JP6876296B2 - How to measure the depth of the supporting ground - Google Patents

How to measure the depth of the supporting ground Download PDF

Info

Publication number
JP6876296B2
JP6876296B2 JP2017082512A JP2017082512A JP6876296B2 JP 6876296 B2 JP6876296 B2 JP 6876296B2 JP 2017082512 A JP2017082512 A JP 2017082512A JP 2017082512 A JP2017082512 A JP 2017082512A JP 6876296 B2 JP6876296 B2 JP 6876296B2
Authority
JP
Japan
Prior art keywords
depth
ground
supporting ground
observation
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082512A
Other languages
Japanese (ja)
Other versions
JP2018178618A (en
Inventor
公俊 坂井
公俊 坂井
浩平 田中
浩平 田中
豪 荒木
豪 荒木
仁 盛川
仁 盛川
かほり 飯山
かほり 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Tokyo Institute of Technology NUC
Original Assignee
Railway Technical Research Institute
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Tokyo Institute of Technology NUC filed Critical Railway Technical Research Institute
Priority to JP2017082512A priority Critical patent/JP6876296B2/en
Publication of JP2018178618A publication Critical patent/JP2018178618A/en
Application granted granted Critical
Publication of JP6876296B2 publication Critical patent/JP6876296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、支持地盤の深度測定方法、特に、地盤改良工において、支持地盤の深度を簡易かつ短時間に測定することができる、支持地盤の深度測定方法に関するものである。 The present invention relates to a method for measuring the depth of a supporting ground, particularly a method for measuring the depth of a supporting ground, which can easily and quickly measure the depth of the supporting ground in a ground improvement work.

軟弱地盤上に、鉄道構造物等の構造物を構築するには、地盤改良工を実施する必要がある。この場合、地盤改良工の実施深さは、事前の標準貫入試験等の地盤調査により決定するのが一般的である。 In order to construct structures such as railway structures on soft ground, it is necessary to carry out ground improvement work. In this case, the implementation depth of the ground improvement work is generally determined by a ground survey such as a standard penetration test in advance.

事前の標準貫入試験等の地盤調査により地盤改良工の実施深さを決定する場合、鉄道線路のように対象区間が長くなると、支持地盤の深度を、傾斜等も考慮して、適切かつ連続的に把握するためには、多数の地盤調査が必要となる。 When determining the implementation depth of ground improvement work by a ground survey such as a standard penetration test in advance, if the target section becomes long like a railroad track, the depth of the supporting ground should be appropriately and continuously taken into consideration such as inclination. A large number of ground surveys are required to grasp the situation.

支持地盤の深度をボーリング調査により決定する地盤調査の一例を図5に示す。図5に示すように、支持地盤1の深度は、図5中、破線で示すように変化し、改良対象層2の調査ボーリングを行った2箇所3a、3b間の支持地盤1の深度は、直線的に傾斜しているものと判断している。 FIG. 5 shows an example of a ground survey in which the depth of the supporting ground is determined by a boring survey. As shown in FIG. 5, the depth of the supporting ground 1 changes as shown by the broken line in FIG. 5, and the depth of the supporting ground 1 between the two locations 3a and 3b where the survey boring of the improvement target layer 2 was performed is It is judged that it is inclined linearly.

しかしながら、2箇所3a、3b間の支持地盤1の深度は、実際は、図5中、一点鎖線で示すように、山形に傾斜している場合、あるいは、図5中、二点鎖線で示すように、谷形に傾斜している場合も十分にあり得る。 However, the depth of the supporting ground 1 between the two locations 3a and 3b is actually when it is inclined in a mountain shape as shown by the alternate long and short dash line in FIG. 5, or as shown by the alternate long and short dash line in FIG. , It is quite possible that it is inclined in a valley shape.

地盤改良は、例えば、図6に示すように、複数本の改良杭4を改良対象層2に施工することによって行う。実施深さは、改良杭4の施工中に支持地盤を確認するが、2箇所3a、3b間の改良対象層2が山形に傾斜している場合には、余分な深さまで改良杭4を施工するおそれがある。一方、2箇所3a、3b間の改良対象層2が谷形に傾斜している場合は、改良杭4が支持地盤1に到達しないおそれがある。また、実際の支持地盤まで改良杭4が施工されたとしても、当初の施工計画と異なり、急な作業工程や材料供給の変更を余儀なくされることで、施工効率が低下する可能性がある。 The ground improvement is performed, for example, by constructing a plurality of improvement piles 4 on the improvement target layer 2 as shown in FIG. As for the implementation depth, the supporting ground is confirmed during the construction of the improved pile 4, but if the improvement target layer 2 between the two locations 3a and 3b is inclined in a mountain shape, the improved pile 4 is constructed to an extra depth. There is a risk of On the other hand, when the improvement target layer 2 between the two locations 3a and 3b is inclined in a valley shape, the improvement pile 4 may not reach the supporting ground 1. Further, even if the improved pile 4 is constructed up to the actual supporting ground, the construction efficiency may decrease due to a sudden change in the work process and material supply, unlike the initial construction plan.

