JP6871135B2 - Flat wire laser welding method - Google Patents

Flat wire laser welding method Download PDF

Info

Publication number
JP6871135B2
JP6871135B2 JP2017219163A JP2017219163A JP6871135B2 JP 6871135 B2 JP6871135 B2 JP 6871135B2 JP 2017219163 A JP2017219163 A JP 2017219163A JP 2017219163 A JP2017219163 A JP 2017219163A JP 6871135 B2 JP6871135 B2 JP 6871135B2
Authority
JP
Japan
Prior art keywords
flat
flat wire
laser beam
laser light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017219163A
Other languages
Japanese (ja)
Other versions
JP2019089097A (en
Inventor
上田 晃宏
晃宏 上田
泰之 平尾
泰之 平尾
祐治 坂田
祐治 坂田
飛 湯
飛 湯
洋明 武田
洋明 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2017219163A priority Critical patent/JP6871135B2/en
Publication of JP2019089097A publication Critical patent/JP2019089097A/en
Application granted granted Critical
Publication of JP6871135B2 publication Critical patent/JP6871135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、平角線のレーザ溶接方法に関する。 The present invention relates to a method for laser welding a flat wire.

従来、平角線のレーザ溶接方法としては、特許文献1に記載されているものがある。このレーザ溶接方法では、2つの平角線において平角線の端部の一面のみ絶縁被膜を剥離した被膜剥離面を形成する。そして、2つの平角線において被膜剥離面同士を対向配置した後、2つの被膜剥離面間に上方からレーザ光をスポット照射することで、2つの被膜剥離面を溶接している。 Conventionally, there is a method described in Patent Document 1 as a method for laser welding a flat wire. In this laser welding method, a coating peeling surface is formed in which the insulating coating is peeled off only on one surface of the end portion of the two flat wires. Then, after the coating peeling surfaces are arranged to face each other on the two flat lines, the two coating peeling surfaces are welded by spot-irradiating the two coating peeling surfaces with a laser beam from above.

特開2013−109948号公報Japanese Unexamined Patent Publication No. 2013-109948

2つの平角線の夫々において互い対向する被膜剥離面の角部は、レーザ照射によってエネルギーが集中し易く、温度上昇し易い。そして、角部の一部が、溶融してガス化してスパッタとなって飛散し易く、生成したスパッタが、溶接品質を低下させる虞がある。 Energy is likely to be concentrated on the corners of the film peeling surfaces facing each other in each of the two flat lines, and the temperature is likely to rise. Then, a part of the corner portion is melted and gasified to be spattered and easily scattered, and the generated spatter may deteriorate the welding quality.

そこで、本発明の目的は、スパッタが生じにくくて、溶接品質が低下しにくい平角線のレーザ溶接方法を提供することにある。 Therefore, an object of the present invention is to provide a flat wire laser welding method in which sputtering is less likely to occur and welding quality is less likely to deteriorate.

上記課題を解決するため、本発明の平角線のレーザ溶接方法は、断面矩形状の第1平角線及び第2平角線の夫々における絶縁被膜を有さない端部同士をレーザ光によって溶接する平角線のレーザ溶接方法であって、前記第1平角線の前記端部の側面と前記第2平角線の前記端部の側面が当接すると共に、前記第1平角線の前記端部において前記レーザ光が照射される第1照射面と前記第2平角線の前記端部において前記レーザ光が照射される第2照射面が略同一平面上に位置するように、前記第1平角線と前記第2平角線を配置する平角線配置ステップと、前記平角線配置ステップの後、前記第1及び第2照射面に跨ると共に前記第1及び第2照射面にループを描くように前記レーザ光を出射するレーザ光出射ステップと、を含み、前記レーザ光出射ステップにおいて、前記第1及び前記第2照射面の境界領域に照射する前記レーザ光のエネルギー密度が、それ以外の箇所に照射する前記レーザ光のエネルギー密度よりも小さい。なお、エネルギー密度とは、単位面積に単位時間で与えられるエネルギーのことである。エネルギー密度は、レーザ光の走査速度を速くしたり、出力を落とすと低下する。 In order to solve the above problems, the method of laser welding a flat wire of the present invention is a flat angle in which the ends of the first flat wire and the second flat wire having a rectangular cross section, which do not have an insulating coating, are welded by laser light. In the method of laser welding a wire, the side surface of the end portion of the first flat wire and the side surface of the end portion of the second flat wire are in contact with each other, and the laser beam is emitted at the end portion of the first flat wire. The first flat line and the second flat line so that the first irradiation surface to which the laser beam is irradiated and the second irradiation surface to which the laser beam is irradiated are located on substantially the same plane at the end of the second flat line. After the flat line arrangement step for arranging the flat lines and the flat line arrangement step, the laser beam is emitted so as to straddle the first and second irradiation surfaces and draw a loop on the first and second irradiation surfaces. In the laser light emitting step, including the laser light emitting step, the energy density of the laser light irradiating the boundary region between the first and second irradiation surfaces of the laser light irradiating other parts. Less than the energy density. The energy density is the energy given to a unit area in a unit time. The energy density decreases as the scanning speed of the laser beam is increased or the output is reduced.

本発明に係る平角線のレーザ溶接方法によれば、第1平角線の端部側面と第2平角線の端部側面を当接させると共に、第1平角線の端部の第1照射面と第2平角線の端部の第2照射面が略同一平面上に位置するように、第1平角線と前記第2平角線を配置する。そして、第1及び第2照射面に跨ると共に第1及び第2照射面にループを描くようにレーザ光を出射し、第1及び第2照射面においてエネルギーが集中し易い互いの境界領域に照射するレーザ光のエネルギー密度を、それ以外の箇所に照射するレーザ光のエネルギー密度よりも小さくする。したがって、平角線において境界領域付近に位置する角部の昇温を抑制できるので、スパッタの発生を抑制でき、スパッタに起因する溶接品質の低下を抑制できる。 According to the method of laser welding a flat wire according to the present invention, the end side surface of the first flat wire and the end side surface of the second flat wire are brought into contact with each other, and the first irradiation surface at the end of the first flat wire is brought into contact with the surface. The first flat line and the second flat line are arranged so that the second irradiation surface at the end of the second flat line is located on substantially the same plane. Then, the laser beam is emitted so as to straddle the first and second irradiation surfaces and draw a loop on the first and second irradiation surfaces, and irradiate the boundary regions between the first and second irradiation surfaces where energy is likely to be concentrated. The energy density of the laser beam to be applied is made smaller than the energy density of the laser beam irradiating other parts. Therefore, since the temperature rise of the corner portion located near the boundary region on the flat line can be suppressed, the occurrence of spatter can be suppressed, and the deterioration of welding quality due to spatter can be suppressed.

