JP6874439B2 - High pressure gas tank - Google Patents

High pressure gas tank Download PDF

Info

Publication number
JP6874439B2
JP6874439B2 JP2017049971A JP2017049971A JP6874439B2 JP 6874439 B2 JP6874439 B2 JP 6874439B2 JP 2017049971 A JP2017049971 A JP 2017049971A JP 2017049971 A JP2017049971 A JP 2017049971A JP 6874439 B2 JP6874439 B2 JP 6874439B2
Authority
JP
Japan
Prior art keywords
layer
fiber bundle
fiber
liner
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017049971A
Other languages
Japanese (ja)
Other versions
JP2018155255A5 (en
JP2018155255A (en
Inventor
陽介 民田
陽介 民田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017049971A priority Critical patent/JP6874439B2/en
Publication of JP2018155255A publication Critical patent/JP2018155255A/en
Publication of JP2018155255A5 publication Critical patent/JP2018155255A5/ja
Application granted granted Critical
Publication of JP6874439B2 publication Critical patent/JP6874439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、高圧ガスタンクに関する。 The present invention relates to a high pressure gas tank.

高圧ガスタンクは、ライナーの外周に繊維強化樹脂層を備え、この繊維強化樹脂層を、ライナーの外周に熱硬化性樹脂を含浸した繊維束を繰り返し巻き付けた複数層の層状構造としている。高圧ガスタンクの耐圧強度は、層状構造の繊維強化樹脂層に依存していることから、繊維強化樹脂層の切断面をX線CTやマイクロ波による断層撮影によって取得して、性能検査を行う手法が提案されている(例えば特許文献1)。なお、繊維強化樹脂層は、熱硬化性樹脂を含浸した繊維束により形成された後、熱硬化性樹脂の加熱硬化を経て、補強層として機能する。 The high-pressure gas tank is provided with a fiber-reinforced resin layer on the outer circumference of the liner, and the fiber-reinforced resin layer has a multi-layered structure in which a fiber bundle impregnated with a thermosetting resin is repeatedly wound around the outer circumference of the liner. Since the pressure resistance of the high-pressure gas tank depends on the fiber-reinforced resin layer having a layered structure, a method of acquiring the cut surface of the fiber-reinforced resin layer by X-ray CT or tomography using microwaves and performing a performance inspection is possible. It has been proposed (for example, Patent Document 1). The fiber-reinforced resin layer functions as a reinforcing layer after being formed by a fiber bundle impregnated with a thermosetting resin and then heat-curing the thermosetting resin.

特開2013−53729号公報Japanese Unexamined Patent Publication No. 2013-53729

X線CTやマイクロ波による断層撮影によれば、繊維強化樹脂層の切断面を非破壊で取得でき、性能検査において有益である。しかしながら、繊維強化樹脂層を構成する各層の硬化済み繊維束は同質なため、重なり合う層と層の境界が断層撮像画像において不鮮明となることが危惧される。このため、不鮮明な境界に基づいて繊維強化樹脂層の層厚みを計測せざるを得ず、改善の余地が残されている。こうしたことから、繊維強化樹脂層の切断面を非破壊の断層撮影によって取得するに際して、繊維強化樹脂層において重なり合う層と層の境界の鮮明化を図ることが要請されるに到った。 According to tomography by X-ray CT or microwave, the cut surface of the fiber reinforced resin layer can be obtained non-destructively, which is useful in performance inspection. However, since the cured fiber bundles of each layer constituting the fiber-reinforced resin layer are homogeneous, there is a concern that the boundary between the overlapping layers will be blurred in the tomographic image. Therefore, the layer thickness of the fiber-reinforced resin layer must be measured based on the unclear boundary, and there is room for improvement. For these reasons, when acquiring the cut surface of the fiber reinforced resin layer by non-destructive tomography, it has been required to clarify the boundary between the overlapping layers in the fiber reinforced resin layer.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。すなわち、ライナーの外周に繊維強化樹脂層を備える高圧ガスタンクは、前記繊維強化樹脂層は、前記ライナーの外周に熱硬化性樹脂を含浸した繊維束を繰り返し巻き付けて前記ライナーの外周を覆う繊維束層を複数層重ねた層状構造であり、該層状構造において重なり合う前記繊維束層の間に、金属粉からなる金属粉層を設けた、高圧ガスタンクの形態として実施可能である。 The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms. That is, in a high-pressure gas tank provided with a fiber-reinforced resin layer on the outer periphery of the liner, the fiber-reinforced resin layer is a fiber bundle layer in which a fiber bundle impregnated with a thermosetting resin is repeatedly wound around the outer periphery of the liner to cover the outer periphery of the liner. It is a layered structure in which a plurality of layers are stacked, and can be implemented as a form of a high-pressure gas tank in which a metal powder layer made of metal powder is provided between the fiber bundle layers overlapping in the layered structure.

(1)本発明の一形態によれば、高圧ガスタンクが提供される。この高圧ガスタンクは、ライナーの外周に繊維強化樹脂層を備える高圧ガスタンクであって、前記繊維強化樹脂層は、前記ライナーの外周に熱硬化性樹脂を含浸した繊維束を繰り返し巻き付けて前記ライナーの外周を覆う繊維束層を複数層重ねた層状構造であり、該層状構造において重なり合う前記繊維束層の間に、金属が存在する金属層を設けた。 (1) According to one embodiment of the present invention, a high pressure gas tank is provided. This high-pressure gas tank is a high-pressure gas tank provided with a fiber-reinforced resin layer on the outer periphery of the liner, and the fiber-reinforced resin layer is obtained by repeatedly winding a fiber bundle impregnated with a thermosetting resin around the outer periphery of the liner and winding the outer periphery of the liner. It has a layered structure in which a plurality of fiber bundle layers covering the above are laminated, and a metal layer in which a metal is present is provided between the fiber bundle layers overlapping in the layered structure.

この形態の高圧ガスタンクにおける繊維強化樹脂層を非破壊の断層撮影によって取得した切断面では、金属層を境界として繊維束層が重なり合う。金属層は、繊維束と全く異質な材料である金属を含むので、繊維強化樹脂層において重なり合う層と層の境界を鮮明化することが可能となる。 In the cut surface obtained by non-destructive tomography of the fiber-reinforced resin layer in this form of high-pressure gas tank, the fiber bundle layers overlap with the metal layer as a boundary. Since the metal layer contains a metal that is a material completely different from the fiber bundle, it is possible to sharpen the boundary between the overlapping layers in the fiber reinforced resin layer.

