JP6871546B2 - Detection method and detection device for detecting abnormalities in pulse pressure waveform - Google Patents

Detection method and detection device for detecting abnormalities in pulse pressure waveform Download PDF

Info

Publication number
JP6871546B2
JP6871546B2 JP2019044519A JP2019044519A JP6871546B2 JP 6871546 B2 JP6871546 B2 JP 6871546B2 JP 2019044519 A JP2019044519 A JP 2019044519A JP 2019044519 A JP2019044519 A JP 2019044519A JP 6871546 B2 JP6871546 B2 JP 6871546B2
Authority
JP
Japan
Prior art keywords
pulse pressure
data
waveform
pressure waveform
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044519A
Other languages
Japanese (ja)
Other versions
JP2020146140A (en
Inventor
豊 平崎
豊 平崎
倫夫 脇
倫夫 脇
良寿 山本
良寿 山本
東良 有馬
東良 有馬
広一 川端
広一 川端
一英 水沼
一英 水沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Seimitsu Sokki Co Ltd
Gunma Prefecture
Original Assignee
Nihon Seimitsu Sokki Co Ltd
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Seimitsu Sokki Co Ltd, Gunma Prefecture filed Critical Nihon Seimitsu Sokki Co Ltd
Priority to JP2019044519A priority Critical patent/JP6871546B2/en
Publication of JP2020146140A publication Critical patent/JP2020146140A/en
Application granted granted Critical
Publication of JP6871546B2 publication Critical patent/JP6871546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

近年、健康志向や精神衛生に対する意識の高まりからヘルスケアや、メンタルケア、遠隔医療といった医療・福祉関連サービスが注目されている。こうしたサービスの拡充には、心身の状態を反映する脈波や心拍、血圧といった生体信号を、身近に活用できる環境の整備が不可欠であろう。 In recent years, medical and welfare-related services such as health care, mental care, and telemedicine have been attracting attention due to heightened awareness of health consciousness and mental health. In order to expand such services, it will be essential to create an environment in which biological signals such as pulse waves, heartbeats, and blood pressure that reflect the physical and mental conditions can be used in our daily lives.

心臓は、全身に酸素を含んだ血液を送るポンプの働きをする臓器である。心臓の中はいくつかの部屋に分かれており、そこを血液が1方向に流れる。血液の流れを制御するために弁構造があり、心臓の周りには心臓自身を栄養する血管(冠状動脈)が走っている。心臓は特殊な筋肉でできており、刺激伝導系という組織が、脈拍を調節している。心臓病とはこれらの心臓の働きがなんらかの原因で悪化したものであり、先天的、遺伝的な原因などにより起こることが多いものであるが、大人になってから起こるものもある。 The heart is an organ that acts as a pump that pumps oxygenated blood throughout the body. The heart is divided into several chambers through which blood flows in one direction. There is a valve structure to control the flow of blood, and blood vessels (coronary arteries) that nourish the heart itself run around the heart. The heart is made up of special muscles, and a tissue called the conduction system regulates the pulse. Heart disease is a deterioration of these heart functions for some reason, and is often caused by congenital or genetic causes, but some of them occur after adulthood.

心臓を収縮させる刺激が一定でない場合をまとめて不整脈といい、脈が時々飛ぶタイプ、脈が極端に遅くなるタイプや、脈がばらばらになるタイプなどさまざまな種類の不整脈があるため、正確な診断が必要である。特に脈がばらばらになるタイプの不整脈は心房細動といい、この心房細動は、心房が細かく、速くかつ不規則的に動く頻発性の不整脈である。日本では70才以上高齢者の数%を占める130万人の患者のいることが知られており、高齢になるほど増加するため、心臓の筋肉の老化により生じると考えられている。心房細動で心拍が高い状態が続くと、心臓の収縮機能低下による心不全や、または血液が心房の中で固まりやすく血栓ができやすい状態となり、できた血栓により脳の血管が詰まってしまう脳梗塞の原因となることも多く、注意が必要である。また、心房細動の不整脈により、心臓の働きが弱る心不全の原因にもなりやすい。さらに、心房細動は、高血圧症や弁膜症、心臓肥大などの特定な原因疾患がなくても生じると言われており、精神的・肉体的ストレス、不眠、不安なども誘発原因になっているため、予防のためには日々のチェックが重要になっている。 The case where the stimulus that contracts the heart is not constant is collectively called arrhythmia, and there are various types of arrhythmia such as the type in which the pulse sometimes flies, the type in which the pulse becomes extremely slow, and the type in which the pulse becomes disjointed. is required. In particular, the type of arrhythmia in which the pulse is disjointed is called atrial fibrillation, and this atrial fibrillation is a frequent arrhythmia in which the atrium moves finely, quickly and irregularly. It is known that there are 1.3 million patients in Japan, who account for a few percent of the elderly aged 70 and over, and the number increases with age, which is thought to be caused by aging of the heart muscle. If the heartbeat continues to be high due to atrial fibrillation, heart failure due to a decrease in the contractile function of the heart, or a state in which blood tends to clot in the atrium and blood clots are likely to form, and the blood vessels in the brain are clogged by the blood clots. It is often the cause of this, so caution is required. In addition, arrhythmia of atrial fibrillation tends to cause heart failure, which weakens the function of the heart. Furthermore, atrial fibrillation is said to occur without specific causative diseases such as hypertension, valvular disease, and cardiac hypertrophy, and mental and physical stress, insomnia, and anxiety are also triggering causes. Therefore, daily checks are important for prevention.

心臓疾患に関する医療分野において、心房細動を判定する技術がある。例えば、特許文献1には、信号取得部により取得された検出波形信号において、体動ノイズの影響が含まれていても、その信号から心房細動を判定する、心房細動判定装置を開示している。そして、特許文献2には、脳血管疾患発症の危険度を予測することのできる発症危険度予測システムを開示している。 In the medical field related to heart disease, there is a technique for determining atrial fibrillation. For example, Patent Document 1 discloses an atrial fibrillation determination device that determines atrial fibrillation from a detection waveform signal acquired by a signal acquisition unit even if it includes the influence of body motion noise. ing. Further, Patent Document 2 discloses an onset risk prediction system capable of predicting the risk of developing a cerebrovascular disease.

特開2015−205187号公報Japanese Unexamined Patent Publication No. 2015-205187 特開2016−64125号公報Japanese Unexamined Patent Publication No. 2016-64125

以上述べた従来の脈波信号(例えば心電図信号)による心臓状態の監視システムにおいては、内部構成部品に複雑で精密な部品からなる高価な装置であった。
本発明は、このような従来の構成が有していた問題を解決しようとするものであり、心臓の脈圧波形の異常状態を簡便に、検出する検出方法と検出装置を提供することを目的とする。
In the conventional heart condition monitoring system using a pulse wave signal (for example, an electrocardiogram signal) described above, it is an expensive device composed of complicated and precise internal components.
The present invention is intended to solve the problem of such a conventional configuration, and an object of the present invention is to provide a detection method and a detection device for easily detecting an abnormal state of a pulse pressure waveform of a heart. And.