このようなことから、地盤改良工において、支持地盤の深度を事前に把握して、深度に見合った地盤改良を行うことは重要である。 For this reason, it is important for ground improvement work to grasp the depth of the supporting ground in advance and perform ground improvement commensurate with the depth.

この対処法として、上述したように、支持地盤の深度を、傾斜等も考慮して、多数の地盤調査により行う方法があるが、かかる方法は、多大な工費と時間を要する。 As a countermeasure for this, as described above, there is a method in which the depth of the supporting ground is determined by a large number of ground surveys in consideration of the inclination and the like, but such a method requires a large amount of construction cost and time.

このために、支持地盤の深度を簡易かつ短時間に測定することができる、支持地盤の深度測定方法の開発が望まれているが、かかる方法は、まだ提案されていないのが現状である。 For this reason, it is desired to develop a method for measuring the depth of the supporting ground, which can easily and quickly measure the depth of the supporting ground, but the present situation is that such a method has not yet been proposed.

従って、この発明の目的は、地盤改良工において、支持地盤の深度を、多数の地盤調査により行う場合に比べて、簡易かつ短時間に測定することができる、支持地盤の深度測定方法を提供することにある。 Therefore, an object of the present invention is to provide a method for measuring the depth of the supporting ground, which can be easily and quickly measured in the ground improvement work, as compared with the case where the depth of the supporting ground is measured by a large number of ground surveys. There is.

この発明は、上記目的を達成するためになされたものであり、下記を特徴とするものである。 The present invention has been made to achieve the above object, and is characterized by the following.

請求項1に記載の発明は、支持地盤の深度測定方法であって、地表面における任意の基準点と、前記基準点と間隔をあけた観測地点との同時の常時微動観測を複数セット行い、前記常時微動観測による常時微動波形から、各観測セットにおける前記基準点からの鉛直フーリエスペクトル比を求めて、2セットの前記鉛直フーリエスペクトル比に見られるピーク周期差を求め、別途実施した数値解析結果に基づいて、前記ピーク周期差から2観測地点間の前記支持地盤の深度差を求め、前記深度差と前記いずれかの観測地点で実施された地盤調査から判明した深度を用いて、前記支持地盤の深度を測定することに特徴を有するものである。 The invention according to claim 1 is a method for measuring the depth of a supporting ground, in which a plurality of sets of simultaneous constant microtremor observations of an arbitrary reference point on the ground surface and an observation point spaced apart from the reference point are performed. From the constant tremor waveform obtained by the constant tremor observation, the vertical Fourier spectrum ratio from the reference point in each observation set was obtained, and the peak period difference observed in the vertical Fourier spectrum ratios of the two sets was obtained. Based on the above, the depth difference of the supporting ground between the two observation points is obtained from the peak period difference, and the supporting ground is used by using the depth difference and the depth found from the ground survey conducted at any of the observation points. It is characterized by measuring the depth of.

請求項2に記載の発明は、請求項1に記載の発明において、前記数値解析結果から評価される、下記(1)式、
ΔH=F(ΔT,Vs) --- (1)
但し、(1)式において、
ΔH:支持地盤の深度差、
ΔT:ピーク周期差、
Vs:改良地盤の剛性、
に基づいて求めることに特徴を有するものである。
The invention according to claim 2 is evaluated from the numerical analysis result in the invention according to claim 1, according to the following equation (1).
ΔH = F (ΔT, Vs) --- (1)
However, in equation (1),
ΔH: Depth difference of supporting ground,
ΔT: Peak period difference,
Vs: Rigidity of improved ground,
It is characterized in that it is obtained based on.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記複数セットによる前記支持地盤の深度により前記支持地盤の傾斜を把握することに特徴を有するものである。 The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the inclination of the supporting ground is grasped by the depth of the supporting ground by the plurality of sets.

この発明によれば、地盤改良工において、支持地盤の深度を、多数の地盤調査により行う場合に比べて、簡易かつ短時間に測定することができる。 According to the present invention, in the ground improvement work, the depth of the supporting ground can be measured easily and in a short time as compared with the case where a large number of ground surveys are conducted.