なお、本発明は、種々の態様で実現することが可能である。例えば、高圧ガスタンクの製造方法や製造装置の形態の他、高圧ガスタンクの検査方法の形態で実現することができる。 The present invention can be realized in various aspects. For example, it can be realized in the form of a method for manufacturing a high-pressure gas tank, a form of a manufacturing apparatus, or a method for inspecting a high-pressure gas tank.

本実施形態の高圧ガスタンクの概略構成を拡大図と共に示す断面図である。It is sectional drawing which shows the schematic structure of the high pressure gas tank of this embodiment together with the enlarged view. 本実施形態に係る高圧ガスタンクの製造手順を示す工程図である。It is a process drawing which shows the manufacturing procedure of the high pressure gas tank which concerns on this embodiment. 繊維強化樹脂層の形成の様子を金属粉層の形成の様子と合わせて模式的に示す説明図である。It is explanatory drawing which shows typically the state of formation of the fiber reinforced resin layer together with the state of formation of a metal powder layer. 繊維強化樹脂層が未硬化の状態でライナーに形成される様子を示す説明図である。It is explanatory drawing which shows the mode that the fiber reinforced resin layer is formed on a liner in an uncured state. 高圧ガスタンクの断面画像の取得の様子を概略的に示す説明図である。It is explanatory drawing which shows the state of acquisition of the cross-sectional image of a high pressure gas tank schematicly.

図1は、本実施形態の高圧ガスタンク100の概略構成を拡大図と共に示す断面図である。高圧ガスタンク100は、ライナー10の外周に繊維強化樹脂層16を備え、ライナー両端から口金20と口金30とを突出させている。ライナー10は、中空のタンク容器であり、タンク長手方向の中央で2分割された一対のライナーパーツの接合品である。2分割のライナーパーツは、それぞれナイロン系樹脂等の適宜な樹脂にて型成形され、その型成形品のライナーパーツを接合してその接合箇所をレーザー融着することで、ライナー10が形成される。このパーツ接合を経て、ライナー10は、円筒状のシリンダー部11の両側に球面形状のドーム部12を備えたガスバリア性の樹脂製中空容器となる。このライナー10は、一方のドーム部12の頂上箇所に口金20を備え、他方のドーム部12の頂上箇所に口金30を備える。こうして装着された口金20と口金30は、ライナー軸線CXを中心軸として向かい合い、タンク製造時には、繊維強化樹脂層16の形成や各種測定の際のライナー10の回転軸回りの受け具として機能する。口金20と口金30の両口金は、アルミニウムまたはその合金といった軽量金属で形成され、口金20は、図示しないバルブの装着のために高圧シール仕様のテーパネジの貫通孔を備える。口金30は、ライナー外側および内側に同心の有底孔を備える。 FIG. 1 is a cross-sectional view showing a schematic configuration of the high-pressure gas tank 100 of the present embodiment together with an enlarged view. The high-pressure gas tank 100 is provided with a fiber-reinforced resin layer 16 on the outer periphery of the liner 10, and the base 20 and the base 30 are projected from both ends of the liner. The liner 10 is a hollow tank container, and is a joint product of a pair of liner parts divided into two at the center in the longitudinal direction of the tank. The liner parts divided into two parts are each molded with an appropriate resin such as nylon resin, and the liner 10 is formed by joining the liner parts of the molded product and laser fusion of the jointed portions. .. After joining the parts, the liner 10 becomes a gas barrier resin hollow container provided with spherical dome portions 12 on both sides of the cylindrical cylinder portion 11. The liner 10 is provided with a base 20 at the top of one dome portion 12 and a base 30 at the top of the other dome portion 12. The base 20 and the base 30 mounted in this way face each other with the liner axis CX as the central axis, and function as a receiver around the rotation axis of the liner 10 when forming the fiber reinforced resin layer 16 and performing various measurements during tank manufacturing. Both the base 20 and the base 30 are made of a lightweight metal such as aluminum or an alloy thereof, and the base 20 is provided with a through hole for a tapered screw having a high pressure seal specification for mounting a valve (not shown). The base 30 is provided with concentric bottomed holes on the outside and inside of the liner.

繊維強化樹脂層16は、熱硬化性樹脂を含浸した繊維束をフィラメントワインディング方法(以下、FW法)によりライナー外周に繰り返し巻き付けることで、ライナー10の外周をその全域において覆う。繊維束の巻き付けの際には、後述するように、フープ巻きによる繊維巻き付けと低角度・高角度のヘリカル巻きによる繊維巻き付けとが使い分けられる。こうした繊維束の巻き付けの使い分けにより、繊維強化樹脂層16は、ライナー10におけるシリンダー部11およびドーム部12の外表全域を複数層の繊維束層にてそれぞれ被覆すると共に、ドーム部12を覆うよう形成された口金側部位16cにおいて、口金20と口金30のフランジ部を被覆する。本実施形態の繊維強化樹脂層16は、ライナー10の外周側から第1層目の第1繊維束層161から第n層目の第n繊維束層16n(nは層数である)の繊維束層を複数層重ねた層状構造であり、拡大図に示す第1繊維束層161と第2繊維束層162の間、第2繊維束層162と第3繊維束層163の間と言った層状構造において重なり合う繊維束層の間に金属粉層17を介在させている。金属粉層17は、亜鉛やアルミニウム等の金属粉末を含有する液水のスプレー塗布を経て形成され、こうした金属が存在する薄様の金属層である。そして、この金属粉層17は、金属粉末を重なり合う繊維束層に付着させている。金属粉層17の形成については後述する。 The fiber-reinforced resin layer 16 covers the outer periphery of the liner 10 in the entire area by repeatedly winding a fiber bundle impregnated with a thermosetting resin around the outer periphery of the liner by a filament winding method (hereinafter, FW method). When winding the fiber bundle, as will be described later, fiber winding by hoop winding and fiber winding by low-angle / high-angle helical winding are used properly. By properly using the winding of the fiber bundle, the fiber reinforced resin layer 16 is formed so as to cover the entire outer surface of the cylinder portion 11 and the dome portion 12 of the liner 10 with a plurality of fiber bundle layers, respectively, and to cover the dome portion 12. The flange portion of the base 20 and the base 30 is covered with the base portion 16c. The fiber-reinforced resin layer 16 of the present embodiment is a fiber of the nth fiber bundle layer 16n (n is the number of layers) of the first fiber bundle layer 161 to the nth layer from the outer peripheral side of the liner 10. It is a layered structure in which a plurality of bundle layers are stacked, and is said to be between the first fiber bundle layer 161 and the second fiber bundle layer 162 and between the second fiber bundle layer 162 and the third fiber bundle layer 163 as shown in the enlarged view. The metal powder layer 17 is interposed between the overlapping fiber bundle layers in the layered structure. The metal powder layer 17 is a thin metal layer formed by spraying liquid water containing a metal powder such as zinc or aluminum, and in which such a metal is present. Then, the metal powder layer 17 adheres the metal powder to the overlapping fiber bundle layers. The formation of the metal powder layer 17 will be described later.

