JP6880571B2 - Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles - Google Patents

Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles Download PDF

Info

Publication number
JP6880571B2
JP6880571B2 JP2016101531A JP2016101531A JP6880571B2 JP 6880571 B2 JP6880571 B2 JP 6880571B2 JP 2016101531 A JP2016101531 A JP 2016101531A JP 2016101531 A JP2016101531 A JP 2016101531A JP 6880571 B2 JP6880571 B2 JP 6880571B2
Authority
JP
Japan
Prior art keywords
magnetic particles
microorganisms
aqueous solution
microalgae
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101531A
Other languages
Japanese (ja)
Other versions
JP2017205085A (en
Inventor
大西 徳幸
徳幸 大西
小毛 謝
小毛 謝
恵一 百瀬
恵一 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2016101531A priority Critical patent/JP6880571B2/en
Publication of JP2017205085A publication Critical patent/JP2017205085A/en
Application granted granted Critical
Publication of JP6880571B2 publication Critical patent/JP6880571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、水溶液中の微生物を回収する方法及びそれに用いる装置に関するものである。 The present invention relates to a method for recovering microorganisms in an aqueous solution and an apparatus used for the method.

バイオマスを用いた液体燃料、健康食品、医薬品、香粧品または動物性飼料等の製造は、持続的な経済発展に不可欠な技術である。例えば、光合成により炭化水素を生産する微生物の一種である微細藻類は潜在的生産能力の高さから期待が大きく、微細藻類を培養することで、炭化水素化合物などのバイオマスを産生させる様々な研究が既に行われている。 The production of liquid fuels, health foods, pharmaceuticals, cosmetics or animal feeds using biomass is an indispensable technology for sustainable economic development. For example, microalgae, which are a type of microorganism that produces hydrocarbons by photosynthesis, are highly expected due to their high potential production capacity, and various studies have been conducted to produce biomass such as hydrocarbon compounds by culturing microalgae. It has already been done.

微細藻類を用いてのバイオマスの生産には、効率的な微細藻類の培養方法、微細藻類の回収方法、更にはオイル等のバイオマスの抽出方法が開発されておらず、コストが高いという問題点がある。その最大の原因の一つが、微細藻類の効率的な回収方法がないことである。 For the production of biomass using microalgae, there is a problem that an efficient method for culturing microalgae, a method for recovering microalgae, and a method for extracting biomass such as oil have not been developed, and the cost is high. is there. One of the biggest causes is the lack of an efficient method for recovering microalgae.

具体的には、微細藻類は通常、液中に浮遊しながら生育するため、微細藻類をバイオマスとして利用するためには、非常に希薄な濃度の微細藻類を大量の液中から回収しなければならない。加えて、微細藻類の生育のためには光エネルギーが必要であるが、十分な光の照射を確保するためには液中に存在する微細藻類の濃度を過度に高くすることが出来ない。 Specifically, since microalgae usually grow while floating in a liquid, in order to utilize the microalgae as biomass, it is necessary to recover microalgae having a very dilute concentration from a large amount of liquid. .. In addition, although light energy is required for the growth of microalgae, the concentration of microalgae present in the liquid cannot be excessively increased in order to secure sufficient light irradiation.

結果として、液中に浮遊する微細藻類を回収するには、多量の水をろ過する必要があった。また、微細藻類のサイズは一般的に小さく、ろ過も容易ではなかった。このような問題を解決するための回収方法の検討として、沈殿剤を用いる方法、遠心分離機を用いる方法、微細藻類をより大型の生物の餌とした後に、該大型の生物を回収する方法などが試みられたものの、いずれの方法も根本的な解決には至っていない。 As a result, it was necessary to filter a large amount of water in order to recover the microalgae floating in the liquid. In addition, the size of microalgae was generally small, and filtration was not easy. As a study of a recovery method for solving such a problem, a method using a precipitant, a method using a centrifuge, a method of using microalgae as food for a larger organism, and then recovering the large organism, etc. Has been tried, but neither method has led to a fundamental solution.

また、生活排水等による水域内への栄養塩の供給と蓄積が要因として起こる富栄養価により、湖沼等の閉鎖性水域では、アオコ等の藻類の異常増殖が発生する。このような藻類の異常増殖により、水道の取水、水産、農業または観光の場としての水環境の利用への障害が生じる。このため、異常増殖した微細藻類を効率的に回収する浄化技術が必要とされている。 In addition, due to the eutrophication caused by the supply and accumulation of nutrients in the water area due to domestic wastewater, abnormal growth of algae such as blue-green algae occurs in closed water areas such as lakes and marshes. Such overgrowth of algae impedes the use of the water environment as a place for tap water intake, fisheries, agriculture or tourism. Therefore, a purification technique for efficiently recovering abnormally grown microalgae is required.

これまでに、水中の微細藻類等の非磁性物質に対し磁性を付し、磁性フロックを形成させ、その後に、磁気分離装置で水中から微細藻類を分離回収する磁気分離方法が開発されている(非特許文献1)。この磁気分離法は、高磁場を利用することで高速分離処理が可能で、装置もコンパクトになること、物理的に処理するために化学薬剤を要しないこと等の利点がある。 So far, a magnetic separation method has been developed in which a non-magnetic substance such as microalgae in water is magnetized to form a magnetic floc, and then the microalgae are separated and recovered from the water by a magnetic separation device (a magnetic separation method). Non-Patent Document 1). This magnetic separation method has advantages such as high-speed separation processing is possible by using a high magnetic field, the device is compact, and no chemical agent is required for physical processing.

