JP6877943B2 - How to make bottle cans - Google Patents

How to make bottle cans Download PDF

Info

Publication number
JP6877943B2
JP6877943B2 JP2016200158A JP2016200158A JP6877943B2 JP 6877943 B2 JP6877943 B2 JP 6877943B2 JP 2016200158 A JP2016200158 A JP 2016200158A JP 2016200158 A JP2016200158 A JP 2016200158A JP 6877943 B2 JP6877943 B2 JP 6877943B2
Authority
JP
Japan
Prior art keywords
diameter
end side
neck
shoulder
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200158A
Other languages
Japanese (ja)
Other versions
JP2018061964A (en
Inventor
孝太朗 島田
孝太朗 島田
一 実末
一 実末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Can Corp
Original Assignee
Universal Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Can Corp filed Critical Universal Can Corp
Priority to JP2016200158A priority Critical patent/JP6877943B2/en
Publication of JP2018061964A publication Critical patent/JP2018061964A/en
Application granted granted Critical
Publication of JP6877943B2 publication Critical patent/JP6877943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ボトル缶の製造方法に関するものである。 The present invention relates to a method for producing a bottle can.

このようなボトル缶の製造方法として、例えば特許文献1には、アルミニウム合金等の金属材料から絞り加工、絞りしごき加工またはインパクト成形によって造られ、かつ缶本体がキャップ取付部としてのねじ部を有する口部、テーパー状の肩部、胴部および底部から構成され、キャップを螺合して高い密封性を保持できるねじ付金属缶において、口部のねじ部下端から、半径方向に拡大するテーパー状の肩部上端周囲に、内側に滑らかに湾曲する凹部を形成するとともに、この凹部の下方の連続して外側に滑らかに湾曲する凸部を形成することが記載されている。さらに、この特許文献1では、凹部から連続する滑らかな凸部の湾曲の程度として、垂直方向すなわち缶軸に対して35°〜60°の傾斜角、具体的には45°の傾斜角とするのが好ましいと記載されている。 As a method for manufacturing such a bottle can, for example, Patent Document 1 describes that it is manufactured from a metal material such as an aluminum alloy by drawing, squeezing, or impact forming, and the can body has a threaded portion as a cap mounting portion. In a threaded metal can that consists of a mouth, tapered shoulder, body and bottom, and can maintain high sealing performance by screwing a cap, a tapered shape that expands in the radial direction from the lower end of the threaded part of the mouth. It is described that a concave portion that curves smoothly inward is formed around the upper end of the shoulder portion of the shoulder portion, and a convex portion that continuously curves outward smoothly below the concave portion is formed. Further, in Patent Document 1, the degree of curvature of the smooth convex portion continuous from the concave portion is set to an inclination angle of 35 ° to 60 ° with respect to the vertical direction, that is, a can axis, specifically, an inclination angle of 45 °. Is stated to be preferable.

また、例えば特許文献2には、有底筒状に形成されたアルミニウム合金等の金属製の缶体(有底円筒体)の開口部を縮径してなる口金部の上部外周にねじ部が設けられるとともに、このねじ部よりも下方にキャップ本体下部を巻き締めるための膨出部が形成されたボトル缶の製造方法であって、上記開口部を縮径して口金部を形成した後、その口金部の開口端から所定距離分だけ再び拡径して拡径部を形成し、上記ねじ部は、拡径部が形成された後、ねじを形成する部分を縮径して、その縮径された部分にねじ切り加工することによって形成され、上記膨出部は、ねじ部を形成する際に縮径されずに残った拡径部分によって形成されるボトル缶の製造方法が記載されている。この場合に、上記開口部を縮径した口金部における上記膨出部の下方には、肩部から上端側に延びる首部が形成される。 Further, for example, in Patent Document 2, a screw portion is provided on the upper outer periphery of a base portion formed by reducing the diameter of an opening of a metal can body (bottomed cylindrical body) such as an aluminum alloy formed in a bottomed tubular shape. This is a method for manufacturing a bottle can in which a bulging portion for winding the lower part of the cap body is formed below the screw portion as well as being provided. The diameter is expanded again by a predetermined distance from the opening end of the base portion to form a diameter-expanded portion, and after the diameter-expanded portion is formed, the diameter of the portion forming the screw is reduced and the diameter of the screw portion is reduced. A method for manufacturing a bottle can, which is formed by threading a diametered portion and is formed by an enlarged diameter portion remaining without being reduced in diameter when forming the threaded portion, is described. .. In this case, a neck portion extending from the shoulder portion to the upper end side is formed below the bulging portion in the mouthpiece portion having a reduced diameter of the opening portion.

ここで、上述のような肩部の成形は、内径が徐々に小さくなる円筒状の複数の金型を、内径が大きいものから順に有底円筒体の円筒部の上端側部分に圧入して順次塑性変形させることにより、この円筒部の上端側部分のうちの下端側部分を上端側に向けて段階的に内周側に向かうように傾斜させるとともに、この傾斜した下端側部分よりも内周側を内径が小さくなる円筒状に徐々に縮径させることによって行われる。 Here, in the molding of the shoulder portion as described above, a plurality of cylindrical dies whose inner diameters gradually decrease are press-fitted into the upper end side portion of the cylindrical portion of the bottomed cylinder in order from the one having the largest inner diameter. By plastically deforming, the lower end side portion of the upper end side portion of the cylindrical portion is inclined toward the upper end side in a stepwise manner toward the inner peripheral side, and the inner peripheral side of the inclined lower end side portion. This is done by gradually reducing the diameter of the cylinder into a cylindrical shape with a smaller inner diameter.

さらに、特許文献2に記載された膨出部の成形は、こうして傾斜させられた肩部の内周側に縮径した円筒状の首部が成形された後に、この首部の内径よりも僅かに大きな外径の下端外周部を有する拡径工具を上端側から首部に挿入して拡径させ、次いでこの拡径した部分の上端側にねじ切り加工することにより、上述のようにねじ切り加工によって縮径されずに残された部分として成形される。 Further, the molding of the bulging portion described in Patent Document 2 is slightly larger than the inner diameter of the bulging portion after the cylindrical neck portion having a reduced diameter is formed on the inner peripheral side of the shoulder portion inclined in this way. A diameter-expanding tool having an outer peripheral portion at the lower end of the outer diameter is inserted into the neck from the upper end side to expand the diameter, and then thread cutting is performed on the upper end side of the expanded portion, so that the diameter is reduced by thread cutting as described above. It is molded as the part left behind.

特開2001−213416号公報Japanese Unexamined Patent Publication No. 2001-21316 特許第4908544号公報Japanese Patent No. 4908544

ところで、近年では、このようなボトル缶を形成する金属材料の省資源化や材料製造の際の省エネルギー化のために缶本体のさらなる薄肉化が強く求められており、例えばアルミニウム合金製のボトル缶の場合には、板厚が0.230mm〜0.300mm程度のアルミニウム合金よりなる金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工を施して上述のような有底円筒体を成形し、さらに肩部や首部、膨出部を成形するとともにねじ切り加工を行ってボトル缶の缶本体を製造するようなことも要求されている。 By the way, in recent years, there has been a strong demand for further thinning of the can body in order to save resources and energy during material production of the metal material forming such a bottle can. For example, a bottle can made of an aluminum alloy. In the case of, the cup-shaped material formed by drawing from a metal plate made of an aluminum alloy having a plate thickness of about 0.230 mm to 0.300 mm is re-squeezed and ironed to form a bottomed cylindrical body as described above. It is also required to form a can body of a bottle can by forming a shoulder portion, a neck portion, and a bulging portion and threading the can body.

しかしながら、このように有底円筒体の薄肉化を図ったボトル缶では有底円筒体の強度は低下することになり、特許文献1に記載されているように凸部の缶軸に対する傾斜角が大きくて首部を成形する際の荷重が大きくなったり、あるいは特許文献2に記載された膨出部を成形する際の荷重が大きくなったりすると、これら首部や膨出部の成形の際に有底円筒体に座屈が生じるおそれがある。特に、有底円筒体を成形する際には、肩部や首部、膨出部やキャップ取付部を形成する有底円筒体の円筒部における上端側部分よりも、この円筒部の下端側部分の肉厚を薄くすることがあり、そのような有底円筒体では薄肉とされた胴部の下端側部分での座屈が一層顕著なものとなる。 However, in a bottle can in which the bottomed cylinder is thinned in this way, the strength of the bottomed cylinder is reduced, and as described in Patent Document 1, the inclination angle of the convex portion with respect to the can shaft is increased. If the load is large and the load for molding the neck is large, or if the load for molding the bulge described in Patent Document 2 is large, the bottom is formed when the neck and bulge are molded. Buckling may occur in the cylinder. In particular, when molding a bottomed cylinder, the lower end side portion of the bottomed cylinder portion is more than the upper end side portion of the bottomed cylinder portion forming the shoulder portion, the neck portion, the bulging portion and the cap mounting portion. The wall thickness may be reduced, and in such a bottomed cylinder, buckling at the lower end side portion of the thinned body portion becomes more remarkable.

本発明は、このような背景の下になされたもので、ボトル缶の缶本体に成形される金属板や有底円筒体の薄肉化を図っても、首部や膨出部の成形の際に有底円筒体に座屈が生じるのを防ぐことが可能なボトル缶の製造方法を提供することを目的としている。 The present invention has been made under such a background, and even if the metal plate or the bottomed cylinder to be molded on the can body of the bottle can is thinned, the neck portion or the bulging portion is formed. It is an object of the present invention to provide a method for manufacturing a bottle can that can prevent buckling of a bottomed cylinder.