繊維強化樹脂層16の形成には、熱硬化性樹脂としてエポキシ樹脂を用いることが一般的であるが、ポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂を用いることができる。また、FW法によりライナー外周に巻き付ける補強用の繊維束(スライバー繊維の束)としては、ガラス繊維やカーボン繊維、アラミド繊維等が用いられる他、複数種類(例えば、ガラス繊維とカーボン繊維)のFW法による繊維束の巻き付けを順次行うことで、繊維強化樹脂層16を異なる繊維からなる樹脂層を積層させて形成することもできる。 An epoxy resin is generally used as the thermosetting resin for forming the fiber-reinforced resin layer 16, but a thermosetting resin such as a polyester resin or a polyamide resin can be used. Further, as the reinforcing fiber bundle (bundle of sliver fibers) wound around the outer periphery of the liner by the FW method, glass fiber, carbon fiber, aramid fiber and the like are used, and a plurality of types (for example, glass fiber and carbon fiber) of FW are used. By sequentially winding the fiber bundles by the method, the fiber reinforced resin layer 16 can be formed by laminating resin layers made of different fibers.

次に、上記した高圧ガスタンク100の製造手法について説明する。図2は、本実施形態に係る高圧ガスタンク100の製造手順を示す工程図である。高圧ガスタンク100を製造するには、まず、繊維強化樹脂層16における第1層目の第1繊維束層161からの形成(工程S100)と、第1繊維束層161への金属粉層17の形成(工程S110)とを行う。 Next, the manufacturing method of the high-pressure gas tank 100 described above will be described. FIG. 2 is a process diagram showing a manufacturing procedure of the high-pressure gas tank 100 according to the present embodiment. In order to manufacture the high-pressure gas tank 100, first, the first layer of the fiber-reinforced resin layer 16 is formed from the first fiber bundle layer 161 (step S100), and the metal powder layer 17 on the first fiber bundle layer 161 is formed. The formation (step S110) is performed.

図3は、繊維強化樹脂層16の形成の様子を金属粉層17の形成の様子と合わせて模式的に示す説明図である。図4は、繊維強化樹脂層16が未硬化の状態でライナー10に形成される様子を示す説明図である。工程S100の繊維強化樹脂層の形成を行うに当たっては、まず、図3に示すフィラメントワインディング装置(以下、FW装置FM)において、口金20と口金30とがドーム部12に装着済みのライナー10を、回転軸受治具230によりライナー軸線CX回りに回転自在に軸支する。繊維強化樹脂層16の第1繊維束層161から順の繊維束層の形成に当たっては、回転軸受治具230で軸支したライナー10を、ライナー軸線CXの軸回りに回転させつつ、エポキシ樹脂EPをカーボン繊維CFに含浸させた樹脂含有カーボン繊維束ECFを、FW装置FMによりライナー10の外周に繰り返し巻き付ける。繊維強化樹脂層16を形成するに当たっては、まず、第1繊維束層161を、ライナー軸線CXに対して低角度の繊維角αLH(例えば、約11〜25°)で樹脂含有カーボン繊維束ECFが交差して巻き付けられる低角度ヘリカル層として形成する(工程S100)。この様子は図4の上段に示され、図においては、ライナー10の外表が露出しているが、このライナー外表の全域が低ヘリカル巻きの樹脂含有カーボン繊維束ECFで覆われると、低角度ヘリカル層の第1繊維束層161が形成される。この第1繊維束層161の形成の際、ライナー回転速度と未硬化の樹脂含有カーボン繊維束ECFの供給元である繊維送出部132の往復動速度が調整され、その上で、ライナー軸線CX方向に沿って繊維送出部132が往復移動する。これにより、樹脂含有カーボン繊維束ECFは、シリンダー部11の両端のドーム部12に掛け渡るよう螺旋状に繰り返し巻き付けられる。両側のドーム部12では、繊維送出部132の往路・復路の切換に伴って繊維の巻き付け方向が折り返されると共に、ライナー軸線CXからの折り返し位置も調整される。 FIG. 3 is an explanatory diagram schematically showing the state of formation of the fiber reinforced resin layer 16 together with the state of formation of the metal powder layer 17. FIG. 4 is an explanatory view showing how the fiber reinforced resin layer 16 is formed on the liner 10 in an uncured state. In forming the fiber-reinforced resin layer in step S100, first, in the filament winding device (hereinafter referred to as FW device FM) shown in FIG. 3, the liner 10 in which the base 20 and the base 30 are already attached to the dome portion 12 is attached. The rotary bearing jig 230 rotatably supports the liner axis CX. In forming the fiber bundle layers in order from the first fiber bundle layer 161 of the fiber reinforced resin layer 16, the liner 10 pivotally supported by the rotary bearing jig 230 is rotated around the axis of the liner axis CX, and the epoxy resin EP. The resin-containing carbon fiber bundle ECF impregnated with the carbon fiber CF is repeatedly wound around the outer periphery of the liner 10 by the FW device FM. In forming the fiber-reinforced resin layer 16, first, the resin-containing carbon fiber bundle ECF is formed on the first fiber bundle layer 161 at a fiber angle αLH (for example, about 11 to 25 °) at a low angle with respect to the liner axis CX. It is formed as a low-angle helical layer that is cross-wound (step S100). This situation is shown in the upper part of FIG. 4, and in the figure, the outer surface of the liner 10 is exposed, but when the entire outer surface of the liner is covered with the resin-containing carbon fiber bundle ECF of low helical winding, the low angle helical is shown. The first fiber bundle layer 161 of the layer is formed. When the first fiber bundle layer 161 is formed, the liner rotation speed and the reciprocating speed of the fiber delivery portion 132, which is the source of the uncured resin-containing carbon fiber bundle ECF, are adjusted, and then the liner axis CX direction is adjusted. The fiber delivery unit 132 reciprocates along the above. As a result, the resin-containing carbon fiber bundle ECF is repeatedly spirally wound around the dome portions 12 at both ends of the cylinder portion 11. In the dome portions 12 on both sides, the winding direction of the fibers is folded back as the fiber delivery portion 132 switches between the outward path and the return path, and the folded-back position from the liner axis CX is also adjusted.

