JP6875881B2 - Structure of cooling water system of internal combustion engine - Google Patents

Structure of cooling water system of internal combustion engine Download PDF

Info

Publication number
JP6875881B2
JP6875881B2 JP2017032866A JP2017032866A JP6875881B2 JP 6875881 B2 JP6875881 B2 JP 6875881B2 JP 2017032866 A JP2017032866 A JP 2017032866A JP 2017032866 A JP2017032866 A JP 2017032866A JP 6875881 B2 JP6875881 B2 JP 6875881B2
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
combustion engine
heat exchanger
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017032866A
Other languages
Japanese (ja)
Other versions
JP2018135870A (en
Inventor
光一 西谷
光一 西谷
鈴木 隆之
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Toyota Motor Corp
Original Assignee
Daihatsu Motor Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Toyota Motor Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP2017032866A priority Critical patent/JP6875881B2/en
Publication of JP2018135870A publication Critical patent/JP2018135870A/en
Application granted granted Critical
Publication of JP6875881B2 publication Critical patent/JP6875881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の冷却水が循環する冷却水系統の構造に関する。 The present invention relates to the structure of a cooling water system in which cooling water of an internal combustion engine circulates.

一般に、内燃機関の排気通路には、気筒から排出される排気中に含まれる有害物質を酸化/還元して浄化するための三元触媒が装着されている。 Generally, the exhaust passage of an internal combustion engine is equipped with a three-way catalyst for oxidizing / reducing and purifying harmful substances contained in the exhaust gas discharged from the cylinder.

内燃機関が高回転域で運転されるとき、高温の排気が多量に触媒に流入することとなり、排気浄化用の触媒が過剰に昇温して熱害を受ける(溶損する)おそれが生じる。そのような熱害を防止するための手段の一つとして、気筒の排気ポートまたは排気マニホルドを取り巻くように熱交換器(排気冷却用アダプタ)を付設し、この熱交換器に内燃機関の冷却水を流通させることで、気筒から排出される排気と冷却水との間で熱交換を行わせ、排気を冷却した上で触媒に流入させることが行われている(例えば、下記特許文献を参照)。 When the internal combustion engine is operated in a high rotation speed region, a large amount of high-temperature exhaust gas flows into the catalyst, and the catalyst for exhaust gas purification may be excessively heated to cause heat damage (melting damage). As one of the means for preventing such heat damage, a heat exchanger (exhaust cooling adapter) is attached so as to surround the exhaust port or the exhaust manifold of the cylinder, and the cooling water of the internal combustion engine is attached to this heat exchanger. Heat exchange is performed between the exhaust discharged from the cylinder and the cooling water, and the exhaust is cooled before flowing into the catalyst (see, for example, the following patent documents). ..

特開2011−236850号公報Japanese Unexamined Patent Publication No. 2011-236850

一方で、三元触媒は、ある程度以上高温にならないと活性化せず十分な浄化性能を発揮できない。常に内燃機関の冷却水の全量を排気冷却用の熱交換器に流入させると、冷間始動後において触媒の温度上昇が遅れ、エミッションの悪化を招く懸念がある。 On the other hand, the three-way catalyst does not activate and cannot exhibit sufficient purification performance unless the temperature rises above a certain level. If the entire amount of cooling water of the internal combustion engine is constantly flowed into the heat exchanger for exhaust cooling, the temperature rise of the catalyst is delayed after the cold start, which may lead to deterioration of emissions.

本発明は、内燃機関の冷間始動時の触媒の早期の活性化と熱害の防止との両立を図ることを所期の目的としている。 An object of the present invention is to achieve both early activation of a catalyst during a cold start of an internal combustion engine and prevention of heat damage.

本発明に係る内燃機関の冷却水系統は、内燃機関の内部を流通する冷却水を複数の流れに分流した上で、その一方の流れを気筒から排出され排気浄化用の触媒へと向かう排気を冷却するための熱交換器に供給し、他方の流れを当該熱交換器を経由せずに内燃機関外へと導く構造とし、前記熱交換器を経由せずに内燃機関外に導かれる冷却水が流れる流路上に、熱交換器に供給される冷却水が流れる流路のうちその断面積が最小となる部位よりも断面積が小さい絞りを設けることとした。なお、排気を冷却する前記熱交換器への冷却水の流入量を制御するための電磁ソレノイド弁を設置する必要はない。 The cooling water system of the internal combustion engine according to the present invention divides the cooling water flowing inside the internal combustion engine into a plurality of streams, and then discharges one of the streams from the cylinder to the catalyst for exhaust purification. Cooling water that is supplied to a heat exchanger for cooling and the other flow is guided to the outside of the internal combustion engine without passing through the heat exchanger, and is guided to the outside of the internal combustion engine without passing through the heat exchanger. On the flow path through which the cooling water flows, a throttle having a smaller cross-sectional area than the portion of the flow path through which the cooling water supplied to the heat exchanger has the minimum cross-sectional area is provided. It is not necessary to install a solenoid valve for controlling the amount of cooling water flowing into the heat exchanger that cools the exhaust gas.

