元]
変倍比 7.85
W M T
f 24.720 58.064 194.000
FNO 3.6 5.5 6.5
2ω 85.516 38.972 12.120
Y 21.60 21.60 21.60
TL 149.034 171.725 204.028
BF 40.17156 40.17154 40.17152
[レンズ諸元]
面番号 R D nd νd θgF
1 92.15372 1.50000 1.893278 29.92 0.5973
2 50.45119 5.86351 1.49782 82.57 0.5386
3 287.2377 0.50000
4 52.85439 5.29710 1.754987 52.34 0.5545
5 179.2157 D5(可変)
6*a 192.5648 1.50000 1.76684 46.78 0.5576
7 14.39735 9.14834
8 -53.9422 1.50000 1.804 46.6 0.5575
9 -159.834 0.50004
10 -458.262 3.37612 1.80809 22.74 0.6287
11 -32.7306 1.09499
12 -25.8208 1.50010 1.76818 49.12 0.5602
13*a -71.2139 D13(可変)
14 ∞ 0.50251 (絞りS)
15 25.10727 4.79424 1.659398 26.87 0.6327
16 -47.2953 0.53134
17 -63.4845 2.79326 1.754941 52.34 0.5546
18 -22.633 1.50000 1.949938 29.37 0.5987
19 -1891.64 0.50000
20 22.49872 2.24749 1.949963 29.37 0.5987
21 12.7943 8.00000 1.519269 65.98 0.5332
22*a -31.4383 D22(可変)
23 -31.6877 3.00000 1.78738 34.67 0.5867
24 25.83264 6.67641 1.765346 49.1 0.5602
25 -37.7488 0.50640
26 95.74988 1.50570 1.755164 52.29 0.5546
27 27.40248 D27(可変)
28 43.74094 5.00269 1.615395 37.55 0.5811
29 -91.144 0.50000
30 83.67357 1.50000 1.755 52.34 0.5545
31 26.73611 BF
[非球面データ]
第6面
κ=2.0000
A4=2.65541E-06,A6=-2.66829E-09,A8=2.26904E-12,A10=-1.11750E-14
第13面
κ=0.0000
A4=-1.11022E-05,A6=-3.09432E-08,A8=1.57986E-10,A10=-9.22034E-13
第22面
κ=0.0427
A4=2.11546E-05,A6=-8.86580E-09,A8=-7.04018E-10,A10=2.78728E-12
[変倍撮影時可変間隔データ]
W M T
D5 0.50226 15.6917 48.17765
D13 34.74901 15.99244 0.50004
D22 0.55612 4.10818 8.61444
D27 1.71514 24.42039 35.22397
[レンズ群データ]
群 始面 焦点距離
G1 1 97.0173
G2 6 -17.8186
G3 14 24.5561
G4 23 -38.3045
G5 28 328.1997
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7176
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=4.79424
条件式(6)
ndP2=1.659398
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.830
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 4)
[Overall specifications]
Variable ratio 7.85
WMT
f 24.720 58.064 194.000
FNO 3.6 5.5 6.5
2ω 85.516 38.972 12.120
Y 21.60 21.60 21.60
TL 149.034 171.725 204.028
BF 40.17156 40.17154 40.17152
[Lens specifications]
Surface number R D nd ν d θ gF
1 92.15372 1.50000 1.893278 29.92 0.5973
2 50.45119 5.86351 1.49782 82.57 0.5386
3 287.2377 0.50000
4 52.85439 5.29710 1.754987 52.34 0.5545
5 179.2157 D5 (variable)
6 * a 192.5648 1.50000 1.76684 46.78 0.5576
7 14.39735 9.14834
8 -53.9422 1.50000 1.804 46.6 0.5575
9 -159.834 0.50004
10 -458.262 3.37612 1.80809 22.74 0.6287
11 -32.7306 1.09499
12 -25.8208 1.50010 1.76818 49.12 0.5602
13 * a -71.2139 D13 (variable)
14 ∞ 0.50251 (Aperture S)
15 25.10727 4.79424 1.659398 26.87 0.6327
16 -47.2953 0.53134
17 -63.4845 2.79326 1.754941 52.34 0.5546
18 -22.633 1.50000 1.949938 29.37 0.5987
19 -1891.64 0.50000
20 22.49872 2.24749 1.949963 29.37 0.5987
21 12.7943 8.00000 1.519269 65.98 0.5332
22 * a -31.4383 D22 (variable)
23 -31.6877 3.00000 1.78738 34.67 0.5867
24 25.83264 6.67641 1.765346 49.1 0.5602
25 -37.7488 0.50640
26 95.74988 1.50570 1.755164 52.29 0.5546
27 27.40248 D27 (variable)
28 43.74094 5.00269 1.615395 37.55 0.5811
29 -91.144 0.50000
30 83.67357 1.50000 1.755 52.34 0.5545
31 26.73611 BF
[Aspherical data]
Side 6 κ = 2.000
A4 = 2.65541E-06, A6 = -2.66829E-09, A8 = 2.269004E-12, A10 = -1.11750E-14
Page 13 κ = 0.000
A4 = -1.10122E-05, A6 = -3.09432E-08, A8 = 1.57986E-10, A10 = -9.22034E-13
Side 22 κ = 0.0427
A4 = 2.11546E-05, A6 = -8.86580E-09, A8 = -7.04018E-10, A10 = 2.78728E-12
[Variable interval data during variable magnification shooting]
WMT
D5 0.50226 15.6917 48.17765
D13 34.74901 15.99244 0.50004
D22 0.55612 4.10818 8.61444
D27 1.71514 24.42039 35.22397
[Lens group data]
Focal length
G1 1 97.0173
G2 6 -17.8186
G3 14 24.5561
G4 23 -38.3045
G5 28 328.1997
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.87
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7176
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 4.794424
Conditional expression (6)
ndP2 = 1.659398
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.830
Conditional expression (8)
ndP2- (0.020 × νdP2-1.080) × νdP2 = 12.920

図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 8 (A), 8 (B), and 8 (C) show various aspects of the optical system according to the fourth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. From each aberration diagram, it can be seen that the optical system according to the fourth embodiment has various aberrations corrected well and has excellent imaging performance.