ドーム部12における巻き付け方向の折り返しを何度も繰り返すことにより、ライナー10の外表面には、低角度の繊維角αLHで樹脂含有カーボン繊維束ECFが網目状に張り渡された第1繊維束層161が形成される。この場合、繊維送出部132は、ドーム部12のほぼ全域の外表が樹脂含有カーボン繊維束ECFにて覆われた上で、少なくとも1層の低角度ヘリカル層が形成されるまで、往復動する。図1の拡大図では、第1繊維束層161を1層の低角度ヘリカル層として示しているが、低角度ヘリカル層が複数層重なった繊維束層を第1繊維束層161としてもよい。 The first fiber bundle layer in which the resin-containing carbon fiber bundle ECF is stretched in a mesh shape on the outer surface of the liner 10 with a low angle fiber angle αLH by repeatedly folding back the dome portion 12 in the winding direction. 161 is formed. In this case, the fiber delivery portion 132 reciprocates until the outer surface of almost the entire area of the dome portion 12 is covered with the resin-containing carbon fiber bundle ECF and at least one low-angle helical layer is formed. In the enlarged view of FIG. 1, the first fiber bundle layer 161 is shown as one low-angle helical layer, but the fiber bundle layer in which a plurality of low-angle helical layers are stacked may be referred to as the first fiber bundle layer 161.

工程S100での第1繊維束層161の形成に続く工程S110では、第1繊維束層161の表面に金属粉層17を形成する。金属粉層17の形成に当たっては、繊維送出部132の往復動とライナー10の回転を一時的に停止した上で、図3に示すように、亜鉛やアルミニウム、ステンレス等の金属粉末を含有する液水を貯留した貯留槽250と、この貯留槽250の金属粉末含有液をスプレー塗布するスプレーガン260とを用いる。本実施形態では、貯留槽250に貯留される液水を、0.01〜0.05mmの粒径の金属粉を体積比で90%程度含有する純水とした。スプレーガン260は、シリンダー部11とその両端のドーム部12とに掛けて往復動しつつ、ライナー軸線CX回りにも回転し、こうした往復動・回転の過程において、ライナー10に形成済みの第1繊維束層161に向けて金属粉末含有液を間歇的に塗布する。このスプレーガン260からの金属粉末含有液の間欠的なスプレー塗布により、第1繊維束層161に0.1mm以下の塗布厚みで金属粉層17が重ねて形成される。なお、第1繊維束層161および金属粉層17は、後述の加熱を経て、それぞれ最終的に形成される。 In the step S110 following the formation of the first fiber bundle layer 161 in the step S100, the metal powder layer 17 is formed on the surface of the first fiber bundle layer 161. In forming the metal powder layer 17, after temporarily stopping the reciprocating movement of the fiber delivery portion 132 and the rotation of the liner 10, as shown in FIG. 3, a liquid containing a metal powder such as zinc, aluminum, and stainless steel. A storage tank 250 for storing water and a spray gun 260 for spray-applying the metal powder-containing liquid of the storage tank 250 are used. In the present embodiment, the liquid water stored in the storage tank 250 is pure water containing about 90% by volume of metal powder having a particle size of 0.01 to 0.05 mm. The spray gun 260 reciprocates around the cylinder portion 11 and the dome portions 12 at both ends thereof, and also rotates around the liner axis CX. In the process of such reciprocating movement / rotation, the first first formed on the liner 10. The metal powder-containing liquid is intermittently applied toward the fiber bundle layer 161. By intermittent spray coating of the metal powder-containing liquid from the spray gun 260, the metal powder layer 17 is formed on the first fiber bundle layer 161 with a coating thickness of 0.1 mm or less. The first fiber bundle layer 161 and the metal powder layer 17 are finally formed by heating, which will be described later.

工程S110での金属粉層17の形成に続く工程S120では、繊維強化樹脂層16の第n繊維束層16nまでの樹脂含有カーボン繊維束ECFの巻き付けが完了したか否かが判断され、巻き付け未完であれば、上記した工程S100の繊維強化樹脂層形成と、工程S110の金属粉層形成とが繰り返される。この繰り返しにより、ライナー10の外周には、エポキシ樹脂EPが未硬化の状態の第1繊維束層161〜第n繊維束層16nまでの繊維束層が複数層重なった層状構造の繊維強化樹脂層16が形成されると共に、重なり合う繊維束層の間に金属粉層17が介在する。なお、金属粉末含有液のスプレー塗布に続く第2繊維束層162〜第n繊維束層16nの形成の際、スプレーガン260からスプレー塗布された金属粉末含有液は、重なり合う繊維束層間に、樹脂含有カーボン繊維束ECFで保持される。 In the step S120 following the formation of the metal powder layer 17 in the step S110, it is determined whether or not the winding of the resin-containing carbon fiber bundle ECF up to the nth fiber bundle layer 16n of the fiber reinforced resin layer 16 is completed, and the winding is not completed. If this is the case, the fiber-reinforced resin layer formation in step S100 and the metal powder layer formation in step S110 are repeated. By repeating this process, a fiber-reinforced resin layer having a layered structure in which a plurality of fiber bundle layers from the first fiber bundle layer 161 to the nth fiber bundle layer 16n in which the epoxy resin EP is uncured is stacked on the outer periphery of the liner 10 16 is formed, and the metal powder layer 17 is interposed between the overlapping fiber bundle layers. When the second fiber bundle layer 162 to the nth fiber bundle layer 16n was formed following the spray coating of the metal powder-containing liquid, the metal powder-containing liquid spray-coated from the spray gun 260 was used as a resin between the overlapping fiber bundle layers. It is held by the contained carbon fiber bundle ECF.