内燃機関の冷却水を、排気冷却用の熱交換器とは異なる別の熱交換器でも利用する場合には、前記熱交換器を経由せずに内燃機関外に導かれる冷却水の一部または全部と、熱交換器に供給される冷却水の一部または全部とを合流させた後、当該冷却水を利用し当該冷却水と熱交換する少なくともヒータコア、EGRクーラ、ATFウォーマ、CVTウォーマのうちの何れか一つの別の熱交換器へと流入させるようにすることが好ましい。 When the cooling water of the internal combustion engine is used in another heat exchanger different from the heat exchanger for exhaust cooling, a part of the cooling water guided to the outside of the internal combustion engine without passing through the heat exchanger or Of at least the heater core, EGR cooler, ATF warmer, and CVT warmer that use the cooling water to exchange heat with the cooling water after merging all of the cooling water supplied to the heat exchanger. It is preferable to allow the heat to flow into any one of the other heat exchangers.

本発明によれば、内燃機関の冷間始動時の触媒の早期の活性化と熱害の防止との両立を図ることができる。 According to the present invention, it is possible to achieve both early activation of the catalyst at the time of cold start of the internal combustion engine and prevention of heat damage.

本発明の一実施形態の冷却水系統の回路構成を模式的に示す図。The figure which shows typically the circuit structure of the cooling water system of one Embodiment of this invention. 同実施形態の内燃機関の冷却水系統の要部の構造を示す斜視図。The perspective view which shows the structure of the main part of the cooling water system of the internal combustion engine of the same embodiment. 同実施形態の冷却水系統における、熱交換器を経由せずに内燃機関外に導かれる冷却水が流れる流路と、熱交換器に供給される冷却水が流れる流路との合流部の形状を示す斜視図及び断面図。In the cooling water system of the same embodiment, the shape of the confluence of the flow path through which the cooling water guided to the outside of the internal combustion engine flows without passing through the heat exchanger and the flow path through which the cooling water supplied to the heat exchanger flows. A perspective view and a cross-sectional view showing. エンジン回転数及び冷却水ポンプの回転数と冷却水の流量との関係を示す図。The figure which shows the relationship between the engine speed and the rotation speed of a cooling water pump, and the flow rate of cooling water.

本発明の一実施形態を、図面を参照して説明する。図1ないし図3に示すように、本実施形態の内燃機関0の冷却水系統は、内燃機関0の内部を流通し内燃機関0の各所を冷却する冷却水を同内燃機関0の内部で複数の流れL1、L2に分岐させ、かつその冷却水L1、L2を内燃機関0の外部へと流出させる流出口21、22を複数開設して、一方の流れL1を第一の流出口21から排気冷却用の熱交換器である水冷アダプタ3に流入させつつ、他方の流れL2を第二の流出口22から内燃機関0外へと導いて水冷アダプタ3を迂回させるように構成したものである。なお、図中、冷却水の流れを矢印で表している。 An embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, in the cooling water system of the internal combustion engine 0 of the present embodiment, a plurality of cooling waters that circulate inside the internal combustion engine 0 and cool various parts of the internal combustion engine 0 are provided inside the internal combustion engine 0. A plurality of outlets 21 and 22 are opened so as to branch into the flows L1 and L2 and allow the cooling waters L1 and L2 to flow out to the outside of the internal combustion engine 0, and one flow L1 is exhausted from the first outlet 21. It is configured so that the other flow L2 is guided from the second outlet 22 to the outside of the internal combustion engine 0 while flowing into the water cooling adapter 3 which is a heat exchanger for cooling, and bypasses the water cooling adapter 3. In the figure, the flow of cooling water is indicated by an arrow.

内燃機関0の冷却水は、冷却水ポンプ11により圧送され、内燃機関0の複数の気筒を内包するシリンダブロック1の内部から、それら気筒の燃焼室の天井部及び吸排気ポートを形成するシリンダヘッド2の内部に向かって上昇する。冷却水ポンプ11は、内燃機関0のクランクシャフトから回転駆動力の伝達を受ける機械式のポンプであることもあれば、電動機により駆動される電動式のポンプであることもあるが、基本的にはエンジン回転数が高くなるほど冷却水の吐出量及び吐出圧力を増大させる。機械式の冷却水ポンプ11は内燃機関0のクランクシャフトに従動し、その回転数はエンジン回転数に比例する。 The cooling water of the internal combustion engine 0 is pumped by the cooling water pump 11, and the cylinder head forming the ceiling of the combustion chamber of those cylinders and the intake / exhaust port from the inside of the cylinder block 1 containing the plurality of cylinders of the internal combustion engine 0. It rises toward the inside of 2. The cooling water pump 11 may be a mechanical pump that receives rotational driving force from the crankshaft of the internal combustion engine 0, or may be an electric pump driven by an electric motor, but basically it is an engine. The higher the number of revolutions, the higher the discharge amount and discharge pressure of the cooling water. The mechanical cooling water pump 11 is driven by the crankshaft of the internal combustion engine 0, and its rotation speed is proportional to the engine rotation speed.

