JP6872685B2 - Infrared detector - Google Patents

Infrared detector Download PDF

Info

Publication number
JP6872685B2
JP6872685B2 JP2017077974A JP2017077974A JP6872685B2 JP 6872685 B2 JP6872685 B2 JP 6872685B2 JP 2017077974 A JP2017077974 A JP 2017077974A JP 2017077974 A JP2017077974 A JP 2017077974A JP 6872685 B2 JP6872685 B2 JP 6872685B2
Authority
JP
Japan
Prior art keywords
infrared sensor
infrared
angle
measured
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017077974A
Other languages
Japanese (ja)
Other versions
JP2018179694A (en
Inventor
勲 服部
勲 服部
浩 山中
山中  浩
杉山 貴則
貴則 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017077974A priority Critical patent/JP6872685B2/en
Priority to CN201810308838.5A priority patent/CN108693565B/en
Publication of JP2018179694A publication Critical patent/JP2018179694A/en
Application granted granted Critical
Publication of JP6872685B2 publication Critical patent/JP6872685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Description

本発明は、人などの被測定対象の温度を非接触で検出する赤外線検出装置に関する。 The present invention relates to an infrared detection device that non-contactly detects the temperature of an object to be measured such as a person.

従来の赤外線検出装置は、熱源が特定された位置へ赤外線検出装置を駆動させて人体か否かを判断していた。(特許文献1) In the conventional infrared detection device, the infrared detection device is driven to a position where the heat source is specified to determine whether or not it is a human body. (Patent Document 1)

特許第5240271号公報Japanese Patent No. 5240271

しかしながら、上記従来の赤外線検出装置では、熱源が複数個ある場合や、熱源が移動する場合には十分に対応できないという課題があった。 However, the above-mentioned conventional infrared detection device has a problem that it cannot sufficiently cope with the case where there are a plurality of heat sources or when the heat sources move.

本発明は、上記課題を解決し、熱源が複数個ある場合や、熱源が移動する場合でも十分に対応可能な赤外線検出装置を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide an infrared detection device that can sufficiently cope with a case where there are a plurality of heat sources or a case where the heat sources move.

上記課題を解決するために本発明は、被測定対象の赤外線を検出する赤外線センサと、前記赤外線センサを一方向と一方向とは反対の他方向に回動走査する走査部とを有し、前記赤外線センサは、一方向へ回動するときは第1の角度回動するごとに赤外線の検出を行い、他方向へ回動するときは第2の角度回動するごとに赤外線の検出を行い、前記第1の角度よりも前記第2の角度の方が大きい構成とした。 In order to solve the above problems, the present invention includes an infrared sensor that detects infrared rays to be measured, and a scanning unit that rotates and scans the infrared sensor in one direction and in the other direction opposite to one direction. When the infrared sensor rotates in one direction, it detects infrared rays every time it rotates in the first angle, and when it rotates in the other direction, it detects infrared rays every time it rotates in a second angle. The second angle is larger than the first angle.

本発明の空調制御装置は、熱源が複数個ある場合や熱源が移動する場合でも、効率良く赤外線検出装置によって被測定対象の赤外線を検出することができる。 The air conditioning control device of the present invention can efficiently detect infrared rays to be measured by an infrared ray detecting device even when there are a plurality of heat sources or the heat sources move.

実施の形態1の赤外線検出装置の構成を示すブロック図The block diagram which shows the structure of the infrared ray detection apparatus of Embodiment 1. 同赤外線検出装置の外観を示す図The figure which shows the appearance of the infrared detector 同赤外線センサの一方向への回動を示す図The figure which shows the rotation of the infrared sensor in one direction 同赤外線センサの他方向への回動を示す図The figure which shows the rotation of the infrared sensor in the other direction. 実施の形態2の赤外線検出装置の構成を示すブロック図A block diagram showing the configuration of the infrared detection device according to the second embodiment. 実施の形態3の赤外線検出装置の構成を示すブロック図A block diagram showing the configuration of the infrared detection device according to the third embodiment. 実施の形態4の赤外線検出装置の構成を示すブロック図A block diagram showing the configuration of the infrared detection device according to the fourth embodiment. 同赤外線検出装置の一方向への回動を示す図The figure which shows the rotation of the infrared ray detection device in one direction. 同赤外線検出装置の他方向への回動を示す図The figure which shows the rotation of the infrared detector device in the other direction. 同赤外線検出装置の他方向への回動を示す図The figure which shows the rotation of the infrared detector device in the other direction.