本実施形態では、第1繊維束層161を含む奇数番目の繊維束層をヘリカル層とし、第2繊維束層162を含む偶数番目の繊維束層を形成済みヘリカル層に重なるフープ層とした。この様子は、図4の下段に示されており、偶数番目の繊維束層、例えば第2繊維束層162の形成の際には、シリンダー部11において、フープ巻きをシリンダー部両端で折り返しつつ繰り返すことで、フープ層を形成する。つまり、ライナー10をライナー軸線CX回りに改めて回転させつつ、繊維送出部132をライナー軸線CXに沿って所定速度で往復動させることで、既に形成済みのヘリカル層の第1繊維束層161に重なってフープ層が樹脂含有カーボン繊維束ECFにより形成される。このフープ巻きでは、繊維送出部132からの樹脂含有カーボン繊維束ECFが、シリンダー部11のライナー軸線CXに対してほぼ垂直に近い巻き角度(繊維角α0:例えば約89°)で交差して巻き付くよう、ライナー回転速度と繊維送出部132の往復動速度を調整する。その上で、ライナー軸線CX方向に沿って繊維送出部132を往復移動させて、樹脂含有カーボン繊維束ECFをシリンダー部11の範囲において繰り返し巻回する。 In the present embodiment, the odd-numbered fiber bundle layer including the first fiber bundle layer 161 is used as the helical layer, and the even-numbered fiber bundle layer including the second fiber bundle layer 162 is used as the hoop layer overlapping the formed helical layer. This situation is shown in the lower part of FIG. 4, and when the even-numbered fiber bundle layer, for example, the second fiber bundle layer 162 is formed, the hoop winding is repeated at both ends of the cylinder portion in the cylinder portion 11. This forms a hoop layer. That is, by rotating the liner 10 again around the liner axis CX and reciprocating the fiber delivery portion 132 along the liner axis CX at a predetermined speed, it overlaps with the first fiber bundle layer 161 of the already formed helical layer. The hoop layer is formed by the resin-containing carbon fiber bundle ECF. In this hoop winding, the resin-containing carbon fiber bundle ECF from the fiber delivery portion 132 intersects and winds at a winding angle (fiber angle α0: for example, about 89 °) that is almost perpendicular to the liner axis CX of the cylinder portion 11. The liner rotation speed and the reciprocating speed of the fiber delivery unit 132 are adjusted so as to be attached. Then, the fiber delivery portion 132 is reciprocated along the liner axis CX direction, and the resin-containing carbon fiber bundle ECF is repeatedly wound in the range of the cylinder portion 11.

シリンダー部11における巻き付け方向の折り返しを何度も繰り返すことにより、既に形成済みの奇数番目のヘリカル層の繊維束層、例えば第1繊維束層161には、高角度の繊維角αLHで樹脂含有カーボン繊維束ECFが網目状に張り渡されたフープ層の第2繊維束層162が金属粉層17を介在させて形成される。この場合、繊維送出部132は、シリンダー部11の全域において樹脂含有カーボン繊維束ECFが繰り返し巻き付けられた上で、少なくとも1層のフープ層が形成されまで、往復動する。図1の拡大図では、第2繊維束層162を1層のフープ層として示しているが、フープ層が複数層重なった繊維束層を第2繊維束層162としてもよい。 By repeating the folding back in the winding direction in the cylinder portion 11 many times, the already formed odd-th helical layer fiber bundle layer, for example, the first fiber bundle layer 161 is provided with resin-containing carbon having a high angle fiber angle αLH. The second fiber bundle layer 162 of the hoop layer in which the fiber bundle ECF is stretched in a mesh pattern is formed with the metal powder layer 17 interposed therebetween. In this case, the fiber delivery unit 132 reciprocates until at least one hoop layer is formed after the resin-containing carbon fiber bundle ECF is repeatedly wound around the entire area of the cylinder unit 11. In the enlarged view of FIG. 1, the second fiber bundle layer 162 is shown as one hoop layer, but the fiber bundle layer in which a plurality of hoop layers are stacked may be referred to as the second fiber bundle layer 162.

ヘリカル層形成のためのヘリカル巻きから、フープ層形成のためのフープ巻きへの変更は、ライナー10の回転速度調整と繊維送出部132の往復動速度調整をすることでなされる。なお、上記した低角度のヘリカル巻きからフープ巻きに変更する際に、ライナー軸線CXに対して高角度の繊維角(例えば、約30〜60°)で樹脂含有カーボン繊維束ECFを巻き付ける高角度のヘリカル巻きを組み込むこともできる。 The change from the helical winding for forming the helical layer to the hoop winding for forming the hoop layer is made by adjusting the rotation speed of the liner 10 and the reciprocating speed of the fiber delivery portion 132. When changing from the low-angle helical winding to the hoop winding described above, the resin-containing carbon fiber bundle ECF is wound at a high angle with respect to the liner axis CX (for example, about 30 to 60 °). Helical winding can also be incorporated.

こうして未硬化の樹脂含有カーボン繊維束ECFのフープ巻きおよびヘリカル巻きが使い分けてなされることで、ライナー10の外周には、低角度ヘリカル層の第1繊維束層161にフープ層の第2繊維束層162が金属粉層17を介在させて重なる。更に、低角度ヘリカル層の奇数番目の繊維束層とフープ層の偶数番目の繊維束層が金属粉層17を介在させて交互に層状に重なった第n繊維束層16nまでの繊維強化樹脂層16がエポキシ樹脂EPが未硬化の状態でFW法にて形成される。 In this way, the hoop winding and the helical winding of the uncured resin-containing carbon fiber bundle ECF are properly used, so that the outer periphery of the liner 10 has the first fiber bundle layer 161 of the low-angle helical layer and the second fiber bundle of the hoop layer. The layers 162 are overlapped with the metal powder layer 17 interposed therebetween. Further, the fiber-reinforced resin layer up to the nth fiber bundle layer 16n in which the odd-numbered fiber bundle layer of the low-angle helical layer and the even-numbered fiber bundle layer of the hoop layer are alternately layered with the metal powder layer 17 interposed therebetween. 16 is formed by the FW method in a state where the epoxy resin EP is uncured.