(第5実施例)
第5実施例について、図9〜図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第4レンズ群G4とがそれぞれ図9の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、変倍の際、第1レンズ群G1と、第3レンズ群G3と、第5レンズ群G5と同様に、像面Iに対して固定される。
(Fifth Example)
A fifth embodiment will be described with reference to FIGS. 9 to 10 and Table 5. FIG. 9 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the fifth embodiment of the present embodiment. In the optical system LS (5) according to the fifth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power. When the magnification is changed from the wide-angle end state (W) to the telephoto end state (T), the second lens group G2 and the fourth lens group G4 move in the directions indicated by the arrows in FIG. 9, respectively. The aperture diaphragm S is arranged near the object side of the third lens group G3, and at the time of scaling, the image plane I is similar to the first lens group G1, the third lens group G3, and the fifth lens group G5. Is fixed to.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。 The first lens group G1 is a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And consists of.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24と、から構成される。 The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a concave shape, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた片平形状の正レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、両凹形状の負レンズL34と、両凸形状の正レンズL35および両凹形状の負レンズL36からなる接合レンズと、から構成される。 The third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, a flat positive lens L32 with a convex surface facing the object side, and a positive meniscus lens L33 with a convex surface facing the object side. , A biconcave negative lens L34, a biconvex positive lens L35, and a biconcave negative lens L36.

第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42および物体側に凸面を向けた正メニスカスレンズL43からなる接合レンズと、から構成される。本実施例では、第4レンズ群G4の全体を光軸に沿って移動させることにより、合焦を行う。 The fourth lens group G4 is a junction lens composed of a biconvex positive lens L41 arranged in order from the object side, a negative meniscus lens L42 having a convex surface facing the object side, and a positive meniscus lens L43 having a convex surface facing the object side. And consists of. In this embodiment, focusing is performed by moving the entire fourth lens group G4 along the optical axis.

第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52および両凹形状の負レンズL53からなる接合レンズと、像側に凹面を向けた片平形状の負レンズL54と、両凸形状の正レンズL55と、物体側に凸面を向けた正メニスカスレンズL56と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の正メニスカスレンズL56が像側レンズに該当し、第5レンズ群G5の正レンズL52が条件式(1)〜(3)等を満足する正レンズに該当する。 The fifth lens group G5 includes a negative meniscus lens L51 arranged in order from the object side and having a convex surface facing the object side, a junction lens consisting of a biconvex positive lens L52 and a biconcave negative lens L53, and an image side. It is composed of a flat negative lens L54 with a concave surface facing the surface, a biconvex positive lens L55, and a positive meniscus lens L56 with a convex surface facing the object side. The image plane I is arranged on the image side of the fifth lens group G5. In this embodiment, the positive meniscus lens L56 of the fifth lens group G5 corresponds to the image side lens, and the positive lens L52 of the fifth lens group G5 corresponds to the positive lens satisfying the conditional expressions (1) to (3) and the like. To do.

以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。 Table 5 below lists the values of the specifications of the optical system according to the fifth embodiment.

(表5)
[全体諸元]
変倍比 2.74
W M T
f 71.413619 139.954134 195.992207
FNO 2.9 2.9 2.9
2ω 33.679 17.10734 12.20834
Y 21.60 21.60 21.60
TL 245.2 245.2 245.2
BF 53.3 53.3 53.3
[レンズ諸元]
面番号 R D nd νd θgF
1 126.7377 2.8000 1.950000 29.37 0.600
2 89.1138 9.9000 1.497820 82.57 0.539
3 -1020.1958 0.1000
4 92.2410 7.7000 1.433852 95.25 0.540
5 697.5997 D5(可変)
6 67.2071 2.4000 1.719990 50.27 0.553
7 33.2108 10.2500
8 -131.8697 2.0000 1.618000 63.34 0.541
9 100.8703 2.0000
10 53.8723 4.4000 1.846660 23.78 0.619
11 192.4940 3.5500
12 -73.3376 2.2000 1.603000 65.44 0.539
13 293.3428 D13(可変)
14 ∞ 2.5000 (絞りS)
15 581.3263 3.7000 1.834810 42.73 0.565
16 -130.4486 0.2000
17 90.5655 3.8500 1.593190 67.90 0.544
18 ∞ 0.2000
19 52.6779 4.9000 1.497820 82.57 0.539
20 450.4224 2.0436
21 -118.6005 2.2000 2.001000 29.14 0.600
22 173.2673 4.5500
23 114.6393 5.7500 1.902650 35.73 0.580
24 -66.6756 2.2000 1.581440 40.98 0.576
25 41.9887 D25(可変)
26 57.8460 4.8000 1.497820 82.57 0.539
27 -191.5275 0.1000
28 44.2622 2.0000 1.950000 29.37 0.600
29 28.5009 5.5500 1.593190 67.90 0.544
30 169.0503 D30(可変)
31 47.8018 1.8000 1.804000 46.60 0.557
32 30.1942 5.1500
33 105.9950 3.3500 1.659398 26.84 0.632
34 -69.1861 1.6000 1.593190 67.90 0.544
35 40.7640 2.5830
36 ∞ 1.6000 1.953750 32.31 0.590
37 57.1830 3.7500
38 71.6966 3.4000 1.593190 67.90 0.544
39 -551.0952 0.1500
40 55.3080 4.2000 1.719990 50.27 0.553
41 445.3842 BF
[変倍撮影時可変間隔データ]
W M T
D5 2.94202 20.03940 50.94204
D13 50.63064 33.53326 2.63063
D25 16.90451 14.80744 16.89216
D30 2.01033 4.10740 2.02269
[レンズ群データ]
群 始面 焦点距離
G1 1 143.97421
G2 6 -45.57214
G3 14 94.45728
G4 26 58.18894
G5 31 -109.05105
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.84
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=3.3500
条件式(6)
ndP2=1.659398
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.820
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 5)
[Overall specifications]
Variable ratio 2.74
WMT
f 71.413619 139.954134 195.992207
FNO 2.9 2.9 2.9
2ω 33.679 17.10734 12.20834
Y 21.60 21.60 21.60
TL 245.2 245.2 245.2
BF 53.3 53.3 53.3
[Lens specifications]
Surface number R D nd ν d θ gF
1 126.7377 2.8000 1.950000 29.37 0.600
2 89.1138 9.9000 1.497820 82.57 0.539
3 -1020.1958 0.1000
4 92.2410 7.7000 1.433852 95.25 0.540
5 697.5997 D5 (variable)
6 67.2071 2.4000 1.719990 50.27 0.553
7 33.2108 10.2500
8-131.8697 2.0000 1.618000 63.34 0.541
9 100.8703 2.0000
10 53.8723 4.4000 1.846660 23.78 0.619
11 192.4940 3.5500
12 -73.3376 2.2000 1.603000 65.44 0.539
13 293.3428 D13 (variable)
14 ∞ 2.5000 (Aperture S)
15 581.3263 3.7000 1.834810 42.73 0.565
16 -130.4486 0.2000
17 90.5655 3.8500 1.593190 67.90 0.544
18 ∞ 0.2000
19 52.6779 4.9000 1.497820 82.57 0.539
20 450.4224 2.0436
21 -118.6005 2.2000 2.001000 29.14 0.600
22 173.2673 4.5500
23 114.6393 5.7500 1.902650 35.73 0.580
24 -66.6756 2.2000 1.581440 40.98 0.576
25 41.9887 D25 (variable)
26 57.8460 4.8000 1.497820 82.57 0.539
27 -191.5275 0.1000
28 44.2622 2.0000 1.950000 29.37 0.600
29 28.5009 5.5500 1.593190 67.90 0.544
30 169.0503 D30 (variable)
31 47.8018 1.8000 1.804000 46.60 0.557
32 30.1942 5.1500
33 105.9950 3.3500 1.659398 26.84 0.632
34 -69.1861 1.6000 1.593190 67.90 0.544
35 40.7640 2.5830
36 ∞ 1.6000 1.953750 32.31 0.590
37 57.1830 3.7500
38 71.6966 3.4000 1.593190 67.90 0.544
39 -551.0952 0.1500
40 55.3080 4.2000 1.719990 50.27 0.553
41 445.3842 BF
[Variable interval data during variable magnification shooting]
WMT
D5 2.94202 20.03940 50.94204
D13 50.63064 33.53326 2.63063
D25 16.90451 14.80744 16.89216
D30 2.01033 4.10740 2.02269
[Lens group data]
Focal length
G1 1 143.97421
G2 6 -45.57214
G3 14 94.45728
G4 26 58.18894
G5 31 -109.05105
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.84
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7168
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 3.3500
Conditional expression (6)
ndP2 = 1.659398
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.820
Conditional expression (8)
ndP2- (0.020 × νdP2-1.080) × νdP2 = 12.920