2観測地点同時の常時微動観測の基本原理説明図である。It is an explanatory diagram of the basic principle of constant tremor observation at two observation points at the same time. フーリエスペクトル比を示すグラフである。It is a graph which shows the Fourier spectrum ratio. 数値解析結果に基づくピーク周期差と支持地盤の深度差との関係を示すグラフである。It is a graph which shows the relationship between the peak period difference and the depth difference of the supporting ground based on the numerical analysis result. この発明による、支持地盤の深度測定方法を示す断面図である。It is sectional drawing which shows the depth measuring method of the supporting ground by this invention. 地盤調査の一例を示す断面図である。It is sectional drawing which shows an example of the ground investigation. 改良杭による地盤改良法を示す断面図である。It is sectional drawing which shows the ground improvement method by the improvement pile.

この発明の、支持地盤の深度測定方法の基本原理を、図面を参照しながら説明する。 The basic principle of the method for measuring the depth of the supporting ground of the present invention will be described with reference to the drawings.

図1は、2観測地点同時の常時微動観測の基本原理説明図、図2は、フーリエスペクトル比を示すグラフ、図3は、数値解析結果に基づくピーク周期差と支持地盤の深度差との関係を示すグラフである。 FIG. 1 is an explanatory diagram of the basic principle of constant tremor observation at two observation points at the same time, FIG. 2 is a graph showing a Fourier spectral ratio, and FIG. 3 is a relationship between a peak period difference based on numerical analysis results and a depth difference of the supporting ground. It is a graph which shows.

この発明の、支持地盤の深度測定方法は、図1に示すように、支持地盤1上の改良対象層2の地表面における任意の基準点Pと、基準点Pと間隔をあけたA観測地点とに微動計5を設置して、基準点PとA観測地点とにおける常時微動を同時観測する。 As shown in FIG. 1, the method for measuring the depth of the supporting ground according to the present invention is an arbitrary reference point P on the ground surface of the improvement target layer 2 on the supporting ground 1 and an observation point A separated from the reference point P. A microtremor meter 5 is installed at the same time to simultaneously observe the constant microtremors at the reference points P and A.

次に、基準点Pと間隔をあけたB観測地点とに微動計5を設置して、基準点PとB観測地点とにおける常時微動を同時観測する。すなわち、地表面において基準点Pと同時の常時微動観測を2セット行う。図1ではこのようなセットとして、セットABとセットBCを示している。 Next, a tremor meter 5 is installed at the reference point P and the B observation point at intervals, and the constant tremor at the reference point P and the B observation point is simultaneously observed. That is, two sets of constant tremor observations are performed simultaneously with the reference point P on the ground surface. FIG. 1 shows set AB and set BC as such a set.

次に、常時微動観測による常時微動波形から、各セットにおいて2観測地点における基準点Pからの鉛直フーリエスペクトル比をそれぞれ求め、この鉛直フーリエスペクトル比に見られるピーク周期差ΔTを求める(図2参照)。セットABからA観測地点とB観測地点の周期差ΔTAB、セットBCからB観測地点とC観測地点の周期差ΔTBCを評価する。 Next, the vertical Fourier spectrum ratio from the reference point P at the two observation points is obtained from the constant tremor waveform obtained by the constant tremor observation, and the peak period difference ΔT seen in this vertical Fourier spectrum ratio is obtained (see FIG. 2). ). The periodic difference ΔT AB between the A observation point and the B observation point is evaluated from the set AB, and the periodic difference ΔT BC between the B observation point and the C observation point is evaluated from the set BC.

次に、数値解析式に基づいて、ピーク周期差ΔTから2観測地点間の支持地盤の深度差ΔHを求める(図3参照)。セットABからA観測地点とB観測地点の深度差ΔHAB、セットBCからB観測地点とC観測地点の深度差ΔHBCを評価する。 Next, the depth difference ΔH of the supporting ground between the two observation points is obtained from the peak period difference ΔT based on the numerical analysis formula (see FIG. 3). The depth difference ΔH AB between the A observation point and the B observation point is evaluated from the set AB, and the depth difference ΔH BC between the B observation point and the C observation point is evaluated from the set BC.

ここで、数値解析式は、下記(1)式からなっている。 Here, the numerical analysis formula is composed of the following formula (1).

ΔH=F(ΔT,Vs) --- (1)
但し、(1)式において、
ΔH:支持地盤の深度差、
ΔT:ピーク周期差、
Vs:改良地盤の剛性。
ΔH = F (ΔT, Vs) --- (1)
However, in equation (1),
ΔH: Depth difference of supporting ground,
ΔT: Peak period difference,
Vs: Rigidity of improved ground.