図2に示すように、工程S120で判断した繊維束の巻き付け完了に続いては、繊維強化樹脂層16の加熱・硬化(工程S130)と、X線CT画像による繊維強化樹脂層16の断面画像取得(工程S140)と、繊維強化樹脂層16における第1繊維束層161〜第n繊維束層16nの厚み判定(工程S150)とを順次実行する。工程S130の繊維強化樹脂層16の形成では、未硬化の繊維強化樹脂層16が外周に形成済みのライナー10を、ライナー軸線CX回りに回転可能な状態で軸支して、加熱炉に搬入する。そして、炉内でのマイクロ波加熱や熱風加熱により、繊維強化樹脂層16のエポキシ樹脂を150℃まで加熱して熱硬化させる。ライナー10は、ライナー軸線CX回りに回転しつつ加熱を受け、エポキシ樹脂の熱硬化後の冷却養生を経て、工程S140を行うX線撮像セクションに搬送される。 As shown in FIG. 2, following the completion of winding of the fiber bundle determined in step S120, heating / curing of the fiber reinforced resin layer 16 (step S130) and a cross-sectional image of the fiber reinforced resin layer 16 by an X-ray CT image. The acquisition (step S140) and the thickness determination of the first fiber bundle layer 161 to the nth fiber bundle layer 16n in the fiber reinforced resin layer 16 (step S150) are sequentially executed. In the formation of the fiber reinforced resin layer 16 in step S130, the liner 10 in which the uncured fiber reinforced resin layer 16 has been formed on the outer periphery is pivotally supported in a state of being rotatable around the liner axis CX and carried into the heating furnace. .. Then, the epoxy resin of the fiber reinforced resin layer 16 is heated to 150 ° C. and thermally cured by microwave heating or hot air heating in the furnace. The liner 10 is heated while rotating around the liner axis CX, undergoes cooling curing after thermosetting the epoxy resin, and is conveyed to an X-ray imaging section in which step S140 is performed.

工程S140では、繊維強化樹脂層16が形成済みのライナー10、即ち高圧ガスタンク100の複数箇所の円周方向断面と円筒方向断面の断面画像を非破壊で取得する。図5は、高圧ガスタンク100の断面画像の取得の様子を概略的に示す説明図である。高圧ガスタンク100の円周方向の断面画像の取得に当たっては、高圧ガスタンク100をライナー軸線CX回りに回転させつつ、X線CT撮像機器300を用いて、シリンダー部11の複数箇所の円周方向断面の断面画像を取得する。高圧ガスタンク100の円筒方向の断面画像の取得に当たっては、高圧ガスタンク100を水平に保持した上で、X線CT撮像機器300と高圧ガスタンク100をライナー軸線CXに沿って相対移動させつつ、シリンダー部11の一端側のドーム部12から他端側のドーム部12に亘る円筒方向の断面画像を取得する。次いで、高圧ガスタンク100をライナー軸線CX回りに所定の角度だけ回転させて、円筒方向の断面画像の取得を繰り返す。取得された断面画像は、図1に示すように第1繊維束層161と第2繊維束層162の間、第2繊維束層162と第3繊維束層163の間のように重なり合う繊維束層の間に金属粉層17が映り込んだ画像となり、金属粉層17を境界として各繊維束層が重なりあったものとなる。 In step S140, cross-sectional images of a plurality of circumferential and cylindrical cross sections of the liner 10 on which the fiber reinforced resin layer 16 has been formed, that is, the high-pressure gas tank 100, are acquired non-destructively. FIG. 5 is an explanatory view schematically showing a state of acquisition of a cross-sectional image of the high-pressure gas tank 100. In acquiring the cross-sectional image of the high-pressure gas tank 100 in the circumferential direction, the high-pressure gas tank 100 is rotated around the liner axis CX, and the X-ray CT imaging device 300 is used to obtain a cross-sectional view of a plurality of locations in the cylinder portion 11 in the circumferential direction. Acquire a cross-sectional image. In acquiring the cross-sectional image of the high-pressure gas tank 100 in the cylindrical direction, the cylinder portion 11 is held horizontally while the X-ray CT imaging device 300 and the high-pressure gas tank 100 are relatively moved along the liner axis CX. A cross-sectional image in the cylindrical direction extending from the dome portion 12 on one end side to the dome portion 12 on the other end side is acquired. Next, the high-pressure gas tank 100 is rotated around the liner axis CX by a predetermined angle, and acquisition of a cross-sectional image in the cylindrical direction is repeated. The acquired cross-sectional image shows the overlapping fiber bundles such as between the first fiber bundle layer 161 and the second fiber bundle layer 162 and between the second fiber bundle layer 162 and the third fiber bundle layer 163 as shown in FIG. The image is such that the metal powder layer 17 is reflected between the layers, and the fiber bundle layers are overlapped with the metal powder layer 17 as a boundary.