上記課題を解決して、このような目的を達成するために、本発明は、第1に、缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、板厚0.230mm〜0.300mmの金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径で、前記肩部、前記首部、および前記キャップ取付部となる上端側部分の厚さが0.180mm〜0.225mm、かつ前記胴部となる下端側部分の厚さが前記上端側部分よりも薄い円筒部が形成された有底円筒体を成形するDIプレス工程と、この有底円筒体の上記上端側部分を縮径させることにより、上記肩部と、この肩部から上端側に向かうに従いさらに縮径する上記首部とを成形するボトルネック成形工程と、上記首部の上端部に上記キャップ取付部を成形するキャップ取付部成形工程とを備え、上記ボトルネック成形工程においては、上記首部において縮径する首部縮径部の上記缶軸に対する傾斜角を18°〜24°の範囲に成形するとともに、上記肩部の上端から上記首部縮径部の最小縮径位置までの上記缶軸に対する直径方向の外径の縮径量を0.5mm〜2.2mmの範囲とすることを特徴とする。 In order to solve the above problems and achieve such an object, the present invention firstly applies to an outer peripheral portion formed integrally with the bottom portion of the can body, and from the bottom portion to the upper end opening of the can body. A cylindrical body centered on the can shaft, a shoulder portion whose diameter decreases toward the upper end side, a neck portion extending further toward the upper end side from this shoulder portion, and a cap attachment portion are formed in this order. A method for manufacturing a bottle can, in which a cup-shaped material formed by drawing from a metal plate having a plate thickness of 0.230 mm to 0.300 mm is re-squeezed, squeezed, and bottom-shaped, and the bottom and the bottom are formed. With the same outer diameter as the body , the thickness of the shoulder, neck, and upper end of the cap attachment is 0.180 mm to 0.225 mm, and the thickness of the lower end of the body is 0.180 mm to 0.225 mm. The shoulder portion and the shoulder portion are formed by a DI press step of forming a bottomed cylindrical body in which a cylindrical portion thinner than the upper end side portion is formed, and by reducing the diameter of the upper end side portion of the bottomed cylindrical body. In the bottleneck molding step, a bottleneck molding step of molding the neck portion whose diameter is further reduced toward the upper end side and a cap mounting portion molding step of molding the cap mounting portion on the upper end portion of the neck portion are provided. Molds the inclination angle of the neck-reduced portion with respect to the can shaft in the range of 18 ° to 24 °, and extends from the upper end of the shoulder to the minimum diameter-reduced position of the neck-reduced portion. It is characterized in that the amount of reduction of the outer diameter in the radial direction with respect to the can shaft is in the range of 0.5 mm to 2.2 mm.

また、本発明は、第2に、缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、板厚0.230mm〜0.300mmの金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径で、前記肩部、前記首部、および前記キャップ取付部となる上端側部分の厚さが0.180mm〜0.225mm、かつ前記胴部となる下端側部分の厚さが前記上端側部分よりも薄い円筒部が形成された有底円筒体を成形するDIプレス工程と、この有底円筒体の上記上端側部分を縮径させて上記肩部と上記首部とを成形するボトルネック成形工程と、上記首部の上端部に、外周側に膨らむ膨出部を介して上記キャップ取付部を成形するキャップ取付部成形工程とを備え、上記キャップ取付部成形工程においては、上記膨出部において上記首部の上端から拡径する膨出部拡径部の上記缶軸に対する傾斜角を18°〜24°の範囲に成形するとともに、上記首部の上端から上記膨出部の最大膨出位置までの上記缶軸に対する直径方向の内径の拡径量を0.5mm〜2.2mmの範囲とすることを特徴とする。 Secondly, the present invention has a cylindrical body portion centered on the can shaft in order from the bottom portion toward the upper end opening of the can body on the outer peripheral portion integrally molded with the bottom portion of the can body. A method for manufacturing a bottle can, in which a shoulder portion whose diameter decreases toward the upper end side, a neck portion extending further toward the upper end side from the shoulder portion, and a cap attachment portion are formed, and the plate thickness is 0.230 mm or more. A cup-shaped material formed by drawing from a 0.300 mm metal plate is re-squeezed, squeezed, and bottom-formed to have the same outer diameter as the bottom and the body, and the shoulder, neck, and so on. And a bottomed portion having a cylindrical portion having a thickness of the upper end side portion serving as the cap mounting portion of 0.180 mm to 0.225 mm and a thickness of the lower end side portion serving as the body portion thinner than that of the upper end side portion. A DI press process for forming a cylindrical body, a bottleneck forming step for forming the shoulder portion and the neck portion by reducing the diameter of the upper end side portion of the bottomed cylindrical body, and an outer peripheral side at the upper end portion of the neck portion. It is provided with a cap mounting portion molding step of molding the cap mounting portion through a bulging portion that swells to the top, and in the cap mounting portion molding step, the bulging portion is expanded in diameter from the upper end of the neck portion in the bulging portion. The inclination angle of the diameter portion with respect to the can shaft is formed in the range of 18 ° to 24 °, and the diameter expansion amount of the inner diameter in the diameter direction with respect to the can shaft from the upper end of the neck portion to the maximum bulge position of the bulge portion. Is in the range of 0.5 mm to 2.2 mm.

これらのようなボトル缶の製造方法においては、首部における首部縮径部や膨出部における膨出部拡径部の缶軸に対する傾斜角が18°〜24°の範囲であって缶軸に対して浅い角度であり、従って金型や拡径工具を挿入することにより首部を縮径して成形するときや膨出部を拡径して成形するときの缶軸方向の荷重を小さくすることができる。また、肩部上端から首部縮径部の最小縮径位置までの缶軸に対する直径方向の外径の縮径量や首部上端から膨出部の最大膨出位置までの缶軸に対する直径方向の内径の拡径量も0.5mm〜2.2mmの範囲と小さく、すなわち首部や膨出部の成形量自体が小さいので、これら首部や膨出部を成形する際に有底円筒体に作用する荷重を抑えることができる。 In the method for manufacturing a bottle can as described above, the inclination angle of the diameter-reduced portion of the neck at the neck and the enlarged diameter of the bulge at the bulge with respect to the can shaft is in the range of 18 ° to 24 ° with respect to the can shaft. Therefore, it is possible to reduce the load in the can axis direction when molding by reducing the diameter of the neck part by inserting a mold or a diameter expansion tool or when molding by expanding the diameter of the bulging part. it can. In addition, the amount of diameter reduction in the radial direction with respect to the can shaft from the upper end of the shoulder to the minimum diameter reduction position of the neck contraction portion and the inner diameter in the radial direction with respect to the can shaft from the upper end of the neck portion to the maximum bulge position of the bulge portion. The amount of diameter expansion is as small as 0.5 mm to 2.2 mm, that is, the amount of molding of the neck and bulge itself is small, so the load acting on the bottomed cylinder when molding these neck and bulge. Can be suppressed.

このため、上記構成のボトル缶の製造方法によれば、たとえカップ状素材に成形される金属板の板厚が0.230mm〜0.300mmと薄く、またこのカップ状素材から成形された有底円筒体における円筒部の上端側部分の厚さも0.180mm〜0.225mmと薄くて、さらに円筒部の下端側部分の厚さはこれよりも薄い場合であっても、これら首部や膨出部の成形の際の荷重によって有底円筒体に座屈が生じるのを防ぐことができる。従って、このような座屈によるボトル缶の製造歩留まりや製造効率等の低下を招くことなく、ボトル缶の缶本体の薄肉化を図ることができ、さらなる省資源化や省エネルギー化を促すことが可能となる。 Therefore, according to the method for manufacturing a bottle can having the above configuration, the thickness of the metal plate formed into the cup-shaped material is as thin as 0.230 mm to 0.300 mm, and the bottom is formed from the cup-shaped material. Even if the thickness of the upper end side portion of the cylindrical portion of the cylindrical body is as thin as 0.180 mm to 0.225 mm, and the thickness of the lower end side portion of the cylindrical portion is thinner than this, these neck portions and bulging portions It is possible to prevent the bottomed cylinder from buckling due to the load during molding. Therefore, it is possible to reduce the thickness of the can body of the bottle can without causing a decrease in the manufacturing yield and manufacturing efficiency of the bottle can due to such buckling, and it is possible to promote further resource saving and energy saving. It becomes.

ここで、首部縮径部や膨出部拡径部の缶軸に対する傾斜角が24°を上回ると、首部を縮径したり膨出部を拡径したりするときに作用する荷重の缶軸方向の成分を十分に小さくすることができず、座屈を招くおそれがある。同様に、肩部上端から首部縮径部の最小縮径位置までの缶軸に対する直径方向の外径の縮径量や首部上端から膨出部の最大膨出位置までの缶軸に対する直径方向の内径の拡径量が2.2mmを上回っても、成形荷重が大きくなって上述のように薄肉の有底円筒体では座屈を生じるおそれがある。一方、上記傾斜角が18°を下回ったり、上記外径の縮径量や内径の拡径量が0.5mmを下回ったりすると、必要な傾斜角や外径の首部や膨出部を成形できなくなるおそれがある。 Here, when the inclination angle of the neck reduced diameter portion and the bulging portion enlarged diameter portion with respect to the can shaft exceeds 24 °, the can shaft of the load acting when the neck portion is reduced in diameter or the bulging portion is expanded in diameter. The directional component cannot be made sufficiently small, which may lead to buckling. Similarly, the amount of contraction of the outer diameter in the radial direction with respect to the can shaft from the upper end of the shoulder to the minimum contraction position of the neck contraction portion and the diameter direction with respect to the can shaft from the upper end of the neck to the maximum bulge position of the bulge. Even if the amount of expansion of the inner diameter exceeds 2.2 mm, the molding load becomes large and buckling may occur in the thin-walled bottomed cylindrical body as described above. On the other hand, if the inclination angle is less than 18 °, or if the amount of reduction of the outer diameter or the amount of expansion of the inner diameter is less than 0.5 mm, the required inclination angle or outer diameter of the neck or bulge can be formed. It may disappear.