渡部恒雄、「新しい磁気分離工学の創成を目指して」、分離技術、Vol.32、No.5、pp.274−279(2002)Tsuneo Watanabe, "Aiming to Create New Magnetic Separation Engineering", Separation Technology, Vol. 32, No. 5, pp. 274-279 (2002)

しかしながら、非特許文献1の技術では、非磁性物質に対し磁性を付与し、磁性フロックを形成させるための工程において時間および手間を要し、さらにはマグネタイトと磁性フロックの形成しやすさが藻類の形態によって異なり、微細藻類の種類によって回収率が変化するため、実用化しにくいという問題点がある。 However, in the technique of Non-Patent Document 1, it takes time and labor in the process of imparting magnetism to a non-magnetic substance and forming magnetic flocs, and further, the ease of forming magnetite and magnetic flocs is a problem of algae. There is a problem that it is difficult to put it into practical use because the recovery rate changes depending on the type of microalgae, which differs depending on the morphology.

したがって、本発明は、微細藻類などの微生物を水溶液中から効率的、簡便かつ低コストで回収する方法及びその装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a method and an apparatus for efficiently recovering microorganisms such as microalgae from an aqueous solution at low cost.

本発明者は上記の目的を達成するため、鋭意検討した結果、水溶液中の微生物を均一系で短時間に回収する方法を見出した。すなわち、本発明は下記の構成により達成されるものである。 As a result of diligent studies in order to achieve the above object, the present inventor has found a method for recovering microorganisms in an aqueous solution in a uniform system in a short time. That is, the present invention is achieved by the following configuration.

[1]以下の工程(1)および(2)を含む、水溶液中の微生物を回収する方法。
(1)微生物含有水溶液中で吸着または取り込みにより微生物を含有する磁性粒子を調製する工程
(2)工程(1)で調製した磁性粒子を磁気分離または濾過する工程
[2]前記工程(1)において、微生物含有水溶液中に水溶性鉄塩を添加して微生物を含有する磁性粒子を調製する、[1]に記載の方法。
[3]前記工程(1)において、微生物含有水溶液中にアルカリを添加して中和する[1]または[2]に記載の方法。
[4]前記水溶性鉄塩が、塩化鉄、硫酸鉄又は硝酸鉄である、[2]または[3]に記載の方法。
[5]前記水溶性鉄塩が、塩化第一鉄と塩化第二鉄との混合物である、[4]に記載の方法。
[6]前記工程(2)において、前記微生物含有水溶液中に高分子凝集剤を添加して、前記磁性微粒子を濾過または磁気分離を行う、[1]〜[5]のいずれか1に記載の方法。
[7]前記微生物が、高度不飽和脂肪酸、天然色素、ビタミン、アミノ酸、ミネラル、アルコール類、水素、糖質、脂質、タンパク質、脂肪酸、有機酸および炭化水素から選ばれる1つ以上の物質を生産する微細藻類である、[1]〜[6]のいずれか1に記載の方法。
[8]前記微細藻類が炭化水素を生産する微細藻類であって、該微細藻類がオーランチオキトリウム、ボトリオコッカス・ブラウニイ、シュードコリシスチス・エリプソイディアおよびシキゾリウムから選ばれる少なくとも1の藻類またはこれら藻類の変異株もしくは遺伝子組み換え株である、[7]に記載の方法。
[9]微生物を含有する磁性粒子を調製する槽を備え、かつ、該槽に該磁性粒子を自動的に濾過または磁気分離を行うための機能が配備された、[1]〜[8]のいずれか1に記載の微生物含有水溶液中の微生物の回収を行うための回収装置。
[1] A method for recovering microorganisms in an aqueous solution, which comprises the following steps (1) and (2).
(1) Step of preparing magnetic particles containing microorganisms by adsorption or uptake in an aqueous solution containing microorganisms (2) Step of magnetically separating or filtering the magnetic particles prepared in step (1) [2] In the step (1) The method according to [1], wherein a water-soluble iron salt is added to a microorganism-containing aqueous solution to prepare magnetic particles containing the microorganism.
[3] The method according to [1] or [2], wherein in the step (1), an alkali is added to the aqueous solution containing microorganisms to neutralize the mixture.
[4] The method according to [2] or [3], wherein the water-soluble iron salt is iron chloride, iron sulfate or iron nitrate.
[5] The method according to [4], wherein the water-soluble iron salt is a mixture of ferrous chloride and ferric chloride.
[6] The method according to any one of [1] to [5], wherein in the step (2), a polymer flocculant is added to the microorganism-containing aqueous solution to filter or magnetically separate the magnetic fine particles. Method.
[7] The microorganism produces one or more substances selected from polyunsaturated fatty acids, natural pigments, vitamins, amino acids, minerals, alcohols, hydrogens, sugars, lipids, proteins, fatty acids, organic acids and hydrocarbons. The method according to any one of [1] to [6], which is a microfatty acid.
[8] The microalgae are hydrocarbon-producing microalgae, and the microalgae are at least one alga selected from Aurantiochytrium, Botryococcus braunii, Pseudocorycystis ellipsoidia, and sixolium. The method according to [7], which is a mutant strain or a genetically modified strain of these algae.
[9] Of [1] to [8], the tank is provided with a tank for preparing magnetic particles containing microorganisms, and the tank is provided with a function for automatically filtering or magnetically separating the magnetic particles. A recovery device for recovering microorganisms in the microorganism-containing aqueous solution according to any one.