本発明のレーザ溶接方法で製造可能な回転電機のステータの部分斜視図である。It is a partial perspective view of the stator of a rotary electric machine which can be manufactured by the laser welding method of this invention. レーザ溶接を行うために第1及び第2平角線を位置決めする際の第1及び第2平角線の途中状態を示す模式図である。It is a schematic diagram which shows the intermediate state of the 1st and 2nd flat wire at the time of positioning the 1st and 2nd flat wire for laser welding. 位置決めされた第1及び第2平角線を示す模式図である。It is a schematic diagram which shows the 1st and 2nd flat wire positioned. 位置決めされた状態でレーザ光が照射されている第1及び第2平角線を表す平面模式図である。It is a plane schematic diagram which shows the 1st and 2nd flat wire which is irradiated with a laser beam in a positioned state. 図4のC-C線断面図である。FIG. 4 is a cross-sectional view taken along the line CC of FIG.

以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の図面および実地例の説明で、R方向は、ステータ1の径方向を示し、θ方向は、ステータ1の周方向を示し、Z方向は、ステータ1の高さ方向(軸方向)を示す。R方向、θ方向、及びZ方向は、互いに直交する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. When a plurality of embodiments and modifications are included in the following, it is assumed from the beginning that a new embodiment is constructed by appropriately combining the characteristic portions thereof. Further, in the following drawings and explanations of practical examples, the R direction indicates the radial direction of the stator 1, the θ direction indicates the circumferential direction of the stator 1, and the Z direction is the height direction (axial direction) of the stator 1. Is shown. The R, θ, and Z directions are orthogonal to each other.

先ず、図1を用いて、本発明のレーザ溶接方法で製造可能な回転電機のステータ1の構造について説明する。図1は、ステータ1の部分斜視図である。なお、図1では、コイルや出力線の構造が分かり易いように、樹脂部の図示は省略する。図1に示すように、ステータ1は、ステータコア11と、平角線を含むステータコイル15を備える。ステータコア11は、環状の磁性体部品であり、例えば、複数の珪素鋼鈑(電磁鋼鈑)が積層されて構成されるが、樹脂バインダと磁性材粉末を加圧成形することにより構成されてもよい。ステータコア11は、環状で外周側に配設されるヨーク12と、複数のティース16を有する。複数のティース16は、θ方向に互いに間隔をおいて配設され、各ティース16は、ヨーク12からR方向内方側に突出する。ステータコイル15は、螺旋状に延在するU,V,Wの三相のコイル20,21,22を備える。U,V,Wの三相のコイル20,21,22の夫々は、隣接するティース16間の空間であるスロット17に挿通され、ティース16に巻回される。 First, the structure of the stator 1 of a rotary electric machine that can be manufactured by the laser welding method of the present invention will be described with reference to FIG. FIG. 1 is a partial perspective view of the stator 1. In FIG. 1, the resin portion is not shown so that the structure of the coil and the output line can be easily understood. As shown in FIG. 1, the stator 1 includes a stator core 11 and a stator coil 15 including a flat wire. The stator core 11 is an annular magnetic component. For example, a plurality of silicon steel sheets (electromagnetic steel sheets) are laminated, but even if the stator core 11 is formed by pressure molding a resin binder and a magnetic material powder. Good. The stator core 11 has a yoke 12 which is annularly arranged on the outer peripheral side, and a plurality of teeth 16. The plurality of teeth 16 are arranged at intervals in the θ direction, and each tooth 16 projects inward from the yoke 12 in the R direction. The stator coil 15 includes U, V, and W three-phase coils 20, 21, and 22 that extend spirally. Each of the U, V, and W three-phase coils 20, 21, and 22 is inserted into a slot 17 which is a space between adjacent teeth 16 and wound around the teeth 16.

U,V,Wの三相のコイル20,21,22の夫々は、複数のセグメントコイル20a,21a,22aを直列に接続して構成され、各セグメントコイル20a,21a,22aは、複数の略U字状のセグメント導体を溶接して構成される。溶接を行う際には、R方向に重なる複数のセグメント導体が螺旋を構成するように、各セグメント導体の2つの脚部の先端側が曲げ加工され、異なるセグメント導体の脚部の先端部同士がレーザ溶接で接合される。図1にRで示す領域は、レーザ溶接による複数の接合箇所のうちの1つである。レーザ溶接については、後で詳細に説明する。先端部同士のレーザ溶接により、各セグメントコイル20a,21a,22aは、複数のティース16に跨るように複数のティース16に巻回され、ステータコイル15は、複数のティース16に分布巻きされる。 Each of the three-phase coils 20, 21 and 22 of U, V and W is configured by connecting a plurality of segment coils 20a, 21a and 22a in series, and each of the segment coils 20a, 21a and 22a is abbreviated as a plurality. It is constructed by welding U-shaped segment conductors. When welding, the tip ends of the two legs of each segment conductor are bent so that a plurality of segment conductors overlapping in the R direction form a spiral, and the tips of the legs of different segment conductors are laser-welded. It is joined by welding. The region indicated by R in FIG. 1 is one of a plurality of joints formed by laser welding. Laser welding will be described in detail later. By laser welding between the tip portions, each of the segment coils 20a, 21a, 22a is wound around a plurality of teeth 16 so as to straddle the plurality of teeth 16, and the stator coil 15 is distributedly wound around the plurality of teeth 16.