図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 10 (A), 10 (B), and 10 (C) show various aspects of the optical system according to the fifth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. From each aberration diagram, it can be seen that the optical system according to the fifth embodiment has various aberrations satisfactorily corrected and has excellent imaging performance.

(第6実施例)
第6実施例について、図11〜図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1〜第5レンズ群G1〜G5がそれぞれ図11の矢印で示す方向に移動する。なお、変倍の際、第3レンズ群G3と第5レンズ群G5とが同じ移動量で光軸に沿って移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、変倍の際、第3レンズ群G3とともに光軸に沿って移動する。
(6th Example)
The sixth embodiment will be described with reference to FIGS. 11 to 12 and Table 6. FIG. 11 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the sixth embodiment of the present embodiment. In the optical system LS (6) according to the sixth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power. When the magnification is changed from the wide-angle end state (W) to the telephoto end state (T), the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG. At the time of scaling, the third lens group G3 and the fifth lens group G5 move along the optical axis with the same amount of movement. The aperture diaphragm S is arranged near the object side of the third lens group G3, and moves along the optical axis together with the third lens group G3 at the time of scaling.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および物体側に凸面を向けた片平形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。 The first lens group G1 includes a junction lens consisting of a negative meniscus lens L11 having a convex surface facing the object side and a flat positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side, and a convex surface toward the object side. It is composed of a positive meniscus lens L13 directed toward the lens.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2の全体が光軸に沿って物体側に移動する。 The second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a biconcave shape, a positive lens L23 having a biconvex shape, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a negative meniscus lens L24 directed toward the lens. The negative meniscus lens L21 has an aspherical lens surface on the object side. In this embodiment, when focusing from an infinity object to a short-distance (finite distance) object, the entire second lens group G2 moves toward the object along the optical axis.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた負メニスカスレンズL32および両凸形状の正レンズL33からなる接合レンズと、両凸形状の正レンズL34と、から構成される。正レンズL34は、物体側のレンズ面が非球面である。 The third lens group G3 is a junction lens composed of a positive meniscus lens L31 having a convex surface facing the object side, a negative meniscus lens L32 having a convex surface facing the object side, and a biconvex positive lens L33 arranged in order from the object side. And a biconvex positive lens L34. The positive lens L34 has an aspherical lens surface on the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL43および両凹形状の負レンズL44からなる接合レンズと、から構成される。本実施例では、第4レンズ群G4の正メニスカスレンズL43が条件式(1)〜(3)等を満足する正レンズに該当する。 The fourth lens group G4 is a junction lens composed of a positive meniscus lens L41 having a concave surface facing the object side and a negative lens L42 having both concave shapes arranged in order from the object side, and a positive meniscus lens L43 having a concave surface facing the object side. It is composed of a bonded lens composed of a biconcave negative lens L44 and a concave lens. In this embodiment, the positive meniscus lens L43 of the fourth lens group G4 corresponds to a positive lens satisfying the conditional expressions (1) to (3) and the like.

第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凹面を向けた正メニスカスレンズL52および物体側に凹面を向けた負メニスカスレンズL53からなる接合レンズと、から構成される。第5レンズ群G5の像側に、像面Iが配置される。本実施例では、第5レンズ群G5の負メニスカスレンズL53が像側レンズに該当する。正レンズL51は、物体側のレンズ面が非球面である。 The fifth lens group G5 is a junction lens composed of a biconvex positive lens L51 arranged in order from the object side, a positive meniscus lens L52 with a concave surface facing the object side, and a negative meniscus lens L53 with a concave surface facing the object side. And consists of. The image plane I is arranged on the image side of the fifth lens group G5. In this embodiment, the negative meniscus lens L53 of the fifth lens group G5 corresponds to the image side lens. The positive lens L51 has an aspherical lens surface on the object side.

以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。 Table 6 below lists the values of the specifications of the optical system according to the sixth embodiment.