本発明では、微生物含有水溶液中で磁性粒子を調製することにより、均一系で迅速且つ効率的に微生物を取り込んだ磁性粒子を製造することができる。このようにして得られた微生物含有磁性粒子を濾過または磁気分離することで、簡便且つ効率的に水溶液中から微生物を分離、回収することができる。 In the present invention, by preparing magnetic particles in a microorganism-containing aqueous solution, it is possible to produce magnetic particles in which microorganisms are incorporated quickly and efficiently in a uniform system. By filtering or magnetically separating the microorganism-containing magnetic particles thus obtained, the microorganisms can be easily and efficiently separated and recovered from the aqueous solution.

図1は、回収前の試料を示す図である。(回収前)FIG. 1 is a diagram showing a sample before recovery. (Before collection) 図2は、回収後の試料を示す図である。(比較例1)FIG. 2 is a diagram showing a sample after recovery. (Comparative Example 1) 図3は、回収後の試料を示す図である。(実施例1)FIG. 3 is a diagram showing a sample after recovery. (Example 1)

本発明の水溶液中の微生物の回収方法は、以下の工程(1)および(2)を含む、水溶液中の微生物を回収する方法である。
(1)微生物含有水溶液中で吸着または取り込みにより微生物を含有する磁性粒子を調製する工程
(2)工程(1)で調製した磁性粒子を磁気分離または濾過する工程
以下、各工程について説明する。
The method for recovering microorganisms in an aqueous solution of the present invention is a method for recovering microorganisms in an aqueous solution, which comprises the following steps (1) and (2).
(1) Step of preparing magnetic particles containing microorganisms by adsorption or uptake in a microorganism-containing aqueous solution (2) Step of magnetically separating or filtering the magnetic particles prepared in step (1) Hereinafter, each step will be described.

工程(1)
工程(1)は、微生物含有水溶液中で吸着または取り込みにより微生物を含有する磁性粒子を調製する工程である。本明細書において、「微生物を含有する磁性粒子」とは、微生物を吸着または取り込んだ磁性粒子をいう。微生物としては、高度不飽和脂肪酸、天然色素、ビタミン、アミノ酸、ミネラル、アルコール類、水素、糖質、脂質、タンパク質、脂肪酸、有機酸および炭化水素から選ばれる1つ以上の物質を生産する微細藻類、細菌または菌類がより好ましく、該物質を生産する微細藻類がさらに好ましい。
Process (1)
Step (1) is a step of preparing magnetic particles containing microorganisms by adsorption or uptake in a microorganism-containing aqueous solution. As used herein, the term "magnetic particles containing microorganisms" refers to magnetic particles that have adsorbed or incorporated microorganisms. Microorganisms include microalgae that produce one or more substances selected from polyunsaturated fatty acids, natural pigments, vitamins, amino acids, minerals, alcohols, hydrogen, sugars, lipids, proteins, fatty acids, organic acids and hydrocarbons. , Bacteria or fungi are more preferred, and microalgae producing the substance are even more preferred.

具体的には、微生物としては、例えば、天然物の色素の一種であるアスタキサンチン生産能を有する微細藻類[例えば、ヘマトコッカス藻(Haematococus pluvialis)、クロレラ・ゾフィンギエンシス(Chlorella zofigiensis)、クロロコックム属(Chlorococcum sp.)、ファフィア・ロドチーマ(Phaffia rhodozyma)、モノラフィディウム属(Monoraphidium sp.)など]、高度不飽和脂肪酸の一種であるDHA(ドコサヘキサエン酸)またはEPA(エイコサペンタエン酸)の生産能を有する微細藻類[例えば、ピンギオクリシス属(Pinguichrysis sp.)、パブロバ属(Pavlova sp.)、フェダクチラム・トリコヌタム(Pheodactylum tricornutum)、ナノクロロプシス・オーシャニック(Nannochloropsis oceanic)など]が挙げられ、特に、炭化水素を生産する微細藻類[例えば、オーランチオキトリウム属(Aurantiochytrium sp.)、ボツリオコッカス・ブラウニー(Botryococcus braunii)、クロレラ属(Chlorella sp.)、シリンドロテカ属(Cylindrotheca sp.)、ドナリエラ・プリモレクタ(Dunaliella primolecta)、イソクリシス属(Isochrysis sp.)、ナンノクロリシス属(Nannochloris sp.)、ナンノクロプシス属(Nannochloropsis sp.)、ネクロリス・オレオアブンダンス(Neochloris oleoabundans)、ニッチア属(Nitzschia sp.)、フェオダクチラム・トリコヌタム(Phaeodactylum tricornutum)、シゾキトリウム属(Schizochytrium sp.)、テトラセルミス・スエシカ(Tetraselmis suecica)、シュードコリシスチス・エリプソイディア(Pseudochoricystis ellipsoidea)およびマイクロシスティス属(Microcystis sp.)など]が好ましく、より好ましくは該微細藻類がオーランチオキトリウム、ボトリオコッカス・ブラウニイ、シュードコリシスティス・エリプソイディアおよびシキゾリウムから選ばれる少なくとも1の微細藻類またはこれら微細藻類の変異株もしくは遺伝子組み換え株である。 Specifically, as microorganisms, for example, microalgae having the ability to produce astaxanthin, which is a kind of pigment of a natural product [for example, Haematococcus plvialis, Chlorella zofigensis, Chlorella zofigensis, Chlorella zofigensis (for example, Chlorellaccum sp.), Phaffia rhodozima, Monorapidium sp., Etc.], DHA (docosahexaenoic acid) or EPA (eicosapentaenoic acid), which is a kind of highly unsaturated fatty acids. Microalgae [eg, Pinguichrysis sp., Pavlova sp., Haematococcus tricornutum, Nanochloropsis oceanic (Nannochlorpsis sp.), Nanochloropsis, etc. Microalgae to be produced [for example, Astaxanthinum sp., Botryococcus branii, Chlorella sp. ), Isochrysis sp., Nannochloris sp., Nannochloropsis sp., Neochloris oleoabundans, Nitchia spidans, Nitchia sp. -Triconutum (Phaeodactylum tricornutum), genus Astaxanthin (Schizochytrium sp.), Tetraselmis sucica, Pseudocholyssis ssice, siropsis Preferably, the microalgae are astaxanthin, botriococcus brownii, At least one microalgae selected from Pseudocolycystis ellipsoidia and xyzolium, or mutants or genetically modified strains of these microalgae.