工程S150の厚み判定では、金属粉層17を境界として重なりあった第1繊維束層161〜第n繊維束層16nの各繊維束層の厚みを取得済み断面画像から算出し、その算出層厚みが規定値(規定の厚み)に収まっているかを判定する。そして、算出層厚みが規定値に合致していれば、高圧ガスタンク100を次工程に送り込み、本実施形態での製造手順を終了する。その一方、算出層厚みが規定値を下回っていると、高圧ガスタンク100に対して定格外対処(工程S160)を行った後、高圧ガスタンク100を次工程に送り込み、本実施形態での製造手順を終了する。この定格外対処としては、算出層厚みが不足している領域において、樹脂含有カーボン繊維束ECFを追加して巻き付けたり、算出層厚みが不足しているものの低耐圧規格の高圧ガスタンクとしての有効利用を図るべく、何らかの判別処置、例えば「低耐圧規格品用」といったステッカーを貼り付ける対処を例示できる。 In the thickness determination in step S150, the thickness of each fiber bundle layer of the first fiber bundle layer 161 to the nth fiber bundle layer 16n that overlaps with the metal powder layer 17 as a boundary is calculated from the acquired cross-sectional image, and the calculated layer thickness is calculated. Is determined to be within the specified value (specified thickness). Then, if the calculated layer thickness matches the specified value, the high-pressure gas tank 100 is sent to the next process, and the manufacturing procedure in the present embodiment is completed. On the other hand, if the calculated layer thickness is less than the specified value, the high-pressure gas tank 100 is subjected to non-rated measures (step S160), and then the high-pressure gas tank 100 is sent to the next process, and the manufacturing procedure in the present embodiment is performed. finish. As a countermeasure against this out-of-rating, resin-containing carbon fiber bundle ECF is additionally wound in the region where the calculated layer thickness is insufficient, or it is effectively used as a high-pressure gas tank with a low pressure resistance standard although the calculated layer thickness is insufficient. In order to achieve this, some discriminant measure, for example, a measure of attaching a sticker such as "for low pressure resistant standard products" can be exemplified.

以上説明した手順で製造される本実施形態の高圧ガスタンク100は、非破壊で取得した繊維強化樹脂層16の円周方向および円筒方向の断面画像を、金属粉層17を境界として第1繊維束層161と第2繊維束層162、第2繊維束層162と第3繊維束層163等が重なりあった画像として提供可能とする。そして、金属粉層17は、各繊維束層を形成する樹脂含有カーボン繊維束ECFとは全く異質な亜鉛等の金属粉末を含む故に、本実施形態の高圧ガスタンク100によれば、取得された断面画像における繊維強化樹脂層16において重なり合う繊維束層と繊維束層の境界を金属粉層17により鮮明とできる。 In the high-pressure gas tank 100 of the present embodiment manufactured by the procedure described above, the cross-sectional images of the fiber-reinforced resin layer 16 obtained in a non-destructive manner in the circumferential direction and the cylindrical direction are taken with the metal powder layer 17 as a boundary of the first fiber bundle. It is possible to provide an image in which the layer 161 and the second fiber bundle layer 162, the second fiber bundle layer 162 and the third fiber bundle layer 163, and the like are overlapped. Since the metal powder layer 17 contains a metal powder such as zinc which is completely different from the resin-containing carbon fiber bundle ECF forming each fiber bundle layer, the obtained cross section is obtained according to the high-pressure gas tank 100 of the present embodiment. The boundary between the fiber bundle layer and the fiber bundle layer overlapping in the fiber reinforced resin layer 16 in the image can be made clear by the metal powder layer 17.

実施形態では、亜鉛やアルミニウム等の金属粉末を含有する液水を間歇的にスプレー塗布したので、液水未塗布の領域において、重なり合う第1繊維束層161と第2繊維束層162、第2繊維束層162と第3繊維束層163等を未硬化のエポキシ樹脂で連続させる。よって、本実施形態の高圧ガスタンク100によれば、未硬化のエポキシ樹脂の加熱硬化を経た重なり合う繊維束層の一体化を確保して、重なり合う繊維束層の固着を阻害しないようにできる。 In the embodiment, since the liquid water containing a metal powder such as zinc or aluminum is intermittently spray-coated, the first fiber bundle layer 161 and the second fiber bundle layers 162 and the second are overlapped in the region where the liquid water is not applied. The fiber bundle layer 162, the third fiber bundle layer 163, and the like are made continuous with an uncured epoxy resin. Therefore, according to the high-pressure gas tank 100 of the present embodiment, it is possible to ensure the integration of the overlapping fiber bundle layers that have undergone heat curing of the uncured epoxy resin so as not to hinder the adhesion of the overlapping fiber bundle layers.

本実施形態の高圧ガスタンク100を得るに当たっては、第1繊維束層161〜第n繊維束層16nまで順次、繊維束層を樹脂含有カーボン繊維束ECFの巻き付けで形成する既存の製造手順に、金属粉末含有の液水塗布を組み込むだけでよい。よって、本実施形態のタンク製造方法によれば、繊維強化樹脂層16において重なり合う繊維束層と繊維束層の境界が金属粉層17により鮮明となった高圧ガスタンク100を容易に製造できる。 In obtaining the high-pressure gas tank 100 of the present embodiment, a metal is used in the existing manufacturing procedure in which the fiber bundle layer is sequentially formed from the first fiber bundle layer 161 to the nth fiber bundle layer 16n by winding the resin-containing carbon fiber bundle ECF. It is only necessary to incorporate a liquid water application containing powder. Therefore, according to the tank manufacturing method of the present embodiment, the high-pressure gas tank 100 in which the boundary between the overlapping fiber bundle layer and the fiber bundle layer in the fiber reinforced resin layer 16 is made clear by the metal powder layer 17 can be easily manufactured.

本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in each embodiment described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems. , It is possible to replace or combine as appropriate to achieve some or all of the above effects. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

既述した実施形態では、金属粉層17を形成するに当たり、亜鉛やアルミニウム等の金属粉末を含有する液水を間歇的にスプレー塗布したが、連続的に塗布してもよい。また、亜鉛やアルミニウム以外の金属粉末を含有する液水を塗布してもよい。 In the above-described embodiment, in forming the metal powder layer 17, liquid water containing a metal powder such as zinc or aluminum is spray-applied intermittently, but may be continuously applied. Further, liquid water containing a metal powder other than zinc or aluminum may be applied.