(表6)
[全体諸元]
変倍比 4.09
W M T
f 24.900 50.000 101.900
FNO 4.100 4.100 4.100
2ω 84.743 45.523 23.261
Y 21.60 21.60 21.60
TL 149.910 162.620 182.430
BF 40.185 48.193 58.850
[レンズ諸元]
面番号 R D nd νd θgF
1 163.16770 1.800 1.84666 23.80 0.622
2 63.11640 8.700 1.60311 60.69 0.541
3 ∞ 0.100
4 47.77580 6.150 1.80400 46.60 0.557
5 108.85110 D5(可変)
6*a 137.31600 0.100 1.55389 38.09 0.593
7 78.84000 1.200 1.83481 42.71 0.564
8 13.88400 6.500
9 -29.19600 1.000 1.88300 40.76 0.567
10 57.78220 0.100
11 36.31400 5.300 1.80518 25.42 0.616
12 -26.80660 0.670
13 -19.89480 1.300 1.77250 49.60 0.552
14 -45.63920 D14(可変)
15 ∞ 0.000 (絞りS)
16 31.50170 3.500 1.43700 95.00 0.533
17 412.56440 1.200
18 28.92410 1.300 1.78470 26.27 0.613
19 16.85630 7.800 1.48749 70.31 0.529
20 -68.28050 0.150
21* 50.53390 4.010 1.58313 59.42 0.543
22 -63.50130 D22(可変)
23 -60.07050 3.200 1.84666 23.80 0.622
24 -16.94620 1.000 1.76200 40.10 0.576
25 61.07170 2.900
26 -104.05170 2.300 1.65940 26.87 0.633
27 -44.45510 1.000 1.83481 42.73 0.565
28 586.44930 D28(可変)
29*a 140.20100 0.080 1.55389 38.09 0.593
30 198.01300 6.300 1.58913 61.14 0.541
31 -26.62820 0.150
32 -285.71710 6.700 1.48749 70.23 0.530
33 -21.67090 1.900 1.84666 23.88 0.616
34 -69.60370 BF
第6面
κ=1.0000
A4=1.70949E-05,A6=-2.16050E-08,A8=-4.68699E-11,A10=4.42797E-13
第21面
κ=1.0000
A4=-1.20879E-05,A6=-4.99039E-09,A8=1.50865E-11,A10=-4.88260E-14
第29面
κ=1.0000
A4=-8.63929E-06,A6=2.78090E-09,A8=1.43178E-11,A10=-3.56187E-14
[変倍撮影時可変間隔データ]
W M T
D5 2.442 18.432 34.512
D14 19.113 7.823 0.903
D22 1.993 7.103 10.783
D28 9.767 4.657 0.977
[レンズ群データ]
群 始面 焦点距離
G1 1 89.877
G2 6 -14.548
G3 15 22.802
G4 23 -28.690
G5 29 49.373
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.87
条件式(3)
θgFP2+(0.00316×νdP2)=0.7179
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=2.300
条件式(6)
ndP2=1.65940
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.830
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 6)
[Overall specifications]
Variable ratio 4.09
WMT
f 24.900 50.000 101.900
FNO 4.100 4.100 4.100
2ω 84.743 45.523 23.261
Y 21.60 21.60 21.60
TL 149.910 162.620 182.430
BF 40.185 48.193 58.850
[Lens specifications]
Surface number R D nd ν d θ gF
1 163.16770 1.800 1.84666 23.80 0.622
2 63.11640 8.700 1.60311 60.69 0.541
3 ∞ 0.100
4 47.77580 6.150 1.80400 46.60 0.557
5 108.85110 D5 (variable)
6 * a 137.31600 0.100 1.55389 38.09 0.593
7 78.84000 1.200 1.83481 42.71 0.564
8 13.88400 6.500
9 -29.19600 1.000 1.88300 40.76 0.567
10 57.78220 0.100
11 36.31400 5.300 1.80518 25.42 0.616
12 -26.80660 0.670
13 -19.89480 1.300 1.77250 49.60 0.552
14 -45.63920 D14 (variable)
15 ∞ 0.000 (Aperture S)
16 31.50170 3.500 1.43700 95.00 0.533
17 412.56440 1.200
18 28.92410 1.300 1.78470 26.27 0.613
19 16.85630 7.800 1.48749 70.31 0.529
20 -68.28050 0.150
21 * 50.53390 4.010 1.58313 59.42 0.543
22 -63.50130 D22 (variable)
23 -60.07050 3.200 1.84666 23.80 0.622
24 -16.94620 1.000 1.76200 40.10 0.576
25 61.07170 2.900
26 -104.05170 2.300 1.65940 26.87 0.633
27 -44.45510 1.000 1.83481 42.73 0.565
28 586.44930 D28 (variable)
29 * a 140.20100 0.080 1.55389 38.09 0.593
30 198.01300 6.300 1.58913 61.14 0.541
31 -26.62820 0.150
32 -285.71710 6.700 1.48749 70.23 0.530
33 -21.67090 1.900 1.84666 23.88 0.616
34 -69.60370 BF
Side 6 κ = 1.0000
A4 = 1.70949E-05, A6 = -2.106050E-08, A8 = -4.68699E-11, A10 = 4.42797E-13
Side 21 κ = 1.0000
A4 = -1.20879E-05, A6 = -4.99039E-09, A8 = 1.50865E-11, A10 = -4.88260E-14
Side 29 κ = 1.0000
A4 = -8.63929E-06, A6 = 2.78090E-09, A8 = 1.43178E-11, A10 = -3.56187E-14
[Variable interval data during variable magnification shooting]
WMT
D5 2.442 18.432 34.512
D14 19.113 7.823 0.903
D22 1.993 7.103 10.783
D28 9.767 4.657 0.977
[Lens group data]
Focal length
G1 1 89.877
G2 6 -14.548
G3 15 22.802
G4 23 -28.690
G5 29 49.373
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.87
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7179
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 2.300
Conditional expression (6)
ndP2 = 1.65940
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.830
Conditional expression (8)
ndP2- (0.020 x νdP2-1.080) x νdP2 = 12.920

図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 12 (A), 12 (B), and 12 (C) show various aspects of the optical system according to the sixth embodiment at infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. From each aberration diagram, it can be seen that the optical system according to the sixth embodiment has various aberrations corrected well and has excellent imaging performance.

(第7実施例)
第7実施例について、図13〜図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
(7th Example)
A seventh embodiment will be described with reference to FIGS. 13 to 14 and Table 7. FIG. 13 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the seventh embodiment of the present embodiment. In the optical system LS (7) according to the seventh embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the image side along the optical axis. The aperture diaphragm S is arranged near the object side of the third lens group G3, and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.

第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。 The first lens group G1 includes a protective glass HG having an extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13 arranged in order from the object side. The lens is composed of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。 The second lens group G2 is composed of a biconcave negative lens L21 arranged in order from the object side, a positive meniscus lens L22 with a concave surface facing the object side, and a junction lens consisting of a biconcave negative lens L23. Will be done.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39および物体側に凹面を向けた負メニスカスレンズL40からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL41および物体側に凸面を向けた正メニスカスレンズL42からなる接合レンズと、両凹形状の負レンズL43と、両凸形状の正レンズL44および物体側に凹面を向けた負メニスカスレンズL45からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL45が像側レンズに該当し、第3レンズ群G3の正メニスカスレンズL39が条件式(1)〜(3)等を満足する正レンズに該当する。 The third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a concave surface facing the object side, a biconvex positive lens L33, and a biconcave negative lens arranged in order from the object side. A junction lens made of L34, a biconcave negative lens L35, a biconvex positive lens L36, a biconvex positive lens L37, and a biconcave negative lens L38, and a concave surface on the object side. It consists of a junction lens consisting of a positive meniscus lens L39 with a concave surface facing the object and a negative meniscus lens L40 with a concave surface facing the object side, a negative meniscus lens L41 with a convex surface facing the object side, and a positive meniscus lens L42 with a convex surface facing the object side. It is composed of a junction lens, a biconcave negative lens L43, a biconvex positive lens L44, and a conjunct lens consisting of a negative meniscus lens L45 with a concave surface facing the object side. In this embodiment, the negative meniscus lens L45 of the third lens group G3 corresponds to the image side lens, and the positive meniscus lens L39 of the third lens group G3 is a positive lens satisfying the conditional equations (1) to (3) and the like. Applicable.