なお、このようなボトル缶の缶本体に有底円筒体を経て成形される上記金属板は、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm〜265N/mmの範囲であることが望ましい。このベーキング後の耐力が235N/mmを下回ると、上述のような傾斜角や外径拡縮径量としても首部や膨出部の成形の際に有底円筒体の座屈が生じるおそれがあり、また逆にベーキング後の耐力が265N/mmを上回っても、成形に必要な荷重が大きくなって荷重制御が困難となるおそれがある。 The metal plate formed on the main body of such a bottle can via a bottomed cylinder is an aluminum alloy of A3004 or A3104 in JIS H 4000, and is 0.2 at 205 ° C. × 20 minutes after baking. It is desirable that the% proof stress is in the range of 235 N / mm 2 to 265 N / mm 2. If the proof stress after baking is less than 235 N / mm 2 , the bottomed cylindrical body may buckle during molding of the neck and bulge even if the inclination angle and the outer diameter expansion / contraction amount are as described above. On the contrary, even if the proof stress after baking exceeds 265 N / mm 2 , the load required for molding becomes large and the load control may become difficult.

以上説明したように、本発明によれば、首部や膨出部を成形する際の有底円筒体の座屈を防止することができ、このような座屈によるボトル缶の製造歩留まりや製造効率等の低下を防ぎつつ、ボトル缶の缶本体のさらなる薄肉化を図って、一層の省資源化や省エネルギー化を促進することが可能となる。 As described above, according to the present invention, it is possible to prevent buckling of the bottomed cylindrical body when molding the neck portion and the bulging portion, and the production yield and production efficiency of the bottle can due to such buckling can be prevented. It is possible to further reduce the thickness of the can body of the bottle can and promote further resource saving and energy saving while preventing such deterioration.

本発明の一実施形態により製造されるボトル缶の一部破断側面図である。It is a partially broken side view of the bottle can manufactured by one Embodiment of this invention. 本発明の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of this invention. 本発明の一実施形態におけるボトルネック成形工程において(a)首部が成形される前の有底円筒体を示す断面図、(b)首部を成形する金型を示す断面図、(c)図(b)に示す金型の首部成形部周辺を示す拡大断面図である。In the bottleneck molding step according to the embodiment of the present invention, (a) a cross-sectional view showing a bottomed cylindrical body before the neck portion is molded, (b) a cross-sectional view showing a mold for molding the neck portion, and (c) FIG. It is an enlarged cross-sectional view which shows the periphery of the neck part molding part of the mold shown in b). 本発明の一実施形態のボトルネック成形工程により成形された有底円筒体を示す断面図である。It is sectional drawing which shows the bottomed cylinder formed by the bottleneck molding process of one Embodiment of this invention. 本発明の一実施形態におけるキャップ取付部成形工程において(a)膨出部が成形される前の有底円筒体を示す断面図、(b)膨出部を成形する拡径工具を示す断面図、(c)図(b)に示す拡径工具の拡径部周辺を示す拡大断面図である。In the cap mounting portion forming step according to the embodiment of the present invention, (a) a cross-sectional view showing a bottomed cylinder before the bulging portion is formed, and (b) a sectional view showing a diameter-expanding tool for forming the bulging portion. , (C) is an enlarged cross-sectional view showing the periphery of the enlarged diameter portion of the diameter-expanding tool shown in FIG. 本発明の一実施形態のキャップ取付部成形工程により成形された有底円筒体を示す断面図である。It is sectional drawing which shows the bottomed cylindrical body molded by the cap attachment part molding process of one Embodiment of this invention.

図1は、本発明の一実施形態により製造されるボトル缶の缶本体1を示すものであり、図2ないし図6は、このような缶本体1を製造するための本発明の一実施形態を示すものである。本実施形態によって製造されるボトル缶は、その缶本体1が図1に示すように、底部2と、この底部2と一体に形成されて底部2の外周縁から上端側(図1において上側)に延びる外周部3とを備えており、この上端側に向けて縮径する缶軸Cを中心とした概略多段の有底円筒状をなしている。 FIG. 1 shows a can body 1 of a bottle can manufactured according to an embodiment of the present invention, and FIGS. 2 to 6 show an embodiment of the present invention for manufacturing such a can body 1. Is shown. As shown in FIG. 1, the bottle can manufactured by the present embodiment is formed integrally with the bottom portion 2 and the bottom portion 2, and the can body 1 is formed integrally with the bottom portion 2 from the outer peripheral edge to the upper end side (upper side in FIG. 1). It is provided with an outer peripheral portion 3 extending to the upper end side, and has a substantially multi-stage bottomed cylindrical shape centered on a can shaft C whose diameter is reduced toward the upper end side.

底部2には、缶軸C方向の内側(缶本体1の上端側)に凹む断面略円弧状のドーム部2aが中央に形成されるとともに、このドーム部2aの外周には缶軸C方向の外側(缶本体1の下端側)に突出する上記環状凸部2bが缶軸C回りの周方向に連続して形成されている。また、外周部3には底部2から缶本体1の上端側の開口部4に向けて順に、缶軸Cを中心とした円筒状の胴部5と、上端側に向かうに従い一定の傾斜で漸次縮径する円錐台面状の肩部6と、この肩部6からさらに上端側に向かって延びる筒状の首部7と、下端側に上記膨出部8を備えたやはり筒状で、本実施形態ではねじ切り加工が施されたキャップ取付部9とが形成されている。 A dome portion 2a having a substantially arcuate cross section recessed inward in the can axis C direction (upper end side of the can body 1) is formed in the center of the bottom portion 2, and the outer periphery of the dome portion 2a is formed in the can axis C direction. The annular convex portion 2b projecting to the outside (lower end side of the can body 1) is continuously formed in the circumferential direction around the can axis C. Further, the outer peripheral portion 3 has a cylindrical body portion 5 centered on the can shaft C in order from the bottom portion 2 toward the opening 4 on the upper end side of the can body 1, and gradually has a constant inclination toward the upper end side. This embodiment also has a conical pedestal-shaped shoulder portion 6 with a reduced diameter, a tubular neck portion 7 extending from the shoulder portion 6 toward the upper end side, and a bulging portion 8 on the lower end side. Is formed with a cap mounting portion 9 that has been threaded.

このようなボトル缶を製造する本発明のボトル缶の製造方法の一実施形態においては、図2のフローチャートに示すように、まずカッピングプレス機によるカッピングプレス工程においてアルミニウム合金等の金属板を円板状に打ち抜いて絞り加工を施すことにより深さの浅いカップ状素材を製造し、このカップ状素材にDIプレス機によるDIプレス工程において再絞りおよびしごき加工を施して缶軸C方向に延伸することにより、底部2に上記ドーム部2aと環状凸部2bが形成された有底円筒体(DI缶)を成形する。 In one embodiment of the method for manufacturing a bottle can of the present invention for manufacturing such a bottle can, as shown in the flowchart of FIG. 2, first, a metal plate such as an aluminum alloy is formed into a disk in a cupping press step by a cupping press machine. A cup-shaped material with a shallow depth is manufactured by punching it into a shape and drawing, and this cup-shaped material is re-squeezed and ironed in the DI pressing process using a DI press machine to be stretched in the can axis C direction. A bottomed cylindrical body (DI can) in which the dome portion 2a and the annular convex portion 2b are formed on the bottom portion 2 is formed.

ここで、カッピングプレス工程においてカップ状素材に成形される金属板は、本実施形態ではJIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm〜265N/mmの範囲のものが用いられる。また、このカップ状素材から成形される有底円筒体には、外周部に上記缶軸Cを中心とした円筒部が形成され、この円筒部の外径は缶本体1の胴部5の外径と略等しい一定外径である。ただし、この円筒部は、その上端側部分の厚さが0.180mm〜0.225mmの範囲である一方、下端側部分の厚さはこの上端側部分よりも極僅かに薄い。 Here, the metal plate formed into the cup-shaped material in the cupping press process is an aluminum alloy of A3004 or A3104 in JIS H 4000 in the present embodiment, and has a 0.2% proof stress after baking at 205 ° C. for 20 minutes. Those in the range of 235 N / mm 2 to 265 N / mm 2 are used. Further, in the bottomed cylindrical body formed from this cup-shaped material, a cylindrical portion centered on the can shaft C is formed on the outer peripheral portion, and the outer diameter of this cylindrical portion is outside the body portion 5 of the can body 1. It has a constant outer diameter that is approximately equal to the diameter. However, the thickness of the upper end side portion of this cylindrical portion is in the range of 0.180 mm to 0.225 mm, while the thickness of the lower end side portion is extremely slightly thinner than the upper end side portion.

このように成形された有底円筒体は、第1の洗浄工程において洗浄、乾燥され、次いで塗装工程において内外面に塗装が施されて焼き付けられる。そして、塗装が施された有底円筒体は、ボトルネッカーによるボトルネック成形工程において円筒部の上記上端側部分の下端側が金型によって縮径されて上記肩部6と首部7が成形され、次いで同じボトルネッカーによるキャップ取付部成形工程において首部7の上端側が拡径工具によって拡径されて上記膨出部8が形成されるとともに、この膨出部8よりもさらに上端側に上記ねじ切り加工等が施されて上記キャップ取付部9が形成され、図1に示したようなボトル缶の缶本体1に成形される。 The bottomed cylinder thus formed is washed and dried in the first washing step, and then the inner and outer surfaces are painted and baked in the painting step. Then, in the bottomed cylindrical body that has been painted, the lower end side of the upper end side portion of the cylindrical portion is reduced in diameter by a mold in the bottleneck molding step by the bottle necker, and the shoulder portion 6 and the neck portion 7 are molded, and then the shoulder portion 6 and the neck portion 7 are formed. In the cap mounting portion molding process using the same bottlenecker, the upper end side of the neck portion 7 is enlarged by a diameter-expanding tool to form the bulging portion 8, and the thread cutting process or the like is further performed on the upper end side of the bulging portion 8. The cap attachment portion 9 is formed by the application, and is formed into a can body 1 of a bottle can as shown in FIG.

