JP6869499B2 - Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration - Google Patents

Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration Download PDF

Info

Publication number
JP6869499B2
JP6869499B2 JP2016238501A JP2016238501A JP6869499B2 JP 6869499 B2 JP6869499 B2 JP 6869499B2 JP 2016238501 A JP2016238501 A JP 2016238501A JP 2016238501 A JP2016238501 A JP 2016238501A JP 6869499 B2 JP6869499 B2 JP 6869499B2
Authority
JP
Japan
Prior art keywords
transformer
vibration
winding
tank
top plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016238501A
Other languages
Japanese (ja)
Other versions
JP2018096706A (en
Inventor
小西 義則
義則 小西
雅道 加藤
雅道 加藤
松本 聡
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Priority to JP2016238501A priority Critical patent/JP6869499B2/en
Publication of JP2018096706A publication Critical patent/JP2018096706A/en
Application granted granted Critical
Publication of JP6869499B2 publication Critical patent/JP6869499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は変圧器内部異常および劣化を、稼働中の変圧器を停止することなく容易に診断できる方法と装置に関する。 The present invention relates to a method and an apparatus capable of easily diagnosing an abnormality and deterioration inside a transformer without stopping an operating transformer.

電力設備の長期運用が求められる中、電力設備の異常診断や劣化診断技術の更なる高度化が求められている。
近年、変圧器の診断に電気信号に対する周波数応答解析(FRA)の適用が検討されているが、稼働中の変圧器を診断するのは困難であるといった課題がある。また、FRAは巻線の偏心や座屈といった変形や位置ずれによって変化する巻線インピーダンスなどの周波数特性を検知する方法であり、機器の予防保全の観点からは、変形や位置ずれが生じる前の締付け力低下を捉える診断手法が望まれる。
As long-term operation of electric power equipment is required, further sophistication of abnormality diagnosis and deterioration diagnosis technology of electric power equipment is required.
In recent years, the application of frequency response analysis (FRA) to electrical signals has been studied for the diagnosis of transformers, but there is a problem that it is difficult to diagnose a transformer in operation. In addition, FRA is a method for detecting frequency characteristics such as winding impedance that changes due to deformation such as eccentricity and buckling of the winding and displacement, and from the viewpoint of preventive maintenance of equipment, before deformation and misalignment occur. A diagnostic method that captures the decrease in tightening force is desired.

機械の設備診断として、機械的振動を測定し解析する手法が一般的に用いられている。この振動解析手法はモーダル解析とも称され、変圧器の機械的振動について騒音低減の観点において古くから検討されており、近年では巻線の緩みや変形を検知する手段としても研究されている。
変圧器の主な機械的振動はコイル間に働くローレンツ力や鉄心に働く磁歪現象などが起因しており、電源周波数の整数倍の周波数成分を持っている。そこで、これまでは稼働中の変圧器振動データのうち電源周波数の整数倍(以下、電源系周波数と呼ぶ)の振動振幅の変化のみが注目されてきた。
As a machine equipment diagnosis, a method of measuring and analyzing mechanical vibration is generally used. This vibration analysis method is also called modal analysis, and mechanical vibration of transformers has been studied for a long time from the viewpoint of noise reduction, and in recent years, it has also been studied as a means for detecting looseness and deformation of windings.
The main mechanical vibration of a transformer is caused by the Lorentz force acting between the coils and the magnetostrictive phenomenon acting on the iron core, and has a frequency component that is an integral multiple of the power supply frequency. Therefore, until now, only changes in the vibration amplitude of an integral multiple of the power supply frequency (hereinafter referred to as the power supply system frequency) have been paid attention to in the transformer vibration data in operation.

機械的振動の発生源である鉄心および巻線(以下、変圧器中身と呼ぶ)の振動は、固体(変圧器タンクの天板から側板へ、底板から側板へ)または液体(絶縁油)を介してセンサを取り付けた変圧器タンクの壁面を震わせる。そこで、稼働中の変圧器を外部から診断する場合、変圧器タンク壁面にセンサを設置するが、センサの取り付け位置がタンク壁面でわずかに異なると振動振幅が大きく変化することが報告されており、診断の障害となる問題がある。 The vibration of the iron core and windings (hereinafter referred to as the transformer contents), which are the sources of mechanical vibration, is via solid (from the top plate to the side plate of the transformer tank, from the bottom plate to the side plate) or liquid (insulating oil). Shake the wall of the transformer tank with the sensor attached. Therefore, when diagnosing an operating transformer from the outside, a sensor is installed on the wall surface of the transformer tank, but it has been reported that the vibration amplitude changes significantly if the mounting position of the sensor is slightly different on the wall surface of the tank. There is a problem that interferes with the diagnosis.

変圧器において、巻線を銅線とスペーサプレスボードが交互に重なったバネのような構造と見立てて、その固有振動数を計算した結果がいくつかの論文より報告されている。また、同様に鉄心の固有振動数の計算結果も報告されている。それらの固有振動数(以下、機械系振動数と呼ぶ)は共鳴現象を避けるために電源系周波数とは異なるように変圧器が設計されている。 Several papers have reported the results of calculating the natural frequency of a transformer by regarding the winding as a spring-like structure in which copper wires and spacer press boards are alternately stacked. Similarly, the calculation result of the natural frequency of the iron core is also reported. Transformers are designed so that their natural frequencies (hereinafter referred to as mechanical frequencies) are different from the power supply system frequencies in order to avoid resonance phenomena.

機械系振動は変圧器中身の巻線などの締付け力変化や変圧器中身の構造物の変位を反映すると考えられ、そのトレンドを監視することで変圧器の異常や劣化を診断することができると期待できる。
そのような観点で本発明者らは、稼働状態の変圧器振動について振動検出器と電子回路またはソフトウエアを用いた信号処理による手段を用いて、稼働状態の変圧器の振動応答を解析する技術について研究している。例えば、変圧器に負荷されている通電電流により生じる電磁力に起因して稼働中の変圧器から発生する種々の振動の固有振動数を直接測定するか、もしくは変圧器に対する通電電流による加振力の位相を基準とする変圧器振動の位相、またはその両方を求め、稼働状態の変圧器の振動応答を解析する技術について研究している。
また、以下の特許文献1では、変圧器に励磁突入電流(定格電流の数倍)を流し、それにより発生する電磁機械力を用いて衝撃力を与え、発生音に基づいて診断する方法を提案している。
以下の特許文献2では、所定の周波数範囲で励磁周波数を段階的に変化させて鉄心と巻線を加振して変圧器の固有振動数を測定する方法が記載されている。特許文献2の場合、各加振周波数に対する変圧器騒音レベルを測定し、周波数応答関数を得ている。
Mechanical vibration is thought to reflect changes in the tightening force of the windings inside the transformer and displacement of the structures inside the transformer, and by monitoring the trends, it is possible to diagnose abnormalities and deterioration of the transformer. You can expect it.
From such a viewpoint, the present inventors have developed a technique for analyzing the vibration response of an operating transformer by using a vibration detector and a means by signal processing using an electronic circuit or software for the transformer vibration in the operating state. I am studying about. For example, the natural frequencies of various vibrations generated from an operating transformer due to the electromagnetic force generated by the energizing current loaded on the transformer are directly measured, or the exciting force due to the energizing current to the transformer. We are researching a technique to obtain the phase of transformer vibration based on the phase of
Further, Patent Document 1 below proposes a method in which an exciting inrush current (several times the rated current) is passed through a transformer, an impact force is applied by using the electromagnetic mechanical force generated by the exciting inrush current, and a method of diagnosing based on the generated sound is applied. doing.
The following Patent Document 2 describes a method of measuring the natural frequency of a transformer by vibrating an iron core and a winding by stepwise changing the excitation frequency in a predetermined frequency range. In the case of Patent Document 2, the transformer noise level for each excitation frequency is measured to obtain a frequency response function.

特許第5691298号公報Japanese Patent No. 5691298 特開2008−82778号公報Japanese Unexamined Patent Publication No. 2008-82778

先の特許文献1、2に記載の技術では変圧器に負荷電流ではない電流を流すか、励磁周波数を変更する必要があり、稼働中の変圧器の状態のままでは診断できない問題がある。
次に、先に説明した本発明者らが研究中の技術によれば、稼働中の変圧器に流れる通電電流や印加電圧により生じる電磁力に起因して発生する変圧器振動を測定するが、変圧器に流れる通電電流が小さくて、生じる電磁力が小さい場合、変圧器中身から発生する振動が小さくてタンク壁面で変圧器中身の振動を捉えることが難しい問題があった。
また、変圧器の用途によっては、通電電流を大きくしたり、印加電圧を大きくしたりすることで、変圧器中身に生じる電磁力を大きくし、変圧器中身の振動を大きくすることでタンク壁面の振動を大きくできる場合もあるが、稼働中の変圧器の場合、振動測定のために安易に通電電流や電圧を変更することは難しい問題があった。
In the techniques described in Patent Documents 1 and 2, it is necessary to pass a current other than the load current to the transformer or change the excitation frequency, and there is a problem that the diagnosis cannot be made in the state of the operating transformer.
Next, according to the technique under study by the present inventors described above, the transformer vibration generated by the electromagnetic force generated by the energizing current and the applied voltage flowing through the operating transformer is measured. When the energizing current flowing through the transformer is small and the generated electromagnetic force is small, there is a problem that the vibration generated from the contents of the transformer is small and it is difficult to capture the vibration of the contents of the transformer on the tank wall surface.
In addition, depending on the application of the transformer, the electromagnetic force generated in the transformer contents may be increased by increasing the energizing current or the applied voltage, and the vibration of the transformer contents may be increased to increase the vibration of the tank wall surface. In some cases, the vibration can be increased, but in the case of a working transformer, there is a problem that it is difficult to easily change the energizing current or voltage for vibration measurement.

よって、本発明の課題は、稼働状態の変圧器の異常や劣化を診断するための変圧器診断技術において、通電電流や印加電圧が小さくても変圧器中身を確実に振動させ、タンクの周壁に設置した振動センサで変圧器中身の振動を確実に捉えることができ、これに基づいて変圧器を診断することができる方法と装置を提供することである。 Therefore, an object of the present invention is that in a transformer diagnostic technique for diagnosing an abnormality or deterioration of a transformer in an operating state, the contents of the transformer are surely vibrated even if the energizing current or the applied voltage is small, and the peripheral wall of the tank is covered. It is to provide a method and a device capable of reliably capturing the vibration of the contents of the transformer with the installed vibration sensor and diagnosing the transformer based on the vibration.

本発明の変圧器内部異常および劣化の診断方法は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の前記変圧器に対し、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動であり、前記タンクの複数箇所に設置した振動検出器を用いて前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察し、これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析することを特徴とする。
本発明の診断方法は、先において求めた前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークに関し、健全な初期状態の変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと比較して稼働中の変圧器の状態を解析することを特徴とする
The method for diagnosing internal abnormalities and deterioration of a transformer of the present invention is a method for diagnosing internal abnormalities and deterioration of a transformer including windings and iron cores constituting a coil body and a tank for accommodating them, and the tank is at the bottom. It is a box body composed of a wall, a peripheral wall, and a top plate, and the coil body is formed by winding a winding around an iron core extending in the vertical direction, and the coil body is arranged vertically. The coil body, which is tightened from above and below by a plate, is suspended from the top plate by a hanging metal fitting, and the transformer is housed inside the tank by energizing the windings. It is a mechanical vibration obtained by hitting the top plate of the tank with a hammer with a striking force that does not interfere with the operation of the transformer while the transformer is operating, and is vibration detection installed at a plurality of locations of the tank. Based on the mechanical vibration generated at each position of the vibration detector in the tank using the coil, the vibration peak is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during the operation of the transformer. Observe a plurality of vibration peaks caused by the difference between the natural frequency at each position where the vibration detector is installed and the natural frequency inside the transformer, and among these multiple vibration peaks, the iron core is derived. The vibration peak, the vibration peak derived from the winding, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated are recognized separately, and the top plate, the iron core, and the winding are recognized separately. It is characterized in that the state of the transformer is analyzed by observing the change of the vibration peak derived from the structure in which the coils are integrated.
In the diagnostic method of the present invention, regarding the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated, the top plate, the iron core, and the iron core in a sound initial state transformer are described. It is characterized by analyzing the state of an operating transformer in comparison with a vibration peak derived from a structure in which windings are integrated .

本発明の診断方法において、実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することが好ましい。 In the diagnostic method of the present invention, an area is partitioned on a part of the peripheral wall of the tank of the transformer to be measured in the actual operating state, acceleration sensors are installed at a plurality of positions in the partition, and the top plate is hammered. The vibration obtained from the peripheral wall of the tank by tapping was measured as the output waveform of the accelerometer at each of a plurality of positions, and these output waveforms were subjected to high-speed Fourier conversion to plot the frequency on the horizontal axis and the amplitude on the vertical axis. It is preferable to analyze the peak of the natural frequency appearing in the waveform and compare the peak of the natural frequency obtained by the equivalent method with respect to the sound transformer to analyze the state of the operating transformer.

本発明の診断装置は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の変圧器の内部異常および劣化の診断装置であって、稼働中の変圧器に対し前記タンクの複数箇所に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する複数の振動検出器と、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察する解析器と、これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析する演算手段とを備えたことを特徴とする。
本発明の診断装置において、前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと前記健全な変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを比較する能力を前記演算手段が備えたことが好ましい。
The diagnostic device of the present invention includes a winding, an iron core, and a tank for accommodating the windings and iron cores constituting the coil body, and the tank is a box body composed of a bottom wall, a peripheral wall, and a top plate, and extends in the vertical direction. The coil body is formed by winding a winding around the iron core, the coil body is tightened from above and below by a coil holding plate arranged vertically, and the tightened coil body is tightened by a hanging bracket to the top plate. a diagnosis apparatus for an internal fault and the deterioration of the transformer of the suspended housed inside the tank configuration, is mounted in a plurality of locations of said tank to a transformer in operation by the transformer occurs A plurality of vibration detectors having detection sensitivity for vibrations from a low frequency region to an audible sound region (1 Hz to 20 kHz), and the transformer while the winding is energized and the transformer is operated. Based on the mechanical vibration generated at each position of the vibration detector of the tank obtained by hitting the top plate of the tank with a hammer with a striking force that does not interfere with the operation of the transformer, at the characteristic peak during the operation of the transformer. A plurality of vibration peaks that are different from the vibration peaks that are integral multiples of a certain power supply frequency and are caused by the difference between the natural frequency at each position where the vibration detector is installed and the natural frequency inside the transformer. A structure in which the iron core-derived vibration peak, the winding-derived vibration peak, the top plate, the iron core, and the winding are integrated from among these plurality of vibration peaks. An arithmetic means for analyzing the state of the transformer by distinguishing and recognizing the vibration peaks derived from the transformer and observing the change of the vibration peaks derived from the structure in which the top plate, the iron core and the winding are integrated. It is characterized by being equipped with.
In the diagnostic apparatus of the present invention, information on the natural frequency of a sound transformer is recorded in the calculation means, and the top plate, the iron core, and the winding are integrated with each other detected by the vibration detector. It is preferable that the calculation means has an ability to compare the vibration peak of the above and the vibration peak derived from the structure in which the top plate, the iron core and the winding are integrated in the sound transformer.