(実施の形態1)
以下に、実施の形態1における赤外線検出装置について図面を用いながら説明する。
(Embodiment 1)
Hereinafter, the infrared detection device according to the first embodiment will be described with reference to the drawings.

図1は実施の形態1の赤外線検出装置の構成を示すブロック図、図2は同赤外線検出装
置の外観を示す図、図3は同赤外線検出装置の赤外線センサの一方向への回動を示す図、図4は同赤外線センサの他方向への回動を示す図である。
FIG. 1 is a block diagram showing the configuration of the infrared detection device of the first embodiment, FIG. 2 is a view showing the appearance of the infrared detection device, and FIG. 3 shows rotation of the infrared sensor of the infrared detection device in one direction. FIG. 4 is a diagram showing the rotation of the infrared sensor in the other direction.

実施の形態1の赤外線検出装置1は、熱源となる人などの被測定体2から出る赤外線を検出する赤外線センサ3と、赤外線センサ3を回動走査する走査部4と、赤外線センサ3を処理する処理部5と、走査部4を制御する制御部6を有している。処理部5で処理された信号は、赤外線検出装置1を適用した電子機器7に出力される。 The infrared detection device 1 of the first embodiment processes an infrared sensor 3 that detects infrared rays emitted from an object to be measured 2 such as a person serving as a heat source, a scanning unit 4 that rotates and scans the infrared sensor 3, and an infrared sensor 3. It has a processing unit 5 for processing and a control unit 6 for controlling the scanning unit 4. The signal processed by the processing unit 5 is output to the electronic device 7 to which the infrared detection device 1 is applied.

赤外線センサ3は、感温部が埋設された熱型赤外線検出器を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサ3は、感温部および感温部の出力電圧を取り出すためのMOSトランジスタを有したa×b個の画素部(非接触赤外線検知素子)が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されており、赤外線センサ3では画素部は8×8に構成されている。なお、画素部は8×8に限られず、例えば、16×4のように構成しても良い。 The infrared sensor 3 has a thermal infrared detector in which a temperature sensitive portion is embedded, and the temperature sensitive portion is composed of a thermopile that converts the thermal energy of infrared rays radiated from the object to be detected into electrical energy. A thermoelectric conversion unit is used. Further, in the infrared sensor 3, a × b pixel portions (non-contact infrared detection elements) having a temperature sensitive portion and a MOS transistor for extracting the output voltage of the temperature sensitive portion are a on one surface side of the semiconductor substrate. It is arranged in a two-dimensional array in rows and columns b, and the infrared sensor 3 has a pixel portion of 8 × 8. The pixel portion is not limited to 8 × 8, and may be configured as, for example, 16 × 4.

走査部4は、ステッピングモータ等のモータにより構成されており、モータの回転により、赤外線センサ3を軸周りに一方向と一方向とは反対の他方向に回動させる。走査部4には赤外線センサ3の回動を止めるストッパ(図示せず)がついており、赤外線センサ3が回動できる最大の最大回動角度は120°となっている。この最大回動角度回動するごとに、反対方向への回動を開始する。この最大回動角度は120°に限定されるものではなく、赤外線センサ3の使用用途によって適宜変更しても良い。走査部4の回動角度は走査部4が赤外線センサ3を一方向に回動させるとき、第1の角度θ1回動させるごとに赤外線センサ3の回動を止めて、赤外線センサ3による赤外線の検出を行う。また、走査部4が赤外線センサ3を他方向に回動させるとき、第2の角度θ2回動させるごとに赤外線センサ3の回動を止めて、赤外線センサ3による赤外線の検出を行う。第1の角度θ1回動させたときも、第2の角度θ2回動させたときも複数回測定をしている。第1の角度θ1は第2の角度θ2よりも小さく、第1の角度θ1は5°、第2の角度θ2は60°になっている。なお、第1の角度θ1、第2の角度θ2はこれに限定されるものではなく、赤外線検出装置1の用途に応じて適宜変更することができる。このように第1の角度θ1よりも第2の角度θ2の方が大きい構成とすることにより、一方向へ回動するときよりも、他方向へ回動するときの方が早く赤外線センサ3を最大回動角度だけ回動させることが出来る。 The scanning unit 4 is composed of a motor such as a stepping motor, and the rotation of the motor causes the infrared sensor 3 to rotate around an axis in one direction and in the other direction opposite to one direction. The scanning unit 4 is provided with a stopper (not shown) for stopping the rotation of the infrared sensor 3, and the maximum rotation angle at which the infrared sensor 3 can rotate is 120 °. Each time the maximum rotation angle is rotated, rotation in the opposite direction is started. This maximum rotation angle is not limited to 120 °, and may be appropriately changed depending on the intended use of the infrared sensor 3. As for the rotation angle of the scanning unit 4, when the scanning unit 4 rotates the infrared sensor 3 in one direction, the rotation of the infrared sensor 3 is stopped each time the infrared sensor 3 is rotated by the first angle θ1, and the infrared rays from the infrared sensor 3 are measured. Perform detection. Further, when the scanning unit 4 rotates the infrared sensor 3 in the other direction, the rotation of the infrared sensor 3 is stopped each time the infrared sensor 3 is rotated by the second angle θ2, and the infrared sensor 3 detects infrared rays. The measurement is performed a plurality of times both when the first angle θ1 is rotated and when the second angle θ2 is rotated. The first angle θ1 is smaller than the second angle θ2, the first angle θ1 is 5 °, and the second angle θ2 is 60 °. The first angle θ1 and the second angle θ2 are not limited to these, and can be appropriately changed according to the application of the infrared detection device 1. By configuring the second angle θ2 to be larger than the first angle θ1 in this way, the infrared sensor 3 can be rotated faster in the other direction than in one direction. It can be rotated by the maximum rotation angle.