第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における負レンズL38と正メニスカスレンズL39との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。 The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the negative lens L38 and the positive meniscus lens L39 in the third lens group G3. As the interchangeable optical filter FL, for example, an NC filter (neutral color filter), a color filter, a polarizing filter, an ND filter (dimming filter), an IR filter (infrared cut filter) and the like are used.

以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。 Table 7 below lists the values of the specifications of the optical system according to the seventh embodiment.

(表7)
[全体諸元]
f 548.897246
FNO 4.028
2ω 4.529
Y 21.60
TL 421.51451
BF 41.79450
[レンズ諸元]
面番号 R D nd νd θgF
1 1200.3704 5.0000 1.516800 63.88 0.536
2 1199.7897
3 207.5249 17.5000 1.433843 95.26 0.540
4 -1086.1158 44.9000
5 176.7586 18.0000 1.433843 95.26 0.540
6 -399.9688 3.0700
7 -360.7137 6.0000 1.612660 44.46 0.564
8 360.6858 90.0000
9 66.6831 4.0000 1.794997 45.32 0.560
10 46.0960 15.0000 1.497820 82.54 0.539
11 1030.2823 D11(可変)
12 -1579.9519 2.5000 1.772499 49.68 0.552
13 115.8247 3.3500
14 -274.6805 3.5000 1.846679 23.83 0.620
15 -87.1354 2.4000 1.518229 58.84 0.546
16 65.0724 D16(可変)
17 ∞ 1.5000 (絞りS)
18 89.0765 7.6000 1.487490 70.43 0.530
19 -64.1681 1.2000
20 -66.2092 1.9000 1.846679 23.83 0.620
21 -113.6112 5.0000
22 309.3141 3.5000 1.846679 23.83 0.620
23 -136.2550 1.9000 1.593190 67.94 0.544
24 53.6104 3.1000
25 -343.3953 1.9000 1.754999 52.33 0.548
26 94.6723 4.1900
27 117.8519 3.5000 1.772499 49.68 0.552
28 -385.7489 0.1000
29 67.6179 4.5000 1.639999 60.14 0.537
30 -410.4180 1.9000 1.846679 23.83 0.620
31 247.6487 6.5000
32 ∞ 1.5000 1.516800 63.88 0.536
33 ∞ 25.3277
34 -212.6904 6.2000 1.659398 26.84 0.632
35 -34.5457 1.6000 1.850000 27.03 0.609
36 -57.9415 0.1000
37 171.5239 1.7000 1.729160 54.61 0.544
38 20.3538 7.1000 1.581440 40.98 0.576
39 199.2504 3.7000
40 -61.4914 1.7000 1.772500 49.62 0.552
41 80.1566 0.1000
42 39.9229 7.8000 1.581440 40.98 0.576
43 -38.2861 1.7000 1.808090 22.74 0.629
44 -171.6744 BF
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=548.89725 β=-0.24282
D11 18.50291 33.77284
D16 38.17937 22.90945
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.042
条件式(2),(2−1),(2−2)
νdP2=26.84
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.871
条件式(5)
DP2=6.2000
条件式(6)
ndP2=1.659398
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=35.820
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.920
(Table 7)
[Overall specifications]
f 548.897246
FNO 4.028
2ω 4.529
Y 21.60
TL 421.51451
BF 41.79450
[Lens specifications]
Surface number R D nd ν d θ gF
1 1200.3704 5.0000 1.516800 63.88 0.536
2 1199.7897
3 207.5249 17.5000 1.433843 95.26 0.540
4-1086.1158 44.9000
5 176.7586 18.0000 1.433843 95.26 0.540
6 -399.9688 3.0700
7 -360.7137 6.0000 1.612660 44.46 0.564
8 360.6858 90.0000
9 66.6831 4.0000 1.794997 45.32 0.560
10 46.0960 15.0000 1.497820 82.54 0.539
11 1030.2823 D11 (variable)
12 -1579.9519 2.5000 1.772499 49.68 0.552
13 115.8247 3.3500
14 -274.6805 3.5000 1.846679 23.83 0.620
15 -87.1354 2.4000 1.518229 58.84 0.546
16 65.0724 D16 (variable)
17 ∞ 1.5000 (Aperture S)
18 89.0765 7.6000 1.487490 70.43 0.530
19 -64.1681 1.2000
20 -66.2092 1.9000 1.846679 23.83 0.620
21 -113.6112 5.0000
22 309.3141 3.5000 1.846679 23.83 0.620
23 -136.2550 1.9000 1.593190 67.94 0.544
24 53.6104 3.1000
25 -343.3953 1.9000 1.754999 52.33 0.548
26 94.6723 4.1900
27 117.8519 3.5000 1.772499 49.68 0.552
28 -385.7489 0.1000
29 67.6179 4.5000 1.639999 60.14 0.537
30 -410.4180 1.9000 1.846679 23.83 0.620
31 247.6487 6.5000
32 ∞ 1.5000 1.516800 63.88 0.536
33 ∞ 25.3277
34 -212.6904 6.2000 1.659398 26.84 0.632
35 -34.5457 1.6000 1.850000 27.03 0.609
36 -57.9415 0.1000
37 171.5239 1.7000 1.729160 54.61 0.544
38 20.3538 7.1000 1.581440 40.98 0.576
39 199.2504 3.7000
40 -61.4914 1.7000 1.772500 49.62 0.552
41 80.1566 0.1000
42 39.9229 7.8000 1.581440 40.98 0.576
43 -38.2861 1.7000 1.808090 22.74 0.629
44 -171.6744 BF
[Variable interval data for short-distance shooting]
Infinity in-focus state Short-distance in-focus state
f = 548.89725 β = -0.24282
D11 18.50291 33.77284
D16 38.17937 22.90945
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.042
Conditional expressions (2), (2-1), (2-2)
νdP2 = 26.84
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7168
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 × νdP2) = 1.871
Conditional expression (5)
DP2 = 6.2000
Conditional expression (6)
ndP2 = 1.659398
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 35.820
Conditional expression (8)
ndP2- (0.020 × νdP2-1.080) × νdP2 = 12.920

図14は、第7実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 14 is a diagram of various aberrations of the optical system according to the seventh embodiment in the infinity in-focus state. From each aberration diagram, it can be seen that the optical system according to the seventh embodiment has various aberrations corrected well and has excellent imaging performance.

(第8実施例)
第8実施例について、図15〜図16および表8を用いて説明する。図15は、本実施形態の第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
(8th Example)
The eighth embodiment will be described with reference to FIGS. 15 to 16 and Table 8. FIG. 15 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the eighth embodiment of the present embodiment. In the optical system LS (8) according to the eighth embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the positive refraction are arranged in order from the object side. It is composed of a third lens group G3 having power. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the image side along the optical axis. The aperture diaphragm S is arranged near the object side of the third lens group G3, and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.