微生物含有水溶液としては、例えば、河川水、湖沼水、井戸水、水道原水、地下水、下水、廃水および公園の水等の環境中に存在する水試料、並びに微細藻類、細菌または菌類の培養液等が挙げられる。なお、水溶性物を含有する水溶液は必要に応じて、油水分離、濾過またはpH調整等の前処理を行ってもよい。 Examples of the microorganism-containing aqueous solution include water samples existing in the environment such as river water, lake water, well water, raw tap water, groundwater, sewage, wastewater and park water, and culture solutions of microalgae, bacteria or fungi. Can be mentioned. If necessary, the aqueous solution containing the water-soluble substance may be subjected to pretreatment such as oil-water separation, filtration or pH adjustment.

本発明では、微生物含有水溶液中で磁性粒子を調製することによって、磁性粒子の調製過程において、磁性粒子中に微生物を吸着又は取り込んだ、微生物を含有する磁性粒子を調製することができれば、いかなる調製方法であってもよい。 In the present invention, by preparing magnetic particles in a microorganism-containing aqueous solution, any preparation can be made as long as the magnetic particles containing microorganisms can be prepared by adsorbing or incorporating the microorganisms into the magnetic particles in the process of preparing the magnetic particles. It may be a method.

微生物を含有する磁性粒子の調製方法としては、例えば、微生物含有水溶液において、水溶性鉄塩を添加することにより、水溶液中で微生物を含有する磁性粒子を調製することができる。かかる磁性粒子の調製過程において、微生物と反応しつつ水溶性鉄塩が反応して、微生物を含有する磁性粒子が得られるものと推定され、かつ、かかる調製工程を経ることにより、微生物が非常に効率よく、かつ短時間で磁性粒子に吸着ないし取り込まれる。 As a method for preparing magnetic particles containing microorganisms, for example, magnetic particles containing microorganisms can be prepared in the aqueous solution by adding a water-soluble iron salt. In the process of preparing the magnetic particles, it is presumed that the water-soluble iron salt reacts with the microorganisms to obtain magnetic particles containing the microorganisms, and the microorganisms become very large through the preparation process. Efficiently and in a short time, it is adsorbed or incorporated into magnetic particles.

水溶性鉄塩としては、塩化鉄、硫酸鉄または硝酸鉄が利用できる。水溶性鉄塩としては、それぞれの2価及び3価の水溶性鉄塩の混合物が好ましく、特に、塩化第一鉄と塩化第二鉄との混合物が好ましい。微生物含有水溶液中への水溶性鉄塩の添加量は、塩化第二鉄は塩化第一鉄に対して2倍量であることが好ましく、より好ましくは1.23倍量である。 As the water-soluble iron salt, iron chloride, iron sulfate or iron nitrate can be used. As the water-soluble iron salt, a mixture of each divalent and trivalent water-soluble iron salt is preferable, and a mixture of ferrous chloride and ferric chloride is particularly preferable. The amount of the water-soluble iron salt added to the microbial-containing aqueous solution is preferably twice the amount of ferric chloride, more preferably 1.23 times the amount of ferric chloride.

更に、磁性粒子を効率よく調製するために、水溶液中にアルカリを添加して中和することが好ましい。アルカリを水溶液中に添加する時期は限定的ではないが、磁性粒子を製造するための原料化合物を水溶液中に添加した後であることが好ましい。アルカリは、磁性粒子の形成を助けるものであれば特に限定されないが、例えば、経済性および取扱性の観点から、水酸化ナトリウム、アンモニア水および尿素等が挙げられる。磁性粒子を調製するpHは8以上が好ましく、より好ましくは10以上である。また、撹拌することにより、磁性粒子の調製にかかる時間を短縮することができるため好ましい。 Further, in order to efficiently prepare the magnetic particles, it is preferable to add an alkali to the aqueous solution to neutralize the particles. The timing of adding the alkali to the aqueous solution is not limited, but it is preferably after the raw material compound for producing the magnetic particles is added to the aqueous solution. The alkali is not particularly limited as long as it assists in the formation of magnetic particles, and examples thereof include sodium hydroxide, aqueous ammonia and urea from the viewpoint of economy and handleability. The pH at which the magnetic particles are prepared is preferably 8 or more, more preferably 10 or more. Further, stirring is preferable because the time required for preparing the magnetic particles can be shortened.