シリンダヘッド2の内部に至った冷却水は当該シリンダヘッド2内で分流し、その一方の流れL1が、シリンダヘッド2の前方の側面に開口する第一の流出口21から流出して水冷アダプタ3へと流入する。水冷アダプタ3は、シリンダヘッド2の外部にあって、各気筒の排気ポートから排出される排気が流れる排気通路(排気マニホルドであることがある)4を取り囲む形状をなす。水冷アダプタ3に流入した冷却水L1は、当該排気通路4を流通する排気との間で熱交換し、排気浄化用の三元触媒(図示せず)へと向かう排気の温度を低下させる。しかる後、水冷アダプタ3から流出した冷却水L1は、水冷アダプタ3の出口に接続した流通管5に流入し、この流通管5を通じて内燃機関0外にある別の熱交換器9へと向かう。熱交換器9は、車室内の空気と熱交換して空気を暖めるエアコンディショナのヒータコアであったり、内燃機関0に付随するEGR(Exhaust Gas Recirculation)装置により排気通路4から吸気通路へと還流するEGRガスと熱交換してEGRガスを冷却するEGRクーラであったり、あるいは、車両に搭載された自動変速機の作動流体(トランスミッションフルード)と熱交換して作動流体を暖めるATFウォーマ若しくはCVTウォーマであったりする。 The cooling water that has reached the inside of the cylinder head 2 is diverted in the cylinder head 2, and one of the flows L1 flows out from the first outlet 21 that opens on the front side surface of the cylinder head 2, and the water cooling adapter 3 Inflow to. The water cooling adapter 3 is outside the cylinder head 2 and has a shape surrounding an exhaust passage (which may be an exhaust manifold) 4 through which exhaust gas discharged from the exhaust port of each cylinder flows. The cooling water L1 flowing into the water cooling adapter 3 exchanges heat with the exhaust gas flowing through the exhaust passage 4, and lowers the temperature of the exhaust gas toward the three-way catalyst (not shown) for exhaust gas purification. After that, the cooling water L1 flowing out of the water cooling adapter 3 flows into the flow pipe 5 connected to the outlet of the water cooling adapter 3, and goes to another heat exchanger 9 outside the internal combustion engine 0 through the flow pipe 5. The heat exchanger 9 is a heater core of an air conditioner that heats and exchanges heat with the air in the vehicle interior to warm the air, or returns from the exhaust passage 4 to the intake passage by an EGR (Exhaust Gas Recirculation) device attached to the internal combustion engine 0. An EGR cooler that cools the EGR gas by exchanging heat with the EGR gas, or an ATF warmer or CVT warmer that heats the working fluid (transmission fluid) of the automatic transmission mounted on the vehicle to warm the working fluid. Or something like that.

シリンダヘッド2内で分流した他方の流れL2は、シリンダヘッド2の側方の側面に開口する第二の流出口22から流出し、この第二の流出口22に接続したバイパス管6に流入する。バイパス管6は、第二の流出口22から真っ直ぐに伸びる。そして、バイパス管6は、第一の流出口21から引き回された流通管5における真っ直ぐに伸びる部位と略直交し、これに接続して連通する。つまり、シリンダヘッド2内で分岐した二つの冷却水の流れL1、L2が、流通管5とバイパス管6との接続部7において合流することとなる。合流した冷却水L1、L2は、既に述べた別の熱交換器9に流入し、その熱交換器9において他の流体、具体的には車室内の空気、EGRガス、または変速機の作動流体と熱交換を行う。しかる後、冷却水L1、L2は再び冷却水ポンプ11に吸い込まれる。 The other flow L2 divided in the cylinder head 2 flows out from the second outlet 22 that opens on the lateral side surface of the cylinder head 2 and flows into the bypass pipe 6 connected to the second outlet 22. .. The bypass pipe 6 extends straight from the second outlet 22. Then, the bypass pipe 6 is substantially orthogonal to the straight portion of the flow pipe 5 drawn from the first outlet 21, and is connected to and communicates with the portion. That is, the two streams L1 and L2 of the cooling water branched in the cylinder head 2 merge at the connecting portion 7 between the flow pipe 5 and the bypass pipe 6. The combined cooling waters L1 and L2 flow into another heat exchanger 9 already described, and in the heat exchanger 9, another fluid, specifically air in the vehicle interior, EGR gas, or a working fluid of the transmission is used. And heat exchange. After that, the cooling waters L1 and L2 are sucked into the cooling water pump 11 again.

内燃機関0の内部で高温となった冷却水は、ラジエータ8において強制空冷する。図示例では、ラジエータ8の入口と接続する導入管81をシリンダヘッド2に、ラジエータ8の出口と接続する導出管82をシリンダブロック1に、それぞれ接続している。冷却水の温度が所定の閾値以上に高まったとき、ラジエータ8に連なる流通経路(特に、導出管82)を開閉するサーモスタット12が開弁する。結果、シリンダヘッド2内を流れる冷却水が、導入管81を通じてラジエータ8に流入するようになる。ラジエータ8により空冷された冷却水は、導出管82を通じてシリンダブロック1内へと還流する。 The cooling water that has become hot inside the internal combustion engine 0 is forcibly air-cooled in the radiator 8. In the illustrated example, the introduction pipe 81 connected to the inlet of the radiator 8 is connected to the cylinder head 2, and the outlet pipe 82 connected to the outlet of the radiator 8 is connected to the cylinder block 1. When the temperature of the cooling water rises above a predetermined threshold value, the thermostat 12 that opens and closes the distribution path (particularly, the outlet pipe 82) connected to the radiator 8 opens. As a result, the cooling water flowing in the cylinder head 2 flows into the radiator 8 through the introduction pipe 81. The cooling water air-cooled by the radiator 8 returns to the cylinder block 1 through the outlet pipe 82.