そこで、発明者は、通常の血圧測定に利用する血圧計などの圧力式脈圧波測定器の脈圧波を収集して、これらからサンプリングした脈圧波データ周波数分析することにより得られた周波数スペクトルの振幅波形データに対して統計解析を行い(図1(b)参照)、心房細動などの場合に発生する脈圧波形の異常状態を簡便に検出できる特徴量を導いた。 Accordingly, the inventors frequency to collect the pulse pressure waveform of the pressure-type pulse pressure wave measuring device such as sphygmomanometer using the normal blood pressure measurement was obtained by analyzing the frequency of the pulse pressure waveform data sampled from these performs statistical analysis on the amplitude waveform data of the spectrum (see FIG. 1 (b)), led to the feature quantity that can be easily detected the abnormal state of the pulse pressure waveform occur if such as atrial fibrillation.

そして、通常の血圧測定に利用する脈圧波を用いて、心臓の何らかの異常により変化する脈圧波形の周波数スペクトルの振幅波形データの分布をとり、分布のかたちの違いに着目し、波形が平均値を中心に如何にばらついているか、波形が平均値を中心に如何に歪んでいるか、さらに、波形が如何に尖っているかを示す無次元統計量である波形率(Shape Factor)、歪み度(Skewness)及び尖り度(Kurtosis)を用いて特徴量の検討を行った。 Then, by using the pulse pressure waveform to be used for normal blood pressure measurement, taking the distribution of the amplitude waveform data of the frequency spectrum of the pulse pressure waveform which varies due to some abnormality of the heart, it focused on the difference in the form of distribution, waveform average Waveform rate (Shape Factor) and skewness (Shape Factor), which are non-dimensional statistics showing how the waveforms are distorted around the average value and how sharp the waveforms are. The feature quantity was examined using Skewness) and Kurtosis.

その結果、心臓の脈圧波形データの1次階差データを高速フーリエ変換などの信号処理とその周波数スペクトルの振幅波形データの統計解析を行い、周波数スペクトルの振幅波形データの分布から導出した特徴量により心筋梗塞や脳卒中の主な原因となる心房細動などの場合に発生する脈圧波形の異常状態を簡便に検出する方法を発明するに至ったのである。 Wherein a result, the 1 Tsugikaisa data pulse pressure waveform data of a heart performs a signal processing such as fast Fourier transform, a statistical analysis of the amplitude waveform data of the frequency spectrum, derived from the distribution of the amplitude waveform data of the frequency spectrum We have invented a method for easily detecting the abnormal state of the pulse pressure waveform that occurs in the case of atrial fibrillation, which is the main cause of myocardial infarction and stroke, depending on the amount.

本発明において、上記目的を達成するための第1の発明は、
圧力式脈圧波測定器の脈圧波信号を用いて、加圧中または減圧中に前記脈圧波信号の脈圧波形をサンプリングする工程と、
前記サンプリングした時間領域の脈圧波形データから、下記(a)から(d)のアルゴリズムを用いて特徴量を求める工程と、
(a)脈圧波形データの1次階差をとり、1次階差データの平均値と標準偏差を求める。
(b)前記平均値と前記標準偏差を使用して、1次階差データの標準化を行う。
(c)標準化した1次階差データに対して高速フーリエ変換により周波数分析を行う。
(d)周波数分析による周波数スペクトルの振幅波形データから統計解析を行い、振幅波形データの分布の歪み度、尖り度の特徴量を求める。
求められた歪み度及び尖り度を用いて、予め定めた基準値に基づき正常状態か異常状態かを判定する行程と、
前記判定した結果を表示する工程、
とした、脈圧波形の異常検出する検出方法である。
また本発明の第2の発明は、腕帯(8)、該腕帯(8)に空気を送る圧電ポンプ(6)、空気の流量を切り替える電磁弁(5)、空気圧を検出する圧力センサ(7)、圧電ポンプ(6)と電磁弁(5)を制御し、圧力センサ(7)の脈圧波形信号から内蔵のソフトウエアにより血圧を求めるマイコン(4)、を備える血圧測定部(3)である圧力式脈圧波測定器と
圧力式脈圧波測定器により取得した脈圧波形信号取り込み、第1の発明に記載の検出方法を用いて分析するデータ処理用マイコン(23)、前記検出方法を含むソフトウエアを書き込んだ記憶装置(28)、分析データを記憶するメモリ(26)、分析データの結果から正常状態か異常状態かをデータ処理用マイコン(23)にて判定し、該判定の結果を表示する表示器(25)、を備えるデータ処理部(22)と、
を具備する脈圧波形の異常を検出する検出装置(1)である。
In the present invention, the first invention for achieving the above object is
A step of sampling the pulse pressure waveform of the pulse pressure wave signal during pressurization or depressurization using the pulse pressure wave signal of the pressure type pulse pressure wave measuring device, and
From the pulse pressure waveform data in the sampled time domain, the steps of obtaining the feature amount using the algorithms (a) to (d) below, and
(A) Take the first-order difference of the pulse pressure waveform data, and obtain the average value and standard deviation of the first-order difference data.
(B) The first-order difference data is standardized using the average value and the standard deviation.
(C) Frequency analysis is performed on the standardized first-order difference data by fast Fourier transform.
(D) Statistical analysis is performed from the amplitude waveform data of the frequency spectrum obtained by frequency analysis, and the characteristics of the degree of distortion and the degree of sharpness of the distribution of the amplitude waveform data are obtained.
Using the obtained degree of distortion and sharpness, the process of determining whether it is in a normal state or an abnormal state based on a predetermined reference value, and
The step of displaying the result of the determination,
This is a detection method for detecting an abnormality in the pulse pressure waveform.
The second invention of the present invention is an arm band (8), a piezoelectric pump (6) that sends air to the arm band (8), an electromagnetic valve (5) that switches the flow rate of air, and a pressure sensor that detects air pressure ( 7), a blood pressure measuring unit (3) including a microcomputer (4) that controls a piezoelectric pump (6) and an electromagnetic valve (5) and obtains blood pressure from the pulse pressure waveform signal of a pressure sensor (7) by built-in software. With a pressure-type pulse pressure wave measuring instrument ,
Captures the pulse pressure waveform signal obtained by the pressure-type pulse pressure wave measuring apparatus, the data processing microcomputer analyzed using detection method according to the first invention (23), writing the software that includes the detection method storage apparatus (28), a memory for storing the analysis data (26), or normal from the result state or abnormal state of the analytical data determined by the data processing microcomputer (23), display for displaying the results of the determination ( 25), and a data processing unit (22) including
It is a detection device (1) for detecting an abnormality of a pulse pressure waveform.