第1レンズ群G1は、物体側から順に並んだ、凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12および両凹形状の負レンズL13からなる接合レンズと、両凸形状の正レンズL14と、物体側に凸面を向けた負メニスカスレンズL15および物体側に凸面を向けた正メニスカスレンズL16からなる接合レンズと、から構成される。 The first lens group G1 includes a positive meniscus lens L11 having a convex surface oriented in order from the object side, a junction lens consisting of a biconvex positive lens L12 and a biconcave negative lens L13, and a biconvex positive lens. It is composed of a lens L14, a junction lens including a negative meniscus lens L15 having a convex surface facing the object side, and a positive meniscus lens L16 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21および両凹形状の負レンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23および両凹形状の負レンズL24からなる接合レンズと、から構成される。 The second lens group G2 is a junction lens composed of a positive meniscus lens L21 having a concave surface facing the object side and a negative lens L22 having both concave shapes arranged in order from the object side, and a positive meniscus lens L23 having a concave surface facing the object side. It is composed of a bonded lens composed of a biconcave negative lens L24 and a concave lens.

第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、物体側に凹面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と、物体側に凸面を向けた負メニスカスレンズL35と、両凸形状の正レンズL36、両凹形状の負レンズL37、および両凸形状の正レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39と、物体側に凹面を向けた負メニスカスレンズL40と、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL40が像側レンズに該当し、第3レンズ群G3の正レンズL34が条件式(1)〜(3)等を満足する正レンズに該当する。正メニスカスレンズL39は、物体側のレンズ面が非球面である。 The third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, a negative meniscus lens L32 with a concave surface facing the object side, and a positive meniscus lens L33 with a concave surface facing the object side. A junction lens consisting of a convex positive lens L34, a negative meniscus lens L35 with a convex surface facing the object side, a biconvex positive lens L36, a biconcave negative lens L37, and a biconvex positive lens L38. It is composed of a positive meniscus lens L39 having a concave surface facing the object side and a negative meniscus lens L40 having a concave surface facing the object side. In this embodiment, the negative meniscus lens L40 of the third lens group G3 corresponds to the image side lens, and the positive lens L34 of the third lens group G3 corresponds to the positive lens satisfying the conditional equations (1) to (3) and the like. To do. The positive meniscus lens L39 has an aspherical lens surface on the object side.

第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における正メニスカスレンズL33と正レンズL34との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。 The image plane I is arranged on the image side of the third lens group G3. An optical filter FL that can be inserted and removed is arranged between the positive meniscus lens L33 and the positive lens L34 in the third lens group G3. As the interchangeable optical filter FL, for example, an NC filter (neutral color filter), a color filter, a polarizing filter, an ND filter (dimming filter), an IR filter (infrared cut filter) and the like are used.

以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。 Table 8 below lists the values of the specifications of the optical system according to the eighth embodiment.

(表8)
[全体諸元]
f 388.032537
FNO 4.038
2ω 6.416
Y 21.60
TL 283.53069
BF 53.66784
[レンズ諸元]
面番号 R D nd νd θgF
1 167.3500 10.6000 1.497820 82.52 0.539
2 2361.5509 0.3000
3 98.4074 20.8000 1.497820 82.52 0.539
4 -306.6320 5.0000 1.772499 49.61 0.552
5 165.4047 20.0000
6 135.6601 9.6000 1.446791 91.03 0.534
7 -731.2064 0.3000
8 71.2883 4.0000 1.754999 52.31 0.547
9 42.3960 16.5000 1.497820 82.52 0.539
10 435.6465 D10(可変)
11 -1745.8851 5.0000 1.850260 32.35 0.594
12 -78.6510 3.0000 1.639999 60.09 0.538
13 55.9799 6.0000
14 -79.8113 4.2000 1.766840 46.80 0.558
15 -45.8300 2.8000 1.516800 64.10 0.536
16 51.2954 D16(可変)
17 ∞ 3.2000 (絞りS)
18 126.0707 5.0000 1.729157 54.66 0.544
19 -81.3057 2.1000
20 -43.1962 3.4000 1.795040 28.54 0.607
21 -104.9670 7.0000
22 -827.9284 5.3000 1.603001 65.47 0.541
23 -52.9313 5.3151
24 ∞ 2.0000 1.516800 64.12 0.536
25 ∞ 9.4440
26 64.5713 5.0000 1.611553 31.26 0.618
27 -280.9473 0.8000
28 350.7347 1.5000 1.804000 46.58 0.557
29 24.0250 5.4000
30 33.9853 9.0000 1.620040 36.30 0.587
31 -23.4510 2.0000 1.882997 40.76 0.567
32 36.4535 8.2000 1.575010 41.49 0.576
33 -45.3865 2.9000
34*a -91.9573 6.4000 1.589130 61.18 0.539
35 -28.9225 0.5000
36 -33.4300 2.5000 1.882997 40.76 0.567
37 -192.4648 BF
[非球面データ]
第34面
κ=1.0000
A4=8.36373E-06,A6=2.40160E-09,A8=0.00000E+00,A10=0.00000E+00
[近距離撮影時可変間隔データ]
無限遠合焦状態 近距離合焦状態
f=388.03254 β=-0.25415
D10 19.01315 27.19783
D16 15.10916 6.92448
[条件式対応値]
条件式(1)
ndP2+(0.01425×νdP2)=2.057
条件式(2),(2−1),(2−2)
νdP2=31.26
条件式(3)
θgFP2+(0.00316×νdP2)=0.7168
条件式(4),(4−1),(4−2)
ndP2+(0.00787×νdP2)=1.858
条件式(5)
DP2=5.0000
条件式(6)
ndP2=1.611553
条件式(7)
ndP2−(0.040×νdP2−2.470)×νdP2=36.513
条件式(8)
ndP2−(0.020×νdP2−1.080)×νdP2=12.605
(Table 8)
[Overall specifications]
f 388.032537
FNO 4.038
2ω 6.416
Y 21.60
TL 283.53069
BF 53.66784
[Lens specifications]
Surface number R D nd ν d θ gF
1 167.3500 10.6000 1.497820 82.52 0.539
2 2361.5509 0.3000
3 98.4074 20.8000 1.497820 82.52 0.539
4 -306.6320 5.0000 1.772499 49.61 0.552
5 165.4047 20.0000
6 135.6601 9.6000 1.446791 91.03 0.534
7 -731.2064 0.3000
8 71.2883 4.0000 1.754999 52.31 0.547
9 42.3960 16.5000 1.497820 82.52 0.539
10 435.6465 D10 (variable)
11 -1745.8851 5.0000 1.850260 32.35 0.594
12 -78.6510 3.0000 1.639999 60.09 0.538
13 55.9799 6.0000
14 -79.8113 4.2000 1.766840 46.80 0.558
15 -45.8300 2.8000 1.516800 64.10 0.536
16 51.2954 D16 (variable)
17 ∞ 3.2000 (Aperture S)
18 126.0707 5.0000 1.729157 54.66 0.544
19 -81.3057 2.1000
20 -43.1962 3.4000 1.795040 28.54 0.607
21 -104.9670 7.0000
22 -827.9284 5.3000 1.603001 65.47 0.541
23 -52.9313 5.3151
24 ∞ 2.0000 1.516800 64.12 0.536
25 ∞ 9.4440
26 64.5713 5.0000 1.611553 31.26 0.618
27 -280.9473 0.8000
28 350.7347 1.5000 1.804000 46.58 0.557
29 24.0250 5.4000
30 33.9853 9.0000 1.620040 36.30 0.587
31 -23.4510 2.0000 1.882997 40.76 0.567
32 36.4535 8.2000 1.575010 41.49 0.576
33 -45.3865 2.9000
34 * a -91.9573 6.4000 1.589130 61.18 0.539
35 -28.9225 0.5000
36 -33.4300 2.5000 1.882997 40.76 0.567
37 -192.4648 BF
[Aspherical data]
Side 34 κ = 1.0000
A4 = 8.36373E-06, A6 = 2.40160E-09, A8 = 0.00000E + 00, A10 = 0.0000E + 00
[Variable interval data for short-distance shooting]
Infinity in-focus state Short-distance in-focus state
f = 388.03254 β = -0.25415
D10 19.01315 27.19783
D16 15.10916 6.92448
[Conditional expression correspondence value]
Conditional expression (1)
ndP2 + (0.01425 x νdP2) = 2.057
Conditional expressions (2), (2-1), (2-2)
νdP2 = 31.26
Conditional expression (3)
θgFP2 + (0.00316 × νdP2) = 0.7168
Conditional expressions (4), (4-1), (4-2)
ndP2 + (0.00787 x νdP2) = 1.858
Conditional expression (5)
DP2 = 5.000
Conditional expression (6)
ndP2 = 1.611553
Conditional expression (7)
ndP2- (0.040 x ν dP2-2.470) x ν dP2 = 36.513
Conditional expression (8)
ndP2- (0.020 x νdP2-1.080) x νdP2 = 12.605