本発明の診断装置において、前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることが好ましい。 In the diagnostic apparatus of the present invention, the information of the natural frequency of the sound transformer recorded in the calculation means is divided into a part of the peripheral wall of the tank in the operating state of the sound transformer, and the area is in the section. Accelerometers are installed at a plurality of positions, the top plate is hit with a hammer, the vibration obtained from the peripheral wall of the tank is measured as the output waveform of the acceleration sensor at each of the plurality of positions, and these output waveforms are subjected to high-speed Fourier conversion. This is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the frequency on the horizontal axis and the amplitude on the vertical axis, and the information on the natural frequency of the transformer to be measured is equivalent to this information. It is preferable that it is the analysis result of the peak of the natural frequency obtained from the operating transformer of the measurement target by the method.

本発明の診断方法は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、前記タンクが底壁と周壁と天板とからなる箱体であり、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の前記変圧器に対し、前記変圧器を設置した建屋が建屋に設置された他の機器からの振動あるいは建屋近傍の環境雑音に起因する振動を受けて振動する建屋であって、この建屋からの振動が変圧器に伝達された場合の振動を前記タンクの周壁面に設置した振動検出器で検出し、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察し、これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析することを特徴とする。
本発明の診断方法において、先において求めた前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークに関し、健全な初期状態の変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと比較して稼働中の変圧器の状態を解析することができる。
The diagnostic method of the present invention is a method for diagnosing internal abnormalities and deterioration of a transformer provided with windings and iron cores constituting a coil body and a tank for accommodating them. The coil body is formed by winding a winding around an iron core extending in the vertical direction, and the coil body is tightened from the vertical direction by coil holding plates arranged vertically. The tightened coil body is suspended from the top plate by a hanging metal fitting, and the transformer is housed inside the tank. In contrast to the transformer, the building in which the transformer is installed is installed in the building. A vibration detector installed on the peripheral wall surface of the tank, which is a building that vibrates in response to vibrations from the building or due to environmental noise near the building, and the vibrations when the vibrations from this building are transmitted to the transformer. It is a vibration peak that is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during operation of the transformer, and is the natural frequency at each position where the vibration detector is installed and the natural frequency inside the transformer. Observe a plurality of vibration peaks caused by the difference between the two, and among these plurality of vibration peaks, the vibration peak derived from the iron core, the vibration peak derived from the winding, and the top plate and the iron core. By distinguishing and recognizing the vibration peaks derived from the structure in which the windings are integrated and observing the changes in the vibration peaks derived from the structure in which the top plate, the iron core and the windings are integrated, the said It is characterized by analyzing the state of the transformer.
In the diagnostic method of the present invention, regarding the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated, the top plate, the iron core, and the iron core in a sound initial state transformer are described. It is possible to analyze the state of the transformer in operation by comparing it with the vibration peak derived from the structure in which the windings are integrated.

本発明の診断方法において、実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することが好ましい。 In the diagnostic method of the present invention, an area is partitioned on a part of the peripheral wall of the tank of the transformer to be measured in the actual operating state, acceleration sensors are installed at a plurality of positions in the partition, and based on the vibration of the building. The vibration obtained from the peripheral wall of the tank is measured as the output waveform of the accelerometer at each of a plurality of positions, and these output waveforms are subjected to high-speed Fourier conversion to plot the frequency on the horizontal axis and the amplitude on the vertical axis. It is preferable to analyze the peak of the natural frequency appearing in the above and analyze the state of the operating transformer by comparing with the peak of the natural frequency obtained by the equivalent method for the sound transformer.

本発明の変圧器内部異常および劣化の診断装置は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の変圧器の内部異常および劣化の診断装置であって、建屋内に設置されて稼働されている変圧器に対し前記タンクの複数箇所に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、該振動検出器からの検出信号を受けて稼働中の変圧器に対する前記建屋から伝達された振動を含む変圧器振動の位相を基準とする機械的振動を求めて解析し、前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察する解析器と、これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析する演算手段とを備えたことを特徴とする。
本発明の診断装置において、前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと前記健全な変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを比較する能力を前記演算手段が備えたことを特徴とする。


The diagnostic device for internal abnormality and deterioration of a transformer of the present invention includes a winding, an iron core, and a tank for accommodating them, and the tank is a box body including a bottom wall, a peripheral wall, and a top plate. The coil body is formed by winding a winding around an iron core extending in the vertical direction, and the coil body is tightened from the vertical direction by coil holding plates arranged vertically, and the coil body is tightened. a suspended in diagnostic device in the abnormal and degradation of the transformer of the receiving configurations inside the tank to the top plate by the hanger, to transformer is installed in a building is operational A vibration detector that is mounted at a plurality of locations in the tank and has detection sensitivity for vibrations from a low frequency region to an audible sound region (1 Hz to 20 kHz) generated by the transformer, and a detection signal from the vibration detector. The mechanical vibration based on the phase of the transformer vibration including the vibration transmitted from the building to the transformer in operation is obtained and analyzed, and the machine generated at each position of the vibration detector in the tank. Based on the target vibration, the vibration peak is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during operation of the transformer, and the natural frequency at each vibration detector installation position and the natural vibration inside the transformer. An analyzer that observes a plurality of vibration peaks caused by different numbers, a vibration peak derived from the iron core, a vibration peak derived from the winding, and the top plate from among the plurality of vibration peaks. And the vibration peak derived from the structure in which the iron core and the winding are integrated are recognized separately, and the change in the vibration peak derived from the structure in which the top plate, the iron core and the winding are integrated is observed. This is characterized by being provided with a calculation means for analyzing the state of the transformer.
In the diagnostic apparatus of the present invention, information on the natural frequency of a sound transformer is recorded in the calculation means, and the top plate, the iron core, and the winding are integrated with each other detected by the vibration detector. It is characterized in that the calculation means has an ability to compare the vibration peak of the above and the vibration peak derived from the structure in which the top plate, the iron core and the winding are integrated in the sound transformer.


本発明の診断装置において、前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることが好ましい。 In the diagnostic apparatus of the present invention, the information on the natural frequency of the sound transformer recorded in the calculation means is divided into a part of the peripheral wall of the tank in the operating state of the sound transformer, and the area is in the section. Accelerometers are installed at a plurality of positions, the vibration obtained from the peripheral wall of the tank based on the vibration of the building is measured as the output waveform of the acceleration sensor at each of the plurality of positions, and these output waveforms are subjected to high-speed Fourier conversion. This is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the frequency on the horizontal axis and the amplitude on the vertical axis. It is preferable that this is the analysis result of the peak of the natural frequency obtained from the operating transformer of the measurement target.

本発明の診断方法と診断装置によれば、稼働中の変圧器を停止せずともインパクト試験を利用するか環境振動を利用することにより、天板と鉄心と巻線が一体となった構造物の振動ピークを他の振動ピークと区別し、把握して観察し、稼働状態のまま内部異常および劣化を外部診断できるようになる。
また、従来の電気的振動における周波数応答解析では、鉄心やコイルが実際にずれを生じたあとで異常が診断されるが、本発明に係る診断方法と診断装置によれば、コイル巻線の締付け力低下などを原因とする固有振動も診断することができるので、実際にずれが生じる前に異常を把握できる診断方法であり、変圧器の予防保全の方法としても優れた診断方法と診断装置である。


According to the diagnostic method and the diagnostic apparatus of the present invention, a structure in which a top plate, an iron core, and a winding are integrated by using an impact test or using environmental vibration without stopping an operating transformer. It will be possible to distinguish the vibration peaks of the above from other vibration peaks, grasp and observe them, and make an external diagnosis of internal abnormalities and deterioration while in the operating state.
Further, in the conventional frequency response analysis in electrical vibration, an abnormality is diagnosed after the iron core and the coil actually shift, but according to the diagnostic method and the diagnostic apparatus according to the present invention, the coil winding is tightened. Since it is possible to diagnose natural vibrations caused by force reduction, it is a diagnostic method that can grasp abnormalities before actual deviation occurs, and it is also an excellent diagnostic method and diagnostic device as a preventive maintenance method for transformers. is there.


本発明に係る変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the apparatus which diagnoses abnormality and deterioration of the transformer which concerns on this invention. 試験に適用した変圧器のタンク概要を示す斜視図。The perspective view which shows the outline of the tank of the transformer applied to the test. 図2に示す変圧器のタンクに収容されているコイル体、巻線、鉄心、ヨーク、ヨーク押さえ、吊り金具などの構造を示すもので、(A)は平面図、(B)は側面図。The structure of the coil body, winding, iron core, yoke, yoke holder, hanging metal fitting, etc. housed in the tank of the transformer shown in FIG. 2 is shown. FIG. 2A is a plan view and FIG. 2B is a side view. 図2に示す変圧器のタンクの上部右側壁に加速度センサを取り付ける区分位置を示す説明図。An explanatory view showing a division position where an acceleration sensor is attached to the upper right wall of the tank of the transformer shown in FIG. 図2に示す変圧器のタンクに収容されている鉄心が示す振動モードの例を示すもので、(A)はねじりモードを示す斜視図、(B)は曲げモード1を示す斜視図、(C)は曲げモード2を示す斜視図。An example of the vibration mode shown by the iron core housed in the tank of the transformer shown in FIG. 2 is shown, (A) is a perspective view showing a twisting mode, (B) is a perspective view showing a bending mode 1, (C). ) Is a perspective view showing the bending mode 2. 稼働中の変圧器のタンクに対し振動測定した結果と変圧器のタンクの側面をハンマーで打撃した場合の振動測定結果を対比して示すグラフ。A graph showing the results of vibration measurement for a working transformer tank and the vibration measurement results when the side surface of the transformer tank is hit with a hammer. 無負荷状態で稼働中の変圧器の励磁電流を切り、変圧器を停止させた場合に得られた停止前後の振動データのウォーターフォール図。Waterfall diagram of vibration data before and after stopping obtained when the exciting current of a transformer operating under no load is turned off and the transformer is stopped. 変圧器を負荷率10%で稼働中に変圧器下のコンクリート台において振動測定した結果と変圧器設置室に隣接する別室の床において振動測定した結果を対比して示すグラフ。The graph which shows the result of the vibration measurement on the concrete stand under the transformer and the result of the vibration measurement on the floor of the separate room adjacent to the transformer installation room in comparison with each other while the transformer is operating at a load factor of 10%. 変圧器を設置した建屋において変圧器の側壁と対向する壁面に取り付けた加速度センサが計測した変圧器稼働中(無負荷)の振動測定結果と変圧器停止後の同センサが計測した振動測定結果を対比して示すグラフ。In the building where the transformer is installed, the vibration measurement result during the transformer operation (no load) measured by the acceleration sensor attached to the wall surface facing the side wall of the transformer and the vibration measurement result measured by the sensor after the transformer is stopped are shown. Graph shown in comparison. 壁振動の測定結果を示すウォーターフォール図。A waterfall diagram showing the measurement results of wall vibration. 変圧器を解体し、天板にセンサを設置し天板にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) when the transformer was disassembled, the sensor was installed on the top plate, and the top plate was hit with a hammer. 解体前に変圧器停止中のタンク側壁面にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of hitting with a hammer on the side wall surface of the tank which stopped the transformer before dismantling. 変圧器を解体し、天板にセンサを設置し鉄心にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) when the transformer was disassembled, the sensor was installed on the top plate, and the iron core was hit with a hammer. 変圧器を解体し、天板にセンサを設置し巻線にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) when the transformer was disassembled, the sensor was installed on the top plate, and the winding was hit with a hammer. 変圧器を解体する際、天板と締め付け具を外してセンサを巻線に直に設置し、巻線にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of disassembling the transformer, removing the top plate and the fastener, installing the sensor directly on a winding, and hitting the winding with a hammer. 変圧器のタンクの側面32箇所について実稼働状態で測定した結果を高速フーリエ変換(FFT変換)したデータを周波数毎に平均した結果を示すグラフ。The graph which shows the result of averaging the data which performed the fast Fourier transform (FFT transform) of the measurement result in the actual operation state about 32 points of the side surface of the tank of a transformer for each frequency. 図11に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。The graph which shows the test result of the graph shown in FIG. 11 by enlarging the horizontal axis frequency (0 to 120 Hz). 図13に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。A graph showing the test results of the graph shown in FIG. 13 with the horizontal axis frequency (0 to 120 Hz) enlarged. 図14に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。The graph which shows the test result of the graph shown in FIG. 14 by enlarging the horizontal axis frequency (0 to 120 Hz).

<第1実施形態>
以下、本発明に係る変圧器の異常および劣化の診断方法と診断装置の第1実施形態について油入変圧器の場合を例にとり、図面に基づき説明する。
図1は変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図であり、本実施形態の診断装置Aは、一例として図2、図3に示す構造の油入変圧器1の異常および劣化を診断する装置である。
この例の変圧器1は、図2に示す金属製のタンク31の内部に図3に示す巻線型のコイル体3が3基それらの中心軸を上下に向けて収容され、タンク31の内部に絶縁油が満たされてなる。各コイル体3の中心部にケイ素鋼板などの磁性体からなる鉄心5が挿通され、各鉄心5は各々の上下両端部においてケイ素鋼板などを積層した磁性体からなるロッド状のヨーク6にそれぞれ一体化されている。3本の鉄心5(3脚鉄心)の周囲にそれぞれ巻線4を設けることで3つのコイル体3が形成されている。
なお、この実施形態の変圧器1は3相交流用であるので、3つのコイル体3はそれぞれU相、V相、W相の3相を構成するが、変圧器に収容されるコイル体3の数は3つに限らず、いずれの数のコイル体を備えた変圧器であっても本実施形態を適用できるのは勿論である。
<First Embodiment>
Hereinafter, the method for diagnosing abnormality and deterioration of the transformer and the first embodiment of the diagnostic apparatus according to the present invention will be described with reference to the drawings, taking the case of an oil-immersed transformer as an example.
FIG. 1 is a configuration diagram showing a first embodiment of an apparatus for diagnosing an abnormality and deterioration of a transformer, and the diagnostic apparatus A of the present embodiment is an oil-immersed transformer 1 having a structure shown in FIGS. 2 and 3 as an example. It is a device for diagnosing abnormalities and deterioration of.
In the transformer 1 of this example, three winding-type coil bodies 3 shown in FIG. 3 are housed inside the metal tank 31 shown in FIG. 2 with their central axes facing up and down, and inside the tank 31. It becomes filled with insulating oil. An iron core 5 made of a magnetic material such as a silicon steel plate is inserted into the center of each coil body 3, and each iron core 5 is integrated with a rod-shaped yoke 6 made of a magnetic material in which silicon steel plates or the like are laminated at the upper and lower ends of each. It has been transformed. Three coil bodies 3 are formed by providing windings 4 around each of the three iron cores 5 (tripod iron cores).
Since the transformer 1 of this embodiment is for three-phase alternating current, the three coil bodies 3 form three phases of U phase, V phase, and W phase, respectively, but the coil body 3 housed in the transformer. The number of the above is not limited to three, and it goes without saying that the present embodiment can be applied to any number of transformers having coil bodies.