こうして成形された缶本体1は、第2の洗浄工程によって洗浄、乾燥された後に、検査工程においてピンホールの有無や外面の異物付着、傷、汚れ、印刷不良等が検査されて飲料品工場等に搬送され、飲料品等の内容物が充填された後にキャップ取付部9に図示されないキャップが取り付けられて封止され、出荷される。なお、上記各工程の間や各工程中には、有底円筒体の上端縁を切断するトリミングや、必要に応じて底部の環状凸部2bの断面形状を再成形するボトムリフォームが行われる。 The can body 1 thus formed is washed and dried by the second washing step, and then inspected for the presence or absence of pinholes, foreign matter adhesion on the outer surface, scratches, stains, printing defects, etc. in the inspection step, and is inspected at a beverage factory or the like. After being filled with the contents such as beverages, a cap (not shown) is attached to the cap attachment portion 9, the cap is sealed, and the product is shipped. During or during each of the above steps, trimming is performed to cut the upper end edge of the bottomed cylindrical body, and bottom reform is performed to reshape the cross-sectional shape of the annular convex portion 2b at the bottom, if necessary.

ここで、ボトルネッカーによるボトルネック成形工程のうち、上記肩部6の成形は、内径が徐々に小さくなる円筒状の複数の上記金型を、内径が大きいものから順に有底円筒体の円筒部の上端側部分に圧入して塑性変形させることにより、この円筒部の上端側部分のうちの下端側部分を上端側に向けて段階的に内周側に向かうように傾斜させるとともに、この傾斜した下端側部分よりも内周側を内径が小さくなる円筒状に徐々に縮径させることによって行われる。 Here, in the bottleneck molding process by the bottle necker, in the molding of the shoulder portion 6, a plurality of cylindrical molds having an inner diameter gradually decreasing are formed, and the cylindrical portion of the bottomed cylindrical body is formed in order from the one having the largest inner diameter. By press-fitting into the upper end side portion of the cylinder and plastically deforming it, the lower end side portion of the upper end side portion of the cylindrical portion is inclined toward the upper end side in a stepwise manner toward the inner peripheral side, and this inclination is achieved. This is done by gradually reducing the inner peripheral side of the lower end side into a cylindrical shape with a smaller inner diameter.

図3(a)に示すのは、このように上記ボトルネック成形工程において肩部6の成形が終了した有底円筒体10Aであり、肩部6の内周部上端側には缶軸Cを中心として縮径させられた円筒状部11Aが形成されている。また、図3(b)に示すのは、この有底円筒体10Aの円筒状部11Aに首部7を成形する金型21であり、この金型21は缶軸Cと同軸となる略円筒状をなしていて、その内周部には下端側から上端側に向けて順に、缶軸Cを中心とする大径円筒部22と、内周側に向かうに従い上端側に向かうように傾斜する凹円錐台面状部23と、首部成形部24と、小径円筒部25とが形成されている。 FIG. 3A shows a bottomed cylindrical body 10A for which molding of the shoulder portion 6 has been completed in the bottleneck molding step, and a can shaft C is provided on the upper end side of the inner peripheral portion of the shoulder portion 6. A cylindrical portion 11A whose diameter is reduced as the center is formed. Further, FIG. 3B shows a mold 21 for forming the neck portion 7 on the cylindrical portion 11A of the bottomed cylindrical body 10A, and the mold 21 has a substantially cylindrical shape coaxial with the can shaft C. The inner peripheral portion thereof has a large-diameter cylindrical portion 22 centered on the can shaft C in order from the lower end side to the upper end side, and a concave portion that inclines toward the upper end side toward the inner peripheral side. A conical base surface-shaped portion 23, a neck molding portion 24, and a small-diameter cylindrical portion 25 are formed.

大径円筒部22は、有底円筒体10Aの円筒部(缶本体1の胴部5)の外周面が嵌合可能な内径を有しており、また凹円錐台面状部23は有底円筒体10Aの肩部6よりも缶軸Cに対して大きな傾斜で内周側に向かうに従い上端側に向かうように傾斜している。また、小径円筒部25は、有底円筒体10Aの円筒状部11Aの外径よりも僅かに小さな内径を有している。 The large-diameter cylindrical portion 22 has an inner diameter into which the outer peripheral surface of the cylindrical portion (body portion 5 of the can body 1) of the bottomed cylindrical body 10A can be fitted, and the concave conical base surface portion 23 has a bottomed cylinder. It is inclined toward the upper end side toward the inner peripheral side with a larger inclination with respect to the can shaft C than the shoulder portion 6 of the body 10A. Further, the small-diameter cylindrical portion 25 has an inner diameter slightly smaller than the outer diameter of the cylindrical portion 11A of the bottomed cylindrical body 10A.

さらに、首部成形部24は下端側から上端側に向けて順に、缶軸Cに沿った断面において図3(c)に拡大して示すように、凹円錐台面状部23の上端に接する凸円弧等をなす第1凸曲部24aと、この第1凸曲部24aの上端に接して缶軸Cに略平行に上端側に延びる短い直線状をなす円環部24bと、この円環部24bの上端に接して第1凸曲部24aよりも半径の大きな凹円弧等をなす凹曲部24cと、この凹曲部24cの上端に接して上端側に向かうに従い内周側に向かうように缶軸Cに対して傾斜した、円環部24bよりも長い直線状をなす傾斜部24dと、この傾斜部24dの上端と小径円筒部25の下端とに接する凸円弧等をなす第2凸曲部24eとを備えている。 Further, the neck forming portion 24 is in order from the lower end side to the upper end side, and as shown in an enlarged cross section along the can shaft C in FIG. 3C, a convex arc in contact with the upper end of the concave conical base surface portion 23. The first convex curved portion 24a forming the above, a short linear annular portion 24b that is in contact with the upper end of the first convex curved portion 24a and extends substantially parallel to the upper end side of the can shaft C, and the annular portion 24b. A concave portion 24c that is in contact with the upper end of the first convex portion 24a and forms a concave arc or the like having a larger radius than the first convex curved portion 24a, and a can that is in contact with the upper end of the concave curved portion 24c and is directed toward the inner peripheral side toward the upper end side. An inclined portion 24d that is inclined with respect to the axis C and has a linear shape longer than the annular portion 24b, and a second convex curved portion that forms a convex arc or the like in contact with the upper end of the inclined portion 24d and the lower end of the small-diameter cylindrical portion 25. It is equipped with 24e.

ここで、円環部24bの内径は、肩部6の成形が終了した有底円筒体10Aの上記円筒状部11Aが嵌合可能な大きさとされている。従って、このような金型21を、肩部6の成形終了後の有底円筒体10Aの上端側から図3に白抜き矢線で示すように缶軸Cと同軸に挿入すると、円筒状部11Aは上端側から円環部24bの内周面に摺接しつつ凹曲部24cおよび傾斜部24dに沿って縮径させられる。 Here, the inner diameter of the annular portion 24b is set to a size that allows the cylindrical portion 11A of the bottomed cylindrical body 10A for which the molding of the shoulder portion 6 has been completed to be fitted. Therefore, when such a mold 21 is inserted coaxially with the can shaft C from the upper end side of the bottomed cylindrical body 10A after the molding of the shoulder portion 6 is completed as shown by the white arrow in FIG. 3, the cylindrical portion is formed. The diameter of 11A is reduced along the concave portion 24c and the inclined portion 24d while sliding contact with the inner peripheral surface of the annular portion 24b from the upper end side.

そして、凹円錐台面状部23の上端位置が肩部6の上端位置と缶軸C方向に一致して金型21がストロークエンド(下死点)に達したところで、円筒状部11Aの上端側部分は小径円筒部25の内径と略等しい外径に絞り込まれて縮径されるとともに、こうして縮径した円筒状部11Aの下端側部分から肩部6にかけては、首部成形部24の断面形状を略転写したような外周面の断面形状を有する上記首部7が形成される。これにより、図3(a)に示した有底円筒体10Aは、図4に示すような有底円筒体10Bに成形される。 Then, when the upper end position of the concave conical base surface portion 23 coincides with the upper end position of the shoulder portion 6 in the can axis C direction and the mold 21 reaches the stroke end (bottom dead point), the upper end side of the cylindrical portion 11A The portion is narrowed down to an outer diameter substantially equal to the inner diameter of the small-diameter cylindrical portion 25 and reduced in diameter, and the cross-sectional shape of the neck molded portion 24 is reduced from the lower end side portion of the reduced diameter cylindrical portion 11A to the shoulder portion 6. The neck portion 7 having a cross-sectional shape of an outer peripheral surface as if substantially transferred is formed. As a result, the bottomed cylinder 10A shown in FIG. 3A is formed into the bottomed cylinder 10B as shown in FIG.

このように成形された有底円筒体10Bの首部7においては、金型21の上記円環部24bにより、首部7の肩部6側に縮径される前の直径の円筒状部11Aが僅かに残されるとともに、その上端側に首部成形部24の凹曲部24cから傾斜部24dによって、上端側に向かうに従い縮径する首部縮径部7aが成形される。そして、この首部縮径部7aのうち傾斜部24dによって成形された上端側の円錐台面状部分の缶軸Cに対する傾斜角αは18°〜24°の範囲とされており、本実施形態では例えば24°とされている。従って、図3(c)に示す金型21の首部成形部24における傾斜部24dの断面が缶軸Cに対してなす傾斜角αも18°〜24°の範囲とされて、本実施形態では24°とされる。 In the neck portion 7 of the bottomed cylindrical body 10B formed in this way, the cylindrical portion 11A having a diameter before being reduced to the shoulder portion 6 side of the neck portion 7 by the annular portion 24b of the mold 21 is small. On the upper end side thereof, the concave diameter portion 7a of the neck molding portion 24 is formed by the inclined portion 24d from the concave portion 24c of the neck molding portion 24 to reduce the diameter toward the upper end side. The inclination angle α with respect to the can shaft C of the conical pedestal-shaped portion on the upper end side formed by the inclined portion 24d of the neck reduced diameter portion 7a is in the range of 18 ° to 24 °. It is said to be 24 °. Therefore, in the present embodiment, the inclination angle α formed by the cross section of the inclined portion 24d in the neck forming portion 24 of the mold 21 shown in FIG. 3C with respect to the can axis C is also in the range of 18 ° to 24 °. It is set to 24 °.