各相のコイル20,21,22において一端に配設される突出部は、例えばクランク形に曲げられて、出力線となり、各相の出力線は、電源側の図示しない動力線に電気的に接続される。図1では、U相コイル20を、θ方向に沿った斜線で示し、V相コイル21を、R方向に沿った斜線で示し、W相コイル22を、間隔が狭い(細かい)斜線で示している。図1には、U相コイル20の出力線20Uと、W相コイル22の出力線22Wが図示されている。一方、U相コイル20において他端に配置される突出部20b、V相コイル21において他端に配置される突出部21b、及びW相コイル22において他端に配置される突出部22bは、中性線30によって電気的に接続され、三相のコイル20,21,22は、中性線30を用いた電気的な接続でY結線される。中性線30は、ステータコア11のZ方向一方側の外方に配設される。なお、ステータ1は、θ方向に間隔をおいて配置される複数の取付部45を有し、各取付部45は、R方向外方側に膨出する。図示しないボルトを、取付部45の締結孔46を通過させた後、図示しないケースの軸方向の端面に固定することで、ステータ1がケースに取り付けられる。 The protrusions arranged at one end of the coils 20, 21 and 22 of each phase are bent into a crank shape, for example, to become an output line, and the output line of each phase is electrically connected to a power line (not shown) on the power supply side. Be connected. In FIG. 1, the U-phase coil 20 is indicated by a diagonal line along the θ direction, the V-phase coil 21 is indicated by a diagonal line along the R direction, and the W-phase coil 22 is indicated by a narrow (fine) diagonal line. There is. FIG. 1 shows an output line 20U of the U-phase coil 20 and an output line 22W of the W-phase coil 22. On the other hand, the protruding portion 20b arranged at the other end of the U-phase coil 20, the protruding portion 21b arranged at the other end of the V-phase coil 21, and the protruding portion 22b arranged at the other end of the W-phase coil 22 are medium. It is electrically connected by the sex wire 30, and the three-phase coils 20, 21, and 22 are Y-connected by the electrical connection using the neutral wire 30. The neutral wire 30 is arranged on the outer side of the stator core 11 on one side in the Z direction. The stator 1 has a plurality of mounting portions 45 arranged at intervals in the θ direction, and each mounting portion 45 bulges outward in the R direction. The stator 1 is attached to the case by passing a bolt (not shown) through the fastening hole 46 of the attachment portion 45 and then fixing the bolt to the end face in the axial direction of the case (not shown).

ステータ1の内周側には、ステータ1に対して間隔をおいて図示しないロータが配設される。ステータ1とロータの中心は略一致する。ロータは、回転軸の周囲に固定される環状の磁性体部品であり、例えば、複数の円環状の珪素鋼鈑(電磁鋼鈑)が積層されて構成される。例えば、ロータには、複数の永久磁石がθ方向に互いに間隔をおいた状態で埋め込まれる。 Rotors (not shown) are arranged on the inner peripheral side of the stator 1 at intervals from the stator 1. The centers of the stator 1 and the rotor are substantially aligned. The rotor is an annular magnetic component fixed around a rotating shaft, and is composed of, for example, a plurality of annular silicon steel plates (electromagnetic steel plates) laminated. For example, a plurality of permanent magnets are embedded in a rotor at intervals in the θ direction.

ステータ1を含む回転電機がモータ及びジェネレータとして機能する場合には、次に示す如く動作するが、ステータ1を含む回転電機は、モータ及びジェネレータのいずれか一方として機能してもよい。先ず、回転電機をモータとして使用する場合には、例えば、バッテリからの直流電流がインバータを介して三相交流電流に変換された後、三相交流電流が、各相の出力線20U,22Wを介してU,V,Wの三相のコイル20,21,22に供給される。係るU,V,Wの三相のコイル20,21,22に対する三相交流電流の供給によって、ティース16が磁化されて磁極となり、磁極の位置がステータ1のθ方向に沿って移動する回転磁界が生じる。そして、ロータがその回転磁界に基づいて回動し、回転動力が生成される。 When the rotary electric machine including the stator 1 functions as a motor and a generator, it operates as shown below, but the rotary electric machine including the stator 1 may function as either a motor or a generator. First, when a rotary electric machine is used as a motor, for example, after the DC current from the battery is converted into a three-phase AC current via an inverter, the three-phase AC current connects the output lines 20U and 22W of each phase. It is supplied to the three-phase coils 20, 21, and 22 of U, V, and W via. By supplying a three-phase AC current to the U, V, and W three-phase coils 20, 21, and 22, the teeth 16 are magnetized to become magnetic poles, and the position of the magnetic poles moves along the θ direction of the stator 1. Occurs. Then, the rotor rotates based on the rotating magnetic field, and rotational power is generated.

他方、回転電機をジェネレータとして使用し、電力を回生する際には、ロータが、外部からの動力によって回動すると、ロータに埋め込まれた永久磁石がロータ中心軸の回りを回転する。すると、U,V,Wの三相のコイル20,21,22に電磁誘導の法則に基づく誘導起電力が誘起され、交流の誘導電流がU,V,Wの三相のコイル20,21,22を流れる。係る誘導電流に基づくU,V,Wの三相のコイル20,21,22からの交流電力が、インバータで直流電力に変換された後、バッテリに供給される。 On the other hand, when a rotating electric machine is used as a generator to regenerate electric power, when the rotor is rotated by external power, the permanent magnet embedded in the rotor rotates around the rotor central axis. Then, an induced electromotive force based on the law of electromagnetic induction is induced in the three-phase coils 20, 21, 22 of U, V, and W, and the induced current of alternating current is the three-phase coils 20, 21, 22 of U, V, W. It flows through 22. The AC power from the U, V, and W three-phase coils 20, 21, and 22 based on the induced current is converted into DC power by the inverter and then supplied to the battery.

次に、図2〜5を用いて、図1の領域Rにおける2つのセグメント導体の端部同士のレーザ溶接について説明する。なお、図2〜5では、2つのセグメント導体のうちの一方のセグメント導体を、第1平角線50と表現し、他方のセグメント導体を、第2平角線60と表現する。 Next, laser welding between the ends of the two segment conductors in the region R of FIG. 1 will be described with reference to FIGS. 2 to 5. In FIGS. 2 to 5, one of the two segment conductors is represented by the first flat wire 50, and the other segment conductor is represented by the second flat wire 60.