ここでA、B、C観測地点のいずれかにおいて、地盤調査が実施されており、その深度が既知である場合に、その他の観測地点の深度を測定することができる。例えば、A観測地点で、深度L3が既知である場合に、深度差ΔHに基づいて、B観測地点とC観測地点における支持地盤1の深度L1、L2を測定することができる。また、深度差ΔHを求めることによって、深度差ΔHと2観測地点間の距離から支持地盤1の傾斜状態を把握することができる。 Here, if the ground survey is carried out at any of the observation points A, B, and C and the depth is known, the depths of the other observation points can be measured. For example, when the depth L3 is known at the A observation point, the depths L1 and L2 of the supporting ground 1 at the B observation point and the C observation point can be measured based on the depth difference ΔH. Further, by obtaining the depth difference ΔH, the inclination state of the supporting ground 1 can be grasped from the depth difference ΔH and the distance between the two observation points.

なお、B観測地点の支持地盤1の深度L1は、A観測地点の支持地盤1の深度L3に深度差ΔHABを加えたものである。C観測地点の支持地盤1の深度L2は、B観測地点の支持地盤1の深度L1に深度差ΔHBCを加えたものである。 The depth L1 of the supporting ground 1 at the B observation point is the sum of the depth L3 of the supporting ground 1 at the A observation point and the depth difference ΔH AB . The depth L2 of the supporting ground 1 at the observation point C is the depth L1 of the supporting ground 1 at the observation point B plus the depth difference ΔH BC.

この発明により、実際に、支持地盤の深度を測定するには、図4に示すように、ボーリング調査箇所3を含む複数個所において、基準点6との微動計5による同時の常時微動観測を行えば、上述したように、常時微動観測を実施した区間の支持地盤1の深度と、これに基づいて、この区間の支持地盤1の傾斜を測定することができる。 According to the present invention, in order to actually measure the depth of the supporting ground, as shown in FIG. 4, simultaneous continuous microtremor observation with the reference point 6 and the microtremor 5 is performed at a plurality of locations including the boring survey location 3. For example, as described above, the depth of the supporting ground 1 in the section where the constant tremor observation is carried out and the inclination of the supporting ground 1 in this section can be measured based on the depth.

以上、説明したように、この発明によれば、地盤改良工における支持地盤の深度を、常時微動観測を行うことによって、多数の地盤調査を行う場合に比べて、簡易かつ短時間に測定することができる。 As described above, according to the present invention, the depth of the supporting ground in the ground improvement work can be measured more easily and in a shorter time than in the case of conducting a large number of ground surveys by constantly performing microtremor observation. Can be done.

1:支持地盤
2:改良対象層
3:ボーリング調査箇所
4:改良杭
5:微動計
6:基準点
1: Supporting ground 2: Improvement target layer 3: Boring survey location 4: Improved pile 5: Microtremor 6: Reference point

Claims (3)

支持地盤の深度測定方法であって、地表面において、任意の基準点と、前記基準点と間隔をあけた観測地点との同時の常時微動観測を複数セット行い、前記常時微動観測による常時微動波形から、各観測セットにおける前記基準点からの鉛直フーリエスペクトル比を求めて、2セットの前記鉛直フーリエスペクトル比に見られるピーク周期差を求め、別途実施した数値解析結果に基づいて、前記ピーク周期差から2観測地点間の前記支持地盤の深度差を求め、前記深度差と前記いずれかの観測地点で実施された地盤調査から判明した深度を用いて、前記支持地盤の深度を測定することを特徴とする、支持地盤の深度測定方法。 This is a method for measuring the depth of the supporting ground. On the ground surface, a plurality of sets of simultaneous constant tremor observations of an arbitrary reference point and observation points spaced apart from the reference point are performed, and the constant tremor waveform by the constant tremor observation is performed. From, the vertical Fourier spectrum ratio from the reference point in each observation set was obtained, the peak period difference observed in the vertical Fourier spectrum ratios of the two sets was obtained, and the peak period difference was obtained based on the numerical analysis result separately performed. The depth difference of the supporting ground between the two observation points is obtained, and the depth of the supporting ground is measured by using the depth difference and the depth found from the ground survey conducted at any of the observation points. The method of measuring the depth of the supporting ground. 前記数値解析結果は、下記(1)式、
ΔH=F(ΔT,Vs) --- (1)
但し、(1)式において、
ΔH:支持地盤の深度差、
ΔT:ピーク周期差、
Vs:改良地盤の剛性、
に基づいて求めることを特徴とする、請求項1に記載の、支持地盤の深度測定方法。
The numerical analysis result is obtained by the following equation (1).
ΔH = F (ΔT, Vs) --- (1)
However, in equation (1),
ΔH: Depth difference of supporting ground,
ΔT: Peak period difference,
Vs: Rigidity of improved ground,
The method for measuring the depth of the supporting ground according to claim 1, wherein the method is obtained based on the above.
前記複数セットによる前記支持地盤の深度により前記支持地盤の傾斜を把握することを特徴とする、請求項1または2に記載の、支持地盤の深度測定方法。 The method for measuring the depth of a supporting ground according to claim 1 or 2, wherein the inclination of the supporting ground is grasped by the depth of the supporting ground by the plurality of sets.
JP2017082512A 2017-04-19 2017-04-19 How to measure the depth of the supporting ground Active JP6876296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082512A JP6876296B2 (en) 2017-04-19 2017-04-19 How to measure the depth of the supporting ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082512A JP6876296B2 (en) 2017-04-19 2017-04-19 How to measure the depth of the supporting ground