また、肩部6の上端から首部縮径部7aの最小縮径位置(本実施形態では、金型21の小径円筒部25によって縮径された円筒状部11Bの位置)までの縮径量は、首部成形部24による首部7の成形量となる。そして、この肩部6の上端から首部縮径部7aの最小縮径位置までの缶軸Cに対する直径方向の外径の縮径量、すなわち肩部6側に残された縮径前の円筒状部11Aの直径(外径)d1と、首部縮径部7aよりも上端側の縮径した円筒状部11Bの直径(外径)d2との差d1−d2は、0.5mm〜2.2mmの範囲とされている。従って、図3(c)に示す金型21の首部成形部24における円環部24bの直径(内径)d1と小径円筒部25の直径(内径)d2との差d1−d2も上記縮径量と等しく、0.5mm〜2.2mmの範囲とされている。 Further, the amount of diameter reduction from the upper end of the shoulder portion 6 to the minimum diameter reduction position of the neck diameter reduction portion 7a (in the present embodiment, the position of the cylindrical portion 11B reduced in diameter by the small diameter cylindrical portion 25 of the mold 21) is , The amount of molding of the neck portion 7 by the neck molding portion 24. Then, the amount of diameter reduction in the outer diameter in the radial direction with respect to the can shaft C from the upper end of the shoulder portion 6 to the minimum diameter reduction position of the neck portion diameter reduction portion 7a, that is, the cylindrical shape before the diameter reduction left on the shoulder portion 6 side. The difference d1-d2 between the diameter (outer diameter) d1 of the portion 11A and the diameter (outer diameter) d2 of the reduced diameter cylindrical portion 11B on the upper end side of the neck reduced diameter portion 7a is 0.5 mm to 2.2 mm. It is said to be in the range of. Therefore, the difference d1-d2 between the diameter (inner diameter) d1 of the annular portion 24b and the diameter (inner diameter) d2 of the small-diameter cylindrical portion 25 in the neck forming portion 24 of the mold 21 shown in FIG. Is in the range of 0.5 mm to 2.2 mm.

次に、こうして首部7が成形された図4および図5(a)に示す有底円筒体10Bの金型21によって縮径された円筒状部11Bには、キャップ取付部成形工程において図5(b)に示すような拡径工具31が挿入されて、首部7の上端側に膨出部8が成形される。この拡径工具31は、外径が2段の円筒状をなしていて、下端側の小径部32の外径は縮径した円筒状部11Bの内周に嵌合可能な大きさとされるとともに、上端側の大径部33の外径は縮径した円筒状部11Bの内径よりも僅かに大きくされており、やはり缶軸Cと同軸に配置される。 Next, in the cap attachment portion forming step, the cylindrical portion 11B whose diameter is reduced by the mold 21 of the bottomed cylindrical body 10B shown in FIGS. 4 and 5A in which the neck portion 7 is formed is shown in FIG. The diameter-expanding tool 31 as shown in b) is inserted, and the bulging portion 8 is formed on the upper end side of the neck portion 7. The diameter-expanding tool 31 has a cylindrical shape with a two-stage outer diameter, and the outer diameter of the small diameter portion 32 on the lower end side is set to a size that can be fitted to the inner circumference of the reduced diameter cylindrical portion 11B. The outer diameter of the large diameter portion 33 on the upper end side is slightly larger than the inner diameter of the reduced diameter cylindrical portion 11B, and is also arranged coaxially with the can shaft C.

また、これら小径部32と大径部33との間には、缶軸Cに沿った断面において図5(c)に拡大して示すように、上端側に向かうに従い外周側に向けて一定の傾斜で拡径する拡径部34が形成されている。この拡径部34は、小径部32とは断面凹円弧等の凹曲部34aを介して接するとともに、大径部33とは凹曲部34aよりも半径の大きな断面凸円弧等の凸曲部34bを介して接する断面直線状に形成されている。 Further, between the small diameter portion 32 and the large diameter portion 33, as shown in an enlarged cross section along the can shaft C in FIG. 5 (c), the distance is constant toward the outer peripheral side toward the upper end side. A diameter-expanded portion 34 that expands in diameter by inclination is formed. The enlarged diameter portion 34 is in contact with the small diameter portion 32 via a concave curved portion 34a having a concave arc in cross section, and the large diameter portion 33 has a convex portion such as a convex arc in cross section having a radius larger than that of the concave portion 34a. It is formed in a straight cross section that is in contact with each other via 34b.

このような拡径工具31を、図5に白抜き矢線で示すように缶軸Cと同軸に縮径した円筒状部11Bの内周に小径部32を摺接しつつ挿入すると、拡径部34から大径部33が形成された部分によって円筒状部11Bが上端側から拡径させられる。本実施形態では、こうして挿入された拡径工具31の小径部32の上端が首部7の首部縮径部7aの上端から缶軸C方向に僅かに上端側に間隔をあけた位置に配設されたところで拡径工具31はストロークエンド(下死点)に達し、首部縮径部7aの上端側には縮径した円筒状部11Bが首部7に残され、そのさらに上端側に連なるように上端側に向かうに従い拡径する膨出部8が成形されて、この膨出部8よりも上端側は大径部33によって拡径した円筒状部11Cとされる。これにより、図4および図5(a)に示した有底円筒体10Bは、図6に示すような有底円筒体10Cに成形される。 When such a diameter-expanding tool 31 is inserted into the inner circumference of the cylindrical portion 11B whose diameter is reduced coaxially with the can shaft C as shown by the white arrow in FIG. 5, the diameter-expanding portion 32 is slidably contacted. The diameter of the cylindrical portion 11B is expanded from the upper end side by the portion where the large diameter portion 33 is formed from 34. In the present embodiment, the upper end of the small diameter portion 32 of the diameter expansion tool 31 inserted in this manner is arranged at a position slightly spaced from the upper end of the neck reduced diameter portion 7a of the neck portion 7 toward the upper end side in the can axis C direction. At this point, the diameter-expanding tool 31 reaches the stroke end (bottom dead point), and a reduced-diameter cylindrical portion 11B is left on the neck portion 7 on the upper end side of the neck-reduced diameter portion 7a, and the upper end is connected to the upper end side thereof. A bulging portion 8 whose diameter increases toward the side is formed, and the upper end side of the bulging portion 8 is a cylindrical portion 11C whose diameter is expanded by the large diameter portion 33. As a result, the bottomed cylinder 10B shown in FIGS. 4 and 5A is formed into the bottomed cylinder 10C as shown in FIG.

そして、このように拡径させられた膨出部8の首部7上端(本実施形態では首部7に残された縮径した円筒状部)から拡径する膨出部拡径部8aの缶軸Cに対する傾斜角βは、上記傾斜角αと同じく18°〜24°の範囲とされていて、本実施形態では20°とされている。従って、図5(c)に示す拡径工具31の拡径部34が缶軸Cに対してなす傾斜角βも18°〜24°の範囲とされて、本実施形態では20°とされる。 Then, the can shaft of the bulging portion expanding portion 8a whose diameter is expanded from the upper end of the neck portion 7 of the bulging portion 8 thus expanded (in the present embodiment, the reduced diameter cylindrical portion left in the neck portion 7). The inclination angle β with respect to C is in the range of 18 ° to 24 °, which is the same as the inclination angle α, and is 20 ° in the present embodiment. Therefore, the inclination angle β formed by the diameter-expanding portion 34 of the diameter-expanding tool 31 shown in FIG. 5C with respect to the can shaft C is also in the range of 18 ° to 24 °, and is 20 ° in the present embodiment. ..

また、縮径した円筒状部11Bである首部7の上端から膨出部8の最大膨出位置(本実施形態では図6における拡径した円筒状部11C)までの拡径量は、拡径工具31による膨出部8の成形量となる。そして、この首部7の上端から膨出部8の最大膨出位置までの缶軸Cに対する直径方向の内径の拡径量、すなわち膨出部8の最大膨出位置における外周面の直径(内径)d3と首部7の上端における直径(内径)d4との差d3−d4は、上記縮径量と同じく0.5mm〜2.2mmの範囲とされている。従って、図5(c)に示す拡径工具31における大径部33の直径(外径)d3と小径部32の直径(外径)d4との差d3−d4も、0.5mm〜2.2mmの範囲とされる。 Further, the amount of diameter expansion from the upper end of the neck portion 7 which is the reduced diameter cylindrical portion 11B to the maximum bulging position of the bulging portion 8 (in the present embodiment, the expanded cylindrical portion 11C in FIG. 6) is the diameter expansion. This is the molding amount of the bulging portion 8 by the tool 31. Then, the amount of expansion of the inner diameter in the radial direction with respect to the can shaft C from the upper end of the neck portion 7 to the maximum bulging position of the bulging portion 8, that is, the diameter (inner diameter) of the outer peripheral surface at the maximum bulging position of the bulging portion 8. The difference d3-d4 between d3 and the diameter (inner diameter) d4 at the upper end of the neck portion 7 is in the range of 0.5 mm to 2.2 mm, which is the same as the diameter reduction amount. Therefore, the difference d3-d4 between the diameter (outer diameter) d3 of the large diameter portion 33 and the diameter (outer diameter) d4 of the small diameter portion 32 in the diameter expansion tool 31 shown in FIG. 5 (c) is also 0.5 mm to 2. The range is 2 mm.

こうして首部7の上端側に膨出部8が形成されるとともに、この膨出部8の上端側では円筒状部11Cが拡径させられた有底円筒体10Cは、この拡径させられた円筒状部11Cの上端側が上述のようにねじ切り加工等が施されることによりキャップ取付部9が形成されて縮径されるとともに、下端側には縮径されずに膨出部8が残される。さらに、このキャップ取付部9の開口部4にはカール部が形成されるなどして、図1に示したようなボトル缶の缶本体1に成形される。 In this way, the bulging portion 8 is formed on the upper end side of the neck portion 7, and the bottomed cylindrical body 10C having the cylindrical portion 11C whose diameter is expanded on the upper end side of the bulging portion 8 is the expanded cylinder. As described above, the upper end side of the shaped portion 11C is threaded to form the cap mounting portion 9 and the diameter is reduced, and the bulging portion 8 is left on the lower end side without being reduced in diameter. Further, a curl portion is formed in the opening 4 of the cap mounting portion 9, and the cap body 1 is formed into a bottle can body 1 as shown in FIG.