図3に示すように、変圧器1において、3つのコイル体3を個々に上下から挟むようにコイル押さえプレート7が設けられ、上下のコイル押さえプレート7、7を貫通してこれらを締め付けるための軸方向締付ボルト8が複数設けられている。この実施形態では軸方向締付ボルト8が3つ並列されたコイル体3の厚さ方向両側にそれぞれ4本ずつ設けられ、軸方向締付ボルト8の下端は下方のコイル押さえプレート7を貫通してその下方側にまで延出され、軸方向締め付けボルト8の上端は上方のコイル押さえプレート7を貫通してその上方側にまで延出されている。軸方向締め付けボルト8がコイル押さえプレート7を貫通した部分には図示略のねじ部が形成され、このねじ部に対し軸方向締め付けボルト8のねじ込み具合を調整することで上下に対向するコイル押さえプレート7、7の間隔を調整することができる。これにより、上下に対向するコイル押さえプレート7、7によってコイル体3に上下方向から所定の締め付け力が付加されている。コイル押さえプレート7はプレスボードなどの木材から構成されている。 As shown in FIG. 3, in the transformer 1, coil holding plates 7 are provided so as to individually sandwich the three coil bodies 3 from above and below, and the coil holding plates 7 and 7 are penetrated and tightened. A plurality of axial tightening bolts 8 are provided. In this embodiment, three axial tightening bolts 8 are provided on both sides in the thickness direction of the coil body 3 in which three are arranged in parallel, and the lower end of the axial tightening bolt 8 penetrates the lower coil holding plate 7. The upper end of the axial tightening bolt 8 penetrates the upper coil holding plate 7 and extends to the upper side thereof. A threaded portion (not shown) is formed in a portion where the axial tightening bolt 8 penetrates the coil holding plate 7, and the coil holding plate facing vertically is opposed to the threaded portion by adjusting the screwing condition of the axial tightening bolt 8. The interval between 7 and 7 can be adjusted. As a result, a predetermined tightening force is applied to the coil body 3 from the vertical direction by the coil holding plates 7 and 7 facing vertically. The coil holding plate 7 is made of wood such as a press board.

図3(A)に示すように上部側のヨーク6はその厚さ方向両側(図3(A)の上下方向両側)に配置された上部ヨーク押さえ金具10、10に挟まれ、これらを緊結するための上部ヨーク押さえボルト11によって拘束され、締め付け力が付加されている。また、上部ヨーク押さえ金具10、10の両端側(図3の左右両端側)には帯板状の吊り金具12が取り付けられ、コイル体3、鉄心5、ヨーク6などが一体化された状態で吊り金具12によってタンク31の天板31Aに吊り下げられている。
また、下部側のヨーク6も上部側のヨーク6と同様に下部押さえ金具10や下部ヨーク押さえボルト(図示略)により拘束されている。
As shown in FIG. 3 (A), the upper yoke 6 is sandwiched between the upper yoke holding metal fittings 10 and 10 arranged on both sides in the thickness direction (both sides in the vertical direction of FIG. 3 (A)) and binds them together. It is restrained by the upper yoke holding bolt 11 for the purpose, and a tightening force is applied. Further, a strip-shaped hanging metal fitting 12 is attached to both end sides (left and right end sides in FIG. 3) of the upper yoke holding metal fittings 10 and 10, and the coil body 3, the iron core 5, the yoke 6 and the like are integrated. It is suspended from the top plate 31A of the tank 31 by the hanging metal fitting 12.
Further, the lower yoke 6 is also restrained by the lower holding metal fitting 10 and the lower yoke holding bolt (not shown) like the upper yoke 6.

本実施形態においてコイル体3は、図示略の外側コイルと内側コイルからなり、外側コイル(1次コイル)は外巻線(1次巻線)と絶縁スペーサー(固体絶縁物)を上下に積層した積層体を上部絶縁体と下部絶縁体により挟み付けて構成されている。コイル体3の内側コイル(2次コイル)は内巻線(2次巻線)と絶縁スペーサー(固体絶縁物)を上下に積層した積層体を上部絶縁物と下部絶縁物で挟み付けて構成されている。
前述の構造により各コイル体3にはコイル押さえプレート7により上下から締め付け力が作用され、この締め付け状態でコイル体3はタンク31内で吊り下げられて図示略の絶縁油に浸漬されている。
In the present embodiment, the coil body 3 is composed of an outer coil and an inner coil (not shown), and the outer coil (primary coil) has an outer winding (primary winding) and an insulating spacer (solid insulator) laminated vertically. It is composed of a laminate sandwiched between an upper insulator and a lower insulator. The inner coil (secondary coil) of the coil body 3 is configured by sandwiching a laminate in which an inner winding (secondary winding) and an insulating spacer (solid insulator) are laminated vertically between an upper insulator and a lower insulator. ing.
Due to the above-mentioned structure, a tightening force is applied to each coil body 3 from above and below by the coil holding plate 7, and in this tightened state, the coil body 3 is suspended in the tank 31 and immersed in insulating oil (not shown).

前記構成の変圧器1は、送電線などから送られる高電圧を電力使用者の近くで降圧する用途などに使用されるので、コイル体3の巻線には常時電流が流されている。巻線に電流を流すことで電磁力が作用するので、コイル体3や鉄心5には電磁力が作用し、これらが振動する。この振動は変圧器1の全体に伝わり、図2に示すタンク31の天板31A、周壁31B、更には、底壁31Dにも伝達される。
また、送電線で短絡事故や地絡事故などが起きると変圧器1の巻線には定格負荷電流の10倍から数10倍に達する大きな電流が流れることがあり、規格以上の電磁力と振動が変圧器1に作用することもある。
これら種々の要因や加熱その他の影響から、変圧器1の絶縁油は経時的に徐々に劣化が進行する。また、締め付け力と振動が常時作用するコイル体3の絶縁スペーサーはセルロース繊維からなるため、絶縁スペーサーも劣化するおそれがあり、短絡事故や地絡事故に起因してコイル体3の巻線にも予想外の劣化を生じるおそれがある。更には、プレスボードからなるコイル押さえプレート7にも部分的に劣化が進行するおそれがある。
以上説明のように変圧器1は長期間使用することにより各部において劣化が進行するおそれがある。
Since the transformer 1 having the above configuration is used for stepping down a high voltage sent from a transmission line or the like near a power user, a current is constantly flowing through the winding of the coil body 3. Since an electromagnetic force acts by passing an electric current through the winding, an electromagnetic force acts on the coil body 3 and the iron core 5, and these vibrate. This vibration is transmitted to the entire transformer 1, and is also transmitted to the top plate 31A, the peripheral wall 31B, and the bottom wall 31D of the tank 31 shown in FIG.
In addition, when a short circuit accident or a ground fault occurs in a transmission line, a large current of 10 to several tens of times the rated load current may flow in the winding of the transformer 1, and electromagnetic force and vibration exceeding the standard may occur. May act on the transformer 1.
Due to these various factors, heating and other effects, the insulating oil of the transformer 1 gradually deteriorates over time. Further, since the insulating spacer of the coil body 3 on which the tightening force and vibration always act is made of cellulose fiber, the insulating spacer may also deteriorate, and the winding of the coil body 3 may also be caused by a short circuit accident or a ground fault. Unexpected deterioration may occur. Further, the coil holding plate 7 made of a press board may be partially deteriorated.
As described above, the transformer 1 may be deteriorated in each part by being used for a long period of time.

図1に示す変圧器1の異常および劣化の診断装置Aは、変圧器1に沿わせて配置される振動検出器(振動センサ)22と、この振動検出器22からの出力信号を受けて増幅する増幅器(振動センサアンプ)25とこの増幅器25からの出力を受ける信号解析器(スペクトルならびに位相差検出器)26とこの信号解析器26に接続された演算装置27を主体として構成されている。診断装置Aにおいて、変圧器31に通電するための電圧を計測する電圧計(通電電圧計)23とこの電圧計23に増幅器(通電電圧アンプ)24を介し信号解析器26が接続されている。 The abnormality and deterioration diagnostic device A of the transformer 1 shown in FIG. 1 receives and amplifies the vibration detector (vibration sensor) 22 arranged along the transformer 1 and the output signal from the vibration detector 22. The amplifier (vibration sensor amplifier) 25, the signal analyzer (spectrum and phase difference detector) 26 that receives the output from the amplifier 25, and the arithmetic unit 27 connected to the signal analyzer 26 are mainly configured. In the diagnostic apparatus A, a voltmeter (energized voltmeter) 23 for measuring the voltage for energizing the transformer 31 and a signal analyzer 26 are connected to the voltmeter 23 via an amplifier (energized voltage amplifier) 24.

図1に示す診断装置Aを用いて以下に説明する手順で変圧器1の振動を解析するが、本実施形態の診断装置Aが異常および劣化の診断を行う場合に想定する振動原理解釈について以下に順次説明する。
稼働状態の変圧器1が発生する振動の伝搬経路は以下のように推定される。
振動の一次的原因は鉄心5の振動とコイル体3の巻線4の振動であり、両者の振動がコイル押さえプレート(プレスボード)7、軸方向締付ボルト8、上部ヨーク押さえ金具10、吊り金具12などを介しタンク31に伝搬される。よって、タンク31の振動は鉄心5の振動と巻線4の振動とタンク31自身の振動と以下の振動の合成となる。
以下の振動とは、一例として、変圧器1を設置している建屋に機械装置その他の震動源がある場合、あるいは、建屋の周囲に建屋に対し振動を付加する震動源がある場合、タンク31に対しこれらの震動源からの振動が建屋を介し伝達される振動成分である。
また、他の例として変圧器1の天板31Aを変圧器1の稼働に支障がない程度の打撃力でハンマーにより打撃力を与えた後述のインパクト試験により発生される振動成分である。なお、変圧器1には通常、衝撃を検知するセンサが取り付けられていて、規定値以上の振動が付与されると変圧器1の異常を警告するなどの安全装置が設けられている。前記ハンマーでこの安全装置が作動するような衝撃を与えると問題があるので、前記ハンマーで変圧器1に付加する衝撃は50N〜500N程度の衝撃力、望ましくは100N〜300N程度の衝撃力とすることが好ましい。
The vibration of the transformer 1 is analyzed by the procedure described below using the diagnostic device A shown in FIG. 1. The interpretation of the vibration principle assumed when the diagnostic device A of the present embodiment diagnoses abnormality and deterioration is as follows. Will be described in order.
The propagation path of the vibration generated by the transformer 1 in the operating state is estimated as follows.
The primary causes of vibration are the vibration of the iron core 5 and the vibration of the winding 4 of the coil body 3, and the vibrations of both are the coil holding plate (press board) 7, the axial tightening bolt 8, the upper yoke holding metal fitting 10, and the suspension. It is propagated to the tank 31 via the metal fitting 12 and the like. Therefore, the vibration of the tank 31 is a combination of the vibration of the iron core 5, the vibration of the winding 4, the vibration of the tank 31 itself, and the following vibration.
The following vibrations are, for example, when the building in which the transformer 1 is installed has a mechanical device or other vibration source, or when there is a vibration source that adds vibration to the building around the building, the tank 31 On the other hand, the vibration from these vibration sources is a vibration component transmitted through the building.
Further, as another example, it is a vibration component generated by an impact test described later in which a striking force is applied to the top plate 31A of the transformer 1 by a hammer with a striking force that does not interfere with the operation of the transformer 1. The transformer 1 is usually equipped with a sensor for detecting an impact, and is provided with a safety device such as warning an abnormality of the transformer 1 when a vibration exceeding a specified value is applied. Since there is a problem if the hammer gives an impact that activates this safety device, the impact applied to the transformer 1 by the hammer is an impact force of about 50N to 500N, preferably an impact force of about 100N to 300N. Is preferable.

本発明者らは、後述する如く実稼働状態で41年経過後の変圧器について解体の機会を利用し、変圧器を設置した建屋において周囲の震動源から付加される振動と変圧器中身が発生させている振動を測定し、振動解析を行った。また、この振動解析に並行し、タンク31の天板31Aにハンマーによって打撃を加えた場合に生じる振動成分について測定し、解析を行った。
振動解析に用いたタンク31の概要を図2に示す。ただし、図2には変圧器1に電力を入出力するためのブッシングや配線は省略し、タンク31の概要のみを示している。
このタンク31は横幅2200mm、高さ2000mm、奥行き800mmの鋼板製の直方体状の中空容器であって、その高さを約3等分する上下2箇所の位置にそれぞれ金属製の腰巻き状の補強ステー32、33が設けられている。
タンク31の周壁において補強ステー32より上の部分が上部周壁31aから構成され、タンク31の周壁において補強ステー32より下の部分が中部周壁31bから構成され、変圧器タンク31の周壁において補強ステー33より下の部分が下部周壁31cから構成されている。
このタンク31において補強ステー32、33の部分は振動が制限される位置となるため、これらを除外し、振動センサ22を取り付けて振動を計測する位置として以下の18箇所を候補にすることができる。
As will be described later, the present inventors took advantage of the opportunity to dismantle the transformer after 41 years in actual operation, and in the building where the transformer was installed, vibrations added from the surrounding vibration sources and the contents of the transformer were generated. The vibration was measured and the vibration was analyzed. Further, in parallel with this vibration analysis, the vibration component generated when the top plate 31A of the tank 31 was hit with a hammer was measured and analyzed.
The outline of the tank 31 used for the vibration analysis is shown in FIG. However, FIG. 2 omits bushings and wiring for inputting and outputting electric power to the transformer 1, and shows only an outline of the tank 31.
This tank 31 is a rectangular parallelepiped hollow container made of steel plate having a width of 2200 mm, a height of 2000 mm, and a depth of 800 mm. 32 and 33 are provided.
The portion of the peripheral wall of the tank 31 above the reinforcing stay 32 is composed of the upper peripheral wall 31a, the portion of the peripheral wall of the tank 31 below the reinforcing stay 32 is composed of the central peripheral wall 31b, and the peripheral wall of the transformer tank 31 is composed of the reinforcing stay 33. The lower part is composed of the lower peripheral wall 31c.
Since the portions of the reinforcing stays 32 and 33 in the tank 31 are positions where vibration is restricted, these can be excluded, and the following 18 positions can be candidates as positions for mounting the vibration sensor 22 and measuring vibration. ..