図16は、第8実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。 FIG. 16 is a diagram of various aberrations of the optical system according to the eighth embodiment in the infinity in-focus state. From each aberration diagram, it can be seen that the optical system according to the eighth embodiment has various aberrations corrected well and has excellent imaging performance.

上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を実現することができる。 According to each of the above embodiments, it is possible to realize an optical system in which the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity in the correction of chromatic aberration.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 Here, each of the above examples shows a specific example of the present invention, and the present invention is not limited thereto.

なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.

合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。 The focusing lens group refers to a portion having at least one lens separated by an air interval that changes during focusing. That is, it may be a focusing lens group that focuses on a short-distance object from an infinity object by moving a single lens group or a plurality of lens groups or a partial lens group in the optical axis direction. This focusing lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).

本実施形態の光学系の第2実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。 In the second embodiment of the optical system of the present embodiment, a configuration having an anti-vibration function is shown, but the present application is not limited to this, and a configuration having no anti-vibration function is also possible. Further, other embodiments that do not have the anti-vibration function can also be configured to have the anti-vibration function.

レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。 The lens surface may be formed on a spherical surface or a flat surface, or may be formed on an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is deviated, the depiction performance is less deteriorated, which is preferable.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。 When the lens surface is aspherical, the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 An antireflection film having a high transmittance in a wide wavelength range may be applied to each lens surface in order to reduce flare and ghost and achieve high contrast optical performance. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群 G4 第4レンズ群
G5 第5レンズ群
I 像面 S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I image plane S Aperture aperture

Claims (9)

開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する光学系。
ndP2+(0.01425×νdP2)<2.12
18.0<νdP2<35.0
0.702<θgFP2+(0.00316×νdP2)
ndP2−(0.020×νdP2−1.080)×νdP2<14.500
但し、ndP2:前記正レンズのd線に対する屈折率
νdP2:前記正レンズのd線を基準とするアッベ数
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義される
θgFP2=(ngP2−nFP2)/(nFP2−nCP2)
An optical system having an aperture diaphragm and a positive lens arranged on the image side of the aperture diaphragm and satisfying the following conditional expression.
ndP2 + (0.01425 × νdP2) <2.12
18.0 <νdP2 <35.0
0.702 <θgFP2 + (0.00316 × νdP2)
ndP2- (0.020 × νdP2-1.080) × νdP2 <14.500
However, ndP2: the refractive index of the positive lens with respect to the d-line ν dP2: the Abbe number θgFP2 based on the d-line of the positive lens: the partial dispersion ratio of the positive lens, and the refractive index of the positive lens with respect to the g-line is ngP2. When the refractive index of the positive lens with respect to the F line is nFP2 and the refractive index of the positive lens with respect to the C line is nCP2, θgFP2 = (ngP2-nFP2) / (nFP2-nCP2) defined by the following equation.
開口絞りと、前記開口絞りより像側に配置された以下の条件式を満足する正レンズとを有する光学系。An optical system having an aperture diaphragm and a positive lens arranged on the image side of the aperture diaphragm and satisfying the following conditional expression.
ndP2+(0.01425×νdP2)<2.07ndP2 + (0.01425 × νdP2) <2.07
23.5<νdP2<35.023.5 <νdP2 <35.0
0.702<θgFP2+(0.00316×νdP2)0.702 <θgFP2 + (0.00316 × νdP2)
1.86<ndP2+(0.00787×νdP2)1.86 <ndP2 + (0.00787 × νdP2)
但し、ndP2:前記正レンズのd線に対する屈折率However, ndP2: the refractive index of the positive lens with respect to the d line.
νdP2:前記正レンズのd線を基準とするアッベ数νdP2: Abbe number based on the d line of the positive lens
θgFP2:前記正レンズの部分分散比であり、前記正レンズのg線に対する屈折率をngP2とし、前記正レンズのF線に対する屈折率をnFP2とし、前記正レンズのC線に対する屈折率をnCP2としたとき、次式で定義されるθgFP2: Partial dispersion ratio of the positive lens, the refractive index of the positive lens with respect to the g line is ngP2, the refractive index of the positive lens with respect to the F line is nFP2, and the refractive index of the positive lens with respect to the C line is nCP2. When you do, it is defined by the following equation
θgFP2=(ngP2−nFP2)/(nFP2−nCP2)θgFP2 = (ngP2-nFP2) / (nFP2-nCP2)
前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
1.83<ndP2+(0.00787×νdP2)
The optical system according to claim 1, wherein the positive lens satisfies the following conditional expression.
1.83 <ndP2 + (0.00787 × νdP2)
前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
18.0<νdP2<26.5
1.83<ndP2+(0.00787×νdP2)
The optical system according to claim 1, wherein the positive lens satisfies the following conditional expression.
18.0 <νdP2 <26.5
1.83 <ndP2 + (0.00787 × νdP2)
前記正レンズは、以下の条件式を満足する請求項1に記載の光学系。
25.0<νdP2<35.0
1.83<ndP2+(0.00787×νdP2)
The optical system according to claim 1, wherein the positive lens satisfies the following conditional expression.
25.0 <νdP2 <35.0
1.83 <ndP2 + (0.00787 × νdP2)
前記正レンズは、以下の条件式を満足する請求項1〜5のいずれか一項に記載の光学系。
DP2>0.80
但し、DP2:前記正レンズの光軸上の厚さ[mm]
The optical system according to any one of claims 1 to 5 , wherein the positive lens satisfies the following conditional expression.
DP2> 0.80
However, DP2: thickness [mm] on the optical axis of the positive lens
最も像側に配置された像側レンズを有し、
前記開口絞りが前記像側レンズより物体側に配置され、
前記像側レンズより物体側で、前記正レンズが前記開口絞りより像側に配置される請求項1〜6のいずれかに記載の光学系。
It has an image-side lens placed closest to the image side
The aperture diaphragm is arranged on the object side of the image side lens.
The optical system according to any one of claims 1 to 6 , wherein the positive lens is arranged on the object side of the image side lens and on the image side of the aperture diaphragm.
前記正レンズは、ガラスレンズである請求項1〜7のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 7 , wherein the positive lens is a glass lens. 請求項1〜8のいずれか一項に記載の光学系を備えて構成される光学機器。 An optical device including the optical system according to any one of claims 1 to 8.
JP2019558855A 2017-12-15 2017-12-15 Optical system and optical equipment Active JP6881604B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021073057A JP2021105746A (en) 2017-12-15 2021-04-23 Optical system and optical apparatus
JP2023032734A JP2023060138A (en) 2017-12-15 2023-03-03 Optical system, optical device, and method of manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045185 WO2019116565A1 (en) 2017-12-15 2017-12-15 Optical system, optical equipment, and optical-system manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021073057A Division JP2021105746A (en) 2017-12-15 2021-04-23 Optical system and optical apparatus