このようなボトル缶の製造方法では、上記ボトルネック成形工程において成形される首部7の首部縮径部7aの缶軸Cに対する傾斜角αや、キャップ取付部成形工程において成形される膨出部8の膨出部拡径部8aの缶軸Cに対する傾斜角βが、いずれも18°〜24°の範囲で缶軸Cに対して浅い角度とされている。このため、金型21や拡径工具31を有底円筒体10A、10Bの円筒状部11A、11Bに挿入することにより該円筒状部11A、11Bを縮径させたり拡径させたりして首部7や膨出部8を成形する際に有底円筒体10A、10Bに作用する缶軸C方向の荷重を小さくすることができる。 In such a method for manufacturing a bottle can, the inclination angle α of the neck reduced diameter portion 7a of the neck portion 7 formed in the bottleneck molding step with respect to the can shaft C and the bulging portion 8 formed in the cap mounting portion molding step The inclination angle β of the bulging portion enlarged diameter portion 8a with respect to the can shaft C is set to be a shallow angle with respect to the can shaft C in the range of 18 ° to 24 °. Therefore, by inserting the mold 21 and the diameter-expanding tool 31 into the cylindrical portions 11A and 11B of the bottomed cylindrical bodies 10A and 10B, the diameters of the cylindrical portions 11A and 11B can be reduced or expanded to increase the diameter of the neck portion. The load in the can shaft C direction acting on the bottomed cylindrical bodies 10A and 10B when the 7 and the bulging portion 8 are formed can be reduced.

また、ボトルネック成形工程における肩部6の上端から首部縮径部7aの最小縮径位置までの缶軸Cに対する直径方向の外径の縮径量d1−d2や、キャップ取付部成形工程における首部7の上端から膨出部8の最大膨出位置までの缶軸Cに対する直径方向の内径の拡径量d3−d4も、いずれも0.5mm〜2.2mmの範囲であって小さく、すなわち首部7や膨出部8の缶軸Cに対する直径方向の成形量自体が小さい。このため、やはりこれら首部7や膨出部8を成形する際に有底円筒体10A、10Bに作用する荷重を抑制することができる。 Further, the amount of diameter reduction d1-d2 of the outer diameter in the radial direction with respect to the can shaft C from the upper end of the shoulder portion 6 to the minimum diameter reduction position of the neck portion diameter reduction portion 7a in the bottleneck molding process, and the neck portion in the cap mounting portion molding process. The diameter expansion amount d3-d4 of the inner diameter in the radial direction with respect to the can shaft C from the upper end of 7 to the maximum bulging position of the bulging portion 8 is also small in the range of 0.5 mm to 2.2 mm, that is, the neck portion. The amount of molding of 7 and the bulging portion 8 in the diameter direction with respect to the can shaft C is small. Therefore, it is possible to suppress the load acting on the bottomed cylindrical bodies 10A and 10B when the neck portion 7 and the bulging portion 8 are formed.

従って、このようなボトル缶の製造方法によれば、カッピングプレス工程においてカップ状素材に成形される金属板の板厚が0.230mm〜0.300mmと薄く、従ってこのカップ状素材からDIプレス工程において成形された有底円筒体における円筒部の上端側部分の厚さも0.180mm〜0.225mmと薄くて、しかもこの上端側部分よりも下端側の円筒部の厚さは該上端側部分よりさらに薄くても、これらボトルネック成形工程における首部7の成形時やキャップ取付部成形工程における膨出部8の成形時に、缶軸C方向の荷重によって有底円筒体10A、10Bに座屈が生じるのを防止することができる。このため、ボトル缶の製造歩留まりや製造効率を低下させることなく一層の薄肉化を図ることができ、省資源化や省エネルギー化をさらに促進することが可能となる。 Therefore, according to such a method for manufacturing a bottle can, the thickness of the metal plate formed into the cup-shaped material in the cupping press process is as thin as 0.230 mm to 0.300 mm, and therefore the DI press process is performed from this cup-shaped material. The thickness of the upper end side portion of the cylindrical portion of the bottomed cylindrical body formed in 1 is as thin as 0.180 mm to 0.225 mm, and the thickness of the lower end side cylinder portion of the upper end side portion is smaller than that of the upper end side portion. Even if it is thinner, buckling occurs in the bottomed cylinders 10A and 10B due to the load in the can axis C direction during the molding of the neck portion 7 in the bottleneck molding process and the molding of the bulging portion 8 in the cap mounting portion molding process. Can be prevented. Therefore, it is possible to further reduce the wall thickness without lowering the production yield and production efficiency of the bottle can, and it is possible to further promote resource saving and energy saving.

ここで、首部縮径部7aの缶軸Cに対する傾斜角αや膨出部拡径部8aの缶軸Cに対する傾斜角βが24°よりも大きいと、金型21や拡径工具31によって首部縮径部7aや膨出部拡径部8aを成形する際に作用する荷重の缶軸C方向の成分を十分に小さくすることができず、有底円筒体10A、10Bの特に薄肉とされた円筒部下端側部分に座屈を生じるおそれがある。その一方で、これらの傾斜角α、βが18°を下回ると金型21の首部成形部24における傾斜部24dや拡径工具31の拡径部34が缶軸Cと平行に近くなり、首部縮径部7aや膨出部拡径部8aを確実かつ再現性よく安定して成形することが困難となるおそれがある。 Here, if the inclination angle α of the neck reduced diameter portion 7a with respect to the can shaft C and the inclination angle β of the bulging portion enlarged diameter portion 8a with respect to the can shaft C are larger than 24 °, the neck portion is formed by the mold 21 or the diameter expanding tool 31. The component of the load acting when forming the reduced diameter portion 7a and the enlarged diameter portion 8a in the can axis C direction could not be sufficiently reduced, and the bottomed cylindrical bodies 10A and 10B were made particularly thin. There is a risk of buckling at the lower end of the cylindrical portion. On the other hand, when these inclination angles α and β are less than 18 °, the inclined portion 24d in the neck forming portion 24 of the mold 21 and the enlarged diameter portion 34 of the diameter-expanding tool 31 become close to parallel to the can shaft C, and the neck portion. It may be difficult to stably mold the reduced diameter portion 7a and the enlarged diameter portion 8a of the bulging portion with good reproducibility.

また、肩部6の上端から首部縮径部7aの最小縮径位置までの缶軸Cに対する直径方向の外径の縮径量d1−d2や、首部7の上端から膨出部8の最大膨出位置までの缶軸Cに対する直径方向の内径の拡径量d3−d4が2.2mmよりも大きい場合でも、成形量自体が大きくなるために座屈を確実に防止できなくなるおそれが生じる。一方、これらの縮径量d1−d2や拡径量d3−d4が0.5mmよりも小さい場合も、首部縮径部7aや膨出部拡径部8aを確実かつ安定的に成形することが困難となるおそれがある。 Further, the diameter reduction amount d1-d2 of the outer diameter in the radial direction with respect to the can shaft C from the upper end of the shoulder portion 6 to the minimum diameter reduction position of the neck diameter reduction portion 7a, and the maximum bulge of the bulging portion 8 from the upper end of the neck portion 7. Even when the diameter expansion amount d3-d4 of the inner diameter in the radial direction with respect to the can shaft C up to the ejection position is larger than 2.2 mm, there is a possibility that buckling cannot be reliably prevented because the molding amount itself becomes large. On the other hand, even when the diameter reduction amount d1-d2 and the diameter expansion amount d3-d4 are smaller than 0.5 mm, the neck diameter reduction portion 7a and the bulging portion diameter expansion portion 8a can be molded reliably and stably. It can be difficult.

なお、本実施形態では、首部7における首部縮径部7aと膨出部8における膨出部拡径部8aの缶軸Cに対する傾斜角α、βの双方を18°〜24°の範囲とするとともに、肩部6の上端から首部縮径部7aの最小縮径位置までの缶軸Cに対する直径方向の外径の縮径量d1−d2と首部7の上端から膨出部8の最大膨出位置までの缶軸Cに対する直径方向の内径の拡径量d3−d4も双方が0.5mm〜2.2mmの範囲となるようにされているが、傾斜角αと縮径量d1−d2とが上記範囲にあれば傾斜角βと拡径量d3−d4の少なくとも一方は上記範囲外であってもよく、また傾斜角βと拡径量d3−d4とが上記範囲にあれば傾斜角αと縮径量d1−d2の少なくとも一方は上記範囲外であってもよい。ただし、本実施形態のように双方が上記範囲にあることが勿論望ましい。 In the present embodiment, both the inclination angles α and β of the neck reduced diameter portion 7a in the neck portion 7 and the bulging portion enlarged diameter portion 8a in the bulging portion 8 with respect to the can shaft C are in the range of 18 ° to 24 °. At the same time, the diameter reduction amount d1-d2 of the outer diameter in the radial direction with respect to the can shaft C from the upper end of the shoulder portion 6 to the minimum diameter reduction position of the neck diameter reduction portion 7a and the maximum bulge of the bulge portion 8 from the upper end of the neck portion 7. The diameter expansion amount d3-d4 of the inner diameter in the radial direction with respect to the can shaft C to the position is also set to be in the range of 0.5 mm to 2.2 mm, but the inclination angle α and the diameter reduction amount d1-d2. If is within the above range, at least one of the inclination angle β and the diameter expansion amount d3-d4 may be outside the above range, and if the inclination angle β and the diameter expansion amount d3-d4 are within the above range, the inclination angle α And at least one of the reduced diameter amounts d1-d2 may be outside the above range. However, it is of course desirable that both are in the above range as in the present embodiment.