しかして、本実施形態では、図1及び図3に示しているように、水冷アダプタ3を経由せずに迂回する冷却水L2が流れる流路上(即ち、シリンダヘッド2に開設した第二の流出口22から、バイパス管6と流通管5とが連通する箇所までの間)の所要の位置に絞り73を設けることで、シリンダヘッド2から流出し水冷アダプタ3に至る一方の流れL1の流量と、シリンダヘッド2から流出するが水冷アダプタ3を迂回する他方の流れL2の流量との比を調整している。 Thus, in the present embodiment, as shown in FIGS. 1 and 3, a second flow opened in the cylinder head 2 flows on the flow path through which the cooling water L2 bypassing without passing through the water cooling adapter 3 flows (that is, the second flow). By providing the throttle 73 at a required position (between the outlet 22 and the point where the bypass pipe 6 and the flow pipe 5 communicate with each other), the flow rate of one flow L1 flowing out from the cylinder head 2 and reaching the water cooling adapter 3 , The ratio with the flow rate of the other flow L2 that flows out from the cylinder head 2 but bypasses the water cooling adapter 3 is adjusted.

バイパス管6の冷却水L2を流通させ得る流路断面積(換言すれば、バイパス管6の内径または内寸)は、水冷アダプタ3に供給される冷却水L1が流れる流路(即ち、第一の流出口21から、水冷アダプタ3を経て流通管5に至りこの流通管5とバイパス管6とが連通する箇所までの間)における、冷却水L1を流通させ得る流路断面積(換言すれば、当該流路の内径または内寸)が最小となる部位の流路断面積に略等しい。その上で、絞り73の冷却水L2を通過させ得る断面積(換言すれば、絞り73の内径または内寸)の大きさを、それらの流路断面積よりも小さく設定する。 The cross-sectional area of the flow path through which the cooling water L2 of the bypass pipe 6 can flow (in other words, the inner diameter or the inner dimension of the bypass pipe 6) is the flow path through which the cooling water L1 supplied to the water cooling adapter 3 flows (that is, the first). (In other words, the cross-sectional area of the flow path through which the cooling water L1 can flow (in other words, between the outlet 21 of the water), the flow pipe 5 via the water cooling adapter 3 and the point where the flow pipe 5 and the bypass pipe 6 communicate with each other). , The inner diameter or inner dimension of the flow path) is substantially equal to the flow path cross-sectional area of the portion where the minimum is achieved. Then, the size of the cross-sectional area (in other words, the inner diameter or the inner dimension of the throttle 73) through which the cooling water L2 of the diaphragm 73 can pass is set smaller than the cross-sectional area of the flow path thereof.

図3に示すように、本実施形態にあっては、流通管5とバイパス管6とを、平面視T字形をなすジョイント7を介して接続している。ジョイント7は、流通管5の延伸方向に沿って伸長する筒状の主管部71に、バイパス管6の延伸方向に沿って伸長する筒状の副管部72を突き当てた形状をなす。副管部72の周壁の先端は、主管部71の周壁に側方から接合しており、その周壁に囲まれた副管部72の内部が主管部の周壁に面している。そして、副管部72の内部と向かい合う主管部71の周壁に、副管部72の内径よりも径の小さい貫通孔70を穿つことにより、副管部72の内部を主管部71の内部に連通させ、ひいてはバイパス管6を流通管5に連通させている。なおかつ、貫通孔70の周縁に残存する主管部71の周壁を、水冷アダプタ3を経由せずに迂回する冷却水の流れL2に対する絞り73としている。この絞り73はバイパス管6の終端に位置し、貫通孔70の面積(内径または内寸)が絞り73の開口断面積(内径または内寸)となる。そして、絞り73の開口断面積は、副管部72の冷却水L2を流通させ得る流路断面積(換言すれば、副管部72の内径または内寸)よりも小さく、またバイパス管6の流路断面積よりも小さくなる。 As shown in FIG. 3, in the present embodiment, the distribution pipe 5 and the bypass pipe 6 are connected via a joint 7 having a T-shape in a plan view. The joint 7 has a shape in which a tubular main pipe portion 71 extending along the extending direction of the flow pipe 5 is abutted against a tubular auxiliary pipe portion 72 extending along the extending direction of the bypass pipe 6. The tip of the peripheral wall of the sub-pipe portion 72 is joined to the peripheral wall of the main pipe portion 71 from the side, and the inside of the sub-pipe portion 72 surrounded by the peripheral wall faces the peripheral wall of the main pipe portion. Then, the inside of the sub-pipe portion 72 is communicated with the inside of the main pipe portion 71 by forming a through hole 70 having a diameter smaller than the inner diameter of the sub-pipe portion 72 in the peripheral wall of the main pipe portion 71 facing the inside of the sub-pipe portion 72. As a result, the bypass pipe 6 is communicated with the distribution pipe 5. Moreover, the peripheral wall of the main pipe portion 71 remaining on the peripheral edge of the through hole 70 is a throttle 73 with respect to the flow L2 of the cooling water that bypasses without passing through the water cooling adapter 3. The throttle 73 is located at the end of the bypass pipe 6, and the area (inner diameter or inner dimension) of the through hole 70 is the opening cross-sectional area (inner diameter or inner dimension) of the throttle 73. The opening cross-sectional area of the throttle 73 is smaller than the flow path cross-sectional area (in other words, the inner diameter or inner dimension of the sub-pipe portion 72) through which the cooling water L2 of the sub-pipe portion 72 can flow, and the bypass pipe 6 It is smaller than the cross-sectional area of the flow path.