赤外線センサ3は、一方向へ回動するときは、最大回動角度だけ回動し終えると、途中で取得した熱画像を全て足し合わせる。これにより、高解像度の熱画像を検出することができ、被測定体2の温度の検出精度が向上する。 When the infrared sensor 3 rotates in one direction, when it finishes rotating by the maximum rotation angle, all the thermal images acquired on the way are added together. As a result, a high-resolution thermal image can be detected, and the temperature detection accuracy of the object to be measured 2 is improved.

一方で、他方向へ赤外線センサ3を回動させたときは、第2の角度θ2回動するごとに、熱画像の検出を行う。他方向への回動時には一方向への回動時の様に熱画像の足し合わせは行わず、赤外線センサ3で熱画像を取得する度に赤外線センサ3の出力を処理部5で処理する。これにより、他方向への回動時には被測定体2の活動量を検出することができる。 On the other hand, when the infrared sensor 3 is rotated in the other direction, the thermal image is detected every time the infrared sensor 3 is rotated by the second angle θ2. When rotating in the other direction, the thermal images are not added as in the case of rotating in one direction, and each time the infrared sensor 3 acquires a thermal image, the processing unit 5 processes the output of the infrared sensor 3. As a result, the amount of activity of the object to be measured 2 can be detected when rotating in the other direction.

このように、一方向への回動時には高解像度の熱画像を取得して被測定体2の温度を高精度に検出し、他方向への回動時には一方向への回動時よりも粗い熱画像を用いた被測定体2の活動量の検出を行っている。他方向への回動時には高解像度の熱画像は必要にならないため、第2の角度θ2を第1の角度θ1よりも大きくすることで他方向への回動時間を短くすることが出来る。これにより、短時間で被測定体2の高精度な温度検出と活動量の検出の両方を行うことが出来る。 In this way, when rotating in one direction, a high-resolution thermal image is acquired to detect the temperature of the object to be measured 2 with high accuracy, and when rotating in the other direction, it is coarser than when rotating in one direction. The amount of activity of the object to be measured 2 is detected using a thermal image. Since a high-resolution thermal image is not required when rotating in the other direction, the rotation time in the other direction can be shortened by making the second angle θ2 larger than the first angle θ1. As a result, it is possible to perform both highly accurate temperature detection and activity amount detection of the object to be measured 2 in a short time.

赤外線検出装置1は、被測定体2の高精度な温度の検出と活動量の検出の両方を行うことが出来るため、熱源である被測定体2が複数いる場合や、被測定体2が移動した場合でも、追従して被測定体2の温度を検出することができる。 Since the infrared detection device 1 can detect both the temperature of the object to be measured 2 and the amount of activity with high accuracy, the object to be measured 2 moves when there are a plurality of objects to be measured 2 which are heat sources. Even in this case, the temperature of the object to be measured 2 can be detected by following the procedure.

(実施の形態2)
以下に、実施の形態2の赤外線検出装置について説明する。
(Embodiment 2)
The infrared detection device of the second embodiment will be described below.

図5は実施の形態2の赤外線検出装置のブロック図である。 FIG. 5 is a block diagram of the infrared detection device of the second embodiment.