また、本実施形態では、カッピングプレス工程においてカップ状素材に成形されてDIプレス工程において有底円筒体に成形される金属板として、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm〜265N/mmの範囲のものが用いられており、ボトルネック成形工程やキャップ取付部成形工程における有底円筒体10A、10Bの座屈を一層確実に防ぎつつ、必要以上に大きな荷重を作用させなくても成形を行うことが可能となる。 Further, in the present embodiment, the metal plate formed into a cup-shaped material in the cupping press process and formed into a bottomed cylinder in the DI press process is an aluminum alloy of A3004 or A3104 in JIS H 4000 at 205 ° C. × 0.2% strength after baking for 20 minutes is in the range of 235 N / mm 2 to 265 N / mm 2 , and the bottomed cylinders 10A and 10B in the bottleneck molding process and the cap mounting part molding process are used. It is possible to perform molding without applying an unnecessarily large load while more reliably preventing buckling.

すなわち、この金属板の205℃×20分ベーキング後の0.2%耐力が235N/mmを下回ると、上述のような傾斜角α、βや縮径量d1−d2、拡径量d3−d4としても有底円筒体10A、10Bに座屈が生じ易くなるおそれがあり、逆に205℃×20分ベーキング後の0.2%耐力が265N/mmを上回っても、成形に必要な荷重が大きくなって荷重制御が困難となり、やはり座屈を生じ易くなるおそれがある。 That is, when the 0.2% proof stress of this metal plate after baking at 205 ° C. for 20 minutes is less than 235 N / mm 2 , the inclination angles α and β, the reduced diameter amount d1-d2, and the expanded diameter amount d3- Even if d4 is used, buckling may easily occur in the bottomed cylindrical bodies 10A and 10B, and conversely, even if the 0.2% proof stress after baking at 205 ° C. × 20 minutes exceeds 265 N / mm 2 , it is necessary for molding. The load becomes large, it becomes difficult to control the load, and there is a possibility that buckling is likely to occur.

次に、本発明の実施例を挙げて、本発明の効果について説明する。本実施例では、JIS H 4000におけるA3104のアルミニウム合金であって205℃×20分ベーキング後の0.2%耐力が254.8N/mm、板厚0.300mmの金属板からカッピングプレス工程においてカップ状素材を成形し、さらにDIプレス工程において有底円筒体を成形した。 Next, the effect of the present invention will be described with reference to examples of the present invention. In this embodiment, the aluminum alloy of A3104 in JIS H 4000 has a 0.2% proof stress of 254.8 N / mm 2 after baking at 205 ° C. for 20 minutes, and a metal plate having a plate thickness of 0.300 mm is used in the cupping press process. The cup-shaped material was formed, and the bottomed cylindrical body was further formed in the DI pressing process.

次いで、この有底円筒体にボトルネック成形工程において肩部6を成形した後、首部成形部24における傾斜部24dの缶軸Cに対する傾斜角αが18°〜24°の範囲であり、縮径量d1−d2が0.5mm〜2.2mmの範囲である、それぞれ異なる6種の金型21を用いて首部縮径部7aを有する首部7を成形し、その際の成形荷重を測定するとともに座屈の有無を確認した。これらを実施例1〜6とする。 Next, after the shoulder portion 6 is molded into the bottomed cylindrical body in the bottleneck molding step, the tilt angle α of the tilt portion 24d of the neck molding portion 24 with respect to the can axis C is in the range of 18 ° to 24 °, and the diameter is reduced. A neck portion 7 having a neck diameter reduced portion 7a is molded using six different types of dies 21 having an amount d1-d2 in the range of 0.5 mm to 2.2 mm, and the molding load at that time is measured. The presence or absence of buckling was confirmed. These are referred to as Examples 1 to 6.

また、これら実施例1〜6に対する比較例として、首部成形部24における傾斜部24dの傾斜角αは実施例1、2と同じく18°である一方で、縮径量が2.2mmよりも大きい2.6mmとなる金型と、縮径量は実施例2、4、6と同じく2.2mmである一方で、傾斜角αは24°よりも大きい26°とした金型でも、同じく肩部6を成形した有底円筒体10Aに首部7を成形して、その際の成形荷重を測定するとともに座屈の有無を確認した。これらを順に比較例1、2とする。 Further, as a comparative example with respect to Examples 1 to 6, the inclination angle α of the inclined portion 24d in the neck molded portion 24 is 18 ° as in Examples 1 and 2, but the diameter reduction amount is larger than 2.2 mm. The mold having a diameter of 2.6 mm and the diameter reduction amount are 2.2 mm as in Examples 2, 4 and 6, while the mold having an inclination angle α of 26 °, which is larger than 24 °, also has a shoulder portion. The neck portion 7 was formed on the bottomed cylindrical body 10A formed by molding 6, and the forming load at that time was measured and the presence or absence of buckling was confirmed. These are referred to as Comparative Examples 1 and 2 in order.

なお、DIプレス工程において成形された有底円筒体は、円筒部の直径(缶本体1の胴部5の直径)が約66mmであり、この円筒部の上端側部分の厚さは実施例1〜6および比較例1、2ともに0.180mm〜0.225mmの範囲であった。また、この有底円筒体にボトルネック成形工程において肩部6が成形された図3(a)に示した有底円筒体10Aは、底部2の下端から円筒部の上端までの缶軸C方向の高さが137mm、底部2の下端から肩部6の上端までの缶軸C方向の高さが105mm、肩部6の上端側に成形された縮径した円筒状部11Aの直径(外径)は38mmであった。 The bottomed cylindrical body formed in the DI press step has a diameter of the cylindrical portion (diameter of the body portion 5 of the can body 1) of about 66 mm, and the thickness of the upper end side portion of the cylindrical portion is the thickness of the first embodiment. ~ 6 and Comparative Examples 1 and 2 were both in the range of 0.180 mm to 0.225 mm. Further, the bottomed cylinder 10A shown in FIG. 3A in which the shoulder portion 6 is formed on the bottomed cylinder in the bottleneck molding step is in the can axis C direction from the lower end of the bottom portion 2 to the upper end of the cylindrical portion. The height is 137 mm, the height from the lower end of the bottom 2 to the upper end of the shoulder 6 in the can axis C direction is 105 mm, and the diameter (outer diameter) of the reduced cylindrical portion 11A formed on the upper end side of the shoulder 6. ) Was 38 mm.

これら実施例1〜6および比較例1、2について、その上記円筒部の上端側部分の厚さt(mm)、傾斜角α(°)、縮径量d1−d2(mm)、成形荷重F(N)と評価を、次表1にまとめて示す。なお、評価は、成形荷重Fが1000N未満のものを二重丸、2000N未満のものを丸、2300N未満のものを三角とし、2300N以上のものをバツとした。 For Examples 1 to 6 and Comparative Examples 1 and 2, the thickness t (mm) of the upper end side portion of the cylindrical portion, the inclination angle α (°), the reduced diameter amount d1-d2 (mm), and the molding load F. (N) and the evaluation are summarized in Table 1 below. In the evaluation, those having a molding load F of less than 1000 N were double circles, those having a molding load of less than 2000 N were circles, those having a molding load of less than 2300 N were triangular, and those having a molding load of 2300 N or more were X.

Figure 0006877943
Figure 0006877943

この表1の結果より、縮径量が2.2mmよりも大きい比較例1や傾斜角αが24°よりも大きい比較例2では、成形荷重Fが2400N以上となっており、実際にボトルネッカーによって首部7を成形しているときでも有底円筒体10Aの円筒部に座屈が頻発した。これに対して、実施例1〜6では成形荷重Fが2000N未満に抑えられていて座屈を生じることはなく、特に傾斜角αと縮径量d1−d2が最も小さい実施例1では成形荷重Fが1000N未満の700Nであって、肩部6が成形される前の有底円筒体における円筒部の上端側部分の厚さtが最も薄い0.180mmであっても座屈を生じることはなかった。 From the results in Table 1, in Comparative Example 1 in which the diameter reduction amount is larger than 2.2 mm and Comparative Example 2 in which the inclination angle α is larger than 24 °, the molding load F is 2400 N or more, and the bottle necker is actually used. Buckling frequently occurred in the cylindrical portion of the bottomed cylindrical body 10A even when the neck portion 7 was formed. On the other hand, in Examples 1 to 6, the forming load F is suppressed to less than 2000N and buckling does not occur, and in particular, in Example 1 where the inclination angle α and the diameter reduction amount d1-d2 are the smallest, the forming load Buckling may occur even if F is 700 N, which is less than 1000 N, and the thickness t of the upper end side portion of the cylindrical portion of the bottomed cylinder before the shoulder portion 6 is formed is 0.180 mm, which is the thinnest. There wasn't.

1 缶本体
2 底部
3 外周部
4 開口部
5 胴部
6 肩部
7 首部
7a 首部縮径部
8 膨出部
8a 膨出部拡径部
9 キャップ取付部
10A〜10C 有底円筒体
11A〜11C 円筒状部
21 金型
24 首部成形部
24d 傾斜部
31 拡径工具
34 拡径部
C 缶軸
α 首部縮径部7aの缶軸Cに対する傾斜角
β 膨出部拡径部8aの缶軸Cに対する傾斜角
d1 肩部6の上端の缶軸Cに対する直径方向の外径(縮径前の円筒状部11Aの直径)
d2 首部縮径部7aの最小縮径位置の缶軸Cに対する直径方向の外径(縮径した円筒状部11Bの直径)
d3 膨出部8の最大膨出位置の缶軸Cに対する直径方向の内径(拡径した円筒状部11Cの直径)
d4 首部7の上端の缶軸Cに対する直径方向の内径(拡径前の円筒状部11Bの直径)
1 Can body 2 Bottom part 3 Outer part 4 Opening part 5 Body part 6 Shoulder part 7 Neck part 7a Neck part Diameter reduction part 8 Swelling part 8a Swelling part Diameter expansion part 9 Cap mounting part 10A to 10C Bottomed cylinder 11A to 11C Cylindrical Shape 21 Mold 24 Neck molding 24d Inclined part 31 Diameter-expanding tool 34 Diameter-expanding part C Can shaft α Inclination angle of neck-reduced part 7a with respect to can-axis C β Sloping part Inclination of enlarged-diameter part 8a with respect to can-axis C Angle d1 Outer diameter in the radial direction with respect to the can shaft C at the upper end of the shoulder portion 6 (diameter of the cylindrical portion 11A before diameter reduction)
d2 Outer diameter in the radial direction with respect to the can shaft C at the minimum reduced diameter position of the neck reduced diameter portion 7a (diameter of the reduced diameter cylindrical portion 11B)
d3 Inner diameter in the radial direction with respect to the can shaft C at the maximum bulging position of the bulging portion 8 (diameter of the expanded cylindrical portion 11C)
d4 Inner diameter in the radial direction with respect to the can shaft C at the upper end of the neck portion 7 (diameter of the cylindrical portion 11B before diameter expansion)