血圧測定時に得られる圧力式脈圧波測定器の脈圧波形からサンプリングした脈圧波形データをもとに、その1次階差データを周波数分析することにより得られた周波数スペクトルの振幅波形データに対して統計解析を行い心房細動などの場合に発生する脈圧波形の異常を簡便に検出できる特徴量を導き、特に、心臓の各症状における周波数スペクトルの振幅波形データ分布のかたちの違いに着目し、波形が平均値に対して如何にばらついているか、平均値を中心に如何に歪んでいるか、さらに波形が如何に尖っているかを示す無次元統計量である歪み度および尖り度を用いて、この三つの統計量を監視することで、心房細動や心室性期外収縮などの場合に発生する脈圧波形の異常が検出できる。 Based on the pulse pressure waveform data sampled from the pulse pressure waveform of the pressure type pulse pressure wave measuring device obtained when measuring the blood pressure, to the amplitude waveform data of the frequency spectrum obtained by frequency analyzing the 1 Tsugikaisa data performs statistical analysis Te, leads to characteristic amount that can be easily detected abnormality of the pulse pressure waveform occur if such as atrial fibrillation, particularly the difference in the form of distribution of the amplitude waveform data of the frequency spectrum in each cardiac symptoms Focusing on it, we used the degree of distortion and sharpness, which are dimensionless statistics that show how the waveform varies with respect to the average value, how it is distorted around the average value, and how sharp the waveform is. By monitoring these three statistics , abnormalities in the pulse pressure waveform that occur in the case of atrial fibrillation or ventricular extrasystole can be detected.

図1(a)は時間領域における脈圧波形分析結果を示す。図1(b)は周波数領域における脈圧波形分析結果を示す。FIG. 1A shows the results of pulse pressure waveform analysis in the time domain. FIG. 1B shows the results of pulse pressure waveform analysis in the frequency domain. 周波数スペクトルの振幅波形データの統計解析結果の比較を示す。A comparison of the statistical analysis results of the amplitude waveform data of the frequency spectrum is shown. 脈圧波測定器により測定した脈圧波形の一例を示す。An example of the pulse pressure waveform measured by the pulse pressure wave measuring device is shown. 脈圧波形データに1次階差を施した脈圧の時系列波形データを示す。The time-series waveform data of the pulse pressure obtained by applying the first-order difference to the pulse pressure waveform data is shown. 臨床の脈圧波形データに対して求めた周波数スペクトルの結果例を示す。An example of the result of the frequency spectrum obtained for the clinical pulse pressure waveform data is shown. 心臓疾患者に対して得られた特徴量の歪み度を示す。The degree of distortion of the feature amount obtained for a person with heart disease is shown. 心臓疾患者に対して得られた特徴量の尖り度を示す。The sharpness of the feature amount obtained for a person with heart disease is shown. 脈圧波形の異常状態を検出する検出装置のブロック図を示す。The block diagram of the detection device which detects an abnormal state of a pulse pressure waveform is shown.

つぎに、本発明に係る心房細動や心室性期外収縮などの場合に発生する脈圧波形の異常を検出する実施例について、図面を参照して具体的に説明する。 Next, an example of detecting an abnormality in the pulse pressure waveform that occurs in the case of atrial fibrillation or premature ventricular contraction according to the present invention will be specifically described with reference to the drawings.

(1)心臓の脈圧波形データの時間領域と周波数領域の分析
不整脈の波形と周期の変化をシミュレーションできる装置(BP-PUMP:BIO-TEK Instruments製)と本発明者が製作した圧力式脈圧波測定器を用いて( 表1)の4種類の脈圧波形データについて時間領域と周波数領域で分析を行った。
(1) Analysis of time domain and frequency domain of heart pulse pressure waveform data A device (BP-PUMP: manufactured by BIO-TEK Instruments) capable of simulating changes in arrhythmia waveform and period, and a pressure pulse pressure wave manufactured by the present inventor. Using a measuring instrument, the four types of pulse pressure waveform data (Table 1) were analyzed in the time domain and frequency domain.

Figure 0006871546
Figure 0006871546





脈圧波形データの分析には0.00512秒間隔でサンプリングした4096点数が使用された(サンプリング周波数は195.31Hz)。特に、波形分析の際には、測定機器や測定環境の違い、または利用者の個人差の影響をなくすために、前処理としてすべての測定データは平均値0、標準偏差1になるように標準化を行った。その後、4種類の脈圧波形データを用いて時間領域と周波数領域で信号処理を行い、各状態における分析結果を比較、検討した。 For the analysis of the pulse pressure waveform data, 4096 points sampled at 0.00512 second intervals were used (sampling frequency is 195.31 Hz). In particular, in waveform analysis, in order to eliminate the influence of differences in measuring equipment and measurement environment, or individual differences of users, all measurement data are standardized so that the average value is 0 and the standard deviation is 1 as preprocessing. Was done. After that, signal processing was performed in the time domain and the frequency domain using four types of pulse pressure waveform data, and the analysis results in each state were compared and examined.

図1(a)、(b)に測定した各状態別の脈圧波形データを時間領域と周波数領域で分析した結果を示す。心房性期外収縮、心房細動及び心室性期外収縮状態の場合、時間領域と周波数領域の両者において標準状態(健常者)と異なる振幅特性が認められた。また、心臓疾患状態と標準状態における脈圧波形データ分析の結果を見ると、時間領域の分析と比べて、周波数領域分析の方が、脈圧波形変化特性の違いがより明確になっている。これは、脈圧波形データの周波数分析の方が、より高精度に心房細動などの心臓疾患の状態が検出できることを示唆する。 FIGS. 1 (a) and 1 (b) show the results of analyzing the pulse pressure waveform data for each state measured in the time domain and the frequency domain. In the case of atrial extrasystole, atrial fibrillation and ventricular extrasystole, amplitude characteristics different from those in the standard state (healthy subjects) were observed in both the time domain and the frequency domain. Moreover, looking at the results of the pulse pressure waveform data analysis in the heart disease state and the standard state, the difference in the pulse pressure waveform change characteristics is clearer in the frequency domain analysis than in the time domain analysis. This suggests that frequency analysis of pulse pressure waveform data can detect the state of heart disease such as atrial fibrillation with higher accuracy.