シリンダヘッド2の第一の流出口21から流出し水冷アダプタ3及び流通管5を流れる冷却水L1の流量、及び第二の流出口22から流出しバイパス管6を流れる冷却水L2の流量に関して補足する。ハーゲン・ポアズイユの流れの式によると、断面積が一定で水平に置かれた、流路断面が円形状をなす直管の非圧縮性定常流れの体積流量Qは、
Q=−(πa4/8η)・(ΔP/l)
と与えられる。ここで、aは管路断面の半径、ηは流体の粘性係数、ΔPは長さlの管の両端の差圧である。管内の平均流速vは、
v=Q/πa2=(a2/8η)・(ΔP/l)
となる。即ち、直管を流れる非圧縮粘性流体の平均流速vは、差圧ΔPに比例する。
Supplementary information regarding the flow rate of the cooling water L1 that flows out from the first outlet 21 of the cylinder head 2 and flows through the water cooling adapter 3 and the flow pipe 5, and the flow rate of the cooling water L2 that flows out from the second outlet 22 and flows through the bypass pipe 6. To do. According to the Hagen-Poiseuille flow equation, the volumetric flow rate Q of an incompressible steady flow of a straight pipe with a constant cross-sectional area and horizontally placed and a circular cross-section of the flow path is
Q =-(πa 4 /8η) ・ (ΔP / l)
Is given. Here, a is the radius of the cross section of the pipeline, η is the viscosity coefficient of the fluid, and ΔP is the differential pressure at both ends of the pipe having a length l. The average flow velocity v in the pipe is
v = Q / πa 2 = (a 2 /8η) ・ (ΔP / l)
Will be. That is, the average flow velocity v of the uncompressed viscous fluid flowing through the straight pipe is proportional to the differential pressure ΔP.

一方で、流路断面積がステップ的に急縮小する急縮小管や、流路断面積がステップ的に急拡大する急拡大管では、流れのエネルギに損失が発生する。急縮小部位または急拡大部位の上流側の圧力P1と下流側の圧力P2との差圧(P1−P2)、つまりは縮小損失または拡大損失による圧力降下は、
(P1−P2)=ζ・(ρw2/2)
となる。ここで、ζは実験的に求められる損失係数、ρは流体密度である。wは、急縮小部位または急拡大部位の上流における平均流速であって、
w=√{(2/ζρ)・(P1−P2)}
となる。即ち、急縮小管や急拡大管を流れる非圧縮粘性流体の平均流速wは、差圧(P1−P2)の1/2乗に比例する。
On the other hand, in a rapid reduction pipe in which the cross-sectional area of the flow path is rapidly reduced in steps and a rapid expansion pipe in which the cross-sectional area of the flow path is rapidly expanded in steps, a loss occurs in the energy of the flow. The differential pressure (P 1 − P 2 ) between the pressure P 1 on the upstream side and the pressure P 2 on the downstream side of the sudden contraction site or the rapid expansion site, that is, the pressure drop due to the contraction loss or the expansion loss is
(P 1 -P 2) = ζ · (ρw 2/2)
Will be. Here, ζ is the experimentally obtained loss coefficient, and ρ is the fluid density. w is the average flow velocity upstream of the rapidly contracting site or the rapidly expanding site.
w = √ {(2 / ζρ) ・ (P 1 −P 2 )}
Will be. That is, the average flow velocity w of the uncompressed viscous fluid flowing through the rapidly reducing pipe or the rapidly expanding pipe is proportional to the 1/2 power of the differential pressure (P 1 − P 2).

エンジン回転数が低く、冷却水ポンプ11の回転数及び吐出圧力が低い領域では、水冷アダプタ3を経由せずに迂回する冷却水L2が流れる流路上の絞り73の上流側の圧力と下流側の圧力との差圧は小さい。だが、エンジン回転数が高まり、冷却水ポンプ11の回転数及び吐出圧力が高くなると、同流路上の絞り73の上流側と下流側との差圧が大きくなる。絞り73は急縮小管及び急拡大管と見ることができるので、水冷アダプタ3を経由せずに迂回する冷却水L2の流量、即ちバイパス管6を流れる冷却水L2の流量は、大まかに言えば上記の流速wに近い、絞り73の上流側と下流側との差圧の1/2乗に比例して増大する傾向を有することとなる。 In the region where the engine rotation speed is low and the rotation speed and discharge pressure of the cooling water pump 11 are low, the pressure on the upstream side and the downstream side of the throttle 73 on the flow path through which the cooling water L2 bypassing without passing through the water cooling adapter 3 flows. The differential pressure from the pressure is small. However, as the engine speed increases and the rotation speed and discharge pressure of the cooling water pump 11 increase, the differential pressure between the upstream side and the downstream side of the throttle 73 on the same flow path increases. Since the throttle 73 can be seen as a rapid reduction pipe and a rapid expansion pipe, the flow rate of the cooling water L2 that bypasses without passing through the water cooling adapter 3, that is, the flow rate of the cooling water L2 flowing through the bypass pipe 6 is roughly speaking. It tends to increase in proportion to the 1/2 power of the differential pressure between the upstream side and the downstream side of the throttle 73, which is close to the above-mentioned flow velocity w.