Claims (3)

缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、
板厚0.230mm〜0.300mmの金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径で、前記肩部、前記首部、および前記キャップ取付部となる上端側部分の厚さが0.180mm〜0.225mm、かつ前記胴部となる下端側部分の厚さが前記上端側部分よりも薄い円筒部が形成された有底円筒体を成形するDIプレス工程と、
この有底円筒体の上記上端側部分を縮径させることにより、上記肩部と、この肩部から上端側に向かうに従いさらに縮径する上記首部とを成形するボトルネック成形工程と、
上記首部の上端部に上記キャップ取付部を成形するキャップ取付部成形工程とを備え、
上記ボトルネック成形工程においては、上記首部において縮径する首部縮径部の上記缶軸に対する傾斜角を18°〜24°の範囲に成形するとともに、上記肩部の上端から上記首部縮径部の最小縮径位置までの上記缶軸に対する直径方向の外径の縮径量を0.5mm〜2.2mmの範囲とすることを特徴とするボトル缶の製造方法。
On the outer peripheral portion that is integrally molded with the bottom of the can body, a cylindrical body centered on the can shaft in order from the bottom to the upper end opening of the can body, and a shoulder that shrinks in diameter toward the upper end side. A method for manufacturing a bottle can in which a portion, a neck portion extending from the shoulder portion toward the upper end side, and a cap mounting portion are formed.
Subjected to redraw and ironing and bottom formed into a cup-like material which is formed by deep drawing from a metal sheet having a thickness of 0.230Mm~0.300Mm, and the bottom, with the same outer diameter and the barrel, the A cylindrical portion in which the thickness of the shoulder portion, the neck portion, and the upper end side portion serving as the cap mounting portion is 0.180 mm to 0.225 mm, and the thickness of the lower end side portion serving as the body portion is thinner than the upper end side portion. DI press process to form the bottomed cylindrical body on which
A bottleneck molding step of forming the shoulder portion and the neck portion whose diameter is further reduced toward the upper end side from the shoulder portion by reducing the diameter of the upper end side portion of the bottomed cylinder.
A cap mounting portion molding step for molding the cap mounting portion is provided at the upper end portion of the neck portion.
In the bottleneck molding step, the inclination angle of the neck diameter-reduced portion that is reduced in the neck portion with respect to the can shaft is formed in the range of 18 ° to 24 °, and the neck diameter-reduced portion is formed from the upper end of the shoulder portion. A method for manufacturing a bottle can, wherein the amount of reduction in the outer diameter in the radial direction with respect to the can shaft up to the minimum diameter reduction position is in the range of 0.5 mm to 2.2 mm.
缶本体の底部と一体に成形される外周部に、上記底部から上記缶本体の上端開口部に向けて順に缶軸を中心とした円筒状の胴部と、上端側に向かうに従い縮径する肩部と、この肩部からさらに上端側に向かって延びる首部と、キャップ取付部とが形成されたボトル缶の製造方法であって、
板厚0.230mm〜0.300mmの金属板から絞り加工により成形されたカップ状素材に再絞りおよびしごき加工と底部成形加工を施して、上記底部と、上記胴部と同外径で、前記肩部、前記首部、および前記キャップ取付部となる上端側部分の厚さが0.180mm〜0.225mm、かつ前記胴部となる下端側部分の厚さが前記上端側部分よりも薄い円筒部が形成された有底円筒体を成形するDIプレス工程と、
この有底円筒体の上記上端側部分を縮径させて上記肩部と上記首部とを成形するボトルネック成形工程と、
上記首部の上端部に、外周側に膨らむ膨出部を介して上記キャップ取付部を成形するキャップ取付部成形工程とを備え、
上記キャップ取付部成形工程においては、上記膨出部において上記首部の上端から拡径する膨出部拡径部の上記缶軸に対する傾斜角を18°〜24°の範囲に成形するとともに、上記首部の上端から上記膨出部の最大膨出位置までの上記缶軸に対する直径方向の内径の拡径量を0.5mm〜2.2mmの範囲とすることを特徴とするボトル缶の製造方法。
On the outer peripheral portion that is integrally molded with the bottom of the can body, a cylindrical body centered on the can shaft in order from the bottom to the upper end opening of the can body, and a shoulder that shrinks in diameter toward the upper end side. A method for manufacturing a bottle can in which a portion, a neck portion extending from the shoulder portion toward the upper end side, and a cap mounting portion are formed.
Subjected to redraw and ironing and bottom formed into a cup-like material which is formed by deep drawing from a metal sheet having a thickness of 0.230Mm~0.300Mm, and the bottom, with the same outer diameter and the barrel, the A cylindrical portion in which the thickness of the shoulder portion, the neck portion, and the upper end side portion serving as the cap mounting portion is 0.180 mm to 0.225 mm, and the thickness of the lower end side portion serving as the body portion is thinner than the upper end side portion. DI press process to form the bottomed cylindrical body on which
A bottleneck molding step in which the upper end side portion of the bottomed cylinder is reduced in diameter to form the shoulder portion and the neck portion.
The upper end portion of the neck portion is provided with a cap mounting portion molding step of molding the cap mounting portion via a bulging portion that bulges toward the outer peripheral side.
In the cap mounting portion molding step, the inclination angle of the bulging portion diameter-expanded portion that expands from the upper end of the neck portion in the bulging portion with respect to the can shaft is formed in the range of 18 ° to 24 °, and the neck portion is formed. A method for manufacturing a bottle can, wherein the amount of expansion of the inner diameter in the radial direction with respect to the can shaft from the upper end of the can to the maximum bulging position of the bulging portion is in the range of 0.5 mm to 2.2 mm.
上記金属板は、JIS H 4000におけるA3004またはA3104のアルミニウム合金であって、205℃×20分ベーキング後の0.2%耐力が235N/mm〜265N/mmの範囲であることを特徴とする請求項1または請求項2に記載のボトル缶の製造方法。 The metal plate is an aluminum alloy of A3004 or A3104 in JIS H 4000, and is characterized in that the 0.2% proof stress after baking at 205 ° C. × 20 minutes is in the range of 235 N / mm 2 to 265 N / mm 2. The method for producing a bottle can according to claim 1 or 2.
JP2016200158A 2016-10-11 2016-10-11 How to make bottle cans Active JP6877943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200158A JP6877943B2 (en) 2016-10-11 2016-10-11 How to make bottle cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200158A JP6877943B2 (en) 2016-10-11 2016-10-11 How to make bottle cans

Publications (2)

Publication Number Publication Date
JP2018061964A JP2018061964A (en) 2018-04-19
JP6877943B2 true JP6877943B2 (en) 2021-05-26

Family

ID=61967143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200158A Active JP6877943B2 (en) 2016-10-11 2016-10-11 How to make bottle cans

Country Status (1)

Country Link
JP (1) JP6877943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158817A1 (en) * 2019-01-31 2020-08-06 ユニバーサル製缶株式会社 Bottle can, production method for bottle cans, and design method for bottle cans
JP7443753B2 (en) * 2019-01-31 2024-03-06 アルテミラ製缶株式会社 Bottle cans, bottle can manufacturing methods, and bottle can design methods
JP2020147346A (en) * 2019-03-15 2020-09-17 ユニバーサル製缶株式会社 Bottle can and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3561796B2 (en) * 2000-02-02 2004-09-02 武内プレス工業株式会社 Metal can with screw
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP4553350B2 (en) * 2004-05-25 2010-09-29 大和製罐株式会社 Manufacturing method of mini bottle type aluminum can
JP5085411B2 (en) * 2007-12-26 2012-11-28 大和製罐株式会社 Retort compatible small capacity screw can
EP3241773A1 (en) * 2009-04-06 2017-11-08 Takeuchi Press Industries Co., Ltd. Metal bottle can
US20140103040A1 (en) * 2012-10-11 2014-04-17 Zebulon Stevens Robbins, III Beverage delivery can

Also Published As

Publication number Publication date
JP2018061964A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP7259892B2 (en) Can body manufacturing method
JP6877943B2 (en) How to make bottle cans
JP2015506842A (en) Method for expanding the diameter of a metal container
US10961009B2 (en) Threaded metal container
WO2017187899A1 (en) Can and method for forming curled section in can mouth
JP2024045461A (en) Can body
JP6807702B2 (en) How to make bottle cans
JP7206046B2 (en) Bottle can and method for manufacturing bottle can
JP7069275B2 (en) How to make a bottle can
JP7112648B2 (en) Bottle can manufacturing method
JP7328847B2 (en) Can bodies and product cans
JP2018131261A (en) Manufacturing method for bottle can
US20220055785A1 (en) Bottle can, manufacturing method of bottle can, and design method of bottle can
JP6347337B1 (en) Metal bottle manufacturing method
JP7072380B2 (en) How to make a bottle can
JP7220983B2 (en) bottle can, bottle can with cap
JP7262344B2 (en) bottle can
JP2018099710A (en) DI can and bottle can
WO2019039184A1 (en) Bottle-shaped can and capped bottle-shaped can
JP2018154407A (en) Production method of bottle can
EP3919400A1 (en) Bottle can, production method for bottle cans, and design method for bottle cans
JP7293715B2 (en) Bottle can manufacturing method
JP2019111554A (en) Method for manufacturing bottle can
JP6735651B2 (en) Bottle can manufacturing method
JP7207873B2 (en) Bottle can manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210330

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6877943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350