実施の形態2の赤外線検出装置11は、人などの被測定対象から出る赤外線を検出する赤外線センサ3と、赤外線センサ3を回動走査する走査部4と、赤外線センサ3を処理する処理部5と、走査部4を制御する制御部6と、赤外線センサ3の環境温度を検出する温度センサ12を有している。走査部4は、赤外線センサ3を一方向へ回動させるときには第1の角度θ1で回動させ、他方向へ赤外線センサ3を回動させるときには第1の角度θ1よりも大きい第2の角度θ2で回動させる。 The infrared detection device 11 of the second embodiment has an infrared sensor 3 that detects infrared rays emitted from an object to be measured such as a person, a scanning unit 4 that rotates and scans the infrared sensor 3, and a processing unit 5 that processes the infrared sensor 3. It also has a control unit 6 that controls the scanning unit 4 and a temperature sensor 12 that detects the ambient temperature of the infrared sensor 3. The scanning unit 4 rotates the infrared sensor 3 at a first angle θ1 when rotating it in one direction, and a second angle θ2 larger than the first angle θ1 when rotating the infrared sensor 3 in the other direction. Rotate with.

温度センサ12にはサーミスタが用いられている。なお、温度センサ12は赤外線センサ3の環境温度を検出することができれば、他のものを用いても良い。 A thermistor is used for the temperature sensor 12. As the temperature sensor 12, another one may be used as long as it can detect the environmental temperature of the infrared sensor 3.

走査部4は温度センサ12の出力により、赤外線センサ3を一方向へ回動させる第1の角度θ1を変更する。実施の形態2の赤外線センサ3においては、環境温度が20のとき第1の角度θ1は5°である。赤外線センサ3の環境温度が1上昇するごとに走査部4は第1の角度θ1を0.5°ずつ小さくする。環境温度が高くなればなるほど被測定体2と背景の温度が近くなり、温度の検出精度が低下する。しかし、環境温度の上昇に応じて第1の角度θ1を小さくすることにより、一方向へ回動したときに得られる熱画像がより高解像度になっていく。これにより、一方向へ赤外線センサ3を回動させるのにかかる時間は長くなるが、被測定体2の温度の検出精度は実施の形態1に比べて向上する。このため、赤外線センサ3の検出精度が向上する。また、環境温度が28になると第1の角度θ1が1°になるが、これ以上環境温度が上昇しても第1の角度θ1は1°から変更しない。このように、第1の角度θ1の限界値を設定しておくことにより、第1の角度θ1が小さくなりすぎて一方向への回動時間が極端に長くなりすぎることを防止できる。
The scanning unit 4 changes the first angle θ1 for rotating the infrared sensor 3 in one direction according to the output of the temperature sensor 12. In the infrared sensor 3 of the second embodiment, the first angle θ1 is 5 ° when the environmental temperature is 20 ° C. Every time the environmental temperature of the infrared sensor 3 rises by 1 ° C. , the scanning unit 4 reduces the first angle θ1 by 0.5 °. The higher the environmental temperature, the closer the temperature of the object to be measured 2 to the background, and the lower the temperature detection accuracy. However, by reducing the first angle θ1 as the environmental temperature rises, the thermal image obtained when rotating in one direction becomes higher in resolution. As a result, it takes a long time to rotate the infrared sensor 3 in one direction, but the temperature detection accuracy of the object 2 to be measured is improved as compared with the first embodiment. Therefore, the detection accuracy of the infrared sensor 3 is improved. Further, when the environmental temperature reaches 28 ° C. , the first angle θ1 becomes 1 °, but even if the environmental temperature rises further, the first angle θ1 does not change from 1 °. By setting the limit value of the first angle θ1 in this way, it is possible to prevent the first angle θ1 from becoming too small and the rotation time in one direction becoming extremely long.

なお、環境温度が変化したときの第1の角度θ1は赤外線検出装置11の用途に応じて適宜変更することが出来る。 The first angle θ1 when the environmental temperature changes can be appropriately changed according to the application of the infrared detection device 11.

また、実施の形態2では、温度センサ12を別途設けて赤外線センサ3の環境温度を検出しているが、一方向への回動時に得られた熱画像の背景温度から赤外線センサ3の環境温度を検出しても良い。このように、赤外線センサ3の出力から環境温度を検出することで、温度センサ12を設ける必要がなくなり、赤外線検出装置を小型化することが出来る。 Further, in the second embodiment, the temperature sensor 12 is separately provided to detect the ambient temperature of the infrared sensor 3, but the ambient temperature of the infrared sensor 3 is obtained from the background temperature of the thermal image obtained when the infrared sensor 3 is rotated in one direction. May be detected. By detecting the environmental temperature from the output of the infrared sensor 3 in this way, it is not necessary to provide the temperature sensor 12, and the infrared detection device can be miniaturized.