ここでは、前述の各状態における脈圧波形データの周波数分析により得られた周波数スペクトルの振幅波形データの統計解析を行い、心房細動などの心臓の異常を素早く高精度に検出できる特徴量を導く。特に、本解析では、各状態における周波数スペクトルの振幅波形データ分布のかたちの違いに着目し、分布のかたちが平均値に対して如何にばらついているか、平均値を中心に如何に歪んでいるか、さらに、分布のかたちが如何に尖っているかを示す無次元統計量である波形率、歪み度及び尖り度を用いて特徴量の検討を行った。 Here, we perform statistical analysis of the amplitude waveform data of the frequency spectrum obtained by frequency analysis of the pulse pressure waveform data in each of the above-mentioned states, and derive a feature amount that can detect cardiac abnormalities such as atrial fibrillation quickly and with high accuracy. .. In particular, in this analysis, we focus on the difference in the distribution shape of the amplitude waveform data of the frequency spectrum in each state, how the distribution shape varies with respect to the average value, and how it is distorted around the average value. Furthermore, the feature quantity was examined using the waveform ratio, the degree of distortion, and the degree of sharpness, which are non-dimensional statistics showing how the shape of the distribution is sharp.

図2に各状態に対して求めた周波数スペクトルの振幅波形データの統計量を比較した結果を示す。この図で示された三つの統計量の値は、No−0の標準状態(正常)における結果値を基準値となる1として、No−1からNo−3の結果値を標準化したものである。この図から、No−2の心室性期外収縮症状の場合が、すべての統計量において正常の標準状態との差が一番大きかった。また、統計量の中では、尖り度が標準の正常状態の値と一番差が大きかった。以上の結果から、脈圧波形データの周波数スペクトルの振幅波形データの分布の統計量である波形率、歪み度及び尖り度を監視することで、心房細動や心室性期外収縮などの場合に発生する脈圧波形の異常が検出できるといえる。 FIG. 2 shows the results of comparing the statistics of the amplitude waveform data of the frequency spectrum obtained for each state. The value of the three statistics shown in this figure, which as a 1 as a reference value a result value in the standard state of No-0 (normal), were normalized result value of No-3 from No-1 Is. From this figure, in the case of No. 2 premature ventricular contraction, the difference from the normal standard state was the largest in all statistics. In addition, among the statistics, the sharpness was the largest difference from the standard normal state value. From the above results, the form factor is a statistic distribution of the amplitude waveform data of the frequency spectrum of the pulse pressure waveform data, by monitoring the strain rate and kurtosis, in the case such as atrial fibrillation and premature ventricular contractions It can be said that the abnormal pulse pressure waveform that occurs can be detected.

ここでは、臨床現場において、健常者1人と心房細動などの心臓疾患者10人を含めて11人の被験者から測定した脈圧波形データに対して、本発明で提案した脈圧波形の異常を検出する検出手法を適用し、その有効性を評価する。脈圧測定は試作した圧力式脈圧波測定器を使用して行った。特に、被験者中の心臓疾患者に対しては、同一な条件で3回測定を行った。また、これら測定データは、健常者はNo.0、疾患者はNo.1−1、No.1−2、No.1−3からNo.10−1、No.10−2、No.10−3のように番号を付けて区別ができるようにした。測定した脈圧波形データの評価方法は、以下の流れで行われた。 Here, in the clinical setting, the pulse pressure waveform abnormality proposed in the present invention is obtained with respect to the pulse pressure waveform data measured from 11 subjects including 1 healthy person and 10 heart disease persons such as atrial fibrillation. Apply a detection method to detect and evaluate its effectiveness. The pulse pressure was measured using a prototype pressure type pulse pressure wave measuring device. In particular, for those with heart disease among the subjects, the measurement was performed three times under the same conditions. In addition, these measurement data are No. 1 for healthy subjects. 0, the sick person is No. 1-1, No. 1-2, No. 1-3 to No. 10-1, No. 10-2, No. I made it possible to distinguish by numbering like 10-3. Evaluation of the measured pulse pressure waveform data was carried out in the following flow.

(2)臨床現場の被験者の脈圧波形に対する本発明の脈圧波形の異常を検出する検出方法の有効性評価
本発明の実施例で得られた脈圧波形データは、図3に示すように最初の加圧過程とその後、最大圧力に到達してから減圧する過程の2段階の波形データになっているが、波形データの評価に用いる有意なデータとしては、最大脈圧からの減圧過程区間のデータであり、本発明の実施例では最大脈圧からの減圧過程区間で、0.00512秒間隔でサンプリングした7168点の連続データ(約37秒間)を用いて脈圧波形データの分析と評価を行った。図3に測定した脈圧波形データの一例を示す。
(2) resulting pulse pressure waveform data in the embodiment of efficacy invention the detection method for detecting an abnormality of the pulse pressure waveform of the present invention to pulse pressure waveform of the subject of clinical settings, as shown in FIG. 3 The waveform data consists of two stages, the first pressurization process and the subsequent decompression process after reaching the maximum pressure. Significant data used for evaluating the waveform data is the decompression process section from the maximum pulse pressure. In the embodiment of the present invention, the pulse pressure waveform data is analyzed and evaluated using 7168 continuous data (about 37 seconds) sampled at 0.00512 second intervals in the decompression process section from the maximum pulse pressure. Was done. FIG. 3 shows an example of the measured pulse pressure waveform data.

次に、前処理として、時間に伴う下降傾向を示している脈圧波形データの非定常性を取り除くために、用いた7168点の測定値に対して1次階差をとった。図4に1次階差を施した脈圧の時系列波形データを示す。 Next, as a pretreatment, in order to remove the non-stationarity of the pulse pressure waveform data showing a downward tendency with time, a first-order difference was taken from the measured values of 7168 points used. FIG. 4 shows time-series waveform data of pulse pressure with a first-order difference.

さらに、この前処理を施した時系列波形データを平均値0、標準偏差1になるように標準化を行った。これは、前述のシミュレータのデータ処理の場合と同様に、利用者の個人差の影響をなくすためである。 Further, the time-series waveform data subjected to this preprocessing was standardized so that the average value was 0 and the standard deviation was 1. This is to eliminate the influence of individual differences of users, as in the case of the above-mentioned simulator data processing.

最後に、標準化処理を行った1次階差を施した脈圧の時系列波形データに対して周波数分析を行った。図5に求めた周波数スペクトルの一例を示す。ここでは、疾患の有無による周波数スペクトルの振幅波形データの形状変化が見られる周波数0.05Hzまでの周波数スペクトルの振幅波形データを用いて(359データ点で、周波数0のデータは除く)統計解析を行い、本発明で提案した振幅波形データの分布のかたちの違いに着目し、分布のかたちから求めた特徴量の歪み度及び尖り度が心房細動などの心臓疾患の状態を高精度に検出できる指標として有効であるかを検証した。このような0.05Hz以下の低周波数帯の振幅波形データの変動は、血圧や心拍などの生理学的な挙動と密接な関連があることが報告されている。 Finally, frequency analysis was performed on the time-series waveform data of the pulse pressure subjected to the first-order difference that had been standardized. An example of the frequency spectrum obtained in FIG. 5 is shown. Here, statistical analysis is performed using the amplitude waveform data of the frequency spectrum up to a frequency of 0.05 Hz (359 data points, excluding the data of frequency 0) in which the shape of the amplitude waveform data of the frequency spectrum changes depending on the presence or absence of a disease. performed, it focused on the difference in the form of distribution of the amplitude waveform data proposed in the present invention, strain rate and kurtosis feature quantity obtained from the form of distribution, detects the state of heart disease such as atrial fibrillation with high precision We verified whether it is effective as an index that can be used. It has been reported that such fluctuations in amplitude waveform data in the low frequency band of 0.05 Hz or less are closely related to physiological behavior such as blood pressure and heartbeat.