既述した実施形態では、金属粉層17を形成するに当たり、金属粉末含有の液水をスプレー塗布したが、刷毛等を用いて金属粉含有の液水を形成済みの繊維束層の表面に塗布してもよい。金属粉含有の液水を形成済みの繊維束層のほぼ全域の表面に塗布してもよいが、ライナー軸線CXに沿って帯状に金属粉含有の液水を塗布してもよい。この他、金属粉含有の液水塗布に変わり、0.01〜0.05mm程度の厚みの金属薄膜をライナー軸線CXに沿って帯状に繊維束層の表面に貼り付けてもよい。このように一部領域に金属粉含有の液水を帯状に塗布したり帯状の金属薄膜を貼り付けた場合には、帯状の塗布領域、帯状の金属薄膜貼付領域において、重なり合う繊維束層と繊維束層の境界を鮮明とできる。なお、金属粉含有の液水の帯状の塗布や帯状の金属薄膜の貼り付けを、ライナー軸線CXの軸回りに複数筋に亘って行うようにしてもよい。 In the above-described embodiment, the metal powder-containing liquid water is spray-coated to form the metal powder layer 17, but the metal powder-containing liquid water is applied to the surface of the formed fiber bundle layer using a brush or the like. You may. The liquid water containing the metal powder may be applied to almost the entire surface of the formed fiber bundle layer, or the liquid water containing the metal powder may be applied in a band shape along the liner axis CX. In addition, instead of applying liquid water containing metal powder, a metal thin film having a thickness of about 0.01 to 0.05 mm may be attached to the surface of the fiber bundle layer in a strip shape along the liner axis CX. When the liquid water containing metal powder is applied in a band shape or a band-shaped metal thin film is attached to a part of the region in this way, the overlapping fiber bundle layer and the fiber in the band-shaped application region and the band-shaped metal thin film application region. The boundary of the bundle layer can be made clear. In addition, the strip-shaped coating of the liquid water containing the metal powder and the sticking of the strip-shaped metal thin film may be performed over a plurality of streaks around the axis of the liner axis CX.

10…ライナー
11…シリンダー部
12…ドーム部
16…繊維強化樹脂層
161〜16n…第1繊維束層〜第n繊維束層
16c…口金側部位
17…金属粉層
20…口金
30…口金
100…高圧ガスタンク
132…繊維送出部
230…回転軸受治具
250…貯留槽
260…スプレーガン
300…X線CT撮像機器
CF…カーボン繊維
ECF…樹脂含有カーボン繊維束
EP…エポキシ樹脂
FM…FW装置
CX…ライナー軸線
LH…繊維角α
10 ... Liner 11 ... Cylinder part 12 ... Dome part 16 ... Fiber reinforced resin layer 161 to 16n ... 1st fiber bundle layer to nth fiber bundle layer 16c ... Base side part 17 ... Metal powder layer 20 ... Base 30 ... Base 100 ... High-pressure gas tank 132 ... Fiber delivery part 230 ... Rotating bearing jig 250 ... Storage tank 260 ... Spray gun 300 ... X-ray CT imaging equipment CF ... Carbon fiber ECF ... Resin-containing carbon fiber bundle EP ... Epoxy resin FM ... FW device CX ... Liner Axis line LH ... Fiber angle α

Claims (1)

ライナーの外周に繊維強化樹脂層を備える高圧ガスタンクであって、
前記繊維強化樹脂層は、前記ライナーの外周に熱硬化性樹脂を含浸した繊維束を繰り返し巻き付けて前記ライナーの外周を覆う繊維束層を複数層重ねた層状構造であり、
該層状構造において重なり合う前記繊維束層の間に、金属粉からなる金属粉層を設けた、高圧ガスタンク。
A high-pressure gas tank provided with a fiber-reinforced resin layer on the outer circumference of the liner.
The fiber-reinforced resin layer has a layered structure in which a plurality of fiber bundle layers covering the outer periphery of the liner are repeatedly wound around the outer periphery of the liner with a fiber bundle impregnated with a thermosetting resin.
A high-pressure gas tank in which a metal powder layer made of metal powder is provided between the fiber bundle layers that overlap in the layered structure.
JP2017049971A 2017-03-15 2017-03-15 High pressure gas tank Active JP6874439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049971A JP6874439B2 (en) 2017-03-15 2017-03-15 High pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049971A JP6874439B2 (en) 2017-03-15 2017-03-15 High pressure gas tank

Publications (3)

Publication Number Publication Date
JP2018155255A JP2018155255A (en) 2018-10-04
JP2018155255A5 JP2018155255A5 (en) 2020-02-06
JP6874439B2 true JP6874439B2 (en) 2021-05-19

Family

ID=63717834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049971A Active JP6874439B2 (en) 2017-03-15 2017-03-15 High pressure gas tank

Country Status (1)

Country Link
JP (1) JP6874439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119970B2 (en) * 2018-12-12 2022-08-17 トヨタ自動車株式会社 POSITION DETECTION METHOD AND POSITION DETECTION DEVICE
JP7481238B2 (en) 2020-11-24 2024-05-10 トヨタ自動車株式会社 Layer thickness analysis method

Also Published As

Publication number Publication date
JP2018155255A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
EP2418413B1 (en) Method for manufacturing a tank, and a tank thus produced
JP6874439B2 (en) High pressure gas tank
JP6769348B2 (en) How to manufacture a high-pressure gas tank
US11473725B2 (en) High-pressure gas tank and method for producing high-pressure gas tank
US10538029B2 (en) Method of manufacturing high pressure gas tank
US11226068B2 (en) High-pressure tank and manufacturing method of high-pressure tank
BR112017007193B1 (en) Composite pressure vessel assembly, and method for manufacturing a composite pressure vessel assembly
US10913181B2 (en) Method for manufacturing a preform for composite materials
JP7226345B2 (en) High-pressure tank manufacturing method
US20170045181A1 (en) Pressure vessel and method for winding filament
JP2018179081A (en) Tank manufacturing method and tank
JP2011185360A (en) Method for manufacturing of high pressure gas tank
JP6729497B2 (en) Tank manufacturing method
JP7359167B2 (en) High pressure tank and high pressure tank manufacturing method
JP6958326B2 (en) How to manufacture high pressure tank
JP2022063105A (en) Manufacturing method of high pressure tank
JP7254107B2 (en) Inspection method and inspection device for high-pressure vessel
US3216458A (en) Hoses
JP2017094518A (en) Method for producing high pressure tank
JP2021124136A (en) High pressure tank
JP7334641B2 (en) High-pressure tank manufacturing method
JP2020067156A (en) Manufacturing method for high pressure tank
JP7235411B2 (en) High-pressure tank manufacturing method
CN117781156A (en) Composite material pressure vessel with equatorial screw boss for high-temperature fuel gas and manufacturing method thereof
JP2020044794A (en) Method for detecting tip position of resin fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151