図2は、レーザ溶接を行うために第1及び第2平角線50,60を位置決めする際の第1及び第2平角線50,60の途中状態を示す模式図であり、図3は、位置決めされた第1及び第2平角線50,60を示す模式斜視図である。レーザ溶接は、例えば、次のように実行される。先ず、第1平角線50の2つの脚部の先端側と、第2平角線60の2つの脚部の先端側を曲げ加工し、第1及び第2平角線50,60が図2に示す状態となるようにする。第1平角線50の端部51は、絶縁被膜52が剥離されて導体素線が外部に露出し、第2平角線60の端部61も、絶縁被膜62が剥離されて導体素線が外部に露出している。曲げ加工では、図示しない折り曲げ装置又は治具が、位置決めステップの完了時に第1及び第2平角線50,60の端部51,61がステータコア11の軸方向の略同じ位置(略同じ高さ)になるように各平角線50,60の2つの脚部を折り曲げる。図2に示すように、曲げ加工が終了した状態で、第1平角線50の端部51と第2平角線60の端部61は、θ方向位置が揃わず、R方向から見たとき半分程度しか重ならない状態となっている。 FIG. 2 is a schematic view showing an intermediate state of the first and second flat lines 50, 60 when positioning the first and second flat lines 50, 60 for laser welding, and FIG. 3 is a schematic view showing the intermediate state of the first and second flat lines 50, 60. It is a schematic perspective view which shows the 1st and 2nd flat wire 50, 60 which were welded. Laser welding is performed, for example, as follows. First, the tip ends of the two legs of the first flat wire 50 and the tip ends of the two legs of the second flat wire 60 are bent, and the first and second flat lines 50 and 60 are shown in FIG. Make it in a state. At the end 51 of the first flat wire 50, the insulating coating 52 is peeled off to expose the conductor wire to the outside, and at the end 61 of the second flat wire 60, the insulating coating 62 is peeled off and the conductor wire is exposed to the outside. Is exposed to. In bending, a bending device or jig (not shown) has the ends 51, 61 of the first and second flat wire 50, 60 at substantially the same position (approximately the same height) in the axial direction of the stator core 11 when the positioning step is completed. Bend the two legs of each of the flat lines 50 and 60 so as to be. As shown in FIG. 2, in the state where the bending process is completed, the end portion 51 of the first flat wire 50 and the end portion 61 of the second flat wire 60 are not aligned in the θ direction and are half when viewed from the R direction. It is in a state where it overlaps only to the extent.

次に、第1平角線50の端部51の一方側側面59と第2平角線60の端部61の他方側側面69が当接するように、第1及び第2平角線50,60を配置する。また、第1平角線50の端部51においてレーザ光が照射される第1照射面58と第2平角線60の端部61においてレーザ光が照射される第2照射面68が略同一平面上に位置するように、第1平角線50と第2平角線60を配置する。 Next, the first and second flat wires 50 and 60 are arranged so that the one side side surface 59 of the end portion 51 of the first flat wire 50 and the other side side surface 69 of the end portion 61 of the second flat wire 60 come into contact with each other. To do. Further, the first irradiation surface 58 to which the laser beam is irradiated at the end 51 of the first flat wire 50 and the second irradiation surface 68 to which the laser light is irradiated at the end 61 of the second flat wire 60 are substantially on the same plane. The first flat wire 50 and the second flat wire 60 are arranged so as to be located at.

詳しくは、例えば、図示しない保持装置の周方向位置調整部で、第1及び第2平角線50,60に矢印Aで示すθ方向の力を付与する。詳しくは、周方向位置調整部で、第1平角線50の端部51の先端面をθ方向一方側に押し込むと共に第2平角線60の端部61の先端面をθ方向他方側に押し込み、第1平角線50の端部51のθ方向位置と第2平角線60の端部61のθ方向位置を略一致させる。この状態で、保持装置の挟持部で2つの端部51,61に矢印Bで示すR方向の力を付与し、図3に示すように、2つの端部51,61をR方向両側から挟持し、2つの端部51,61を所定位置で保持する。図3に示す状態で、第1平角線50の端部51と第2平角線60の端部61は、ステータコア11の軸方向の略同じ位置(略同じ高さ)になる。また、図3に示す状態で、R方向から見たとき、第1平角線50の端部51の略全部が、第2平角線60の端部61の略全部に重なる。また、図3に示す状態で、第1平角線50の端部における一方側側面59の略全部が、第2平角線60の端部61における他方側側面69の略全部に当接する。 Specifically, for example, a force in the θ direction indicated by an arrow A is applied to the first and second flat lines 50 and 60 by a circumferential position adjusting unit of a holding device (not shown). Specifically, in the circumferential position adjusting portion, the tip surface of the end portion 51 of the first flat wire 50 is pushed to one side in the θ direction, and the tip surface of the end portion 61 of the second flat wire 60 is pushed to the other side in the θ direction. The position in the θ direction of the end 51 of the first flat line 50 and the position in the θ direction of the end 61 of the second flat line 60 are substantially matched. In this state, the holding portion of the holding device applies a force in the R direction indicated by the arrow B to the two ends 51, 61, and as shown in FIG. 3, the two ends 51, 61 are sandwiched from both sides in the R direction. And hold the two ends 51, 61 in place. In the state shown in FIG. 3, the end portion 51 of the first flat wire 50 and the end portion 61 of the second flat wire 60 are at substantially the same position (substantially the same height) in the axial direction of the stator core 11. Further, in the state shown in FIG. 3, when viewed from the R direction, substantially all of the end portions 51 of the first flat wire 50 overlap with substantially all of the end portions 61 of the second flat wire 60. Further, in the state shown in FIG. 3, substantially all of the one-sided side surface 59 at the end of the first flat wire 50 comes into contact with substantially all of the other side surface 69 at the end 61 of the second flat wire 60.