磁性粒子としては、例えば、マグネタイト、酸化ニッケル、フェライト、コバルト鉄酸化物、バリウムフェライト、炭素鋼、タングステン鋼、KS鋼、希土類コバルト磁石およびヘマタイト等の磁性粒子が挙げられる。 Examples of the magnetic particles include magnetic particles such as magnetite, nickel oxide, ferrite, cobalt iron oxide, barium ferrite, carbon steel, tungsten steel, KS steel, rare earth cobalt magnet and hematite.

磁性粒子の濾過または磁気分離が可能であれば特に限定されないが、回収効率の観点から、磁性粒子の粒径は1〜10μmに調製することが好ましく、3〜7μmであることがより好ましい。 The magnetic particles are not particularly limited as long as they can be filtered or separated, but from the viewpoint of recovery efficiency, the particle size of the magnetic particles is preferably adjusted to 1 to 10 μm, more preferably 3 to 7 μm.

工程(2)
工程(2)は、工程(1)で調製した磁性粒子を磁気分離または濾過する工程である。工程(1)で調製した磁性粒子は、そのままでも沈殿凝集し、分離することができるが、濾過または磁気分離をすることにより、迅速に且つ効率的に磁性粒子を回収することができる。磁気分離は、永久磁石、電磁石、超伝導磁石または磁気カラムなどの従来公知の方法を用いることができる。
Process (2)
The step (2) is a step of magnetically separating or filtering the magnetic particles prepared in the step (1). The magnetic particles prepared in the step (1) can be precipitated, aggregated and separated as they are, but the magnetic particles can be quickly and efficiently recovered by filtration or magnetic separation. For magnetic separation, conventionally known methods such as permanent magnets, electromagnets, superconducting magnets or magnetic columns can be used.

磁気粒子の濾過は、工業用濾紙、メンブランフィルタ、中空フィルタ、カートリッジフィルタ、ガラス濾紙または濾過板などの公知のフィルタを用いて、従来公知の方法により行うことができる。フィルタの孔径は特に限定的ではないが、濾過速度の向上、目詰まり防止の点で、0.2μm以上であることが好ましい。上限は特に限定的でないが、生成した磁性微粒子の濾過時の回収漏れを防ぐ点で、1μm以下であることが好ましい。 Filtration of magnetic particles can be performed by a conventionally known method using a known filter such as an industrial filter paper, a membrane filter, a hollow filter, a cartridge filter, a glass filter paper or a filter plate. The pore size of the filter is not particularly limited, but is preferably 0.2 μm or more in terms of improving the filtration rate and preventing clogging. The upper limit is not particularly limited, but is preferably 1 μm or less in order to prevent recovery leakage during filtration of the generated magnetic fine particles.

更に、磁気分離または濾過の速度を速めるために、磁性粒子の調製後、高分子凝集剤を添加してもよい。高分子凝集剤は生成した磁性粒子を凝集できる凝集剤であれば特に限定されないが、例えば、ポリアクリル酸などのポリアニオン性高分子凝集剤が挙げられる。 Further, in order to increase the speed of magnetic separation or filtration, a polymer flocculant may be added after the preparation of the magnetic particles. The polymer flocculant is not particularly limited as long as it can aggregate the generated magnetic particles, and examples thereof include polyanionic polymer flocculants such as polyacrylic acid.

本発明の方法を適用できる微生物含有水溶液の微生物の濃度は特に限定的ではないが、1000ppm〜1ppmの微生物濃度の微生物含有水溶液に幅広く適用できる。なお、本発明において、微生物濃度(ppm)は、質量濃度[(微生物の質量)/(水溶液の体積)]を示す。 The concentration of microorganisms in the microbial-containing aqueous solution to which the method of the present invention can be applied is not particularly limited, but can be widely applied to microbial-containing aqueous solutions having a microbial concentration of 1000 ppm to 1 ppm. In the present invention, the microbial concentration (ppm) indicates the mass concentration [(mass of microorganism) / (volume of aqueous solution)].

また、本発明の方法における、微生物を含有する磁性粒子の調製工程及び濾過または磁気分離工程のそれぞれの温度及び処理時間も特に限定的ではないが、温度は好ましくは20〜100℃であり、より好ましくは50℃〜70℃である。 Further, the temperature and treatment time of each of the step of preparing the magnetic particles containing microorganisms and the step of filtration or magnetic separation in the method of the present invention are not particularly limited, but the temperature is preferably 20 to 100 ° C. It is preferably 50 ° C. to 70 ° C.

また、適用する微生物含有水溶液の濃度、磁気分離に使用する磁石の磁力、濾過に使用するフィルタの性能にもよるが、本発明の方法を適用することにより、磁性粒子の調製工程は5分以内、好ましくは2〜3分程度と、従来の方法に比して大幅に時間を短縮することができ、濾過または磁気分離工程と併せても、好ましくは20分以内、より好ましくは10〜20分程度で微生物を分離・回収することができる。 Further, although it depends on the concentration of the applied microorganism-containing aqueous solution, the magnetic force of the magnet used for magnetic separation, and the performance of the filter used for filtration, the process of preparing magnetic particles can be completed within 5 minutes by applying the method of the present invention. The time can be significantly shortened, preferably about 2 to 3 minutes, as compared with the conventional method, and even when combined with the filtration or magnetic separation step, it is preferably within 20 minutes, more preferably 10 to 20 minutes. Microorganisms can be separated and recovered to some extent.

