JP6868758B2 - High-pressure water jet injection device using the Venturi effect - Google Patents

High-pressure water jet injection device using the Venturi effect Download PDF

Info

Publication number
JP6868758B2
JP6868758B2 JP2019130791A JP2019130791A JP6868758B2 JP 6868758 B2 JP6868758 B2 JP 6868758B2 JP 2019130791 A JP2019130791 A JP 2019130791A JP 2019130791 A JP2019130791 A JP 2019130791A JP 6868758 B2 JP6868758 B2 JP 6868758B2
Authority
JP
Japan
Prior art keywords
pressure water
gas
water jet
injection device
jet injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019130791A
Other languages
Japanese (ja)
Other versions
JP2021014740A (en
Inventor
好弘 寺尾
好弘 寺尾
阿部 宏幸
宏幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Grouting Co Ltd
Japan Petroleum Exploration Co Ltd
Original Assignee
Chemical Grouting Co Ltd
Japan Petroleum Exploration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Grouting Co Ltd, Japan Petroleum Exploration Co Ltd filed Critical Chemical Grouting Co Ltd
Priority to JP2019130791A priority Critical patent/JP6868758B2/en
Publication of JP2021014740A publication Critical patent/JP2021014740A/en
Application granted granted Critical
Publication of JP6868758B2 publication Critical patent/JP6868758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

土壌内等を、効率よく切削・粉砕する高圧水ジェット噴射装置に関する。 The present invention relates to a high-pressure water jet injection device that efficiently cuts and crushes the inside of soil.

近年、世界的に海洋鉱物資源の権益を確保する動きが活発化している。海洋鉱物資源は、分布する場所、形成の仕方、形状、含まれる元素の違いなどから、メタンハイドレート(以下、MH)、海底熱水鉱床、コバルトリッチクラスト、マンガン団塊及びレアアースを含む泥質堆積物(以下、レアアース泥)等に分けることができる。これらの資源は、MH等の炭化水素や銅・鉛・亜鉛などのベースメタルやレアメタルなどの金属元素を含むが、日本からはるか遠い海域に分布しているものから、日本周辺の海域に分布しているものまで様々である。
特に、南鳥島周辺の排他的経済水域内にある水深4,000〜6,000mのレアアース泥に、数千ppm以上のレアアースが含まれることが注目され、新たな資源としての可能性が指摘されている。レアアースは、我が国の先端産業にとって不可欠な元素であり、その供給は特定国の政策の影響を受けやすく、安定的な調達のための新たな供給源の確保が求められている。
また、海洋鉱物資源の一種であり、非在来型の天然ガス資源のひとつであるMHは、極地付近の地下や水深500m〜5,000mの海底面下の堆積物中や海底面付近に分布しており、日本周辺海域においても相当量の賦存が見込まれていることもあり、MHは我が国のエネルギー安定供給に極めて大きく貢献する新たな国産エネルギー資源になるものと考えられている。
このため、我が国の海洋鉱物資源であるレアアース泥やMHを開発できる可能性が示されれば、レアアースを利用する先端産業分野の国際競争力の確保や新用途・産業分野の創出及びエネルギー安定供給に極めて大きく貢献すると考えられ、将来の開発・生産を念頭にした生産技術の確立は重要なテーマである。
In recent years, the movement to secure interests in marine mineral resources has become active worldwide. Marine mineral resources include methane hydrate (hereinafter referred to as MH), submarine hydrothermal deposits, cobalt-rich crust, manganese nodules, and rare earths due to differences in distribution location, formation method, shape, and contained elements. It can be divided into things (hereinafter, rare earth mud) and the like. These resources include hydrocarbons such as MH, base metals such as copper, lead and zinc, and metal elements such as rare metals, but they are distributed in the waters around Japan from those that are distributed far from Japan. There are various things.
In particular, it has been noted that rare earth mud with a depth of 4,000 to 6,000 m in the exclusive economic zone around Minamitorishima contains rare earths of several thousand ppm or more, and the possibility as a new resource has been pointed out. ing. Rare earths are an indispensable element for Japan's advanced industries, and their supply is easily affected by the policies of specific countries, and it is necessary to secure new sources for stable procurement.
In addition, MH, which is a type of marine mineral resource and one of the non-conventional natural gas resources, is distributed underground near the polar regions, in sediments under the seafloor at a depth of 500 m to 5,000 m, and near the seafloor. As a result, a considerable amount of endowment is expected in the waters around Japan, and MH is considered to be a new domestic energy resource that greatly contributes to Japan's stable energy supply.
Therefore, if the possibility of developing rare earth mud and MH, which are marine mineral resources in Japan, is shown, securing international competitiveness in advanced industrial fields using rare earths, creating new applications and industrial fields, and stable energy supply. The establishment of production technology with future development and production in mind is an important theme.