Publications (2)

Publication Number Publication Date
JP2018178618A JP2018178618A (en) 2018-11-15
JP6876296B2 true JP6876296B2 (en) 2021-05-26

Family

ID=64282884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082512A Active JP6876296B2 (en) 2017-04-19 2017-04-19 How to measure the depth of the supporting ground

Country Status (1)

Country Link
JP (1) JP6876296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012290B2 (en) * 2019-01-11 2022-01-28 公益財団法人鉄道総合技術研究所 Evaluation method of improvement effect of improved ground
JP7181532B2 (en) * 2019-08-29 2022-12-01 公益財団法人鉄道総合技術研究所 Depth Estimation Method of Supporting Ground

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287865A (en) * 1998-04-03 1999-10-19 Hiroshi Okada Estimating method for underground structure by observation of microseism
JP4203199B2 (en) * 2000-01-12 2008-12-24 積水化学工業株式会社 Ground speed structure estimation method and system
JP4195171B2 (en) * 2000-04-27 2008-12-10 積水化学工業株式会社 Ground structure estimation method
US7330799B2 (en) * 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves

Also Published As

Publication number Publication date
JP2018178618A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6876296B2 (en) How to measure the depth of the supporting ground
Lancellotta et al. Identification technique for soil-structure analysis of the Ghirlandina tower
CN106646635A (en) Modified line source resistivity continuous measurement method
RU2014141478A (en) METHOD FOR TAKING SOIL SAMPLES FOR AGROCHEMICAL ANALYSIS BY DISTANCES ALONG A SMALL RIVER AND TRANSVERSE FROM A WATER CUT
JP2008051502A (en) Multi-electrode electrical logging method for small diameter
JP6882729B2 (en) Internal quality evaluation method and internal quality analysis system
JP7012290B2 (en) Evaluation method of improvement effect of improved ground
JP6815757B2 (en) Ground liquefaction evaluation method
Yao et al. Study of mechanical behavior and reinforcing measures of middle rock wall of parallel tunnel with small interval
RU2017146989A (en) Method for seismic monitoring of shallow deposits of extra-viscous oil
Godlewski et al. Determination of soil stiffness parameters using in-situ seismic methods-insight in repeatability and methodological aspects
Zavala et al. Geotechnical and geophysical exploration in archaeological heritage: initial assessment at Huaca de la Luna
Forchap et al. Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis
JP6167093B2 (en) Groundwater level survey method
JP6238137B2 (en) Ground survey method
Furini et al. Integrated measurement techniques for the monitoring of the ancient walls of Ferrara
JP2013019121A (en) Soil property determination method by swedish sounding test
RU2254426C1 (en) Method for determining change in deflected mode of building structure
RU2464425C1 (en) Method for determining value of undermining of consolidating stowing mass
JP5587101B2 (en) Method for estimating seismic motion at locations where seismometers are not installed
JP2001107349A (en) Estimating method and estimating system of ground speed structure
JP7181532B2 (en) Depth Estimation Method of Supporting Ground
Pan et al. Multi-channel GPR to assess the influence of shallow structural heterogeneity on spatio-temporal variations of near-surface soil water content
Pathak et al. Quantification of Variation in Rock Mass Deformability
EA201700527A3 (en) GEOELECTRIC METHOD FOR DETERMINING THE POWER OF A SUITABLE FOR ENGINEERING AND CONSTRUCTION WORKS OF THE SOIL-PERMAFROST COMPLEX

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6876296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117