微生物含有水溶液を磁性粒子調製槽に導入した後、磁性粒子を生成させるために、上記温度の範囲とする操作は、金属塩及びアルカリを添加する前でもよく、金属塩及びアルカリを添加する間でもよく、金属塩及びアルカリを添加した後でもよい。 After introducing the microbial-containing aqueous solution into the magnetic particle preparation tank, the operation of setting the temperature within the above temperature range in order to generate magnetic particles may be performed before adding the metal salt and alkali, or even during the addition of the metal salt and alkali. Often, it may be after the addition of metal salts and alkalis.

生成した磁性粒子を含む反応液は、遠心分離等の分離操作によっても分離が可能であるが、濾過または磁気分離を用いることにより迅速かつ効率的な分離回収が可能となる。磁気分離の操作は、永久磁石、電磁石または超伝導磁石等の磁力を用いて、磁性粒子を反応液から分離する既知の方法、装置を用いることができる。 The reaction solution containing the generated magnetic particles can be separated by a separation operation such as centrifugation, but by using filtration or magnetic separation, quick and efficient separation and recovery are possible. For the magnetic separation operation, a known method or apparatus for separating magnetic particles from the reaction solution by using a magnetic force such as a permanent magnet, an electromagnet, or a superconducting magnet can be used.

また、微生物の回収効率は97〜99.9%であり、従来の処理効率よりも優れた微生物処理効率を達成することができる。また、回収される沈殿物も微生物の濃度により変化するが、水溶性鉄塩を使用した磁性粒子の使用量と比して微増程度であり、従来の方法と比較して格段に回収効率を向上することができる。 In addition, the recovery efficiency of microorganisms is 97 to 99.9%, and it is possible to achieve a microbial treatment efficiency superior to that of conventional treatment efficiencies. In addition, the recovered precipitate also changes depending on the concentration of microorganisms, but it is only slightly increased compared to the amount of magnetic particles using the water-soluble iron salt, and the recovery efficiency is significantly improved as compared with the conventional method. can do.

また、本発明の方法によれば、磁性粒子調製槽に高濃度の微生物含有水溶液を導入し、上記方法に従い微生物を含有する磁性粒子を調製した後、該槽に自動的に磁性粒子を濾過または磁気分離するための機能を配備することにより、微生物を含有する磁性粒子を効率よく、かつ自動的に回収し、廃棄することができる。更に、該磁性粒子を回収した後の水溶液を上記磁性粒子の調製工程に再利用するように、処理装置を設計することが好ましい。 Further, according to the method of the present invention, a high-concentration aqueous solution containing microorganisms is introduced into a magnetic particle preparation tank, magnetic particles containing microorganisms are prepared according to the above method, and then the magnetic particles are automatically filtered or filtered into the tank. By providing a function for magnetic separation, magnetic particles containing microorganisms can be efficiently and automatically recovered and discarded. Further, it is preferable to design the processing apparatus so that the aqueous solution after collecting the magnetic particles can be reused in the process of preparing the magnetic particles.

具体的には、例えば、生成した磁性粒子を含む反応液を磁性粒子調製槽の外部に設置した磁石により磁集し、調製槽内に保持させ、反応液を排出させた後、磁石を取り除き磁性粒子を回収する方法、磁石を調製槽中に設置し、その表面に磁性粒子を磁収させた後、反応液と分離し、磁集した磁性粒子を磁石の表面から掻き落して回収する方法、磁場中に設置した磁性体カラムに反応液を通して、磁性体カラム内に磁性粒子を磁集した後、磁場を除き磁性粒子を回収する方法等が挙げられる。 Specifically, for example, the reaction solution containing the generated magnetic particles is magnetically collected by a magnet installed outside the magnetic particle preparation tank, held in the preparation tank, the reaction solution is discharged, and then the magnet is removed to make the magnetism. A method of recovering particles, a method in which a magnet is placed in a preparation tank, magnetic particles are magnetically collected on the surface thereof, then separated from the reaction solution, and the magnetic particles collected are scraped off from the surface of the magnet to be recovered. Examples thereof include a method in which a reaction solution is passed through a magnetic column placed in a magnetic field, magnetic particles are magnetically collected in the magnetic column, and then the magnetic particles are removed to recover the magnetic particles.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

なお、オーランチオキトリウムの濃度の測定は、株式会社島津製作所社製UV−1700PharmaSpecを用いて、測定波長403nmで測定した。また、本実施例で使用した水は、ミリポア社製純水製造装置「Elix UV 35」によって精製された導電率14.7MΩcmの精製水である。 The concentration of Aurantiochytrium was measured at a measurement wavelength of 403 nm using a UV-1700 PharmaSpec manufactured by Shimadzu Corporation. The water used in this example is purified water having a conductivity of 14.7 MΩcm purified by the pure water production apparatus "Elix UV 35" manufactured by Millipore.