我が国は、その地形、地質、気象等の自然条件から、地震、火山噴火、台風、豪雪等による災害が発生しやすい国土といわれている。また、全人口の90%以上が国土の25%しかない都市部に集中し、その都市経済活動で国内総生産の80%以上を生み出すという状況も報告されている。また、このような都市部においては、建築物が密集しているうえに軟弱地盤も多く、こうした環境が良質な社会資本を整備する障害となっていることが指摘されている。このような環境の中で、軟弱地盤における地盤改良工事を安全かつ土壌を切開しないで施工する技術の確立は重要なテーマである。 Japan is said to be a land that is prone to disasters due to earthquakes, volcanic eruptions, typhoons, heavy snowfalls, etc. due to its natural conditions such as topography, geology, and weather. It has also been reported that more than 90% of the total population is concentrated in urban areas, which are only 25% of the country's land, and that urban economic activities generate more than 80% of the gross domestic product. Moreover, it has been pointed out that in such urban areas, buildings are densely packed and there are many soft grounds, and such an environment is an obstacle to the development of high-quality social capital. In such an environment, it is an important theme to establish a technique for safely performing ground improvement work on soft ground without incising the soil.

水深500〜5,000mの海底付近に形成された密集した塊状のMHである表層型MHの回収方法においては、特開2003−214082においては、地層に嵌入させた掘採管から高圧水ジェットを噴射し、その地層を切削・粉砕したガス含有流体を浮遊式掘削船上に移送するとともに、浮遊式掘削船上に移送した地山体積相当を高速噴流体の構成分で充填させることを特徴とする回収方法、特表2012−518102ではライザーにより掘削機を海底面に降下し、海底面からMH層を直接切削・粉砕し、海底にて分離したMH・水を海中ポンプにより昇圧して海上に移送することを特徴とする回収方法、特開2014−159710では海底移動掘削設備を昇降ウインチにより海底面に降下し、高圧水ノズル先端に取り付けたビットによりMH層を直接破砕し、高圧ポンプにより昇圧して海上に移送することを特徴とする回収方法が提案されている。 In the method of recovering the surface layer type MH, which is a dense mass MH formed near the seabed at a depth of 500 to 5,000 m, in Japanese Patent Application Laid-Open No. 2003-214882, a high-pressure water jet is used from a drilling pipe fitted in the stratum. Recovery characterized by injecting and transferring the gas-containing fluid obtained by cutting and crushing the stratum onto a floating excavator, and filling the equivalent of the ground volume transferred onto the floating excavator with the constituents of the high-speed jet fluid. In the method, Special Table 2012-518102, the excavator is lowered to the bottom of the sea by a riser, the MH layer is directly cut and crushed from the bottom of the sea, and the MH and water separated on the bottom of the sea are boosted by an underwater pump and transferred to the sea. According to Japanese Patent Application Laid-Open No. 2014-159710, a recovery method characterized by this, a submarine moving excavation facility is lowered to the sea bottom by an elevating winch, the MH layer is directly crushed by a bit attached to the tip of a high-pressure water nozzle, and the pressure is increased by a high-pressure pump. A recovery method characterized by transporting to the sea has been proposed.

また、特許第6432916号では、海底面と坑井内を隔離した閉鎖環境の中で掘削装置を坑井内に降下して高圧水をノズルから噴射することによりMHを切削・粉砕し、高圧水ポンプにより昇圧して海上に移送することを特徴とする回収方法が提案されている。この手法は、レアアース泥にも応用可能である。 Further, in Patent No. 6432916, the MH is cut and crushed by lowering the excavator into the well and injecting high-pressure water from the nozzle in a closed environment in which the sea surface and the inside of the well are isolated, and using a high-pressure water pump. A recovery method has been proposed, which comprises boosting the pressure and transferring it to the sea. This method can also be applied to rare earth mud.