これに対し、水冷アダプタ3を経由した冷却水L1が流れる流通管5には絞りを設けておらず、流通管5を流れる冷却水には絞りによる損失が生じない。よって、流通管5を流れる冷却水L1の流量は、大まかに言えば上記の流速vに近い、冷却水ポンプ11の吐出圧力の上昇に追従して増大する傾向を有する。よって、図4に示すように、エンジン回転数が低いときには、流通管5を流れる冷却水L1の流量に対する、バイパス管6を流れる冷却水L2の流量の比率がある程度以上に大きいが、エンジン回転数が高まるほど、その比率が小さくなってゆく。なお、図中、流通管5を流れる冷却水L1の流量をハッチングで表し、バイパス管6を流れる冷却水L2の流量を網点で表している。 On the other hand, the flow pipe 5 through which the cooling water L1 passing through the water cooling adapter 3 flows is not provided with a throttle, and the cooling water flowing through the flow pipe 5 does not have a loss due to the throttle. Therefore, the flow rate of the cooling water L1 flowing through the flow pipe 5 tends to increase following an increase in the discharge pressure of the cooling water pump 11, which is roughly close to the above-mentioned flow velocity v. Therefore, as shown in FIG. 4, when the engine speed is low, the ratio of the flow rate of the cooling water L2 flowing through the bypass pipe 6 to the flow rate of the cooling water L1 flowing through the flow pipe 5 is larger than a certain level, but the engine speed is large. The higher the value, the smaller the ratio. In the figure, the flow rate of the cooling water L1 flowing through the flow pipe 5 is represented by hatching, and the flow rate of the cooling water L2 flowing through the bypass pipe 6 is represented by halftone dots.

つまり、低回転域では冷却水L2がバイパス管6を相対的に多く流れ、その分水冷アダプタ3に流入する冷却水L1の量が抑制されるが、高回転域ではバイパス管6を流れる冷却水L2の流量が相対的に小さくなり、水冷アダプタ3に流入する冷却水L1の流量が顕著に増加する。従って、内燃機関0の冷間始動直後の暖機運転中には、水冷アダプタ3による排気の冷却性能が抑制され、より高い温度の排気を三元触媒に流入させることが可能となって、触媒の速やかな温度上昇が促進される。翻って、気筒から多量の排気が排出される高回転域での運転中には、水冷アダプタ3による排気の水冷性能が高まり、触媒が熱害を受けることを適切に防止できるのである。 That is, in the low rotation range, the cooling water L2 flows through the bypass pipe 6 in a relatively large amount, and the amount of the cooling water L1 flowing into the water cooling adapter 3 is suppressed by that amount, but in the high rotation range, the cooling water flowing through the bypass pipe 6 is suppressed. The flow rate of L2 becomes relatively small, and the flow rate of the cooling water L1 flowing into the water cooling adapter 3 increases remarkably. Therefore, during the warm-up operation immediately after the cold start of the internal combustion engine 0, the cooling performance of the exhaust gas by the water cooling adapter 3 is suppressed, and the exhaust gas having a higher temperature can flow into the three-way catalyst. Rapid temperature rise is promoted. On the other hand, during operation in a high rotation range where a large amount of exhaust gas is discharged from the cylinder, the water cooling performance of the exhaust gas by the water cooling adapter 3 is enhanced, and the catalyst can be appropriately prevented from being damaged by heat.

本実施形態における内燃機関0の冷却水系統は、内燃機関0の内部を流通する冷却水を複数の流れL1、L2に分流した上で、その一方の流れL1を気筒から排出され排気浄化用の触媒へと向かう排気を冷却するための熱交換器(水冷アダプタ)3に供給し、他方の流れL2を当該熱交換器3を経由せずに内燃機関0外へと導く構造を有し、前記熱交換器3を経由せずに内燃機関0外に導かれる冷却水L2が流れる流路上に、熱交換器3に供給される冷却水L1が流れる流路のうちその断面積が最小となる部位よりも断面積の小さい絞り73を設けたものである。 In the cooling water system of the internal combustion engine 0 in the present embodiment, the cooling water flowing inside the internal combustion engine 0 is divided into a plurality of flows L1 and L2, and one of the flows L1 is discharged from the cylinder for exhaust purification. It has a structure of supplying to a heat exchanger (water cooling adapter) 3 for cooling the exhaust toward the catalyst and guiding the other flow L2 to the outside of the internal combustion engine 0 without passing through the heat exchanger 3. The portion of the flow path through which the cooling water L1 supplied to the heat exchanger 3 has the smallest cross-sectional area on the flow path through which the cooling water L2 guided to the outside of the internal combustion engine 0 does not pass through the heat exchanger 3. A throttle 73 having a smaller cross-sectional area than that of the throttle 73 is provided.