(3)臨床現場の被験者の脈圧波形に対して周波数スペクトルの振幅波形データの分布の歪み度、尖り度を適用した結果
ここでは、臨床試験現場で測定した健常者1人と心房細動などの心臓疾患者10人を含めて11人の被験者の脈圧波形データに対して、本発明で提案した脈圧波形の異常の特徴量として歪み度及び尖り度を適用した実施例の結果を述べる。
図6と7は、健常者の歪み度及び尖り度を基準値となる1にしたとき、10人の被験者に対して得られた特徴量の歪み度及び尖り度をそれぞれ示したものである。この図から、健常者と比べて、何らかの心臓疾患を持っているすべての被験者の場合、歪み度及び尖り度の値が小さい値を示した。また、この二つの特徴量の比較では、尖り度の方が、健常者の値と比べてより差が顕著に表れており、例えば、健常者の値が1の場合、心臓疾患者の10人すべてにおいて0.3以下で大きな差を示した。したがって、脈圧波形の異常の検出精度から見ると、異常検出指標(特徴量)として尖り度を用いた方がより検出精度が高いといえる。
(3) Results of applying the distortion and sharpness of the distribution of the amplitude waveform data of the frequency spectrum to the pulse pressure waveform of the subject in the clinical test. Here, one healthy person and atrial fibrillation measured in the clinical test site, etc. The results of an example in which the degree of distortion and the degree of sharpness are applied as characteristic quantities of the abnormality of the pulse pressure waveform proposed in the present invention to the pulse pressure waveform data of 11 subjects including 10 persons with heart disease will be described. ..
6 and 7, when the strain rate and kurtosis of healthy persons to 1 as a reference value, which is ten distortion of the obtained feature amount to the subject and kurtosis of which was respectively .. From this figure, all the subjects having some kind of heart disease showed smaller values of strain and sharpness than those of healthy subjects. In addition, in the comparison of these two features, the sharpness is more remarkable than the value of the healthy subject. For example, when the value of the healthy subject is 1, 10 persons with heart disease A large difference was shown at 0.3 or less in all cases. Therefore, from the viewpoint of the detection accuracy of the abnormality of the pulse pressure waveform , it can be said that the detection accuracy is higher when the sharpness is used as the detection index (feature amount) of the abnormality.

以上のように、臨床試験で測定した脈圧波データを対象として本発明で提案した異常検出手法の適用性を評価した結果、脈圧波形データの1次階差データ標準化し、高速フーリエ変換などの信号処理と統計解析により導いた周波数スペクトルの振幅波形データの分布の歪み度及び尖り度の特徴量を利用することにより、心筋梗塞や脳卒中の主な原因となる心房細動などの場合に発生する脈圧波形の異常状態を精度よく検出できることを確認した。 As described above, as a result of evaluating the applicability of the proposed anomaly detection method in the present invention the pulse pressure waveform data measured in clinical trials as an object, to standardize 1 Tsugikaisa data pulse pressure waveform data, Fast Fourier transform By using the characteristics of the degree of distortion and sharpness of the distribution of the amplitude waveform data of the frequency spectrum derived by signal processing and statistical analysis such as, in the case of atrial fibrillation, which is the main cause of myocardial infarction and stroke. It was confirmed that the abnormal state of the generated pulse pressure waveform can be detected accurately.

(4)本発明の脈圧波形の異常状態検出装置の説明
(4−1)血圧測定のブロック図
図8は、本発明に係る、脈圧波形を用いた心房細動などの場合に発生する脈圧波形の異常状態を検出する検出装置のブロック図である。
(4) Description of the Abnormal State Detection Device for Pulse Pressure Waveform of the Present Invention (4-1) Block Diagram of Blood Pressure Measurement FIG. 8 occurs in the case of atrial fibrillation using the pulse pressure waveform according to the present invention. It is a block diagram of the detection device which detects an abnormal state of a pulse pressure waveform.

(4−2)脈圧波形の異常状態検出装置の構成
図8を参照して、脈圧波形の異常状態検出装置1の構成を説明する。脈圧波形の異常状態検出装置1は、血圧測定部3と、光電脈波測定部14と、データ処理部22とから構成されている。血圧測定部3は圧力式脈圧波測定器で、血圧測定を制御する血圧測定用マイコン4と、電磁弁5と、医療用の圧電ポンプ6と、圧力センサ7と、被者の腕に巻き付けて使用する腕帯(カフともいう)8と、そして、腕帯8と、電磁弁5と、圧電ポンプ6と、圧力センサ7とをエア配管9により連通させ、血圧測定用操作スイッチ10の操作により、血圧測定用マイコン4に内蔵のソフトウエアの指示に従い、圧電ポンプ6の作動により加圧する時に電磁弁5を閉じ、腕帯8が所定の圧力になったら、圧電ポンプ6の作動を停止して、血圧を測定するときに電磁弁5を徐々に開ける。血圧測定中の圧力や血圧測定結果の圧力を、液晶により血圧表示器11に表示し、補助記憶装置のメモリ12に血圧測定結果の圧力を記憶する。
(4-2) Configuration of Pulse Pressure Waveform Abnormal State Detection Device The configuration of the pulse pressure waveform abnormality state detection device 1 will be described with reference to FIG. The pulse pressure waveform abnormal state detection device 1 includes a blood pressure measuring unit 3, a photoelectric pulse wave measuring unit 14, and a data processing unit 22. In the blood pressure measurement unit 3 pressure type pulse pressure wave measuring device, a blood pressure measurement microcomputer 4 for controlling the blood pressure measurement, the electromagnetic valve 5, a piezoelectric pump 6 of the medical, the pressure sensor 7, wrapped around the arm of the test person The arm band (also called a cuff) 8 to be used, the arm band 8, the electromagnetic valve 5, the piezoelectric pump 6, and the pressure sensor 7 are communicated with each other by an air pipe 9, and the operation switch 10 for blood pressure measurement is operated. Therefore, according to the instruction of the software built in the blood pressure measurement microcomputer 4, the electromagnetic valve 5 is closed when pressurizing by the operation of the piezoelectric pump 6, and when the arm band 8 reaches a predetermined pressure, the operation of the piezoelectric pump 6 is stopped. Then, when measuring the blood pressure, the electromagnetic valve 5 is gradually opened. The pressure during blood pressure measurement and the pressure of the blood pressure measurement result are displayed on the blood pressure display 11 by a liquid crystal, and the pressure of the blood pressure measurement result is stored in the memory 12 of the auxiliary storage device.