特開2003−214082Japanese Patent Application Laid-Open No. 2003-214802 特表2012−518102Special table 2012-518102 特開2014−159710JP-A-2014-159710 特許第6432916号Patent No. 6432916

特開2003−214082の回収方法では、MH掘採装置と海底面下のMH層とは、掘採管、高速流体導管及び高圧管の3種類の管により連結され3重構造となっている。このような構造は浮遊式掘削船に波の波動を吸収するための波動吸収装置、天候急変や浮遊式掘削船の動力停止等の緊急事態が発生した場合にパイプを切断・坑井密閉して掘削ロケーションから離脱するための緊急密閉装置(BOP)や潮流・風向変化に対して自動的に船位を保持するための自動船位保持装置を備える必要があるため、これらの装置を運転・維持するための構造が複雑となり、現実的に安全に作業するのは難しいと考えられる。
また、特表2012−518102並びに特開2014−159710の回収方法では、MH採取後に大きな窪みが生じ、軟弱な海底地層においては海底地形の変形や地滑り等の発生や表層のMH層を切削・粉砕することによる、砂/泥の海水中への撹乱等の問題が発生する可能性が考えられる。
In the recovery method of JP-A-2003-214882, the MH excavation device and the MH layer under the sea floor are connected by three types of pipes, a mining pipe, a high-speed fluid conduit, and a high-pressure pipe, and have a triple structure. Such a structure is a wave absorber for absorbing the wave motion of the floating drillship, and the pipe is cut and the well is sealed in the event of an emergency such as a sudden change in the weather or a power stop of the floating drillship. To operate and maintain these devices because it is necessary to have an emergency sealing device (BOP) to leave the drilling location and an automatic positioning device to automatically maintain the ship position in response to changes in tidal current and wind direction. The structure of the is complicated, and it is considered difficult to work safely in reality.
Further, in the recovery methods of Special Table 2012-518102 and JP-A-2014-159710, a large dent is generated after MH is collected, and in a soft seafloor layer, deformation of the seafloor topography, landslide, etc. occur, and the surface MH layer is cut and crushed. As a result, problems such as disturbance of sand / mud in seawater may occur.

特許第6432916号の回収方法では、MHの採掘を、海底面と坑井内を隔離した閉鎖環境の中で行うため、砂/泥の海水中への撹乱等を発生させずに行うことが出来、MHを分離した後の水分を含む砂/泥については、採掘後の空隙に充填し埋め戻すため、地盤沈下等による海底地形の変形や地滑り等を防ぐことが出来る。
また、掘削用パイプを切断並びに坑井を密閉する機能を持った緊急密閉装置(BOP)、ホースを切り離すスイベル及び自動船位保持装置を備えているため、天候急変や浮遊式掘削船の動力停止等の緊急事態が発生した場合、安全に掘削ロケーションから離脱することが出来る。
In the recovery method of Patent No. 6432916, since the MH is mined in a closed environment in which the seabed and the inside of the well are separated, it is possible to perform the mining without causing disturbance of sand / mud in the seawater. Since the sand / mud containing water after the MH is separated is filled in the voids after mining and backfilled, it is possible to prevent deformation of the seabed topography and landslides due to land subsidence and the like.
In addition, since it is equipped with an emergency sealing device (BOP) that has the function of cutting excavation pipes and sealing wells, a swivel that disconnects hoses, and an automatic positioning device, sudden changes in the weather and power stoppage of floating drillships, etc. In the event of an emergency, you can safely leave the drilling location.

この回収方法が提案された時点で、高圧水ジェットの土壌内到達距離を伸ばし、経済性を高めるための課題について詳しくは検討されていなかった。このため、掘削パイプ(二重構造)の内管の外側と外管の内側とを通して地表より気体を吸い込み、高圧水ノズルより噴射される高圧水ジェットに気体皮膜として纏わせて水中に噴射することにより、土壌等の内部への到達距離を飛躍的に伸ばすことにより、レアアース泥並びにMHの回収量を高め経済性を改善する手法について提案した。 At the time this recovery method was proposed, the challenges of increasing the reach of high-pressure water jets in the soil and increasing economic efficiency had not been examined in detail. For this reason, gas is sucked from the ground surface through the outside of the inner pipe and the inside of the outer pipe of the excavation pipe (double structure), and the high-pressure water jet jetted from the high-pressure water nozzle is combined as a gas film and injected into the water. Therefore, we proposed a method to improve the economic efficiency by increasing the recovery amount of rare earth mud and MH by dramatically extending the reach to the inside of soil and the like.

尚、ベンチュリ効果により発生する負圧を利用して地表より吸い込まれる気体に空気を使用することがあるが、切削・粉砕する土壌にメタンガス等の炭化水素が含まれていた場合、これを誘爆させる危険性がある。このため、気体については窒素などの不燃性ガスや土壌に含まれる炭化水素と同等の炭化水素ガスを用いる必要がある。 Air may be used as the gas sucked from the surface of the earth by using the negative pressure generated by the Venturi effect, but if the soil to be cut or crushed contains hydrocarbons such as methane gas, it will be detonated. There is a risk. Therefore, it is necessary to use a nonflammable gas such as nitrogen or a hydrocarbon gas equivalent to the hydrocarbon contained in the soil.