タンク31において図2に数字の1〜16を○印で囲む位置のそれぞれに振動センサ22を取り付けて振動を計測することができる。○印で囲む数字の1の位置は上部周壁31aの左側壁面を示し、○印で囲む数字の2の位置は上部周壁31aの正面壁の左端側に相当する位置(正面壁の左端から約40cm離れた位置付近)を示し、○印で囲む数字の3の位置は上部周壁31aの正面壁の右端側に相当する位置(正面壁の右端から約40cm離れた位置付近)を示す。○印で囲む数字の4の位置は上部周壁31aの右側壁面を示し、○印で囲む数字の5の位置は上部周壁31aの背面壁の右端側に相当する位置(背面壁の右端から約40cm離れた位置付近)を示し、○印で囲む数字の6の位置は上部周壁31aの背面壁の左端側に相当する位置(背面壁の左端から約40cm離れた位置付近)を示す。 Vibration can be measured by attaching vibration sensors 22 to each of the positions of the tank 31 where the numbers 1 to 16 are surrounded by a circle in FIG. 2. The position of the number 1 surrounded by a circle indicates the left side wall surface of the upper peripheral wall 31a, and the position of the number 2 surrounded by a circle mark corresponds to the left end side of the front wall of the upper peripheral wall 31a (about 40 cm from the left end of the front wall). The position of the number 3 surrounded by a circle indicates the position corresponding to the right end side of the front wall of the upper peripheral wall 31a (near the position about 40 cm away from the right end of the front wall). The position of the number 4 surrounded by a circle indicates the right side wall surface of the upper peripheral wall 31a, and the position of the number 5 surrounded by a circle mark corresponds to the right end side of the back wall of the upper peripheral wall 31a (about 40 cm from the right end of the back wall). The position of the number 6 surrounded by a circle indicates the position corresponding to the left end side of the back wall of the upper peripheral wall 31a (near the position about 40 cm away from the left end of the back wall).

ここで例示したように、振動センサ22を取り付ける位置は、補強ステー32より下方の中部周壁31bにおいて○印で囲む数字の7、8、9、10の位置と補強ステー33より下方の下部周壁31cにおいて○印で囲む数字の13、14、15、16のいずれの位置であっても良い。なお、中部周壁31bの背面壁側の取り付け位置と下部周壁31cの背面壁側の取り付け位置は図2では図示できないため略しているが、数字の5、6を○印で囲む取り付け位置に対応する中部周壁31bの背面壁側と下部周壁31cの背面壁側にそれぞれ設定される。このため、18箇所を候補として選定することができる。
これらの振動センサ取付候補位置において、後述する試験ではタンク31において数字の4を○印で囲む位置に相当する上部周壁31aの右側壁面に振動センサを設置して振動を計測した。
As illustrated here, the positions where the vibration sensor 22 is attached are the positions of the numbers 7, 8, 9, and 10 circled on the central peripheral wall 31b below the reinforcing stay 32 and the lower peripheral wall 31c below the reinforcing stay 33. The position may be any of the numbers 13, 14, 15, and 16 surrounded by a circle. The mounting position of the central peripheral wall 31b on the back wall side and the mounting position of the lower peripheral wall 31c on the back wall side are omitted because they cannot be shown in FIG. It is set on the back wall side of the central peripheral wall 31b and the back wall side of the lower peripheral wall 31c, respectively. Therefore, 18 locations can be selected as candidates.
In these vibration sensor mounting candidate positions, in the test described later, a vibration sensor was installed on the right side wall surface of the upper peripheral wall 31a corresponding to the position where the number 4 is surrounded by a circle in the tank 31, and the vibration was measured.

なお、この例で試験した変圧器31の内部には、図3に示すように3本の鉄心5に1次巻線と2次巻線を施してコイル体3が構成され、これらを上下のコイル押さえプレート7、7で挟み付け、軸方向締付ボルト8で締め付けるとともに、上下のヨーク6をヨーク押さえ金具11、11で拘束した構造とされている。 As shown in FIG. 3, inside the transformer 31 tested in this example, a coil body 3 is formed by applying a primary winding and a secondary winding to three iron cores 5, and these are placed above and below. The structure is such that the coils are sandwiched between the coil holding plates 7 and 7 and tightened with the axial tightening bolts 8, and the upper and lower yokes 6 are restrained by the yoke holding metal fittings 11 and 11.

この鉄心5においては、図5(A)に示すねじりモードと図5(B)に示す曲げモード1と図5(C)に示す曲げモード2の3種の振動モードをとることを想定できる。図5に示すモード解析は、水野末良他による「変圧器鉄心の固有振動特性」(平成25年、電気学会全国大会5−195)による。 It can be assumed that the iron core 5 takes three types of vibration modes: the twist mode shown in FIG. 5 (A), the bending mode 1 shown in FIG. 5 (B), and the bending mode 2 shown in FIG. 5 (C). The mode analysis shown in FIG. 5 is based on "Natural vibration characteristics of transformer core" by Sueyoshi Mizuno et al. (2013, IEEJ National Convention 5-195).

なお、図5では説明の簡易化のために、3本のコイル体3とそれらの鉄心5、並びに、上下のヨーク6からなる構造について、3本の脚部35を上下のヨーク部36、37で連結した井桁構造の鉄心38として描いている。また、図5において脚部35に巻回されている一次側巻線と二次側巻線からなる巻線については記載を略している。 In FIG. 5, for the sake of simplification of the description, with respect to the structure consisting of the three coil bodies 3, their iron cores 5, and the upper and lower yokes 6, the three leg portions 35 are the upper and lower yoke portions 36, 37. It is drawn as an iron core 38 with a well girder structure connected by. Further, in FIG. 5, the description of the winding composed of the primary side winding and the secondary side winding wound around the leg portion 35 is omitted.

図5(A)に示すねじりモードの変圧器の場合、図2に示す数字の2、3、5、6を○印で囲む位置に振動センサを設置することにより鉄心振動をタンク壁面で捉えることができると考えられる。その場合、数字の2と3の位置は逆方向に、数字の5と6の位置は逆方向に、数字の2と6の位置は同方向に、数字の3と5の位置は同方向に変位していることを確認できれば、鉄心はねじりモードで振動していることが分かる。
同様に、図5(B)に示すように数字の8、9、11、12の位置に振動センサを設置して変位を確認すれば、モード1で振動していることがわかる。
同様に、図5(C)に示すように数字の7、10の位置に振動センサを設置して変位を確認すれば、モード2で振動していることがわかる。
In the case of the twist mode transformer shown in FIG. 5 (A), the iron core vibration is captured on the tank wall surface by installing a vibration sensor at a position surrounded by circles the numbers 2, 3, 5, and 6 shown in FIG. Is thought to be possible. In that case, the positions of the numbers 2 and 3 are in the opposite direction, the positions of the numbers 5 and 6 are in the opposite direction, the positions of the numbers 2 and 6 are in the same direction, and the positions of the numbers 3 and 5 are in the same direction. If it can be confirmed that it is displaced, it can be seen that the iron core is oscillating in the torsion mode.
Similarly, as shown in FIG. 5B, if the vibration sensors are installed at the positions of the numbers 8, 9, 11 and 12 and the displacement is confirmed, it can be seen that the vibration is performed in the mode 1.
Similarly, if the vibration sensors are installed at the positions 7 and 10 as shown in FIG. 5C and the displacement is confirmed, it can be seen that the vibration is performed in the mode 2.

鉄心の固有振動数に振動モードを同定することができると、その固有振動数から鉄心の締付け力が算出できる。ただし、鉄心の締付け力にばらつきがある場合、固有振動のピークは広がる。逆に、固有振動数の広がり、例えば半値幅から締付け力のばらつきを評価することも可能である。巻線の固有振動ピークが広がりを持っている場合も同様な評価が可能である。ピーク幅が広がることは鉄心または巻線の劣化と関係するが、どれほどのピーク幅が劣化診断の閾値になるかは、変圧器ごとの設計によるので、変圧器ごとに決める必要がある。 If the vibration mode can be identified as the natural frequency of the iron core, the tightening force of the iron core can be calculated from the natural frequency. However, if the tightening force of the iron core varies, the peak of natural vibration spreads. On the contrary, it is also possible to evaluate the variation of the tightening force from the spread of the natural frequency, for example, the half width. Similar evaluation is possible when the natural vibration peak of the winding has a spread. Widening the peak width is related to the deterioration of the iron core or winding, but how much the peak width becomes the threshold value for deterioration diagnosis depends on the design of each transformer, so it is necessary to decide for each transformer.

本実施形態ではタンク1の上部周壁31aの右側壁面において、図4に示すように右側壁面の左右方向を1A、2A、…15Aのように15に分割区分し、右側面の上下方向を1A、1B、…1Gのように7つに分割区分し、1つの振動センサを例えば3Cの位置に設置してその右側の4Cの位置をハンマーで打ち付けて振動を付与するインパクト試験を行った。タンク1において上部周壁31aの右側壁面のサイズは幅約80cm、縦40cmであり、分割区分した幅を縦横とも5cmに設定した。
また、振動センサ22を13Fの位置に設置して13Eの位置をハンマーで打ち付けるインパクト試験としても良い。なお、振動センサを取り付ける位置とハンマーを打ち付ける位置はタンク31の振動を良好に拾うことができる位置であれば、任意の位置で良く、図4に示す位置には限らない。
In the present embodiment, on the right side wall surface of the upper peripheral wall 31a of the tank 1, the left and right directions of the right side wall surface are divided into 15 as shown in FIG. 4, 1A, 2A, ... 15A, and the vertical direction of the right side surface is 1A. An impact test was conducted in which the vibration sensor was divided into seven parts such as 1B and 1G, one vibration sensor was installed at the position of 3C, for example, and the position of 4C on the right side was hit with a hammer to give vibration. In the tank 1, the size of the right side wall surface of the upper peripheral wall 31a is about 80 cm in width and 40 cm in length, and the divided width is set to 5 cm in both length and width.
Further, the vibration sensor 22 may be installed at the position of 13F and the position of 13E may be hit with a hammer as an impact test. The position where the vibration sensor is attached and the position where the hammer is struck may be any position as long as the vibration of the tank 31 can be satisfactorily picked up, and is not limited to the position shown in FIG.

以下の試験において、測定にはPCB社製の加速度センサ(感度50mV/(m/s)、周波数レンジ0.4〜4kHz)、OROS社製データロガー(サンプリング周波数100kS/s)、PCB社製のインパクトハンマー(加振力100〜200N、周波数範囲0〜3kHz)を使用して以下の測定とインパクト試験を行った。加速度センサは設置面外方向の加速度を測定した。この測定に供した変圧器1は、3相、定格容量10MVA、一次側電圧11kV/二次側電圧3.45kV、周波数60Hz、オイル容量5300L、稼働41年の変圧器である。また、この変圧器1は建屋の一室の床に設けられているコンクリート台の上に設置されている。 In the following tests, the measurement was performed by a PCB accelerometer (sensitivity 50 mV / (m / s 2 ), frequency range 0.4 to 4 kHz), an OROS data logger (sampling frequency 100 kS / s), and a PCB. The following measurements and impact tests were performed using the impact hammer (excitation force 100 to 200 N, frequency range 0 to 3 kHz). The accelerometer measured the acceleration in the out-of-installation direction. The transformer 1 used for this measurement is a three-phase transformer having a rated capacity of 10 MVA, a primary side voltage of 11 kV / a secondary side voltage of 3.45 kV, a frequency of 60 Hz, an oil capacity of 5300 L, and a 41-year operation. Further, the transformer 1 is installed on a concrete stand provided on the floor of one room of the building.

<測定、試験項目>
(1)タンク側面インパクト試験
負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面をインパクト試験した。センサ22は2個用い、図4に示す位置3Cと位置13Fに設置した。打点は位置4Cと位置13Eの2点を実施した。
(2)タンク側面実稼働振動測定
負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面の実稼働振動を測定した。奇数列(1,3,5,7,9,11,13,15)につきA行、C行、E行、G行の合計8×4=32箇所をセンサ2つずつ用い、順次センサを移動して各点を10秒間測定した。
(3)タンク側面停止時測定
無負荷状態で稼働中の変圧器31の励磁電流を切り、変圧器31を停止させた。変圧器停止のタイミングを含む120秒間において上部周壁31aの右側壁面の実稼働振動を測定した。
<Measurement and test items>
(1) Tank side impact test An impact test was performed on the right wall surface of the upper peripheral wall 31a with respect to the transformer 31 operating at a load factor of about 10%. Two sensors 22 were used and installed at positions 3C and 13F shown in FIG. Two points, position 4C and position 13E, were hit.
(2) Measurement of actual operating vibration on the side surface of the tank The actual operating vibration of the right wall surface of the upper peripheral wall 31a was measured with respect to the transformer 31 operating at a load factor of about 10%. For odd columns (1,3,5,7,9,11,13,15), the sensors are moved sequentially using two sensors at a total of 8 x 4 = 32 locations in rows A, C, E, and G. Then, each point was measured for 10 seconds.
(3) Measurement when the side of the tank is stopped The exciting current of the transformer 31 operating in the no-load state was cut off, and the transformer 31 was stopped. The actual operating vibration of the right wall surface of the upper peripheral wall 31a was measured for 120 seconds including the timing of stopping the transformer.