次に、図4及び図5を用いて、レーザ光の照射について説明する。図4は、位置決めされた状態でレーザ光が照射されている第1及び第2平角線50,60を表す平面模式図である。また、図5は、図4のC-C線断面図である。 Next, the irradiation of the laser beam will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic plan view showing the first and second flat lines 50 and 60 that are irradiated with the laser beam in the positioned state. Further, FIG. 5 is a cross-sectional view taken along the line CC of FIG.

図5に示すように、レーザ光が出射される際、第1平角線50の第1照射面58は、第2平角線60の第2照射面68と面一となって略同一面上に位置し、第1平角線50の一方側側面59は、第2平角線60の他方側側面69と隙間なく当接する。なお、図3に示す例では、上記同一面が湾曲面であるが、同一面は平面であってもよい。 As shown in FIG. 5, when the laser beam is emitted, the first irradiation surface 58 of the first flat line 50 is flush with the second irradiation surface 68 of the second flat line 60 and is substantially on the same surface. The one side surface 59 of the first flat wire 50 is in contact with the other side surface 69 of the second flat wire 60 without a gap. In the example shown in FIG. 3, the same surface is a curved surface, but the same surface may be a flat surface.

図4に示すように、レーザ光は、レーザ光走査装置のレーザ照射口から、第1及び第2照射面58,68に跨ると共に第1及び第2照射面58,68にループを描くように出射される。レーザ光走査装置でループ状にレーザ光を走査することで、溶融状態の金属で構成される溶融池を形成する。ループ状とは、環状(閉ループ)若しくは螺旋状(開ループ)であることを意味する。 As shown in FIG. 4, the laser light extends from the laser irradiation port of the laser light scanning device to the first and second irradiation surfaces 58,68 and draws a loop on the first and second irradiation surfaces 58,68. It is emitted. By scanning the laser beam in a loop with a laser beam scanning device, a molten pool made of molten metal is formed. The loop shape means that it is annular (closed loop) or spiral (open loop).

図4に示す例では、レーザ光の走査軌跡は、楕円状に類似する形状である。より詳しくは、図4に示す平面図において、第1平角線50の第1照射面58と第2平角線60の第2照射面68は、直線状の突合部90で突き合わされる。レーザ光の走査軌跡は、図4に示す平面図において、直線状の突合部90に直交する直交方向に突合部90を挟んで対向する一対の円弧状部70,71と、一対の直線状部80,81で構成される。一方の円弧状部70は、他方の円弧状部71側とは反対側に凸の形状を有し、他方の円弧状部71は、一方の円弧状部70側とは反対側に凸の形状を有する。また、一方の直線状部80は、一方の円弧状部70の一端と他方の円弧状部71の一端との間に存在し、他方の直線状部81は、一方の円弧状部70の他端と他方の円弧状部71の他端との間に存在する。一対の直線状部80,81の夫々は、第1及び第2照射面58,68に跨るように存在する。 In the example shown in FIG. 4, the scanning locus of the laser beam has a shape similar to an ellipse. More specifically, in the plan view shown in FIG. 4, the first irradiation surface 58 of the first flat line 50 and the second irradiation surface 68 of the second flat line 60 are abutted by the linear abutting portion 90. In the plan view shown in FIG. 4, the scanning locus of the laser beam is a pair of arcuate portions 70,71 facing each other with the abutting portion 90 in the orthogonal direction orthogonal to the linear abutting portion 90, and a pair of linear portions. It is composed of 80,81. One arc-shaped portion 70 has a convex shape on the side opposite to the other arc-shaped portion 71 side, and the other arc-shaped portion 71 has a convex shape on the side opposite to the one arc-shaped portion 70 side. Have. Further, one linear portion 80 exists between one end of one arc-shaped portion 70 and one end of the other arc-shaped portion 71, and the other linear portion 81 is the other of the one arc-shaped portion 70. It exists between one end and the other end of the other arcuate portion 71. Each of the pair of linear portions 80,81 exists so as to straddle the first and second irradiation surfaces 58,68.

詳述しないが、レーザ光走査装置(図示せず)は、例えば、光源、電源、電力制御部、凹レンズで形成される第1の光学系、凸レンズで形成される第2の光学系、及び反射ミラーを備える。電力制御部は、電源から光源に供給される電力量を制御する。また、第1及び第2の光学系は、夫々の光軸が直交するように配置される。また、反射ミラーは、チルトミラーやガルバノミラー等で構成され、第1の光学系の光軸と第2の光学系の光軸の交点位置周辺に配置される。 Although not described in detail, a laser light scanning device (not shown) includes, for example, a light source, a power supply, a power control unit, a first optical system formed of a concave lens, a second optical system formed of a convex lens, and reflection. Equipped with a mirror. The power control unit controls the amount of power supplied from the power source to the light source. Further, the first and second optical systems are arranged so that their respective optical axes are orthogonal to each other. The reflection mirror is composed of a tilt mirror, a galvano mirror, or the like, and is arranged around the intersection position of the optical axis of the first optical system and the optical axis of the second optical system.

光源から出射されたレーザ光は、第1の光学系を通過した後、反射ミラーで第2の光学系の方に反射され、第2の光学系から出射される。レーザ光走査装置は、第1の光学系に入射されたレーザ光を拡がり角や光軸を変化させることなくビーム径を拡張させて第2の光学系から出射させる。 The laser beam emitted from the light source passes through the first optical system, is reflected by the reflection mirror toward the second optical system, and is emitted from the second optical system. The laser beam scanning apparatus expands the laser beam incident on the first optical system, expands the beam diameter without changing the angle or the optical axis, and emits the laser light from the second optical system.