(実施の形態3)
以下に、実施の形態3の赤外線検出装置について図面を用いながら説明する。
(Embodiment 3)
Hereinafter, the infrared detection device of the third embodiment will be described with reference to the drawings.

図6は実施の形態3の赤外線検出装置のブロック図である。 FIG. 6 is a block diagram of the infrared detection device of the third embodiment.

実施の形態3の赤外線検出装置21は、人などの被測定対象から出る赤外線を検出する赤外線センサ3と、赤外線センサ3を回動走査する走査部4と、赤外線センサ3を処理する処理部5と、走査部4を制御する制御部6と、赤外線センサ3の環境温度を検出する温
度センサ12を有している。走査部4は、赤外線センサ3を一方向へ回動させるときには第1の角度θ1で回動させ、他方向へ赤外線センサ3を回動させるときには第1の角度θ1よりも大きい第2の角度θ2で回動させる。
The infrared detection device 21 of the third embodiment has an infrared sensor 3 that detects infrared rays emitted from an object to be measured such as a person, a scanning unit 4 that rotates and scans the infrared sensor 3, and a processing unit 5 that processes the infrared sensor 3. It also has a control unit 6 that controls the scanning unit 4 and a temperature sensor 12 that detects the ambient temperature of the infrared sensor 3. The scanning unit 4 rotates the infrared sensor 3 at a first angle θ1 when rotating it in one direction, and a second angle θ2 larger than the first angle θ1 when rotating the infrared sensor 3 in the other direction. Rotate with.

赤外線検出装置21は、走査部4が学習機能を備えている。赤外線センサ3は、赤外線センサ3の検出した結果から被測定体2がいる可能性が高い場所を学習する。被測定体2がいるかどうかで、他方向へ赤外線センサ3を回動時の第2の角度θ2回動させて赤外線センサ3で測定する回数を変更する。例えば、人がいる可能性が高いと推定した領域の測定時には赤外線センサ3での測定回数を10回とし、人がいない可能性が高いと推定した領域の測定時には赤外線センサ3での測定回数を5回とする。このようにする事で、人がいない領域の測定時間を短縮することが出来る。人がいない領域では被測定体2の活動量を測定する必要がないため、赤外線センサ3の性能を低下させずに赤外線センサ3の走査時間の短縮をすることができる。他方向への走査時に人がいないと推定した領域に被測定体2がいた場合には、次の他方向への回動時にはその領域での測定回数を人がいる可能性が高い領域と同じにする。これにより、被測定体2が移動した場合でも、赤外線検出装置の性能を低下させずに、赤外線センサ3の走査時間の短縮を行うことができる。 In the infrared detection device 21, the scanning unit 4 has a learning function. The infrared sensor 3 learns a place where the object to be measured 2 is likely to be present from the detection result of the infrared sensor 3. Depending on whether or not the object to be measured 2 is present, the infrared sensor 3 is rotated by the second angle θ2 when rotating in the other direction, and the number of times of measurement by the infrared sensor 3 is changed. For example, when measuring an area estimated to have a high possibility of having a person, the number of measurements with the infrared sensor 3 is set to 10 times, and when measuring an area estimated to have a high possibility of having no people, the number of measurements taken with the infrared sensor 3 is set to 10. 5 times. By doing so, it is possible to shorten the measurement time in an area where there are no people. Since it is not necessary to measure the amount of activity of the object to be measured 2 in an area where there are no people, the scanning time of the infrared sensor 3 can be shortened without deteriorating the performance of the infrared sensor 3. If the object to be measured 2 is in an area estimated to be empty when scanning in the other direction, the number of measurements in that area will be the same as in the area where there is a high possibility that there will be people when rotating in the next other direction. To. As a result, even when the object 2 to be measured moves, the scanning time of the infrared sensor 3 can be shortened without deteriorating the performance of the infrared detection device.

なお、他方向への回動時の測定回数は人がいる可能性が高い路領域で10回、人がいない可能性が高い領域で5回としたが、これに限られない。赤外線検出装置21の用途に応じて赤外線センサ3の測定回数は適宜変更することが出来る。 The number of measurements when rotating in the other direction is 10 times in the road area where there is a high possibility of having people, and 5 times in the area where there is a high possibility that there are no people, but the number of measurements is not limited to this. The number of measurements of the infrared sensor 3 can be appropriately changed according to the application of the infrared detection device 21.