(4)周囲ノイズ測定(環境振動測定)
変圧器1を設置している変圧器設置室内のコンクリート台と、建屋の隣の別室の床と、上部周壁31aの右側壁面と向き合っている変圧器設置部屋の壁面の3か所にそれぞれ加速度センサ22を設置してそれぞれの振動を測定した。
(5)解体時インパクト試験
変圧器31を解体し、天板31Aと変圧器中身を吊り出し、変圧器中身にインパクト試験した。加速度センサを天板31Aに3か所(U相、V相、W相の各コイル体3の上部付近)に設置し、天板31Aを2か所(UV間、VW間)と、鉄心8箇所と巻線9箇所をインパクトハンマーにてハンマリングして振動測定した。
その後、天板31Aと鉄心5および巻線を結合する軸方向締付けボルト8を全て外し、天板31Aを外して、センサ22を巻線上部のプレスボードに3か所(U相、V相、W相)設置し、巻線を9か所ハンマリングして振動測定した。巻線の打点位置はU相、V相、W相の各コイル体3の上部表面(コイル押さえプレート7の側面)とコイル体3の中央部側面とコイル体3の下部側面である。
(4) Ambient noise measurement (environmental vibration measurement)
Accelerometers are placed on the concrete stand in the transformer installation room where the transformer 1 is installed, the floor of the separate room next to the building, and the wall surface of the transformer installation room facing the right wall surface of the upper peripheral wall 31a. 22 was installed and each vibration was measured.
(5) Impact test at the time of dismantling The transformer 31 was dismantled, the top plate 31A and the contents of the transformer were suspended, and an impact test was performed on the contents of the transformer. Accelerometers are installed on the top plate 31A at three locations (near the upper part of each coil body 3 of U phase, V phase, and W phase), and the top plate 31A is installed at two locations (between UV and VW) and the iron core 8. Vibration was measured by hammering the points and 9 winding points with an impact hammer.
After that, remove all the axial tightening bolts 8 that connect the top plate 31A, the iron core 5, and the winding, remove the top plate 31A, and place the sensor 22 on the press board above the winding at three locations (U phase, V phase, (W phase) was installed, and the windings were hammered at 9 places to measure the vibration. The winding point positions are the upper surface (side surface of the coil holding plate 7) of each of the U-phase, V-phase, and W-phase coil bodies 3, the central side surface of the coil body 3, and the lower side surface of the coil body 3.

<測定・試験結果>
タンク側面インパクト試験と実稼働振動測定結果を高速フーリエ変換(FFT)して500Hz以下の結果について図6に示す。図6において上側4本のラインはインパクト試験結果を示す。図6において下側の1本のラインは実稼働振動測定結果であり、センサ位置3Cの結果のみ一例として示す。
図6に示すインパクト試験結果の4つのデータは、ほぼ同じ周波数位置にピークを有し、それらのピーク周波数は上部周壁31aの固有振動数を表している。
図6のグラフにおいて上側に示している(2,1)などの振動モードの表示において、括弧内の左の数字は側板長手方向の腹の数を示し、右の数値は短手方向の腹の数を表す。この表示は、片柳厚志著、「変圧器タンクの振動解析」高岳レビュー、Vol.56 No.1(2011)に記載されている表1、表2に示す固有モードに対応する。
<Measurement / test results>
FIG. 6 shows the results of the tank side impact test and the actual operation vibration measurement results obtained by fast Fourier transform (FFT) at 500 Hz or less. In FIG. 6, the upper four lines show the impact test results. In FIG. 6, one lower line is the actual operation vibration measurement result, and only the result of the sensor position 3C is shown as an example.
The four data of the impact test results shown in FIG. 6 have peaks at substantially the same frequency position, and these peak frequencies represent the natural frequencies of the upper peripheral wall 31a.
In the display of the vibration mode such as (2, 1) shown on the upper side in the graph of FIG. 6, the number on the left in parentheses indicates the number of antinodes in the longitudinal direction of the side plate, and the numerical value on the right indicates the number of antinodes in the lateral direction. Represents a number. This display corresponds to the unique modes shown in Tables 1 and 2 described in Takaoka Review, Vol.56 No. 1 (2011), "Vibration Analysis of Transformer Tanks" by Atsushi Katayanagi.

図6に示す結果から、上部周壁31aはあたかも電源系周波数で共鳴しているかのような自励振動をしていることを確認できた。図6中下側に示す数字は電源系の振動モードであり、振動モードとしては不完全であるので(1,1)などの括弧の外にダッシュを付けて(1,1)’のように表示した。また、整数で表される振動モードの他に、長手方向に腹の数が異なる振動も見られ、(1.5,2)や(2.5,2)と指数を付けて表した。
これらの結果から、上部周壁31aの実稼働ピークには電源系振動成分以外に(2,1)モードや(1.5,2)モードなどの側面固有振動数が含まれることは当然として、その他に電源系振動成分以外の振動成分も含まれていることが分かった。
From the results shown in FIG. 6, it was confirmed that the upper peripheral wall 31a is self-excited as if it resonates at the power supply system frequency. The numbers shown in the lower part of FIG. 6 are the vibration modes of the power supply system, which are incomplete as the vibration modes, so add a dash outside the parentheses such as (1,1) and add a dash like (1,1)'. displayed. In addition to the vibration mode represented by an integer, vibrations with different numbers of antinodes in the longitudinal direction were also observed, and were expressed with indexes such as (1.5, 2) and (2.5, 2).
From these results, it goes without saying that the actual operating peak of the upper peripheral wall 31a includes the side natural frequencies such as (2,1) mode and (1.5,2) mode in addition to the power system vibration component. It was found that the vibration component other than the vibration component of the power supply system was also contained in.

<運転停止時のタンク側面測定>
タンク側面停止時測定結果のウォーターフォール図を図7に示す。ウォーターフォール図は、横軸周波数で0〜1000Hz、縦軸時間(右側の横軸)で0〜120秒、左側カラーのスケールバーは信号強度(m/s)を示す。信号強度は、カラースケールバーにおいて対数表示とされており、下側4.5/10の範囲が(×10−6)のレベル、中央側4.5/10の範囲が(×10−3)のレベル、上側1/10の範囲が1〜のレベルを示している。
図7において、横軸の周波数の目盛は200Hz刻みを意味し、0、200、400、600、800、1000Hzを表し、右縦軸の1つの目盛は20秒を表し、20、40、60、80、100、120秒を表している。
測定開始からおよそ25秒時点で変圧器1を停止した。ウォーターフォール図の下側のグラフは20秒時点での信号スペクトラムを示す。
図7において縦軸の加速度500m/sの位置に▲マークを付したが、縦軸の加速度300m/sの位置〜50m/sの位置近傍までの加速度が図7において灰色で示したスペクトルを示す。
図7においてそれ以外のスペクトルは、縦軸の加速度において20u〜200u近傍までの加速度を示す黒色の領域の中に、灰色で示したスペクトルがわずかに混在する領域であった。なお、図7のウォーターフォール図は実際はカラースケールであり、縦軸の50m/sの位置〜200m/sの位置の加速度は縦軸の加速度300m/sの位置〜50m/sの位置近傍までの加速度とは異なる色であるが、この図7には縦軸の50m/sの位置〜200m/sの位置の加速度に相当するスペクトルは表示されていない。
<Measurement of the side of the tank when the operation is stopped>
FIG. 7 shows a waterfall diagram of the measurement results when the side of the tank is stopped. In the waterfall diagram, the horizontal axis frequency is 0 to 1000 Hz, the vertical axis time (right horizontal axis) is 0 to 120 seconds, and the left color scale bar shows the signal strength (m / s 2 ). The signal strength is displayed logarithmically on the color scale bar, with the lower 4.5 / 10 range being the level (x10-6 ) and the central 4.5 / 10 range being (x10 -3 ). Level, the upper 1/10 range indicates the level of 1 to 1.
In FIG. 7, the frequency scale on the horizontal axis means in increments of 200 Hz, representing 0, 200, 400, 600, 800, 1000 Hz, and one scale on the right vertical axis represents 20 seconds, 20, 40, 60, It represents 80, 100, 120 seconds.
Transformer 1 was stopped approximately 25 seconds after the start of measurement. The lower graph of the waterfall diagram shows the signal spectrum at 20 seconds.
Marked with ▲ mark the position of the acceleration 500 meters / s 2 on the vertical axis in FIG. 7, but an acceleration of up to a position near the position 50 m / s 2 acceleration 300 meters / s 2 on the vertical axis is shown in gray in FIG. 7 The spectrum is shown.
In FIG. 7, the other spectra were regions in which the spectra shown in gray were slightly mixed in the black regions showing accelerations in the vicinity of 20u to 200u in the acceleration on the vertical axis. Incidentally, waterfall diagram in FIG. 7 is actually a color scale, the acceleration of the position of 200 m / s 2 in the vertical axis 50 m / s 2 is the acceleration 300 meters / s 2 in the vertical axis of the position 50 m / s 2 the acceleration of the position to the vicinity of a different color, but the spectrum corresponding to the acceleration of the position of 200 m / s 2 of 50 m / s 2 on the vertical axis in FIG. 7 is not displayed.

図7に示すように、60Hzの整数倍および半整数倍の電源系の振動は変圧器停止のタイミングでほぼ消えることがわかる。即ち、図7の右縦軸に表記されている時間(t)の経過とともに、種々の周波数で黒色に示された種々の振動が途中で消失し、色の明るい灰色のグラフとなっているので、低周波数帯域以外は信号が消失したことを示す。60Hzの非整数倍の振動で、変圧器停止のタイミングで消えるものは、機械系の振動ピークであると考えられる。
一方、約150Hz以下の低周波数帯域では変圧器1を停止しても振動は残っている。このように変圧器1を止めても消えずに残るピークは、建屋や他の運転機器に由来する振動成分と推定される。
As shown in FIG. 7, it can be seen that the vibration of the power supply system which is an integral multiple and a half-integer multiple of 60 Hz almost disappears at the timing when the transformer is stopped. That is, with the passage of time (t) shown on the right vertical axis of FIG. 7, various vibrations shown in black at various frequencies disappear in the middle, resulting in a light gray graph of color. , Indicates that the signal has disappeared except in the low frequency band. Vibrations that are non-integer multiples of 60 Hz and disappear when the transformer is stopped are considered to be mechanical vibration peaks.
On the other hand, in the low frequency band of about 150 Hz or less, vibration remains even if the transformer 1 is stopped. The peak that does not disappear even when the transformer 1 is stopped in this way is presumed to be a vibration component derived from the building or other operating equipment.

<周囲ノイズ測定>
変圧器1を負荷率約10%で稼働中に変圧器1を設置している建屋の変圧器台(コンクリート台)に設置したセンサ22の測定結果(ベースXYZ)と建屋の別室床に設置したセンサの測定結果(別室XYZ)を図8に示す。
図8に示すように、広い周波数領域で60Hzの整数倍の大きなピーク状のノイズがみられる。250Hz以上では10−5m/s程度の連続的な振動があり、変圧器台よりも別室床の方がやや振動は小さい。250Hz以下では変圧器台と別室床ともに比較的大きい10−4m/s程度の振動がみられた。
<Ambient noise measurement>
The measurement result (base XYZ) of the sensor 22 installed on the transformer stand (concrete stand) of the building where the transformer 1 is installed while the transformer 1 is operating at a load factor of about 10% and the transformer 1 are installed on the floor of a separate room of the building. The measurement result of the sensor (separate room XYZ) is shown in FIG.
As shown in FIG. 8, large peak noise of an integral multiple of 60 Hz is observed in a wide frequency region. At 250 Hz and above, there is continuous vibration of about 10-5 m / s 2, and the vibration is slightly smaller on the floor of the separate room than on the transformer stand. At 250 Hz or less, a relatively large vibration of about 10 -4 m / s 2 was observed in both the transformer stand and the floor of the separate room.

次に、変圧器の側壁と向き合っている建屋の壁面に設置したセンサ22について、変圧器稼働中(無負荷)の測定結果と変圧器停止後の測定結果を図9に示す。
図9に示すように、高周波数側(250Hz以上)では10−4m/s程度の振動がみられ、変圧器1を停止すると加速度がおよそ半減し、60Hzの整数倍のピーク状ノイズは消えた。しかし、およそ250Hz以下の振動は変圧器を停止しても変化していない。
壁振動のウォーターフォール図を図10に示す。図10において、横軸周波数で0〜1000Hz、縦軸時間で0〜120秒を示し、左側カラーのスケールバーは信号強度を示すが、図7のスケール設定とは変えてある。信号強度は、カラースケールバーにおいて対数表示とされており、下側1/3の範囲が100〜900u(×10−6)のレベル、中央側1/3の範囲が1〜10m(×10−3)のレベル、上側1/3の範囲が10〜90m(×10−3)のレベルを示している。
図10において下側のグラフは20秒時点での信号スペクトラムを示す。
なお、図10は実際はカラースケールで表示されるグラフであり、縦軸の加速度は、100u〜200uが紫色、300u〜900uは順次濃い青色から若干薄くなる青色、2m〜9mは緑色、20m前後は黄色、30m以上は順次濃い赤色となるカラースケールで示されている。
図10では色を表示できないが、横軸の周波数800Hzより高い周波数(右側)は概ね紫色が多い領域、600〜800Hzの範囲は紫色と濃い青色の混在領域、400〜600Hzは濃い青色から薄い青色が混在する領域、400Hz以下になって薄い青色に緑色が混在する領域であり、この緑色の領域は2m〜9mの加速度が計測された領域である。図10では白黒表示のために、この緑色の領域が灰色で表示されている。従って、0〜200Hzの領域は概ね2m〜9mの加速度が表示され、その間に明るく表示された領域は20m以上の加速度を計測した領域、濃く表示された領域は30m以上の領域を示す。
Next, with respect to the sensor 22 installed on the wall surface of the building facing the side wall of the transformer, the measurement results during the transformer operation (no load) and the measurement results after the transformer is stopped are shown in FIG.
As shown in FIG. 9, vibration of about 10 -4 m / s 2 is observed on the high frequency side (250 Hz or higher), the acceleration is reduced by about half when the transformer 1 is stopped, and peak noise that is an integral multiple of 60 Hz is generated. Had disappeared. However, the vibration below about 250 Hz does not change even when the transformer is stopped.
A waterfall diagram of wall vibration is shown in FIG. In FIG. 10, the horizontal axis frequency indicates 0 to 1000 Hz and the vertical axis time indicates 0 to 120 seconds, and the scale bar in the left color indicates the signal strength, which is different from the scale setting in FIG. Signal strength, color scale are logarithmic display in bar, the lower levels in the range of 1/3 100~900u (× 10 -6), the range of the central one-third is 1 to 10 m (× 10 - The level of 3 ) and the upper 1/3 range indicate the level of 10 to 90 m (× 10 -3).
The lower graph in FIG. 10 shows the signal spectrum at 20 seconds.
In addition, FIG. 10 is a graph actually displayed on a color scale, and the acceleration on the vertical axis is purple for 100u to 200u, blue for 300u to 900u, which gradually becomes lighter from dark blue, green for 2m to 9m, and around 20m. Yellow and 30 m or more are shown on a color scale that gradually becomes dark red.
Although the color cannot be displayed in FIG. 10, the frequency higher than 800 Hz on the horizontal axis (right side) is generally a region with a lot of purple, the range of 600 to 800 Hz is a mixed region of purple and dark blue, and the frequency of 400 to 600 Hz is dark blue to light blue. Is a region where green is mixed with light blue at 400 Hz or less, and this green region is a region where acceleration of 2 m to 9 m is measured. In FIG. 10, this green area is displayed in gray for black-and-white display. Therefore, in the region of 0 to 200 Hz, the acceleration of approximately 2 m to 9 m is displayed, the region displayed brightly in the meantime indicates the region in which the acceleration of 20 m or more is measured, and the region displayed darkly indicates the region of 30 m or more.