レーザ光走査装置は、更に、反射ミラーの反射角度を変動させる変動機構、及び反射角度制御部を備える。変動機構は、反射ミラーを支持し、変動機構は、その動きで反射ミラーの反射方向を変動させる。反射角度制御部は、変動機構に制御信号を出力し、変動機構の動作を制御する。レーザ光走査装置は、反射角度制御部からの制御信号で変動機構の動作を制御して反射ミラーの反射方向を制御することで、出射されるレーザ光の出射方向を制御する。レーザ光走査装置は、電力制御部で電源から光源に供給される電力量を制御したり、反射角度制御部で変動機構の動作速度を制御してレーザ光の走査速度(移動速度)を制御することで、出射されるレーザ光のエネルギー密度を制御する。ここで、エネルギー密度とは、単位面積に単位時間で与えられるエネルギーのことである。エネルギー密度は、レーザ光の走査速度を速くしたり、出力を落とすと低下する。 The laser light scanning device further includes a fluctuation mechanism that fluctuates the reflection angle of the reflection mirror, and a reflection angle control unit. The fluctuation mechanism supports the reflection mirror, and the fluctuation mechanism changes the reflection direction of the reflection mirror by its movement. The reflection angle control unit outputs a control signal to the fluctuation mechanism and controls the operation of the fluctuation mechanism. The laser light scanning device controls the emission direction of the emitted laser light by controlling the operation of the fluctuation mechanism with a control signal from the reflection angle control unit to control the reflection direction of the reflection mirror. In the laser light scanning device, the power control unit controls the amount of power supplied from the power source to the light source, and the reflection angle control unit controls the operating speed of the fluctuation mechanism to control the scanning speed (moving speed) of the laser light. This controls the energy density of the emitted laser light. Here, the energy density is the energy given to a unit area in a unit time. The energy density decreases as the scanning speed of the laser beam is increased or the output is reduced.

レーザ光は、レーザ光走査装置の記憶部に予め記憶されたソフトウエアに基づいて、予めプログラムされた条件、すなわち、予め定められたタイミング、予め定められた方向、及び予め定められたエネルギー密度で、レーザ光走査装置のレーザ照射口から照射される。より詳しくは、図4を参照して、レーザ光の走査軌跡は、ループを描きながら突合部90の一端側から他端側に移動する。図4に示す例では、走査軌跡は、環状ループ(閉ループ)を描きながら突合部90の一端側から他端側に移動する。このレーザ光の走査軌跡は、例えば、上述の機構でレーザ光の出射方向を変動させると共に、レーザ光走査装置に対して突合部90をその延在方向に相対移動させることで実現できる。この相対移動は、例えば、電動シリンダ等を用いて、レーザ光走査装置をステータコア11に対して突合部90の延在方向に移動させたり、ステータコア11が固定されている固定台をレーザ光走査装置に対して突合部90の延在方向に移動させることで実行できる。 The laser light is based on software stored in the storage unit of the laser light scanning device under pre-programmed conditions, that is, with a predetermined timing, a predetermined direction, and a predetermined energy density. , Is irradiated from the laser irradiation port of the laser light scanning device. More specifically, with reference to FIG. 4, the scanning locus of the laser beam moves from one end side to the other end side of the abutting portion 90 while drawing a loop. In the example shown in FIG. 4, the scanning locus moves from one end side to the other end side of the abutting portion 90 while drawing an annular loop (closed loop). The scanning locus of the laser light can be realized, for example, by changing the emission direction of the laser light by the above-mentioned mechanism and moving the abutting portion 90 relative to the laser light scanning device in the extending direction thereof. In this relative movement, for example, the laser light scanning device is moved in the extending direction of the abutting portion 90 with respect to the stator core 11 by using an electric cylinder or the like, or the fixed base on which the stator core 11 is fixed is moved by the laser light scanning device. It can be executed by moving the butt portion 90 in the extending direction.

レーザ光は、入熱が一対の円弧状部70,71を描く際に大きくなる一方、入熱が、一対の直線状部80,81を描く際には、一対の円弧状部70,71を描くときと比較して小さくなるように、レーザ照射口から照射される。一対の直線状部80,81の夫々は、第1及び第2照射面58,68に跨って存在する。したがって、第1及び第2平角線50,60の角部は、第1及び第2照射面58,68の突合部周辺に位置するため、その角部への入熱が、円弧状部70,71への入熱よりも小さくなる。 The laser beam becomes large when the heat input draws a pair of arcuate portions 70,71, while the heat input increases the pair of arcuate portions 70,71 when drawing a pair of linear portions 80,81. It is irradiated from the laser irradiation port so that it is smaller than when drawing. Each of the pair of linear portions 80,81 exists across the first and second irradiation surfaces 58,68. Therefore, since the corners of the first and second flat lines 50 and 60 are located around the abutment portions of the first and second irradiation surfaces 58 and 68, the heat input to the corners is the arcuate portion 70, It is smaller than the heat input to 71.

例えば、円弧状部70,71を描く際に、レーザ光の移動速度を遅くすると共にレーザ光の出力を大きくする。他方、一対の直線状部80,81を描く際には、レーザ光の移動速度を、円弧状部70,71を描くときと比較して速くすると共に、レーザ光の出力を、円弧状部70,71を描くときと比較して小さくする。このようにすれば、上述の入熱を、容易かつ効率的に実現できる。 For example, when drawing the arcuate portions 70 and 71, the moving speed of the laser beam is slowed down and the output of the laser beam is increased. On the other hand, when drawing the pair of linear portions 80,81, the moving speed of the laser beam is made faster than when drawing the arcuate portions 70,71, and the output of the laser light is increased to the arcuate portion 70. Make it smaller than when drawing, 71. In this way, the above-mentioned heat input can be easily and efficiently realized.

一例では、一対の円弧状部70,71を描くときは、エネルギー密度が2.25×107W/cm2〜2.75×107W/cm2のレーザ光を出射し、好ましくは、エネルギー密度が2.50×107W/cm2のレーザ光を出射してもよい。また、一対の直線状部80,81を描くときは、エネルギー密度が1.00×107W/cm2〜1.50×107W/cm2のレーザ光を出射し、好ましくは、エネルギー密度が1.25×107W/cm2のレーザ光を出射してもよい。なお、出射されるレーザ光のエネルギー密度は、これらの値に限定されない。本発明では、第1及び第2照射面の境界領域に照射するレーザ光のエネルギー密度が、それ以外の箇所に照射するレーザ光のエネルギー密度よりも小さければ、レーザ照射口から照射されるレーザ光のエネルギー密度は、如何なる値であってもよい。 In one example, when drawing a pair of arcuate portions 70,71, a laser beam having an energy density of 2.25 × 10 7 W / cm 2 to 2.75 × 10 7 W / cm 2 is emitted, preferably. A laser beam having an energy density of 2.50 × 10 7 W / cm 2 may be emitted. When drawing a pair of linear portions 80,81, a laser beam having an energy density of 1.00 × 10 7 W / cm 2 to 1.50 × 10 7 W / cm 2 is emitted, preferably energy. A laser beam having a density of 1.25 × 10 7 W / cm 2 may be emitted. The energy density of the emitted laser light is not limited to these values. In the present invention, if the energy density of the laser light irradiating the boundary region between the first and second irradiation surfaces is smaller than the energy density of the laser light irradiating other parts, the laser light emitted from the laser irradiation port. The energy density of can be any value.