(4−3)光電脈波測定部14
光電脈波測定部14は、光電脈波計である指ホルダ15と、光電脈波計である指ホルダ15からのノイズを除去するノイズフィルタ16と、光電脈波計である指ホルダ15の微弱な光電脈波の信号を大きくするゲインアンプ(信号増幅器)17とを含む構成となっている。
(4-3) Photoelectric pulse wave measuring unit 14
The photoelectric pulse wave measuring unit 14 includes a finger holder 15 which is a photoelectric pulse wave meter, a noise filter 16 which removes noise from the finger holder 15 which is a photoelectric pulse wave meter, and a weakness of the finger holder 15 which is a photoelectric pulse wave meter. The configuration includes a gain amplifier (signal amplifier) 17 for increasing the signal of the photoelectric pulse wave.

(4−4)圧力センサ7とゲインアンプ17
血圧測定部3の圧力センサ7と、光電脈波測定部14のゲインアンプ(信号増幅器)17、後述するデータ処理部22のデータ処理用マイコン23に各データ信号を送る構成となっている。
(4-4) Pressure sensor 7 and gain amplifier 17
The pressure sensor 7 of the blood pressure measuring unit 3 and the gain amplifier (signal amplifier) 17 of the photoelectric pulse wave measuring unit 14 are configured to send each data signal to the data processing microcomputer 23 of the data processing unit 22, which will be described later.

(4−5)データ処理部22
データ処理部22を説明する。このデータ処理部22は、データ処理用マイコン23と、モニターを操作するモニター操作用スイッチ24と、液晶による異常状態表示25と、処理したデータを記憶する補助記憶装置であるメモリ26と、処理したデータを転送収納するSDカード27と、データ処理用マイコン23のソフトウエアを書き込んであるmicro−USB記憶装置28とを含む構成であり、更に、前したように、血圧測定部3の圧力センサ7と、光電脈波測定部14のゲインアンプ(信号増幅器)17は、データ処理用マイコン23に接続して、各データ信号をデータ処理用マイコン23に送る構成となっている。
(4-5) Data processing unit 22
The data processing unit 22 will be described. The data processing unit 22 includes a data processing microcomputer 23, a monitor operation switch 24 for operating the monitor, an abnormal state display device 25 by the liquid crystal, a memory 26 which is an auxiliary storage device for storing the processed data, processing the SD card 27 to the forward housing data, a configuration including a micro-USB storage device 28 that is writing the software of the data processing microcomputer 23, further, as before mentioned, the pressure of the blood pressure measuring portion 3 The sensor 7 and the gain amplifier (signal amplifier) 17 of the photoelectric pulse wave measuring unit 14 are connected to the data processing microcomputer 23, and each data signal is sent to the data processing microcomputer 23.

本発明は、上述のように、通常の血圧測定に利用する脈圧波を収集して、これら各症状における脈圧波データにより、各症状における脈圧波形データの周波数分析により得られた周波数スペクトルの振幅波形データの統計解析を行い、心房細動などの場合に発生する脈圧波形の異常状態を簡便に検出できる特徴量を導く方法である。 The present invention, as described above, to collect the pulse pressure waveform to be used for normal blood pressure measurement, by the pulse pressure waveform data in each of these symptoms, the frequency spectrum obtained by the frequency analysis of the pulse pressure waveform data in each symptom This is a method of deriving a feature amount that can easily detect an abnormal state of the pulse pressure waveform that occurs in the case of atrial fibrillation or the like by performing statistical analysis of the amplitude waveform data of.

そして、通常の血圧測定に利用する脈圧波のデータを用いて、心臓の何らかの異常により変化する脈圧波形データ周波数スペクトルの振幅波形データの分布のかたちの違いに着目し、波形が平均値を中心に如何にばらついているか、波形が平均値を中心に如何に歪んでいるか、さらに、波形が如何に尖っているかを示す無次元統計量である波形率,歪み度及び尖り度を用いて特徴量の検討を行い、これらを監視することで、心房細動や心室性期外収縮などの場合に発生する脈圧波形の異常が検出できる。 Then, using the pulse pressure wave data used for normal blood pressure measurement, paying attention to the difference in the distribution shape of the frequency spectrum of the pulse pressure waveform data that changes due to some abnormality in the heart, the waveform is the average value. Features using waveform rate, distortion and sharpness, which are dimensionless statistics showing how they are scattered around the center, how the waveform is distorted around the mean value, and how sharp the waveform is. By examining the amount and monitoring these , abnormalities in the pulse pressure waveform that occur in the case of atrial fibrillation or ventricular extrasystole can be detected.

(4−6)心臓疾患の場合に発生する脈圧波形の異常の有無を検出する工程とアルゴリズム
心臓疾患の場合に発生する脈圧波形の異常の有無を検出する工程とアルゴリズムを以下に述べる。
ステップ1:加圧中(加圧時に脈圧を測定する場合)または、減圧中(減圧時に脈圧を測定する場合)で、0.00512秒間隔(サンプリング周波数:195.31Hz)で30秒〜1分間の脈圧波形を測定する。本発明では、減圧時の脈圧波形を対象とする。
(4-6) Steps and Algorithms for Detecting Abnormality of Pulse Pressure Waveforms Occurring in the Case of Heart Disease The steps and algorithms for detecting the presence or absence of abnormalities in the pulse pressure waveforms occurring in the case of heart disease are described below.
Step 1 : Pressurizing (when measuring pulse pressure during pressurization) or depressurizing (when measuring pulse pressure during depressurization) at 0.00512 second intervals (sampling frequency: 195.31 Hz) for 30 seconds measuring the pulse pressure wave of 1 minute. In the present invention, it directed to a pulse pressure waveform during decompression.

ステップ2:測定したデータ中、最大圧力から減圧する区間で7168点の連続データを採集し、前処理として、この7168点データに対して1次階差(差分)をとる。これは、時間に伴う下降傾向を表す脈圧波形データの非正常性を取り除くためである。1次階差データは以下のように求める。元の脈圧時系列データを{y:t=1、2、・・・・・、n}とすると、その1次階差時系列{x:t=1、2、・・・・・、n−1}は、次のように表される。 -Step 2 : From the measured data, 7168 points of continuous data are collected in the section where the pressure is reduced from the maximum pressure, and as a preprocessing, a primary difference (difference) is taken with respect to the 7168 point data. This is to remove the abnormalities of the pulse pressure waveform data showing the downward tendency with time. The primary floor difference data is calculated as follows. Assuming that the original pulse pressure time series data is {y t : t = 1, 2, ..., n}, the first-order difference time series {x t : t = 1, 2, ... ·, N-1} is expressed as follows.