(実施の形態4)
以下に、実施の形態3の赤外線検出装置について図面を用いながら説明する。
(Embodiment 4)
Hereinafter, the infrared detection device of the third embodiment will be described with reference to the drawings.

図7は実施の形態4の赤外線検出装置のブロック図である。 FIG. 7 is a block diagram of the infrared detection device of the fourth embodiment.

実施の形態3の赤外線センサ3は、人などの被測定対象から出る赤外線を検出する赤外線センサ3と、赤外線センサ3を回動走査する走査部4と、赤外線センサ3を処理する処理部5と、走査部4を制御する制御部6と、赤外線センサ3の環境温度を検出する温度センサ12を有している。走査部4は、赤外線センサ3を一方向へ回動させるときには第1の角度θ1で回動させ、他方向へ赤外線センサ3を回動させるときには第1の角度θ1よりも大きい第2の角度θ2で回動させる。 The infrared sensor 3 of the third embodiment includes an infrared sensor 3 that detects infrared rays emitted from an object to be measured such as a person, a scanning unit 4 that rotates and scans the infrared sensor 3, and a processing unit 5 that processes the infrared sensor 3. It has a control unit 6 that controls the scanning unit 4 and a temperature sensor 12 that detects the ambient temperature of the infrared sensor 3. The scanning unit 4 rotates the infrared sensor 3 at a first angle θ1 when rotating it in one direction, and a second angle θ2 larger than the first angle θ1 when rotating the infrared sensor 3 in the other direction. Rotate with.

実施の形態4の赤外線検出装置31は、一方向への回動時に被測定体2が検出されなかった場合、他方向への回動時に第2の角度θ2回動したときの測定回数を少なくする。ここでは、一方向への回動時に被測定体2の存在が検出された場所を他方向への回動時に測定する回数は10回であり、被測定体2の存在が検出されなかった場所を他方向への回動時に測定する回数は5回とする。 In the infrared detection device 31 of the fourth embodiment, when the object to be measured 2 is not detected when rotating in one direction, the number of measurements when the second angle θ2 is rotated when rotating in the other direction is reduced. To do. Here, the number of times the location where the presence of the object to be measured 2 is detected when rotating in one direction is measured when rotating in the other direction is 10 times, and the location where the presence of the object to be measured 2 is not detected. Is measured 5 times when rotating in the other direction.

図8は一方向への回動時の赤外線センサと被測定体の関係を示す図、図9は他方向への回動時の赤外線センサと被測定体の関係を示す図である。他方向への最大回動角度を120°、第2の回動角度を30°とし、赤外線センサ3が端部から他方向へ回動する第2の回動角度ごとに、第1の測定方向S1、第2の測定方向S2、・・・、第5の測定方向S5として説明する。 FIG. 8 is a diagram showing the relationship between the infrared sensor and the object to be measured when rotating in one direction, and FIG. 9 is a diagram showing the relationship between the infrared sensor and the object to be measured when rotating in the other direction. The maximum rotation angle in the other direction is 120 °, the second rotation angle is 30 °, and the first measurement direction is set for each second rotation angle in which the infrared sensor 3 rotates from the end in the other direction. S1, the second measurement direction S2, ..., The fifth measurement direction S5 will be described.

被測定体2が第2の測定方向S2におり、一方向への回動時に被測定体2の存在を検出した場合、他方向への回動時に第2の測定方向S2では赤外線センサ3は10回測定し、それ以外の測定方向では5回測定する。このように測定をすることにより、赤外線センサ3の活動量の検出精度を低下させずに走査時間を短縮することが出来る。 When the object to be measured 2 is in the second measurement direction S2 and the presence of the object to be measured 2 is detected when rotating in one direction, the infrared sensor 3 is in the second measurement direction S2 when rotating in the other direction. Measure 10 times, and measure 5 times in other measurement directions. By performing the measurement in this way, the scanning time can be shortened without deteriorating the detection accuracy of the activity amount of the infrared sensor 3.

次に、図10に被測定体が移動した場合の赤外線センサの回動を示す図である。被測定体2が第3の測定方向S3に移動し、一方向への回動時にこれを検出した場合は、他方向への回動時に第3の測定方向S3では赤外線センサ3は10回測定し、それ以外の測定方向では5回測定する。このようにすることで、被測定体2の移動を追従することができる。 Next, FIG. 10 is a diagram showing the rotation of the infrared sensor when the object to be measured moves. When the object to be measured 2 moves in the third measurement direction S3 and detects this when rotating in one direction, the infrared sensor 3 measures 10 times in the third measurement direction S3 when rotating in the other direction. However, in the other measurement directions, the measurement is performed 5 times. By doing so, the movement of the object to be measured 2 can be followed.