本実施形態によれば、低回転域において排気冷却用の熱交換器3に冷却水をあまり流さないようにして触媒の温度を高く保つとともに、高回転域においては当該熱交換器3に多量の冷却水を供給して触媒に流入する排気の温度を抑制することが可能となる。このような熱交換器3への冷却水の流入量の制御を実現するために、必ずしも電磁ソレノイド弁等を流路上に設置する必要はなく、コストの増大を招かない。尤も、熱交換器3への冷却水の流入量を調節する目的で電磁ソレノイド弁等を設置することを妨げるものではない。 According to the present embodiment, the temperature of the catalyst is kept high by not allowing much cooling water to flow through the heat exchanger 3 for exhaust cooling in the low rotation range, and a large amount of heat exchanger 3 is used in the high rotation range. It is possible to supply cooling water and suppress the temperature of the exhaust that flows into the catalyst. In order to control the amount of cooling water flowing into the heat exchanger 3, it is not always necessary to install a solenoid valve or the like on the flow path, which does not lead to an increase in cost. However, it does not prevent the installation of a solenoid valve or the like for the purpose of adjusting the amount of cooling water flowing into the heat exchanger 3.

製造後市場に出荷される内燃機関0に冷却水を注水する際には、内燃機関0及び冷却水ポンプ11を運転して冷却水を循環させ、シリンダヘッド2の内部の冷却水通路から空気を追い出す必要がある。本実施形態によれば、シリンダヘッド2内部の空気をバイパス管6を介して直接取り出すことが可能であり、流通管5とバイパス管6との接続部7またはこれよりも下流に設けた空気抜き用の孔91から空気を容易に排出させることができる。 When injecting cooling water into the internal combustion engine 0 shipped to the market after production, the internal combustion engine 0 and the cooling water pump 11 are operated to circulate the cooling water, and air is discharged from the cooling water passage inside the cylinder head 2. I need to get rid of it. According to this embodiment, the air inside the cylinder head 2 can be taken out directly through the bypass pipe 6, and the air is evacuated at the connection portion 7 between the flow pipe 5 and the bypass pipe 6 or downstream thereof. Air can be easily discharged from the hole 91 of.

排気冷却用の熱交換器3を経由せずに内燃機関0外に導かれる冷却水L2と、同熱交換器3に供給される冷却水L1とは、合流の後、当該冷却水L1、L2と熱交換する別の熱交換器9に流入する。これにより、当該熱交換器(特に、ヒータコア)9に必要十分な量の冷却水を供給することができ、同熱交換器9が十分な性能を発揮できる。 The cooling water L2 guided to the outside of the internal combustion engine 0 without passing through the heat exchanger 3 for exhaust cooling and the cooling water L1 supplied to the heat exchanger 3 merge with the cooling waters L1 and L2. It flows into another heat exchanger 9 that exchanges heat with. As a result, a necessary and sufficient amount of cooling water can be supplied to the heat exchanger (particularly, the heater core) 9, and the heat exchanger 9 can exhibit sufficient performance.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、排気冷却用の熱交換器3に向かう冷却水の流れL1と、同熱交換器3を迂回する冷却水の流れL2とを、内燃機関0のシリンダヘッド2の内部で分岐させていたが、内燃機関の外部で流れを分岐させるようにしても構わない。 The present invention is not limited to the embodiments described in detail above. For example, in the above embodiment, the flow L1 of the cooling water toward the heat exchanger 3 for exhaust cooling and the flow L2 of the cooling water bypassing the heat exchanger 3 are provided inside the cylinder head 2 of the internal combustion engine 0. Although it was branched, the flow may be branched outside the internal combustion engine.

また、上記実施形態では、排気冷却用の熱交換器3をシリンダヘッド2の外部にアダプタの形で取り付けていたが、シリンダヘッドの内部に熱交換器を(シリンダヘッド内に形成された排気ポートまたは排気マニホルドを取り巻くように)造り込んでもよい。 Further, in the above embodiment, the heat exchanger 3 for exhaust cooling is attached to the outside of the cylinder head 2 in the form of an adapter, but the heat exchanger is installed inside the cylinder head (exhaust port formed in the cylinder head). Alternatively, it may be built (surrounding the exhaust manifold).

上記実施形態では、排気冷却用の熱交換器3に供給された冷却水L1の全部と、同熱交換器3を迂回した冷却水L2の全部とを合流させた上で別の熱交換器9に流入させていたが、排気冷却用の熱交換器に供給された冷却水の一部、及び/または、同熱交換器を迂回した冷却水の一部を、別の熱交換器に流入させないということもあり得る。 In the above embodiment, all of the cooling water L1 supplied to the heat exchanger 3 for exhaust cooling and all of the cooling water L2 bypassing the heat exchanger 3 are merged, and then another heat exchanger 9 is used. However, a part of the cooling water supplied to the heat exchanger for exhaust cooling and / or a part of the cooling water bypassing the heat exchanger is not allowed to flow into another heat exchanger. It is possible that.