図10に示すように、60Hzの整数倍のピーク状ノイズ(図7に表示されている200〜1000Hzにおいて灰色のスペクトルとして表示された加速度)は変圧器停止のタイミングで消えるのに対し、およそ250Hz以下のノイズは変圧器停止後も変わらず存在することがわかる。
前者は実際の振動とは異なりセンサ22に誘導される電磁ノイズ信号であり、その原因は変圧器1が励磁されていることによると考えられる。電源系振動数成分の振動強度を測定して変圧器診断する場合、稼働中の変圧器1から発生される電磁ノイズに影響されている可能性があり、電磁ノイズ対策されたセンサを用いる必要があると考えられる。
後者は実際に建屋全体が揺れる事による振動ノイズ信号であると考えられる。その影響については後述する。
As shown in FIG. 10, peak noise that is an integral multiple of 60 Hz (acceleration displayed as a gray spectrum at 200 to 1000 Hz displayed in FIG. 7) disappears at the timing of transformer stop, whereas it is approximately 250 Hz. It can be seen that the following noise remains unchanged even after the transformer is stopped.
The former is an electromagnetic noise signal induced in the sensor 22, which is different from the actual vibration, and it is considered that the cause is that the transformer 1 is excited. When diagnosing a transformer by measuring the vibration intensity of the power supply system frequency component, it may be affected by the electromagnetic noise generated from the transformer 1 in operation, and it is necessary to use a sensor with measures against electromagnetic noise. It is believed that there is.
The latter is considered to be a vibration noise signal caused by the actual shaking of the entire building. The effect will be described later.

「解体時インパクト試験」
<センサ天板、打点天板測定>
センサ22を天板に設置し、インパクトハンマーによる打点を天板31Aに設定し、変圧器1を停止後に解体し、変圧器中身を天板から吊り出して、天板と変圧器中身をインパクト試験した場合の振動解析結果(FFT結果)を図11に示す。
天板31Aをインパクトハンマーによりハンマリングすると、図11のように複雑なスペクトラムが得られた。比較のため変圧器1を停止した後に側壁をインパクト試験したときのFFT結果を(図11に揃えて)縦軸線形、横軸2000Hzに設定して図12に示す。
図12に示すように、側壁をインパクト試験したときのFFT結果はピークの数が少なく、ピーク同士に重なりのない鋭いピーク形状で、全体として単純なスペクトラムであった。
それに対し、図11に示すFFT結果において、天板31Aは吊り金具12を通して上部ヨーク押え金具10やコイル押さえプレート7、軸方向締付ボルト8と結合しており、上部ヨーク押え金具10は軸方向締付ボルト8を通して下部ヨーク押え金具10と結合しており、それらにより鉄心5と巻線4は固定されている。よって、天板31Aは鉄心5と巻線4と結合されており、天板31A、鉄心5、巻線4それぞれの固有振動と、それらが一体となった構造物としての固有振動も有していると考えられる。
"Impact test at the time of dismantling"
<Sensor top plate, dot top plate measurement>
The sensor 22 was installed on the top plate, the hitting point with the impact hammer was set on the top plate 31A, the transformer 1 was disassembled after stopping, the contents of the transformer were suspended from the top plate, and the top plate and the contents of the transformer were impact tested. The vibration analysis result (FFT result) of the case is shown in FIG.
When the top plate 31A was hammered with an impact hammer, a complicated spectrum was obtained as shown in FIG. For comparison, the FFT results when the side wall is impact-tested after the transformer 1 is stopped are set to linear on the vertical axis and 2000 Hz on the horizontal axis (aligned with FIG. 11) and shown in FIG.
As shown in FIG. 12, the FFT result when the side wall was impact-tested had a small number of peaks, a sharp peak shape in which the peaks did not overlap each other, and a simple spectrum as a whole.
On the other hand, in the FFT result shown in FIG. 11, the top plate 31A is connected to the upper yoke holding metal fitting 10, the coil holding plate 7, and the axial tightening bolt 8 through the hanging metal fitting 12, and the upper yoke holding metal fitting 10 is axially connected. It is connected to the lower yoke holding metal fitting 10 through the tightening bolt 8, and the iron core 5 and the winding 4 are fixed by them. Therefore, the top plate 31A is coupled to the iron core 5 and the winding 4, and has the natural vibration of each of the top plate 31A, the iron core 5, and the winding 4, and the natural vibration as a structure in which they are integrated. It is thought that there is.

<センサ天板、打点鉄心測定>
センサ22を天板31Aに設置し、インパクトハンマーによる打点を鉄心5に設定し、変圧器1を停止後に解体し、変圧器中身を吊り上げて、鉄心5をインパクト試験した場合の振動解析結果(FFT結果)を図13に示す。
図13の1060Hz付近の大きなピークは鉄心5をインパクトハンマーによりハンマリングすると大きくみられることから、鉄心5の固有振動に由来するピークではないかと考えられる。
<Sensor top plate, dot iron core measurement>
Vibration analysis result (FFT) when the sensor 22 is installed on the top plate 31A, the hitting point by the impact hammer is set to the iron core 5, the transformer 1 is stopped and then disassembled, the contents of the transformer are lifted, and the iron core 5 is impact tested. The result) is shown in FIG.
Since the large peak near 1060 Hz in FIG. 13 is seen to be large when the iron core 5 is hammered with an impact hammer, it is considered that the peak is derived from the natural vibration of the iron core 5.

<センサ天板、打点巻線>
センサ22を天板31Aに設置し、インパクトハンマーによる打点を巻線4に設定し、変圧器1を停止後に解体し、変圧器中身を吊り上げて、巻線4をインパクト試験した場合の振動解析結果(FFT結果)を図14に示す。
巻線4をインパクトハンマーによりハンマリングした場合、図14に示すように440Hzと1630Hzに鋭いピークがみられた。
<Sensor top plate, dot winding>
Vibration analysis result when the sensor 22 is installed on the top plate 31A, the hitting point by the impact hammer is set to the winding 4, the transformer 1 is stopped and then disassembled, the contents of the transformer are lifted, and the winding 4 is impact tested. (FFT result) is shown in FIG.
When the winding 4 was hammered with an impact hammer, sharp peaks were observed at 440 Hz and 1630 Hz as shown in FIG.

<センサ巻線、打点巻線>
天板31Aと締付け具(軸方向締め付けボルト8)を外して3つのコイル体3とコイル押さえプレート7が一体とされた状態でこれらを起立させ、センサ22を巻線4に設置し、巻線4をハンマリングしたときのインパクト試験結果例を図15に示す。
巻線4の固有振動数に由来するピークは図15に現れるような幅の広いピークを形成すると考えられる。天板31Aと軸方向締め付けボルト8(締付け具)を外されたコイル体3の巻線4はUVWの各相のコイル体3がほぼ独立して振動できる。コイル押さえプレート7は個々のコイル体3用に分割されているためである。巻線4の固有振動は図15から読み取れるように0〜2000Hzの間におよそ6つのピークを持つことがわかった。
<Sensor winding, dot winding>
The top plate 31A and the tightening tool (axial tightening bolt 8) are removed, and the three coil bodies 3 and the coil holding plate 7 are raised in an integrated state, the sensor 22 is installed on the winding 4, and the winding FIG. 15 shows an example of the impact test result when No. 4 is hammered.
It is considered that the peak derived from the natural frequency of the winding 4 forms a wide peak as shown in FIG. In the winding 4 of the coil body 3 from which the top plate 31A and the axial tightening bolt 8 (tightening tool) are removed, the coil body 3 of each phase of UVW can vibrate substantially independently. This is because the coil holding plate 7 is divided for each coil body 3. As can be read from FIG. 15, the natural vibration of the winding 4 was found to have about 6 peaks between 0 and 2000 Hz.

これらの試験結果から、タンク31の天板31Aをインパクトハンマーによりハンマリングすると、吊り金具12を通してコイル体3の鉄心5や巻線4にも振動が伝わり、それらの振動が反射して再度天板31Aに伝わると考えられる。そのような観点から図11のグラフを眺めると、図11の中に鉄心5由来の1060Hzピークと、巻線4由来の鋭い440Hz、1630Hzのピークと、幅広い6つのピーク群に分けてみることができ、これは、天板31Aをインパクトハンマーによりハンマリングしたとき変圧器中身の固有振動が天板31Aに現れていることを示唆していると考えられる。 From these test results, when the top plate 31A of the tank 31 is hammered with an impact hammer, vibrations are transmitted to the iron core 5 and winding 4 of the coil body 3 through the hanging metal fitting 12, and these vibrations are reflected and the top plate is reflected again. It is thought that it will be transmitted to 31A. Looking at the graph of FIG. 11 from such a viewpoint, it can be divided into a wide range of six peak groups in FIG. 11, a 1060 Hz peak derived from the iron core 5, a sharp 440 Hz and 1630 Hz peaks derived from the winding 4, and so on. It is considered that this suggests that the natural vibration of the contents of the transformer appears on the top plate 31A when the top plate 31A is hammered by the impact hammer.

よって、天板31Aにインパクトハンマーにより打撃を加えるインパクト試験を行うと、その振動解析により、変圧器中身の状態を診断できる可能性があると考えることができる。
一方、天板31A、鉄心5、巻線4が一体となった構造物としての固有振動は、それらを合わせた構造材としてのサイズや質量が大きいことから、周波数が低い領域に現れると考えられる。そこで、図6に示す実稼働振動測定結果と、解体時インパクト試験結果における0〜120Hzまでの範囲を拡大して図16〜図19に示す。
Therefore, if an impact test is performed in which the top plate 31A is hit with an impact hammer, it can be considered that there is a possibility that the state of the contents of the transformer can be diagnosed by the vibration analysis.
On the other hand, the natural vibration as a structure in which the top plate 31A, the iron core 5, and the winding 4 are integrated is considered to appear in a low frequency region because the size and mass of the combined structural material are large. .. Therefore, the actual operating vibration measurement results shown in FIG. 6 and the dismantling impact test results in the range of 0 to 120 Hz are expanded and shown in FIGS. 16 to 19.

図16はタンク31の側面32箇所の実稼働測定をFFT変換したデータを0〜120Hzまでの範囲において周波数毎に単純平均した図である。
なお、振動測定の場合、振動の節に当たる位置にセンサ22を設置すると、その振動モードに対して振幅が0となり、あたかも振動していないかのように測定される。よって、どの振動モードに対しても節以外の位置にセンサ22が設置されるように、可能な限り多くの設置位置を選択することが好ましい。あるいは、多数のセンサ22を用いて多点測定することが好ましい。
図17、図18、図19はそれぞれ図11、13、14の横軸周波数を拡大して解析結果を詳細表示した図である。変圧器中身をインパクトハンマーによりハンマリングしたときにみられる22〜28Hz、52〜58Hz、88Hz付近のピークが天板31Aをハンマリングしたときに天板31Aに発生する振動ピークにもみられ、同じ周波数帯において実稼働振動にもピークが現れている。
これらの図に示すように、天板31A、鉄心5、巻線のどこをハンマリングしても現れる比較的低い振動数のピークは天板31A、鉄心5、巻線4が一体となった構造体の振動モードと考えられ、天板31Aの振動を経由して、あるいは変圧器1内の絶縁油を通して振動が変圧器1のタンク側面を振動させたと考えられる。
FIG. 16 is a diagram obtained by simply averaging the data obtained by FFT-converting the actual operation measurements at 32 locations on the side surface of the tank 31 for each frequency in the range of 0 to 120 Hz.
In the case of vibration measurement, if the sensor 22 is installed at a position corresponding to the vibration node, the amplitude becomes 0 with respect to the vibration mode, and the measurement is performed as if the sensor is not vibrating. Therefore, it is preferable to select as many installation positions as possible so that the sensor 22 is installed at a position other than the node in any vibration mode. Alternatively, it is preferable to perform multipoint measurement using a large number of sensors 22.
17, 18 and 19, respectively, are views showing the analysis results in detail by enlarging the horizontal axis frequencies of FIGS. 11, 13 and 14, respectively. Peaks near 22-28Hz, 52-58Hz, and 88Hz, which are seen when the contents of the transformer are hammered with an impact hammer, are also seen in the vibration peaks that occur on the top plate 31A when the top plate 31A is hammered, and have the same frequency. A peak appears in the actual operation vibration in the band.
As shown in these figures, the peak of the relatively low frequency that appears no matter where the top plate 31A, the iron core 5, and the winding are hammered is a structure in which the top plate 31A, the iron core 5, and the winding 4 are integrated. It is considered to be a vibration mode of the body, and it is considered that the vibration vibrates the side surface of the tank of the transformer 1 via the vibration of the top plate 31A or through the insulating oil in the transformer 1.

変圧器1において、鉄心5や巻線4に作用する電磁機械力が変圧器中身の固有振動の励起源と想定していたが、250Hz以下では建屋全体が比較的大きく揺れていることから、建屋振動が変圧器中身を揺らすことにより生じる変圧器中身の固有振動をタンクの上部周壁面で捉えている可能性があると考えられる。
天板31A、鉄心5、巻線4が一体となった構造体を構成する部材の質量や配置、それらを連結する締付け力も固有振動数を決める要因である。巻線4に使用しているスペーサプレスボードが劣化して永久ひずみで体積収縮が生じたり、長年繰り返される内部振動や突発的なサージ電流による電磁力や地震などの影響でそれらの結合に緩みが生じたりした場合に固有振動数が変化すると考えられる。
よって、変圧器1を設置している建屋自身の揺れが誘導する変圧器中身の振動について、タンク1の壁面に設置した振動センサ22で固有振動数をモニタすることにより中身の異常や劣化を診断できることがわかった。
In the transformer 1, it was assumed that the electromagnetic mechanical force acting on the iron core 5 and the winding 4 was the excitation source of the natural vibration of the contents of the transformer. It is considered possible that the natural vibration of the transformer contents generated by the vibration shaking the transformer contents is captured by the upper peripheral wall surface of the tank.
The mass and arrangement of the members constituting the structure in which the top plate 31A, the iron core 5, and the winding 4 are integrated, and the tightening force for connecting them are also factors that determine the natural frequency. The spacer press board used for winding 4 deteriorates and causes volume shrinkage due to permanent strain, and the coupling becomes loose due to the effects of electromagnetic force and earthquakes caused by internal vibrations repeated for many years and sudden surge currents. It is considered that the natural frequency changes when it occurs.
Therefore, regarding the vibration of the contents of the transformer induced by the shaking of the building where the transformer 1 is installed, the abnormality or deterioration of the contents is diagnosed by monitoring the natural frequency with the vibration sensor 22 installed on the wall surface of the tank 1. I found that I could do it.