なお、最大回動角度、第2の角度θ2、測定回数は説明のために例示したものであり、実施の形態4で説明した回数に限定されるものではない。赤外線検出装置31の用途に応じて適宜変更することが出来る。測定回数は0回にすることもできる。この場合、赤外線センサ3の走査時間をさらに短縮することが出来る。 The maximum rotation angle, the second angle θ2, and the number of measurements are exemplified for the sake of explanation, and are not limited to the number of times described in the fourth embodiment. It can be appropriately changed according to the application of the infrared detection device 31. The number of measurements can be set to 0. In this case, the scanning time of the infrared sensor 3 can be further shortened.

本開示は、熱源が複数個ある場合や熱源が移動する場合でも、高精度に赤外線の検出をすることができるため、空調機器等に有用である。 The present disclosure is useful for air conditioners and the like because infrared rays can be detected with high accuracy even when there are a plurality of heat sources or the heat sources move.

1、11、21、31 赤外線検出装置
2 被測定体
3 赤外線センサ
4 走査部
5 処理部
6 制御部
7 電子機器
12 温度センサ
1, 11, 21, 31 Infrared detector 2 Infrared detector 3 Infrared sensor 4 Scanning unit 5 Processing unit 6 Control unit 7 Electronic device 12 Temperature sensor

Claims (4)

被測定対象の赤外線を検出する赤外線センサと、
前記赤外線センサを一方向と一方向とは反対の他方向に回動走査する走査部と
前記赤外線センサを制御する制御部を有し、
前記赤外線センサは、一方向へ回動するときは第1の角度回動するごとに赤外線の検出を行い、他方向へ回動するときは第2の角度回動するごとに赤外線の検出を行い、
前記第1の角度よりも前記第2の角度の方が大きく、
前記制御部は、前記赤外線センサが前記一方向へ回動するときの出力から前記被測定対象のいる可能性が高い第1の領域と前記被測定対象のいる可能性が低い第2の領域を設定し、
前記制御部は、前記赤外線センサが前記他方向へ回動するときの前記第1の領域における前記赤外線センサの測定回数よりも、前記赤外線センサが前記他方向へ回動するときの前記第2の領域における前記赤外線センサの測定回数を少なくする赤外線検出装置。
An infrared sensor that detects infrared rays to be measured and
A scanning unit that rotates and scans the infrared sensor in one direction and in the other direction opposite to one direction .
It has a control unit that controls the infrared sensor.
When the infrared sensor rotates in one direction, it detects infrared rays every time it rotates in the first angle, and when it rotates in the other direction, it detects infrared rays every time it rotates in a second angle. ,
The second angle is larger than the first angle,
From the output when the infrared sensor rotates in the one direction, the control unit sets a first region in which the object to be measured is likely to be present and a second region in which the object to be measured is unlikely to be present. Set,
The control unit is the second when the infrared sensor is rotated in the other direction, rather than the number of measurements of the infrared sensor in the first region when the infrared sensor is rotated in the other direction. An infrared detection device that reduces the number of measurements by the infrared sensor in a region.
前記赤外線センサの回動時間は、一方向への回動時よりも他方向への回動時の方が短い請求項1に記載の赤外線検出装置。 The infrared detection device according to claim 1, wherein the rotation time of the infrared sensor is shorter when rotating in the other direction than when rotating in one direction. 前記走査部は、前記赤外線センサの環境温度が高くなるにつれて、前記第1の角度を小さくする請求項1または2に記載の赤外線検出装置。 The infrared detection device according to claim 1 or 2, wherein the scanning unit reduces the first angle as the ambient temperature of the infrared sensor increases. 前記走査部は、一方向への回動時に前記被測定対象が検出できない場合、前記第2の角度を大きくする請求項1〜3のいずれかに記載の赤外線検出装置。 The infrared detection device according to any one of claims 1 to 3, wherein the scanning unit increases the second angle when the object to be measured cannot be detected when rotating in one direction.
JP2017077974A 2017-04-11 2017-04-11 Infrared detector Active JP6872685B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017077974A JP6872685B2 (en) 2017-04-11 2017-04-11 Infrared detector
CN201810308838.5A CN108693565B (en) 2017-04-11 2018-04-08 Infrared detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077974A JP6872685B2 (en) 2017-04-11 2017-04-11 Infrared detector

Publications (2)

Publication Number Publication Date
JP2018179694A JP2018179694A (en) 2018-11-15
JP6872685B2 true JP6872685B2 (en) 2021-05-19