その他、各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関に適用することができる。 The present invention can be applied to an internal combustion engine mounted on a vehicle or the like.

0…内燃機関
3…排気冷却用の熱交換器
73…絞り
9…別の熱交換器
L1…熱交換器に供給される冷却水の流れ
L2…熱交換器を経由せずに内燃機関外に導かれる冷却水の流れ
0 ... Internal combustion engine 3 ... Heat exchanger for exhaust cooling 73 ... Squeeze 9 ... Another heat exchanger L1 ... Flow of cooling water supplied to the heat exchanger L2 ... Outside the internal combustion engine without going through the heat exchanger Guided flow of cooling water

Claims (2)

内燃機関の内部を流通する冷却水を複数の流れに分流した上で、その一方の流れを気筒から排出され排気浄化用の触媒へと向かう排気を冷却するための熱交換器に供給し、他方の流れを当該熱交換器を経由せずに内燃機関外へと導く構造であって、
前記熱交換器を経由せずに内燃機関外に導かれる冷却水が流れる流路上に、熱交換器に供給される冷却水が流れる流路のうちその断面積が最小となる部位よりも断面積が小さい絞りを設け、
前記熱交換器を経由せずに内燃機関外に導かれる冷却水の一部または全部と、熱交換器に供給される冷却水の一部または全部とを合流させた後、当該冷却水を利用し当該冷却水と熱交換する少なくともヒータコア、EGRクーラ、ATFウォーマ、CVTウォーマのうちの何れか一つの別の熱交換器へと流入させる内燃機関の冷却水系統の構造。
After dividing the cooling water flowing inside the internal combustion engine into multiple flows, one of the streams is discharged from the cylinder and supplied to the heat exchanger for cooling the exhaust toward the catalyst for exhaust gas purification, and the other. It is a structure that guides the flow of air to the outside of the internal combustion engine without going through the heat exchanger.
On the flow path through which the cooling water guided to the outside of the internal combustion engine flows without passing through the heat exchanger, the cross-sectional area of the flow path through which the cooling water supplied to the heat exchanger flows is smaller than the portion where the cross-sectional area is the minimum. Is provided with a small aperture,
After merging a part or all of the cooling water guided to the outside of the internal combustion engine without passing through the heat exchanger and a part or all of the cooling water supplied to the heat exchanger, the cooling water is used. The structure of the cooling water system of the internal combustion engine that flows into at least one of the heater core, the EGR cooler, the ATF warmer, and the CVT warmer, which exchanges heat with the cooling water.
排気を冷却する前記熱交換器への冷却水の流入量を制御するための電磁ソレノイド弁を設置していない請求項1記載の内燃機関の冷却水系統の構造。 The structure of a cooling water system for an internal combustion engine according to claim 1, wherein an electromagnetic solenoid valve for controlling the amount of cooling water flowing into the heat exchanger that cools the exhaust is not installed.
JP2017032866A 2017-02-24 2017-02-24 Structure of cooling water system of internal combustion engine Active JP6875881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017032866A JP6875881B2 (en) 2017-02-24 2017-02-24 Structure of cooling water system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017032866A JP6875881B2 (en) 2017-02-24 2017-02-24 Structure of cooling water system of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018135870A JP2018135870A (en) 2018-08-30
JP6875881B2 true JP6875881B2 (en) 2021-05-26

Family

ID=63366647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017032866A Active JP6875881B2 (en) 2017-02-24 2017-02-24 Structure of cooling water system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP6875881B2 (en)

Also Published As

Publication number Publication date
JP2018135870A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5787994B2 (en) INTERNAL COMBUSTION ENGINE HAVING COOLANT COLLECTION TUBE FOR COOLING DURING COLD OR OPERATION
US20080295811A1 (en) Engine system having cooled and heated inlet air
JP2015086767A (en) Cooling device of internal combustion engine with turbocharger
JP6658665B2 (en) Internal combustion engine cooling system
JP5668318B2 (en) Vehicle cooling device
JP2008031865A (en) Cooling system for internal combustion engine
JP2009222042A (en) Engine cooling system
JPH02140413A (en) Cooling device for v type engine
JP6875881B2 (en) Structure of cooling water system of internal combustion engine
JP5853911B2 (en) Cooling device for internal combustion engine
JP6900806B2 (en) Engine cooling system
JP6131937B2 (en) Cooling device for rotary piston engine
JP4748103B2 (en) Cooling device for internal combustion engine
JP5907275B2 (en) Cooling device for internal combustion engine
JP4517844B2 (en) Engine cooling system
JP2013072350A (en) Cooling device of engine
JP6604540B2 (en) Engine cooling system
JP2005002970A (en) Cooling device of engine
JP2017155672A (en) Liquid circulation system of vehicle
JP4789288B2 (en) Internal combustion engine flow path forming member
KR100435946B1 (en) Cooling system for engine
JP6582848B2 (en) Engine cooling system
JP4492240B2 (en) Engine cooling system
JP7296287B2 (en) automotive internal combustion engine
JP7413976B2 (en) engine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150