Publications (2)

Publication Number Publication Date
JPWO2019116565A1 JPWO2019116565A1 (en) 2020-12-03
JP6881604B2 true JP6881604B2 (en) 2021-06-02

Family

ID=66819166

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019558855A Active JP6881604B2 (en) 2017-12-15 2017-12-15 Optical system and optical equipment
JP2021073057A Pending JP2021105746A (en) 2017-12-15 2021-04-23 Optical system and optical apparatus
JP2023032734A Withdrawn JP2023060138A (en) 2017-12-15 2023-03-03 Optical system, optical device, and method of manufacturing optical system

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021073057A Pending JP2021105746A (en) 2017-12-15 2021-04-23 Optical system and optical apparatus
JP2023032734A Withdrawn JP2023060138A (en) 2017-12-15 2023-03-03 Optical system, optical device, and method of manufacturing optical system

Country Status (2)

Country Link
JP (3) JP6881604B2 (en)
WO (1) WO2019116565A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334812A (en) * 2019-08-20 2021-02-05 深圳市大疆创新科技有限公司 Lens system, imaging device, and moving object
CN111897115B (en) * 2020-07-31 2021-07-27 中国科学院西安光学精密机械研究所 Continuous zooming optical system with heat dissipation and wide pressure adaptability
CN113777765B (en) * 2021-08-25 2023-04-07 浙江大华技术股份有限公司 Lens barrel
CN115268020B (en) * 2022-07-18 2023-06-06 福建福光股份有限公司 Large-aperture high-definition athermalized traffic lens and imaging method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756901B2 (en) * 2005-04-25 2011-08-24 キヤノン株式会社 Eyepiece lens and optical instrument using the same
JP4956062B2 (en) * 2005-06-15 2012-06-20 キヤノン株式会社 Optical system
JP4898307B2 (en) * 2006-06-05 2012-03-14 キヤノン株式会社 Optical system and optical apparatus having the same
JP5084283B2 (en) * 2007-02-02 2012-11-28 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same
JP2009249591A (en) * 2008-04-10 2009-10-29 Olympus Corp Optical material composition and optical element using the same
JP2009280724A (en) * 2008-05-23 2009-12-03 Olympus Corp Material composition for optical use, and optical element using the same
JP2010054668A (en) * 2008-08-27 2010-03-11 Canon Inc Optical system and optical device having it
JP5197242B2 (en) * 2008-09-01 2013-05-15 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5932444B2 (en) * 2012-04-05 2016-06-08 キヤノン株式会社 Optical system and imaging apparatus using the same
JP2017090710A (en) * 2015-11-11 2017-05-25 キヤノン株式会社 Optical element, optical system having the same, and optical equipment
JP2017190280A (en) * 2016-04-15 2017-10-19 株式会社オハラ Optical glass

Also Published As

Publication number Publication date
WO2019116565A1 (en) 2019-06-20
JP2021105746A (en) 2021-07-26
JP2023060138A (en) 2023-04-27
JPWO2019116565A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP7014253B2 (en) Variable magnification optics and optical equipment
JP2021105746A (en) Optical system and optical apparatus
JP2007108398A (en) Zoom lens and imaging apparatus with same
JP6973611B2 (en) Variable magnification optics and optical equipment
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JP2021105744A (en) Optical system and optical apparatus
JP2021105747A (en) Optical system and optical apparatus
JP6784952B2 (en) Optical system and optical equipment
JP6981478B2 (en) Optical system and optical equipment
JPWO2017131223A1 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP2023060137A (en) Optical system, optical device, and method of manufacturing optical system
JP2022060546A (en) Optical system, optical device, and method of manufacturing optical system
WO2021039812A1 (en) Optical system, optical device, and method for manufacturing optical system, and variable power optical system, optical device, and method for manufacturing variable power optical system
WO2021039814A1 (en) Optical system, optical device, and method for manufacturing optical system
JP6981477B2 (en) Optical system and optical equipment
JP6347098B2 (en) Zoom lens and optical equipment
WO2019229817A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
WO2021039815A1 (en) Optical system, optical device, and method for manufacturing optical system
WO2021039813A1 (en) Optical system, methods of manufacturing optical equipment and optical system, variable magnification optical system, and methods of manufacturing optical equipment and variable magnification optical system
JP2021036283A (en) Optical system, optical device, and method of manufacturing optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250