上記実施形態によれば、第1平角線50の端部51の一方側側面59と第2平角線60の端部61の他方側側面69を当接させると共に、第1平角線50の端部51の第1照射面58と第2平角線60の端部61の第2照射面68が略同一平面上に位置するように、第1平角線50と第2平角線60を配置する。そして、第1及び第2照射面58,68に跨ると共にレーザ照射口から第1及び第2照射面58,68にループを描くようにレーザ光を出射し、第1及び第2照射面58,68においてエネルギーが集中し易い互いの境界領域に照射するレーザ光のエネルギー密度を、それ以外の箇所に照射するレーザ光のエネルギー密度よりも小さくする。したがって、境界領域付近に位置する第1及び第2平角線50,60の角部の昇温を抑制できるので、スパッタの発生を抑制でき、スパッタに起因する溶接品質の低下を抑制できる。 According to the above embodiment, the one side surface 59 of the end portion 51 of the first flat wire 50 and the other side surface 69 of the end portion 61 of the second flat wire 60 are brought into contact with each other, and the end portion of the first flat wire 50 is brought into contact with each other. The first flat line 50 and the second flat line 60 are arranged so that the first irradiation surface 58 of 51 and the second irradiation surface 68 of the end portion 61 of the second flat line 60 are located on substantially the same plane. Then, the laser beam is emitted from the laser irradiation port so as to form a loop on the first and second irradiation surfaces 58, 68 while straddling the first and second irradiation surfaces 58, 68, and the first and second irradiation surfaces 58, In 68, the energy density of the laser light irradiating the boundary regions where energy is likely to be concentrated is made smaller than the energy density of the laser light irradiating the other parts. Therefore, since the temperature rise of the corners of the first and second flat lines 50 and 60 located near the boundary region can be suppressed, the occurrence of spatter can be suppressed, and the deterioration of welding quality due to spatter can be suppressed.

また、レーザ光を往復走査させると、折り返し部に熱が集中し、スパッタが発生し易い。これに対し、本実施形態によれば、レーザ光走査軌跡がループ状であるため、レーザ光を滑らかに走査できる。よって、熱が集中し難く、スパッタの発生を抑制できる。 Further, when the laser beam is reciprocally scanned, heat is concentrated on the folded portion, and sputtering is likely to occur. On the other hand, according to the present embodiment, since the laser beam scanning locus is loop-shaped, the laser beam can be scanned smoothly. Therefore, it is difficult for heat to concentrate and the generation of spatter can be suppressed.

また、レーザ光走査軌跡が、楕円状に類似する形状であり、その長軸に対応する軸が、突合部90に略一致する状態で延びる。その結果、溶接が必要な突合部90に短時間に溶融池を生成でき、短時間で溶接を実行できる。 Further, the laser beam scanning locus has a shape similar to an ellipse, and the axis corresponding to the long axis extends so as to substantially coincide with the abutting portion 90. As a result, a molten pool can be generated in a short time at the butt portion 90 that requires welding, and welding can be performed in a short time.

尚、本発明は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。 The present invention is not limited to the above-described embodiment and its modifications, and various improvements and modifications can be made within the scope of the claims of the present application and the equivalent scope thereof.

例えば、上記実施形態では、円弧状部70,71を描く際に、レーザ光の移動速度(走査速度)を遅くすると共にレーザ光の出力を大きくする一方、一対の直線状部80,81を描く際には、レーザ光の移動速度を、円弧状部70,71を描くときとの比較で速くすると共に、レーザ光の出力を、円弧状部70,71を描くときとの比較で小さくする場合について説明した。しかし、レーザ光の移動速度を常に一定に保った状態で、円弧状部を描く際に、レーザ光の出力を大きくし、一対の直線状部を描く際に、レーザ光の出力を、円弧状部を描くときとの比較で小さくしてもよい。又は、レーザ光の出力を常に一定に保った状態で、円弧状部を描く際に、レーザ光の移動速度を遅くし、一対の直線状部を描く際に、レーザ光の移動速度を、円弧状部を描くときとの比較で速くしてもよい。また、レーザ光の走査軌跡が、一対の円弧状部70,71と一対の直線状部80,81で構成される閉ループを含む場合について説明した。しかし、レーザ光の走査軌跡は、如何なる閉ループを含んでもよく、例えば、楕円や円を含んでもよい。又は、レーザ光の走査軌跡は、如何なる開ループを含んでもよく、螺旋形状でもよい。 For example, in the above embodiment, when drawing the arcuate portions 70,71, the moving speed (scanning speed) of the laser light is slowed down and the output of the laser light is increased, while the pair of linear portions 80,81 are drawn. In this case, the moving speed of the laser beam is increased in comparison with the case of drawing the arcuate portions 70,71, and the output of the laser beam is reduced in comparison with the case of drawing the arcuate portions 70,71. Was explained. However, while the moving speed of the laser beam is always kept constant, the output of the laser beam is increased when drawing an arcuate portion, and the output of the laser beam is changed to an arcuate shape when drawing a pair of linear portions. It may be smaller than when drawing a part. Alternatively, while the output of the laser light is always kept constant, the moving speed of the laser light is slowed down when drawing an arcuate part, and the moving speed of the laser light is changed to a circle when drawing a pair of linear parts. It may be faster than when drawing an arc. Further, a case where the scanning locus of the laser beam includes a closed loop composed of a pair of arcuate portions 70,71 and a pair of linear portions 80,81 has been described. However, the scanning locus of the laser beam may include any closed loop, for example an ellipse or a circle. Alternatively, the scanning locus of the laser beam may include any open loop and may have a spiral shape.