(数1)
t=t+1−y (1)
(Number 1)
x t = y t + 1 −y t (1)

ステップ3:前述の1次階差データxを以下のように平均値0、標準偏差1になるように標準化を行う。 -Step 3 : Standardize the above-mentioned primary difference data x t so that the average value is 0 and the standard deviation is 1 as follows.

(数2)
=(x−μ)/σ (2)
ここで、Xtは標準化した1次階差データ、μは1次階差データ平均値、σは1次階差データの標準偏差である。
(Number 2)
X t = (x t − μ) / σ (2)
Here, Xt is the standardized first-order difference data, μ is the average value of the first-order difference data, and σ is the standard deviation of the first-order difference data.

ステップ4:標準化した7168点の1次階差データXtに対して、Cooley-Tukeyの高速フーリエ変換(FFT:Fast Fourier Transform)アルゴリズムを採用し周波数分析を行う。 Step 4: For primary differencing data Xt of standardized 7168 points, the fast Fourier transform of the Cooley-Tukey (FFT: Fast Fourier Transform) employs an algorithm for frequency analysis.

ステップ5:次に、求めた周波数スペクトルの振幅波形データの中、周波数0.05Hzまでのスペクトル振幅波形データを取り出して統計解析を行う。用いたデータは359点データで周波数0のデータを除いた359点データである。異常検出に使用する特徴量の歪み度及び尖り度を算出する。 Step 5 : Next, from the obtained amplitude waveform data of the frequency spectrum, the spectrum amplitude waveform data up to a frequency of 0.05 Hz is taken out and statistical analysis is performed. The data used is 359 point data excluding the data of frequency 0. Calculate the degree of distortion and sharpness of the feature amount used for abnormality detection.

ステップ6:次に、正常状態を基準値である1にした場合、算出したみ度及び尖り度の両者の値が1より小さいと、心房細動や心室性外期収縮などの場合に発生する脈圧波形の異常の有すると判断する。 Step 6: Next, when the 1 is a reference value normal state, both of the calculated value of the distortion seen degree and kurtosis and is less than 1, in the case such as atrial fibrillation and ventricular outside contractions It is judged that there is an abnormality in the generated pulse pressure waveform.

以上のことから、本発明は、通常の血圧測定に利用する脈圧波を収集して、これ等の脈圧波形データにより、各症状における脈圧波形データの周波数分析により得られた周波数スペクトルの振幅波形データの統計解析を行い(図参照)、心房細動などの場合に発生する脈圧波形の異常状態を簡便に検出できる特徴量を導き、その特徴量に従って脈圧波形の異常を検出する検出方法である。 From the above, the present invention collects the pulse pressure waveform to be used for normal blood pressure measurement, by the pulse pressure waveform data of this and the like, of the frequency spectrum obtained by the frequency analysis of the pulse pressure waveform data in each symptom performs statistical analysis of the amplitude waveform data (see FIG. 5),-out guide the feature quantity of the abnormal state of the pulse pressure waveform occur if such as atrial fibrillation can be easily detected, an abnormality of the pulse pressure waveform in accordance with the characteristic quantity It is a detection method to detect.

以上、本発明の実施例を説明したが、本発明の範囲は、これに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更を加え得ることは勿論である。 Although the examples of the present invention have been described above, the scope of the present invention is not limited to this, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

病院や老人福祉施設、学校、職場、家庭などでも心臓疾患に素早く、対応することに貢
献できる。
Hospitals, welfare facilities for the elderly, schools, workplaces, homes, etc. can also contribute to responding quickly to heart disease.

1‥ ‥脈圧波形の異常状態検出装置
3‥ ‥血圧測定部
4‥ ‥血圧測定用マイコン
5‥ ‥電磁弁
6‥ ‥圧電ポンプ
7‥ ‥圧力センサ
8‥ ‥腕帯( カフ)
9‥ ‥エア配管
10‥ ‥血圧測定用操作スイッチ
11‥ ‥血圧表示器
12‥ ‥補助記憶装置のメモリ
14‥ ‥光電脈波測定部
15‥ ‥指ホルダ(光電脈波計)
16‥ ‥ノイズフィルタ
17‥ ‥ゲインアンプ(信号増幅器)
22‥ ‥データ処理部
23‥ ‥データ処理用マイコン
24‥ ‥モニター操作用スイッチ
25‥ ‥異常状態表示器
26‥ ‥メモリ
27‥ ‥S D カード
28‥ ‥micro−USB記憶装置
1 ‥‥‥ Abnormal state detection device of pulse pressure waveform 3 ‥‥‥ Blood pressure measurement unit 4 ‥‥‥ Microcomputer for blood pressure measurement 5 ‥‥‥ Electromagnetic valve 6 ‥‥‥ Piezoelectric pump 7 ‥‥‥ Pressure sensor 8 ‥‥‥ Arm band (cuff)
9 ‥‥ Air pipe 10 ‥‥‥ Operation switch for blood pressure measurement 11 ‥‥‥ Blood pressure indicator 12 ‥‥‥ Memory of auxiliary storage device 14 ‥‥‥ Photoelectric pulse wave measurement unit 15 ‥‥ Finger holder (photoelectric pulse wave meter)
16 ‥‥‥ Noise filter 17 ‥‥‥ Gain amplifier (signal amplifier)
22 ‥‥‥ Data processing unit 23 ‥‥‥ Data processing microcomputer 24 ‥‥‥ Monitor operation switch 25 ‥‥‥ Error status indicator 26 ‥‥‥ Memory 27 ‥‥‥ SD card 28 ‥‥‥ Micro-USB storage device

Claims (2)