<実施例1>
60mlのサンプル瓶にオーランチオキトリウム培養液(濃度0.03wt%、pH:9.97、高砂熱学工業(株)より入手)を25mlと塩化第二鉄・六水和物水溶液(濃度17.3w/v%)を0.312ml添加し、続いて塩化第一鉄・四水和物水溶液(濃度6.4w/v%)0.624ml添加し、室温で回転数300rpmにて2分攪拌した。攪拌を継続しながら8w/v%水酸化ナトリウム水溶液を5.5ml添加し、ウォーターバス中の液温が60℃に到達後、2分間攪拌を継続した。その後、攪拌を停止し、生成した磁性粒子と一緒にオーランチオキトリウムを4000Gのネオジウム磁石にて回収した。磁性粒子回収後の上清を採取し、透過率を測定した結果、100%であった。また、回収前の透過率は11.0%であった。
<Example 1>
In a 60 ml sample bottle, 25 ml of oranthiochitrium culture solution (concentration 0.03 wt%, pH: 9.97, obtained from Takasago Thermal Science Co., Ltd.) and ferric chloride / hexahydrate aqueous solution (concentration 17) .3 w / v%) was added in an amount of 0.312 ml, followed by addition of 0.624 ml of an aqueous ferrous chloride / tetrahydrate solution (concentration: 6.4 w / v%), and the mixture was stirred at room temperature at a rotation speed of 300 rpm for 2 minutes. did. 5.5 ml of an 8 w / v% sodium hydroxide aqueous solution was added while continuing stirring, and after the liquid temperature in the water bath reached 60 ° C., stirring was continued for 2 minutes. Then, the stirring was stopped, and Aurantiochytrium was recovered together with the generated magnetic particles with a 4000 G neodymium magnet. The supernatant after collecting the magnetic particles was collected and the transmittance was measured and found to be 100%. The transmittance before recovery was 11.0%.

<比較例1>
60mlの三口フラスコにオーランチオキトリウム培養液(濃度0.03wt%、pH:9.97、高砂熱学工業(株)より入手)を25mlと磁性粒子を0.05g添加し、室温で回転数300rpmにて2分攪拌した。その後、攪拌を停止し、生成した磁性粒子と一緒にオーランチオキトリウムを4000Gのネオジウム磁石にて回収した。磁性粒子回収後の上清を採取し、透過率を測定した結果、60.4%であった。また、回収前の透過率は11.0%であった。
<Comparative example 1>
Add 25 ml of Aurantiochytrium culture solution (concentration 0.03 wt%, pH: 9.97, obtained from Takasago Thermal Science Co., Ltd.) and 0.05 g of magnetic particles to a 60 ml three-necked flask, and rotate at room temperature. The mixture was stirred at 300 rpm for 2 minutes. Then, the stirring was stopped, and Aurantiochytrium was recovered together with the generated magnetic particles with a 4000 G neodymium magnet. As a result of collecting the supernatant after collecting the magnetic particles and measuring the transmittance, it was 60.4%. The transmittance before recovery was 11.0%.

回収前の試料、回収後の比較例1の試料および回収後の実施例1を観察した結果を図1〜図3にそれぞれ示す。図1〜図3に示すように、実施例1では、比較例1に対し、高効率でオーランチオキトリウムが回収できたことが目視によっても確認された。 The results of observing the sample before recovery, the sample of Comparative Example 1 after recovery, and Example 1 after recovery are shown in FIGS. 1 to 3, respectively. As shown in FIGS. 1 to 3, it was visually confirmed that Aurantiochytrium could be recovered with higher efficiency in Example 1 than in Comparative Example 1.

上記の結果から、本発明の方法によれば、水溶液中から微生物を効率的かつ簡便に回収できることがわかった。 From the above results, it was found that according to the method of the present invention, microorganisms can be efficiently and easily recovered from the aqueous solution.

Claims (6)

1)微生物含有水溶液中で吸着または取り込みにより微生物を含有する磁性粒子を調製する工程と、
(2)前記工程(1)で調製した磁性粒子を磁気分離または濾過する工程とを含み、
前記工程(1)において、前記微生物含有水溶液中に水溶性鉄塩を添加して微生物を含有する磁性粒子が調製され、かつ
前記水溶性鉄塩が、塩化第一鉄と塩化第二鉄との混合物である、
水溶液中の微生物を回収する方法。
( 1) A step of preparing magnetic particles containing microorganisms by adsorption or uptake in a microorganism-containing aqueous solution, and
(2) Including a step of magnetically separating or filtering the magnetic particles prepared in the above step (1).
In the step (1), a water-soluble iron salt is added to the microorganism-containing aqueous solution to prepare magnetic particles containing the microorganism, and
The water-soluble iron salt is a mixture of ferrous chloride and ferric chloride.
A method of recovering microorganisms in an aqueous solution.
前記工程(1)において、微生物含有水溶液中にアルカリを添加して中和する請求項に記載の方法。 The method according to claim 1 , wherein in the step (1), an alkali is added to the aqueous solution containing microorganisms to neutralize the mixture. 前記工程(2)において、前記微生物含有水溶液中に高分子凝集剤を添加して、前記磁性粒子を濾過または磁気分離を行う、請求項1または2に記載の方法。 The method according to claim 1 or 2 , wherein in the step (2), a polymer flocculant is added to the microorganism-containing aqueous solution to filter or magnetically separate the magnetic particles. 前記微生物が、高度不飽和脂肪酸、天然色素、ビタミン、アミノ酸、ミネラル、アルコール類、水素、糖質、脂質、タンパク質、脂肪酸、有機酸および炭化水素から選ばれる1つ以上の物質を生産する微細藻類である、請求項1〜のいずれか1項に記載の方法。 Microorganisms that produce one or more substances in which the microorganisms are selected from polyunsaturated fatty acids, natural pigments, vitamins, amino acids, minerals, alcohols, hydrogen, sugars, lipids, proteins, fatty acids, organic acids and hydrocarbons. The method according to any one of claims 1 to 3. 前記微細藻類が炭化水素を生産する微細藻類であって、該微細藻類がオーランチオキトリウム、ボトリオコッカス・ブラウニイ、シュードコリシスチス・エリプソイディアおよびシキゾリウムから選ばれる少なくとも1の藻類またはこれら藻類の変異株もしくは遺伝子組み換え株である、請求項に記載の方法。 The microalgae are hydrocarbon-producing microalgae, and the microalgae are at least one alga selected from Aurantiochytrium, Botryococcus braunii, Pseudocorycystis ellipsoidia and sixolium, or these algae. The method according to claim 4 , which is a mutant strain or a genetically modified strain. 微生物を含有する磁性粒子を調製する槽を備え、かつ、該槽に該磁性粒子を自動的に濾過または磁気分離を行うための機能が配備された、請求項1〜のいずれか1項に記載の微生物含有水溶液中の微生物の回収を行うための回収装置。 According to any one of claims 1 to 5 , a tank for preparing magnetic particles containing microorganisms is provided, and the tank is provided with a function for automatically filtering or magnetically separating the magnetic particles. A recovery device for recovering microorganisms in the above-mentioned microorganism-containing aqueous solution.
JP2016101531A 2016-05-20 2016-05-20 Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles Active JP6880571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101531A JP6880571B2 (en) 2016-05-20 2016-05-20 Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101531A JP6880571B2 (en) 2016-05-20 2016-05-20 Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles

Publications (2)

Publication Number Publication Date
JP2017205085A JP2017205085A (en) 2017-11-24
JP6880571B2 true JP6880571B2 (en) 2021-06-02

Family

ID=60414623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101531A Active JP6880571B2 (en) 2016-05-20 2016-05-20 Recovery method and recovery device for microorganisms in aqueous solution using magnetic particles

Country Status (1)

Country Link
JP (1) JP6880571B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505163A (en) * 1989-03-15 1991-11-14 ゲゼルシャフト フュア バイオテクノロギッシェ フォーシュング エムベーハー(ゲーベーエフ) Catalytic reactions and supports and equipment for their implementation
EP1316599B1 (en) * 2000-08-21 2014-03-26 National Institute of Advanced Industrial Science and Technology Magnetic particles and process for producing the same
GB0228914D0 (en) * 2002-12-11 2003-01-15 Dynal Biotech Asa Particles
JP4518767B2 (en) * 2003-09-09 2010-08-04 チッソ株式会社 Stimulus-responsive polymer-immobilized magnetic fine particles and adsorbent using the same
EP1882738A4 (en) * 2005-05-20 2009-02-25 Arkray Inc Methods for recovering microorganism and nucleic acid using fine particle and kit to be used for the methods
EP2336349B1 (en) * 2008-09-26 2016-01-06 Biótica, Bioquímica Analítica, S.L. Rapid procedure for detection of microorganisms with magnetic particles
US20110201076A1 (en) * 2010-01-22 2011-08-18 Colorado School Of Mines Harvesting micro algae
LT6018B (en) * 2012-08-13 2014-04-25 Uab "Unera" The method and system of algae cell disturbance and isolation of bioproduts
JP6118077B2 (en) * 2012-11-22 2017-04-19 栗田工業株式会社 Method for recovering microalgae with hydrocarbon production ability
JP2016059281A (en) * 2014-09-16 2016-04-25 富士電機株式会社 Oil and fats production method and oil and fats production apparatus

Also Published As

Publication number Publication date
JP2017205085A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Saravanan et al. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development
Muylaert et al. Harvesting of microalgae: Overview of process options and their strengths and drawbacks
Zhao et al. Symbiosis of microalgae and bacteria consortium for heavy metal remediation in wastewater
Van Haver et al. Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications
Chen et al. Using ammonia for algae harvesting and as nutrient in subsequent cultures
Wang et al. Harvesting microalgae by magnetic separation: A review
Schlesinger et al. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production
Liu et al. Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe3O4 coated with polyethyleneimine
Yadollahpour et al. Electromagnetic fields for the treatments of wastewater: a review of applications and future opportunities
Rai et al. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives
Gerulová et al. Magnetic Fe3O4-polyethyleneimine nanocomposites for efficient harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii
Mustafa et al. Microalgae: a renewable source for wastewater treatment and feedstock supply for biofuel generation
Rakesh et al. Sustainable cost-effective microalgae harvesting strategies for the production of biofuel and oleochemicals
US20130273630A1 (en) Compositions and methods for continuous harvesting of suspension growth cultures
CN107082489A (en) Manganese and the synchronous minimizing technology of nitrate in a kind of underground water
CN112456654B (en) Preparation method and application of biological seed crystal and method for synchronously removing calcium and fluorine in underground water
Salama et al. Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production
CN109576159B (en) Chlorella W4 capable of removing heavy metals in water with high heavy metal content and application thereof
Kucmanová et al. Microalgae harvesting: a review
Deepa et al. A review of the harvesting techniques of microalgae
Singh et al. Heavy metal water pollution: an overview about remediation, removal and recovery of metals from contaminated water
Rashid et al. Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter
Huiping et al. Biosorption equilibrium and kinetics of Au (III) and Cu (II) on magnetotactic bacteria
CN109576160B (en) Chlorella W3 capable of removing heavy metals in water with high heavy metal content and application thereof
Zhu et al. Advances in industrial harvesting techniques for edible microalgae: Recent insights into sustainable, efficient methods and future directions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250