50 第1平角線、 51 第1平角線の端部、 52 第1平角線の絶縁被膜、 58 第1照射面、 59 第1平角線の一方側側面、 60 第2平角線、 61 第2平角線の端部、 62 第2平角線の絶縁被膜、 68 第2照射面、 69 第2平角線の他方側側面。 50 1st flat wire, 51 1st flat wire end, 52 1st flat wire insulating coating, 58 1st irradiation surface, 59 1st flat wire one side surface, 60 2nd flat wire, 61 2nd flat wire The end of the wire, 62 the insulating coating of the second flat wire, 68 the second irradiation surface, 69 the other side surface of the second flat wire.

Claims (1)

断面矩形状の第1平角線及び第2平角線の夫々における絶縁被膜を有さない端部同士をレーザ光によって溶接する平角線のレーザ溶接方法であって、
前記第1平角線の前記端部の側面と前記第2平角線の前記端部の側面が当接すると共に、前記第1平角線の前記端部において前記レーザ光が照射される第1照射面と前記第2平角線の前記端部において前記レーザ光が照射される第2照射面が略同一平面上に位置するように、前記第1平角線と前記第2平角線を配置する平角線配置ステップと、
前記平角線配置ステップの後、前記第1及び第2照射面に跨ると共に前記第1及び第2照射面にループを描くように前記レーザ光を出射するレーザ光出射ステップと、を含み、
前記レーザ光出射ステップにおいて、前記第1及び前記第2照射面の境界領域に照射する前記レーザ光のエネルギー密度が、それ以外の箇所に照射する前記レーザ光のエネルギー密度よりも小さい、平角線のレーザ溶接方法。
A method of laser welding a flat wire, in which the ends of the first flat wire and the second flat wire having a rectangular cross section, which do not have an insulating coating, are welded to each other by a laser beam.
The side surface of the end of the first flat line abuts the side surface of the end of the second flat line, and the end of the first flat line is irradiated with the laser beam. A flat line arrangement step in which the first flat line and the second flat line are arranged so that the second irradiation surface to which the laser beam is irradiated is located on substantially the same plane at the end of the second flat line. When,
After the flat line arrangement step, the laser light emitting step of straddling the first and second irradiation surfaces and emitting the laser light so as to draw a loop on the first and second irradiation surfaces is included.
In the laser light emitting step, the energy density of the laser light irradiating the boundary region between the first and second irradiation surfaces is smaller than the energy density of the laser light irradiating other parts of the flat line. Laser welding method.
JP2017219163A 2017-11-14 2017-11-14 Flat wire laser welding method Active JP6871135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219163A JP6871135B2 (en) 2017-11-14 2017-11-14 Flat wire laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219163A JP6871135B2 (en) 2017-11-14 2017-11-14 Flat wire laser welding method

Publications (2)

Publication Number Publication Date
JP2019089097A JP2019089097A (en) 2019-06-13
JP6871135B2 true JP6871135B2 (en) 2021-05-12

Family

ID=66837041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219163A Active JP6871135B2 (en) 2017-11-14 2017-11-14 Flat wire laser welding method

Country Status (1)

Country Link
JP (1) JP6871135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317429B2 (en) * 2019-12-19 2023-07-31 エルジー エナジー ソリューション リミテッド Battery module and manufacturing method thereof
CN113458602B (en) * 2021-07-02 2023-03-14 苏州汇川联合动力系统有限公司 Motor stator winding laser welding method, stator winding and motor
JPWO2023281930A1 (en) * 2021-07-08 2023-01-12

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750293B2 (en) * 1994-09-26 1998-05-13 トヨタ自動車株式会社 Manufacturing method of molded article and molded article
JP5958109B2 (en) * 2012-06-21 2016-07-27 アイシン・エィ・ダブリュ株式会社 Conductor joining method for rotating electrical machine
JP6086226B2 (en) * 2013-03-18 2017-03-01 アイシン・エィ・ダブリュ株式会社 Conductor joining method for rotating electrical machine
EP3020502B1 (en) * 2014-02-25 2017-11-08 Panasonic Intellectual Property Management Co., Ltd. Laser welding method

Also Published As

Publication number Publication date
JP2019089097A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6625665B2 (en) Stator and rotating electric machine
JP6871135B2 (en) Flat wire laser welding method
JP3288980B2 (en) Laminated core
JP2019118159A (en) Welding method for segment conductor
JP2019022449A (en) Motor and manufacturing method therefor
JPH11220841A (en) Rotating motor
JP6974206B2 (en) Stator manufacturing method and bending equipment
US20220352796A1 (en) Method of manufacturing stator
US20240039355A1 (en) Rotating Electrical Machine, Electric Wheel, and Vehicle
JP2023017570A (en) Stator and stator manufacturing method
WO2020031612A1 (en) Stator for rotary electric machine and manufacturing method for same
JP7514255B2 (en) Manufacturing method of stator for rotating electric machine, stator for rotating electric machine, and rotating electric machine
JP2022182850A (en) stator
JP7146137B2 (en) stator
JP2019115188A (en) Conductor joint method
JP6848129B1 (en) Stator manufacturing method and stator manufacturing equipment
JP6959163B2 (en) Bending machine
JP6848131B1 (en) Stator and how to manufacture the stator
JP6803770B2 (en) Welding method of metal materials and rotary electric machine
JPWO2020100311A1 (en) Stator manufacturing method
JP6922118B2 (en) Stator manufacturing method
JP2019140819A (en) Manufacturing method of stator
JP6745838B2 (en) Rotating electric machine and manufacturing method thereof
CN115136474A (en) Method for manufacturing stator for rotating electric machine
WO2021048994A1 (en) Stator and method for manufacturing stator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R151 Written notification of patent or utility model registration

Ref document number: 6871135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250