圧力式脈圧波測定器の脈圧波信号を用いて、加圧中または減圧中に前記脈圧波信号の脈圧波形をサンプリングする工程と、
前記サンプリングした時間領域の脈圧波形データから、下記(a)から(d)のアルゴリズムを用いて特徴量を求める工程と、
(a)前記脈圧波形データの1次階差をとり、1次階差データの平均値と標準偏差を求める。
(b)前記平均値と前記標準偏差を使用して、前記1次階差データの標準化を行う。
(c)前記標準化した1次階差データに対して高速フーリエ変換により周波数分析を行う。
(d)前記周波数分析による周波数スペクトルの振幅波形データから統計解析を行い、前記振幅波形データの分布の歪み度、尖り度の特徴量を求める。
求められた前記歪み度及び前記尖り度を用いて、予め定めた基準値に基づき正常状態か異常状態かを判定する行程と、
前記判定した結果を表示する工程と、
を備える脈圧波形の異常を検出する検出方法。
A step of sampling the pulse pressure waveform of the pulse pressure wave signal during pressurization or depressurization using the pulse pressure wave signal of the pressure type pulse pressure wave measuring device, and
From the pulse pressure waveform data in the sampled time domain, the steps of obtaining the feature amount using the algorithms (a) to (d) below, and
(A) The first-order difference of the pulse pressure waveform data is taken, and the average value and standard deviation of the first-order difference data are obtained.
(B) The first-order difference data is standardized using the average value and the standard deviation.
(C) Frequency analysis is performed on the standardized first-order difference data by fast Fourier transform.
(D) Statistical analysis is performed from the amplitude waveform data of the frequency spectrum obtained by the frequency analysis, and the characteristic amounts of the degree of distortion and the degree of sharpness of the distribution of the amplitude waveform data are obtained.
Using the obtained degree of distortion and the degree of sharpness, a process of determining whether the state is normal or abnormal based on a predetermined reference value, and
The process of displaying the result of the determination and
A detection method for detecting an abnormality in a pulse pressure waveform.
腕帯(8)、該腕帯(8)に空気を送る圧電ポンプ(6)、前記空気の流量を切り替える電磁弁(5)、前記空気の圧力を検出する圧力センサ(7)、前記圧電ポンプ(6)と前記電磁弁(5)を制御し、前記圧力センサ(7)の脈圧波形信号から内蔵のソフトウエアにより血圧を求めるマイコン(4)、を備える血圧測定部(3)である圧力式脈圧波測定器と
圧力式脈圧波測定器により取得した前記脈圧波形信号取り込み、請求項1に記載の検出方法を用いて分析するデータ処理用マイコン(23)、前記検出方法を含むソフトウエアを書き込んだ記憶装置(28)、分析データを記憶するメモリ(26)、前記分析データの結果から正常状態か異常状態かを前記データ処理用マイコン(23)にて判定し、該判定の結果を表示する表示器(25)、を備えるデータ処理部(22)と、
を具備する脈圧波形の異常を検出する検出装置(1)。
An arm band (8), a piezoelectric pump (6) that sends air to the arm band (8), an electromagnetic valve (5) that switches the flow rate of the air, a pressure sensor (7) that detects the pressure of the air, and the piezoelectric pump. Pressure that is a blood pressure measuring unit (3) including a microcomputer (4) that controls (6) and the electromagnetic valve (5) and obtains blood pressure by built-in software from the pulse pressure waveform signal of the pressure sensor (7). With a type pulse pressure wave measuring instrument ,
Takes in the pulse pressure waveform signal obtained by the pressure-type pulse pressure wave measuring apparatus, the data processing microcomputer analyzed using detection method according to claim 1 (23), writing the software that includes the detection method storage A device (28), a memory (26) for storing analysis data, and a display device that determines whether a normal state or an abnormal state is determined from the result of the analysis data by the data processing microcomputer (23) and displays the result of the determination. (25), a data processing unit (22) including
A detection device (1) for detecting an abnormality in a pulse pressure waveform.
JP2019044519A 2019-03-12 2019-03-12 Detection method and detection device for detecting abnormalities in pulse pressure waveform Active JP6871546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044519A JP6871546B2 (en) 2019-03-12 2019-03-12 Detection method and detection device for detecting abnormalities in pulse pressure waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044519A JP6871546B2 (en) 2019-03-12 2019-03-12 Detection method and detection device for detecting abnormalities in pulse pressure waveform

Publications (2)

Publication Number Publication Date
JP2020146140A JP2020146140A (en) 2020-09-17
JP6871546B2 true JP6871546B2 (en) 2021-05-12

Family

ID=72431165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044519A Active JP6871546B2 (en) 2019-03-12 2019-03-12 Detection method and detection device for detecting abnormalities in pulse pressure waveform

Country Status (1)

Country Link
JP (1) JP6871546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116564509B (en) * 2023-07-11 2023-09-01 四川省医学科学院·四川省人民医院 Physical sign data processing method for patient in hyperbaric oxygen chamber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533511A (en) * 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
JP5850861B2 (en) * 2010-01-29 2016-02-03 エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation Eliminating the effects of irregular cardiac cycles in determining cardiovascular parameters
EP3196836A4 (en) * 2014-09-19 2018-04-25 Shinano Kenshi Co., Ltd. System for predicting risk of onset of cerebrovascular disease
WO2017179699A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device and system, and program
US9978392B2 (en) * 2016-09-09 2018-05-22 Tata Consultancy Services Limited Noisy signal identification from non-stationary audio signals

Also Published As

Publication number Publication date
JP2020146140A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
US8668649B2 (en) System for cardiac status determination
US10039520B2 (en) Detection of coronary artery disease using an electronic stethoscope
NL2003197C2 (en) System and method for signal quality indication and false alarm reduction in ecg monitoring systems.
EP3225159A1 (en) A blood pressure monitor coordinated with a cardiovascular health condition monitoring module
EP1711102A2 (en) Method and system for cardiovascular system diagnosis
JP2009089883A (en) Atrial fibrillation detector, system and method
US10004473B2 (en) Heart rate detection method and device using heart sound acquired from auscultation positions
AU2016202374A1 (en) System and method for characterizing circulatory blood flow
US20120123285A1 (en) System for Cardiac Condition Characterization Using Electrophysiological Signal Data
JP5534674B2 (en) Ultrasonic method and apparatus for measuring or detecting non-sinusoidal periodic flow effects
JP7327816B2 (en) Pulse wave signal analysis device, pulse wave signal analysis method, and computer program
JP6871546B2 (en) Detection method and detection device for detecting abnormalities in pulse pressure waveform
EP3107447B1 (en) Method and system for evaluating a noise level of a biosignal
JP2009525117A5 (en)
US20230414192A1 (en) Heart valve abnormality detection device, non-transitory recording medium, and detection method
KR20080043545A (en) Method for diagnosis pulse action and a portable device therfor
Soueidan et al. The effect of blood pressure variability on the estimation of the systolic and diastolic pressures
JP4453431B2 (en) Biological information measuring device
KR102554084B1 (en) The assessment method of arterial stenosis by stethoscope sound analysis
US11412942B2 (en) Apparatus, system and method for obtaining hemodynamic data of an individual
JP2024087811A (en) Method and system for providing electrocardiogram measurement service using a portable electrocardiogram device
KR20240096098A (en) Ecg measurement service providing method and system using potable ecg device
Bhattacharjee et al. Real-Time Cardio Monitoring and Characterization of Diseases Introducing Statistical and Spectrogram Analysis
Yacin et al. Pulse rate variability and gastric electric power in fasting and postprandial conditions
Havlik et al. An evaluation of Arterial Stiffness Index in Relation to the State of the Cardiovascular System

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6871546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250