Family

ID=63844881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077974A Active JP6872685B2 (en) 2017-04-11 2017-04-11 Infrared detector

Country Status (2)

Country Link
JP (1) JP6872685B2 (en)
CN (1) CN108693565B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286087B (en) * 2021-05-28 2022-09-02 杭州微影软件有限公司 Screen control method and device and thermal imager
CN114136464A (en) * 2021-10-26 2022-03-04 深圳市思码逻辑技术有限公司 Performance test method, device, equipment and system of infrared sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207583B2 (en) * 1992-09-21 2001-09-10 松下電器産業株式会社 Temperature distribution measurement device
JP3144757B2 (en) * 1995-07-24 2001-03-12 千博 朝倉 Victim detector by infrared sensor and its control
JP3591755B2 (en) * 1997-03-31 2004-11-24 能美防災株式会社 Fire source sensor
JP3876368B2 (en) * 1998-03-31 2007-01-31 能美防災株式会社 Fire source position detector
JP3944665B2 (en) * 1998-09-17 2007-07-11 能美防災株式会社 Fire detection method and apparatus
JP4016364B2 (en) * 1998-09-17 2007-12-05 能美防災株式会社 Fire extinguishing equipment fire extinguishing equipment selection system
JP4006722B2 (en) * 1999-08-06 2007-11-14 能美防災株式会社 Fire extinguisher
JP2001143169A (en) * 1999-11-17 2001-05-25 Nohmi Bosai Ltd Fire extinguishing device
JP4555112B2 (en) * 2005-02-16 2010-09-29 ホーチキ株式会社 Fire source position detecting device, method and program
EP1847822A1 (en) * 2006-04-20 2007-10-24 IQ Group SDN BHD A passive infrared detector with internal masking means
KR101556974B1 (en) * 2008-12-26 2015-10-02 엘지전자 주식회사 Air condition
EP2259036A1 (en) * 2009-05-29 2010-12-08 BRITISH TELECOMMUNICATIONS public limited company Heat source sensor
JP5381953B2 (en) * 2010-10-15 2014-01-08 パナソニック株式会社 Air conditioner
JP5617518B2 (en) * 2010-10-18 2014-11-05 パナソニック株式会社 Air conditioner
US20180304723A1 (en) * 2015-07-01 2018-10-25 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control apparatus
JP6471868B2 (en) * 2015-10-23 2019-02-20 パナソニックIpマネジメント株式会社 Light receiving sensor, air conditioner and electronic cooker using the same

Also Published As

Publication number Publication date
JP2018179694A (en) 2018-11-15
CN108693565B (en) 2021-11-05
CN108693565A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
US11067452B1 (en) Device and method for temperature correction using a proximity sensor in a non-contact thermopile thermometer
JP6673199B2 (en) Temperature sensor, device using the same, and temperature measurement method
JP6872685B2 (en) Infrared detector
JP5736744B2 (en) Thermal sensor device and electronic equipment
US20160138976A1 (en) Dual element pyroelectric motion and presence detector
US7645990B2 (en) Thermal-type infrared imaging device and operation method thereof
JP5962167B2 (en) Detection circuit, sensor device and electronic device
JP2006053024A (en) Temperature correction processing device
JP2017138305A (en) Motion and presence detector
KR20170014275A (en) Non-contacting temperature measuring apparatus and method performing thereof
Tresanchez et al. The optical mouse sensor as an incremental rotary encoder
US9222838B2 (en) Detection device, sensor device, and electronic device
US10739190B2 (en) Motion sensor using linear array of infrared detectors
JP6917574B2 (en) Information processing methods, information processing systems, mobile terminals, infrared detectors and programs
JP2006177848A (en) Temperature distribution detection device
JP2019066214A (en) Infrared detector
JP6617284B2 (en) Human detection device and air conditioning control device using human detection device
JP5970965B2 (en) Imaging device
Soleimanijavid et al. Smart Low-cost Thermal Imaging Acquisition Towards Personal Comfort Prediction
KR102364226B1 (en) Crosstalk Interference Correction Method of Thermopile Array Sensor and Temperature Measuring Device Thereby
US20230266180A1 (en) Temperature measurement system, temperature measurement method, and non-transitory computer readable storage medium
WO2022168470A1 (en) Surface temperature measurement system and surface temperature measurement method
JP2007187599A (en) Control method for infrared sensor system
JP2012134415A (en) Detector, sensor device and electronic apparatus
US20190346310A1 (en) Method of improving the accuracy of the temperature measurement of thermal/infrared array sensor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6872685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151