即ち、変圧器1を設置している建屋が振動している場合、建屋振動が変圧器1を揺らすことにより、変圧器中身の振動が誘起され、その振動がタンク壁面に伝わっていると考えられる。このため、建屋振動を利用してセンサ22による振動解析により変圧器1の診断ができることがわかった。
今回測定した変圧器1の建屋は250Hz以下の振動が大きく、その振動数領域では天板31Aと鉄心5と巻線4が一体物として結合した構造体の固有振動をタンク側面で捉えることができたと考えられる。
従って、建屋振動を利用して稼働中の変圧器1の異常診断を行うためには、健全と思われる初期状態の変圧器が稼働し、その変圧器に建屋から250Hz以下の振動成分が大きい振動が伝達されている場合、健全な状態の変圧器1に生じる振動を計測して把握し、この振動情報を高速フーリエ解析したFFT結果を診断装置Aの信号解析器26のメモリなどに記憶させておく。
That is, when the building in which the transformer 1 is installed is vibrating, it is considered that the vibration of the building causes the transformer 1 to vibrate, which induces the vibration of the contents of the transformer and the vibration is transmitted to the tank wall surface. .. Therefore, it was found that the transformer 1 can be diagnosed by the vibration analysis by the sensor 22 using the vibration of the building.
The building of the transformer 1 measured this time has a large vibration of 250 Hz or less, and in the frequency region, the natural vibration of the structure in which the top plate 31A, the iron core 5 and the winding 4 are combined as an integral body can be captured on the side surface of the tank. It is thought that it was.
Therefore, in order to perform an abnormality diagnosis of the transformer 1 in operation using the vibration of the building, a transformer in an initial state that seems to be sound is operated, and the transformer has a large vibration component of 250 Hz or less from the building. Is transmitted, the vibration generated in the transformer 1 in a sound state is measured and grasped, and the FFT result obtained by fast Fourier analysis of this vibration information is stored in the memory of the signal analyzer 26 of the diagnostic device A or the like. deep.

一例として、図1に示す解析器26と演算装置27はパーソナルコンピューターから構成され、演算装置27がCPUであり、メモリやハードディスクなどの記憶装置が解析器26に搭載されているので、解析器26の記憶装置に健全な初期状態の変圧器の振動情報を高速フーリエ解析したFFT結果を記憶させておく。また、その振動情報に現れている固有振動数の周波数やそのピークの大きさを記録しておく。
これに対し、建屋からの環境振動(環境ノイズ)が付加されていて、測定対象とする稼働状態の変圧器の診断を行うには、先に説明した実稼働振動測定と同じ条件で測定対象の変圧器の周壁において振動計測する。
As an example, the analyzer 26 and the arithmetic unit 27 shown in FIG. 1 are composed of a personal computer, the arithmetic unit 27 is a CPU, and a storage device such as a memory or a hard disk is mounted on the analyzer 26. The storage device of the above stores the FFT result of high-speed Fourier analysis of the vibration information of the transformer in a sound initial state. Also, record the frequency of the natural frequency appearing in the vibration information and the magnitude of its peak.
On the other hand, environmental vibration (environmental noise) from the building is added, and in order to diagnose the transformer in the operating state to be measured, the measurement target is under the same conditions as the actual operating vibration measurement explained above. Vibration is measured on the peripheral wall of the transformer.

先の条件とは、負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面の実稼働振動を測定し、奇数列(1,3,5,7,9,11,13,15)につきA行、C行、E行、G行の合計8×4=32箇所をセンサ2つ用い順次センサを移動して各点を10秒間測定した条件であり、この測定で得られた結果を高速フーリエ変換した結果の解析情報である。
演算装置27は解析器26に記憶されていた先の解析情報と測定対象の変圧器から得られた解析情報を比較検討し、先の初期状態の変圧器に見られる機械系固有振動数やその振幅に変化が生じた場合や、初期状態には見られない新たな固有周波数ピークの存在を検知すると、測定対象の変圧器が何らかの異常を有していると判断し、異常検出の判断を行う。必要に応じて演算装置27に接続された表示装置にこの異常検知を表示する。
検査員が表示装置に表示された固有周波数のピークを検証し、初期状態の健全な変圧器に生じていなかった固有周波数のピークを検出したならば、例えば、その新規検出ピークの大小、新規検出数の大小、周波数に応じて測定対象の変圧器の寿命を診断することができる。
なお、初期状態に比べて新たな振動数成分が1つでも出現すれば、測定対象の変圧器には異常が発生している可能性が高いと判断できる。
The above condition is that the actual operating vibration of the right wall surface of the upper peripheral wall 31a is measured with respect to the transformer 31 operating at a load factor of about 10%, and an odd number of rows (1,3,5,7,9,11,13) is measured. , 15), a total of 8 × 4 = 32 points in rows A, C, E, and G were used, and the sensors were moved in sequence to measure each point for 10 seconds, which was obtained by this measurement. This is the analysis information of the result of fast Fourier transform of the obtained result.
The arithmetic unit 27 compares and examines the previous analysis information stored in the analyzer 26 and the analysis information obtained from the transformer to be measured, and examines the mechanical natural frequency and its natural frequency found in the transformer in the initial state. When a change in amplitude occurs or the presence of a new natural frequency peak that is not seen in the initial state is detected, it is determined that the transformer to be measured has some abnormality, and abnormality detection is determined. .. If necessary, this abnormality detection is displayed on the display device connected to the arithmetic unit 27.
If the inspector verifies the peak of the intrinsic frequency displayed on the display device and detects the peak of the intrinsic frequency that did not occur in the sound transformer in the initial state, for example, the magnitude of the new detection peak and the new detection The life of the transformer to be measured can be diagnosed according to the size and frequency of the number.
If even one new frequency component appears compared to the initial state, it can be determined that there is a high possibility that an abnormality has occurred in the transformer to be measured.

他の例として、図1に示す解析器26の記憶装置に健全な初期状態の変圧器のインパクト試験の振動情報を高速フーリエ解析したFFT結果を記憶させておく。
これに対し、測定対象とする稼働状態の変圧器の診断を行うには、先に説明したインパクト試験と同じ条件で測定対象の変圧器に対するインパクト試験を行い、変圧器の周壁の一部において、先に説明した実稼働振動測定と同じ条件で測定対象の変圧器の周壁において振動計測する。
As another example, the storage device of the analyzer 26 shown in FIG. 1 stores the FFT result obtained by fast Fourier analysis of the vibration information of the impact test of the transformer in a sound initial state.
On the other hand, in order to diagnose the transformer in the operating state to be measured, an impact test is performed on the transformer to be measured under the same conditions as the impact test described above, and a part of the peripheral wall of the transformer is subjected to the impact test. Vibration is measured on the peripheral wall of the transformer to be measured under the same conditions as the actual operation vibration measurement described above.

先の条件とは、負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面をインパクト試験することであり、センサは2個用い、図4に示す位置3Cと位置13Fに設置し、ハンマーの打点は位置4Cと位置13Eの2点を実施するなどの条件である。勿論、図4に示す更に別の位置に対し同様の試験を必要回数行った結果を用いても良い。
上述の条件で得られた測定結果を高速フーリエ変換した結果の解析情報を解析器26のメモリなどに記憶させておく。
演算装置27は解析器26に記憶されていた先の解析情報と測定対象の変圧器から得られた解析情報を比較検討し、先の初期状態の変圧器に見られない固有周波数ピークの存在を検知すると、測定対象の変圧器が何らかの異常を有していると判断し、異常検出の判断を行う。必要に応じて演算装置27に接続された表示装置にこの異常検知を表示する。
検査員が表示装置に表示された固有周波数のピークを検証し、初期状態の健全な変圧器に生じていなかった固有周波数のピークを検出したならば、例えば、その新規検出ピークの大小、新規検出数の大小、周波数に応じて測定対象の変圧器の寿命を診断することができる。
なお、変圧器の診断を行う場合の判断基準については、複数の変圧器を用いて測定した結果を蓄積し、複数の変圧器の測定結果を基に、ある程度の判断基準を定めることで、より正確な診断ができる。変圧器の規模や耐久性などに鑑み、変圧器毎の判断基準を定めておけば、より正確な診断ができる。
The above condition is to perform an impact test on the right wall surface of the upper peripheral wall 31a with respect to the transformer 31 operating at a load factor of about 10%, and two sensors are used at positions 3C and 13F shown in FIG. The condition is that the hammer is installed and the hammer is hit at two points, position 4C and position 13E. Of course, the result of performing the same test as many times as necessary for the other positions shown in FIG. 4 may be used.
The analysis information of the result of the high-speed Fourier transform of the measurement result obtained under the above conditions is stored in the memory of the analyzer 26 or the like.
The arithmetic unit 27 compares and examines the previous analysis information stored in the analyzer 26 and the analysis information obtained from the transformer to be measured, and determines the existence of a natural frequency peak that is not found in the transformer in the initial state. When it is detected, it is determined that the transformer to be measured has some abnormality, and the abnormality detection is determined. If necessary, this abnormality detection is displayed on the display device connected to the arithmetic unit 27.
If the inspector verifies the peak of the intrinsic frequency displayed on the display device and detects the peak of the intrinsic frequency that did not occur in the sound transformer in the initial state, for example, the magnitude of the new detection peak and the new detection The life of the transformer to be measured can be diagnosed according to the size and frequency of the number.
Regarding the judgment criteria when diagnosing transformers, it is possible to accumulate the measurement results using multiple transformers and determine some judgment criteria based on the measurement results of multiple transformers. An accurate diagnosis can be made. More accurate diagnosis can be made by setting the judgment criteria for each transformer in consideration of the scale and durability of the transformer.

A…診断装置、1…変圧器、2…タンク、3…コイル体、5…鉄心、6…ヨーク、7…コイル押さえプレート、8…軸方向締付ボルト、10…上部ヨーク押さえ金具、11…上部ヨーク押さえボルト、12…吊り金具、22…振動検出器(加速度センサ)、23…電圧計、24、25…増幅器、26…解析器、27…演算装置、31…タンク、31A…天板、31a…上部周壁、31B…周壁、31b…中部周壁、31c…底部周壁、31D…底壁。 A ... Diagnostic device, 1 ... Transformer, 2 ... Tank, 3 ... Coil body, 5 ... Iron core, 6 ... Yoke, 7 ... Coil holding plate, 8 ... Axial tightening bolt, 10 ... Upper yoke holding metal fitting, 11 ... Upper yoke holding bolt, 12 ... hanging bracket, 22 ... vibration detector (accelerometer), 23 ... voltmeter, 24, 25 ... amplifier, 26 ... analyzer, 27 ... arithmetic unit, 31 ... tank, 31A ... top plate, 31a ... upper peripheral wall, 31B ... peripheral wall, 31b ... middle peripheral wall, 31c ... bottom peripheral wall, 31D ... bottom wall.

Claims (12)

コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、
前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の前記変圧器に対し、
前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動であり、前記タンクの複数箇所に設置した振動検出器を用いて前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察し、
これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析することを特徴とする変圧器内部異常および劣化の診断方法。
It is a method for diagnosing internal abnormalities and deterioration of a transformer equipped with windings and iron cores constituting a coil body and a tank for accommodating them.
The tank is a box body composed of a bottom wall, a peripheral wall, and a top plate, and the coil body is formed by winding a winding around an iron core extending in the vertical direction, and the coil bodies are arranged vertically. With respect to the transformer having a configuration in which the coil body is tightened from above and below by the coil holding plate, and the tightened coil body is suspended from the top plate by a hanging metal fitting and housed inside the tank.
Wherein while by energizing the windings running the transformer, a mechanical vibration obtained by tapping the top plate with a hammer in the tank with no striking force hinder the transformer is operating the tank Based on the mechanical vibration generated at each position of the vibration detector in the tank using the vibration detectors installed at a plurality of locations, the vibration peak is an integral multiple of the power supply frequency, which is the characteristic peak during the operation of the transformer. Observe a plurality of vibration peaks that are different from the above and are caused by the difference between the natural frequency at each vibration detector installation position and the natural frequency inside the transformer.
From these plurality of vibration peaks, the vibration peak derived from the iron core, the vibration peak derived from the winding, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated are distinguished. The transformer internal abnormality and the transformer internal abnormality characterized in that the state of the transformer is analyzed by recognizing and observing the change of the vibration peak derived from the structure in which the top plate, the iron core and the winding are integrated. Deterioration diagnosis method.
請求項1において求めた前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークに関し、健全な初期状態の変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項1に記載の変圧器内部異常および劣化の診断方法。 The top plate and the core determined as the winding respect vibration peak derived from structures that integrate in claim 1, wherein said top plate in the transformer healthy initial core and the winding To integrally The method for diagnosing an abnormality and deterioration inside a transformer according to claim 1, wherein the state of the transformer in operation is analyzed in comparison with the vibration peak derived from the structure. 実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項2に記載の変圧器内部異常および劣化の診断方法。 An area is divided into a part of the peripheral wall of the tank of the transformer to be measured in the actual operating state, acceleration sensors are installed at a plurality of positions in the section, and the top plate is hit with a hammer from the peripheral wall of the tank. The obtained vibration is measured as the output waveform of the accelerometer at each of multiple positions, and these output waveforms are subjected to high-speed Fourier conversion to plot the frequency on the horizontal axis and the amplitude on the vertical axis. The internal abnormality of the transformer according to claim 2, wherein the peak is analyzed and the state of the operating transformer is analyzed by comparing with the peak of the natural frequency obtained by the equivalent method for the sound transformer. And how to diagnose deterioration. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の変圧器の内部異常および劣化の診断装置であって、
稼働中の変圧器に対し前記タンクの複数箇所に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する複数の振動検出器と、
前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察する解析器と、
これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析する演算手段とを備えたことを特徴とする変圧器の内部異常および劣化の診断装置。
A winding body constituting a coil body, an iron core, and a tank for accommodating these are provided, and the tank is a box body composed of a bottom wall, a peripheral wall, and a top plate, and is wound around the iron core extending in the vertical direction. The coil body is formed by winding the coil body, the coil body is tightened from above and below by a coil holding plate arranged vertically, and the tightened coil body is suspended from the top plate by a hanging metal fitting to the tank. a diagnosis apparatus for an internal fault and the deterioration of the transformer inside the stowed configuration of,
A plurality of vibration detectors mounted on a plurality of locations in the tank with respect to an operating transformer and having detection sensitivity to vibrations from a low frequency region to an audible sound region (1 Hz to 20 kHz) generated by the transformer.
Installation of the vibration detector of the tank obtained by hitting the top plate of the tank with a hammer with a striking force that does not interfere with the operation of the transformer while the winding is energized and the transformer is operating. Based on the mechanical vibration generated at each position, the vibration peak is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during transformer operation, and is the natural frequency at each position where the vibration detector is installed. An analyzer that observes a plurality of vibration peaks caused by different natural frequencies inside the transformer, and
From these plurality of vibration peaks, the vibration peak derived from the iron core, the vibration peak derived from the winding, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated are distinguished. It is characterized by having a calculation means for analyzing the state of the transformer by recognizing and observing the change of the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated. Diagnostic device for internal abnormalities and deterioration of transformers.
前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと前記健全な変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを比較する能力を前記演算手段が備えたことを特徴とする請求項4に記載の変圧器の内部異常および劣化の診断装置。 Information on the natural frequency of a sound transformer is recorded in the calculation means, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated and the soundness are detected by the vibration detector. The inside of the transformer according to claim 4, wherein the calculation means has an ability to compare vibration peaks derived from a structure in which the top plate, the iron core, and the winding of the transformer are integrated. Diagnostic device for abnormalities and deterioration. 前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることを特徴とする請求項5に記載の変圧器の内部異常および劣化の診断装置。 The information on the natural frequency of the sound transformer recorded in the calculation means is obtained by partitioning an area into a part of the peripheral wall of the tank in the operating state of the sound transformer and accelerometers at a plurality of positions in the section. Is installed, the top plate is hit with a hammer, the vibration obtained from the peripheral wall of the tank is measured as the output waveform of the accelerometer at each of a plurality of positions, and these output waveforms are subjected to high-speed Fourier conversion and the horizontal axis is the frequency. It is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the amplitude on the vertical axis, and the information of the natural frequency of the transformer to be measured compared with this information is the operating state of the measurement target by the same method. The diagnostic device for internal abnormality and deterioration of a transformer according to claim 5, which is an analysis result of a peak of a natural frequency obtained from the transformer of the above. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、
前記タンクが底壁と周壁と天板とからなる箱体であり、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の前記変圧器に対し、
前記変圧器を設置した建屋が建屋に設置された他の機器からの振動あるいは建屋近傍の環境雑音に起因する振動を受けて振動する建屋であって、この建屋からの振動が変圧器に伝達された場合の振動を前記タンクの周壁面に設置した振動検出器で検出し、
前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察し、
これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析することを特徴とする変圧器内部異常および劣化の診断方法。
It is a method for diagnosing internal abnormalities and deterioration of a transformer equipped with windings and iron cores constituting a coil body and a tank for accommodating them.
The tank is a box body composed of a bottom wall, a peripheral wall, and a top plate, and a coil body is formed by winding a winding around an iron core extending in the vertical direction, and the coil body is arranged vertically. With respect to the transformer having a configuration in which the coil body is tightened from above and below by a coil holding plate, and the tightened coil body is suspended from the top plate by a hanging metal fitting and housed inside the tank.
The building in which the transformer is installed is a building that vibrates in response to vibration from other equipment installed in the building or vibration caused by environmental noise in the vicinity of the building, and the vibration from this building is transmitted to the transformer. The vibration in the case of the above is detected by the vibration detector installed on the peripheral wall surface of the tank, and the vibration is detected.
The vibration peak is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during operation of the transformer, and the natural frequency at each vibration detector installation position and the natural frequency inside the transformer are different. Observe the multiple vibration peaks caused by this and
From these plurality of vibration peaks, the vibration peak derived from the iron core, the vibration peak derived from the winding, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated are distinguished. The transformer internal abnormality and the transformer internal abnormality characterized in that the state of the transformer is analyzed by recognizing and observing the change of the vibration peak derived from the structure in which the top plate, the iron core and the winding are integrated. Deterioration diagnosis method.
請求項7において求めた前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークに関し、健全な初期状態の変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項7に記載の変圧器内部異常および劣化の診断方法。 Relates vibrational peak of the top plate and the core and the winding-derived structure is integral obtained in claim 7, wherein the winding and the top plate and the core in the transformer healthy initial state To integrally The method for diagnosing an abnormality and deterioration inside a transformer according to claim 7, wherein the state of the transformer in operation is analyzed in comparison with the vibration peak derived from the structure. 実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項8に記載の変圧器内部異常および劣化の診断方法。 An area is divided into a part of the peripheral wall of the tank of the transformer to be measured in the actual operating state, acceleration sensors are installed at a plurality of positions in the section, and the frequency is obtained from the peripheral wall of the tank based on the vibration of the building. The generated vibration is measured as the output waveform of the acceleration sensor for each of multiple positions, and these output waveforms are subjected to high-speed Fourier conversion, and the peak of the natural frequency that appears in the waveform obtained by plotting the frequency on the horizontal axis and the amplitude on the vertical axis. The internal abnormality of the transformer and the internal abnormality of the transformer according to claim 8, wherein the state of the operating transformer is analyzed by comparing with the peak of the natural frequency obtained by the equivalent method for the sound transformer. Deterioration diagnostic method. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備え、前記タンクが底壁と周壁と天板とからなる箱体であって、上下方向に延在する鉄心の周回りに巻線を巻回して前記コイル体が構成され、前記コイル体が上下に配置されたコイル押さえプレートにより上下方向から締め付けられ、締め付けられた前記コイル体が吊り金具により前記天板に吊り下げられて前記タンクの内部に収容された構成の変圧器の内部異常および劣化の診断装置であって、
建屋内に設置されて稼働されている変圧器に対し前記タンクの複数箇所に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、
該振動検出器からの検出信号を受けて稼働中の変圧器に対する前記建屋から伝達された振動を含む変圧器振動の位相を基準とする機械的振動を求めて解析し、
前記タンクの前記振動検出器設置位置毎に生じている機械的振動に基づき、前記変圧器稼働中の特徴ピークである電源周波数の整数倍の振動ピークと異なる振動ピークであって、前記振動検出器設置位置毎における固有振動数と前記変圧器内部の固有振動数が異なることに起因し生じている複数の振動ピークを観察する解析器と、
これら複数の振動ピークの中から、前記鉄心由来の振動ピークと、前記巻線由来の振動ピークと、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを区別して認識し、前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークの変化を観察することにより、前記変圧器の状態を解析する演算手段とを備えたことを特徴とする変圧器の内部異常および劣化の診断装置。
A winding body constituting a coil body, an iron core, and a tank for accommodating these are provided, and the tank is a box body composed of a bottom wall, a peripheral wall, and a top plate, and is wound around the iron core extending in the vertical direction. The coil body is formed by winding the coil body, the coil body is tightened from above and below by a coil holding plate arranged vertically, and the tightened coil body is suspended from the top plate by a hanging metal fitting to the tank. a diagnosis apparatus for an internal fault and the deterioration of the transformer inside the stowed configuration of,
It has detection sensitivity for vibrations from the low frequency region to the audible sound region (1 Hz to 20 kHz) generated by the transformer, which is installed in a plurality of locations in the tank and is installed and operated in the building. Vibration detector and
Upon receiving the detection signal from the vibration detector, the mechanical vibration based on the phase of the transformer vibration including the vibration transmitted from the building to the operating transformer is obtained and analyzed.
Based on the mechanical vibration generated at each position of the vibration detector in the tank, the vibration peak is different from the vibration peak that is an integral multiple of the power supply frequency, which is the characteristic peak during operation of the transformer, and is different from the vibration peak. An analyzer that observes multiple vibration peaks caused by the difference between the natural frequency at each installation position and the natural frequency inside the transformer, and
From these plurality of vibration peaks, the vibration peak derived from the iron core, the vibration peak derived from the winding, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated are distinguished. It is characterized by having a calculation means for analyzing the state of the transformer by recognizing and observing the change of the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated. Diagnostic device for internal abnormalities and deterioration of transformers.
前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークと前記健全な変圧器における前記天板と前記鉄心と前記巻線が一体となった構造物由来の振動ピークを比較する能力を前記演算手段が備えたことを特徴とする請求項10に記載の変圧器の内部異常および劣化の診断装置。 Information on the natural frequency of a sound transformer is recorded in the calculation means, and the vibration peak derived from the structure in which the top plate, the iron core, and the winding are integrated and the soundness are detected by the vibration detector. The inside of the transformer according to claim 10, wherein the calculation means has an ability to compare vibration peaks derived from a structure in which the top plate, the iron core, and the winding of the transformer are integrated. Diagnostic device for abnormalities and deterioration. 前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、この出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることを特徴とする請求項11に記載の変圧器の内部異常および劣化の診断装置。 The information on the natural frequency of the sound transformer recorded in the calculation means is obtained by partitioning an area into a part of the peripheral wall of the tank in the operating state of the sound transformer and accelerometers at a plurality of positions in the section. Is installed, and the vibration obtained from the peripheral wall of the tank is measured as the output waveform of the accelerometer at each of a plurality of positions based on the vibration of the building. It is the analysis result of the peak of the natural frequency appearing in the waveform obtained by plotting the amplitude in, and the information of the natural frequency of the transformer to be measured compared with this information is the transformation of the operating state of the measurement target by the same method. The diagnostic device for internal abnormality and deterioration of a transformer according to claim 11, which is an analysis result of a peak of a natural frequency obtained from the device.
JP2016238501A 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration Active JP6869499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016238501A JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238501A JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Publications (2)

Publication Number Publication Date
JP2018096706A JP2018096706A (en) 2018-06-21
JP6869499B2 true JP6869499B2 (en) 2021-05-12

Family

ID=62631360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238501A Active JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Country Status (1)

Country Link
JP (1) JP6869499B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211587B2 (en) * 2018-12-13 2023-01-24 ユカインダストリーズ株式会社 Diagnosis method and device for internal abnormality and deterioration of transformer
CN110554278B (en) * 2019-07-30 2023-05-19 中国电力科学研究院有限公司 Method and system for detecting transformer winding based on modal analysis
KR102565620B1 (en) * 2019-12-20 2023-08-14 한국전력공사 Method for detecting mechanical anomaly of tap-changer
CN114018398A (en) * 2021-11-03 2022-02-08 宁波市电力设计院有限公司 Power transformer winding vibration online monitoring system and method
CN113776660B (en) * 2021-11-11 2022-02-01 山东达驰电气有限公司 Transformer vibration detection equipment
CN114200349B (en) * 2021-11-23 2023-10-13 国网山西省电力公司电力科学研究院 Transformer winding deformation degree evaluation method based on uninterrupted power supply detection
CN115902694A (en) * 2022-11-24 2023-04-04 西南交通大学 Transformer vibration signal test method under winding turn-to-turn short circuit fault
CN116465585B (en) * 2023-06-19 2023-08-29 国网山东省电力公司单县供电公司 Device for testing quality reliability jolt vibration of transformer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322782A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Weld flaw detector for tank shield plate in tra nsformer
JPS62222612A (en) * 1986-03-25 1987-09-30 Mitsubishi Electric Corp Method for facile measurement of oscillation characteristics of electric apparatus
JPH0798302A (en) * 1993-09-29 1995-04-11 Takaoka Electric Mfg Co Ltd Abnormality detector of solid-insulated electrical equipment
JPH10174373A (en) * 1996-12-09 1998-06-26 Meidensha Corp Deterioration diagnostic device for electric apparatus
JP4542957B2 (en) * 2005-07-08 2010-09-15 株式会社東芝 Loosening detection method and apparatus for laminated iron core of electrical equipment
TW201432279A (en) * 2013-02-05 2014-08-16 Tzu-Feng Wanglee Method of utilizing vocal features for determining malfunctions of electrical equipment caused by arc discharge, mechanical vibration and abnormal displacement
KR101529818B1 (en) * 2014-03-17 2015-06-29 엘에스산전 주식회사 diagnosis system for monitoring status of switchboard

Also Published As

Publication number Publication date
JP2018096706A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6869499B2 (en) Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration
JP6519810B2 (en) Method and apparatus for diagnosing internal abnormality and deterioration of transformer
Berler et al. Vibro-acoustic method of transformer clamping pressure monitoring
Zhou et al. Transformer winding fault detection by vibration analysis methods
García et al. Winding deformations detection in power transformers by tank vibrations monitoring
KR101674686B1 (en) Structural integrity monitoring system
CN106338336A (en) Transformer vibration on-line monitoring system
US7741854B2 (en) Method of in slot tightness measuring of stator coil
KR101551195B1 (en) Earthquake Monitoring and Diagnostic System For Distributing Board Using Displacement Sensor
JP7211587B2 (en) Diagnosis method and device for internal abnormality and deterioration of transformer
Zhang et al. Investigation on vibration source and transmission characteristics in power transformers
Shengchang et al. The vibration measuring system for monitoring core and winding condition of power transformer
JP4542957B2 (en) Loosening detection method and apparatus for laminated iron core of electrical equipment
CN105388210B (en) Suspension cable damage detection apparatus and detection method based on temporary steel diagonal brace
KR101300662B1 (en) Apparatus for connecting displacement instrument for detecting relative displacement to test specimen for shaking table, and connecting method for the same
Jin et al. Vibration characteristics of a disk-type winding simulated by coupled concentric rings
JP4605307B1 (en) Bolt tightening force inspection device
WO2015183297A1 (en) Systems for monitoring power transformers and method of operating the same
JP7446249B2 (en) Monitoring and diagnostic equipment for electromagnetic equipment
WO1999053282A1 (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
Letal et al. Optimize stator endwinding vibration monitoring with impact testing
Griscenko et al. Case study of shell-type power transformer tank vibration in different loading conditions
Ellis et al. Assessing the integrity of generator stator end windings
CN106441892A (en) Predicting method for subcritical resonance rotation speed position of rolling bearing supporting rotor system
KR20010086815A (en) Method for inspecting windings of generator stator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6869499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250