本発明は、大水深(おおむね500m以深)の海底面下に賦存する鉱物資源の採掘において使用する高圧水ジェット噴射装置であって、内管と外管の二重管で構成され、内管の内側から高圧水を注入し内管の先端の高圧水ノズルから高圧水ジェットを噴射する構造と、前記高圧水ノズルと外管の先端のスロートとの間隙にベンチュリ効果により発生する負圧を利用して、内管の外側と外管の内側との間隙から気体を吸い込み、前記高圧水ノズルから噴射される前記高圧水ジェットに気体皮膜として纏わせる構造と、からなる高圧水ジェット噴射装置、であることを特徴とする。
なお高圧水の噴射圧力は、おおむね35MPaG以上である。
The present invention is a high-pressure water jet injection device used for mining mineral resources endowed under the sea bottom at a deep water depth (approximately 500 m or deeper), and is composed of a double pipe of an inner pipe and an outer pipe, and is composed of an inner pipe. Utilizes the structure of injecting high-pressure water from the inside of the pipe and injecting a high-pressure water jet from the high-pressure water nozzle at the tip of the inner pipe, and the negative pressure generated by the Venturi effect in the gap between the high-pressure water nozzle and the throat at the tip of the outer pipe. Then, a high-pressure water jet injection device comprising a structure in which gas is sucked from the gap between the outside of the inner pipe and the inside of the outer pipe and is bound as a gas film on the high-pressure water jet ejected from the high-pressure water nozzle. It is characterized by being.
The injection pressure of high-pressure water is generally 35 MPaG or more.

MHの採掘に本発明を適用する場合は、0011段落に記載の気体として炭化水素ガスを使用すれば、誘爆などの危険性を除くことが出来、また採掘されるMHに炭化水素ガス以外のガスが混入し製品価値が低下することを防止できる。 When the present invention is applied to the mining of MH, if a hydrocarbon gas is used as the gas described in paragraph 0011, the risk of detonation can be eliminated, and a gas other than the hydrocarbon gas can be used for the MH to be mined. Can be prevented from being mixed in and reducing the product value.

またレアアース泥の採掘に本発明を適用する場合には、MHの採掘のように製品価値の低下の懸念がないため、誘爆などの危険性を除くためには0011段落に記載の気体として窒素などの不燃性ガスを使用してもよい。 Further, when the present invention is applied to the mining of rare earth mud, unlike the mining of MH, there is no concern about a decrease in product value. Therefore, in order to eliminate the risk of detonation, nitrogen or the like is used as the gas described in paragraph 0011. Non-flammable gas may be used.

本発明を採用することで、高圧水ノズルから噴射する高圧水ジェットとスロートとの間隙にベンチュリ効果により発生する負圧を利用して地表から気体を吸い込むことにより、高圧水ジェットに気体皮膜として纏わせ、高圧水ジェットの空中噴射に近い条件を与えることにより、土壌内等への到達距離を飛躍的に伸ばすことが可能となる。 By adopting the present invention, gas is sucked from the ground surface by utilizing the negative pressure generated by the Venturi effect in the gap between the high-pressure water jet ejected from the high-pressure water nozzle and the throat, so that the high-pressure water jet is covered with a gas film. By giving conditions similar to the aerial injection of a high-pressure water jet, it is possible to dramatically extend the reach into the soil and the like.

掘削パイプ(二重構造)の内管の外側と外管の内側との間隙を通して高圧水ジェットとスロートとの間隙にベンチュリ効果により発生する負圧を利用して地表より気体を吸い込むため、地表において気体を高圧水ノズルまで圧入するための気体昇圧機/気体/配管などの関連設備並びにその設置スペースが不要になる効果もある。 Gas is sucked from the ground surface using the negative pressure generated by the Venturi effect in the gap between the high-pressure water jet and the throat through the gap between the outside of the inner pipe and the inside of the outer pipe of the excavation pipe (double structure). It also has the effect of eliminating the need for related equipment such as a gas booster / gas / pipe for press-fitting gas into the high-pressure water nozzle and its installation space.

本発明の高圧水ジェット噴射装置を示す図である。It is a figure which shows the high-pressure water jet injection apparatus of this invention.

図−1を参照しながら本発明を実施するための形態を記す。掘削用高圧水ポンプユニットから掘削パイプ(二重構造)の内管101の内側を通して高圧水105をポンプしながら、高圧水ノズル103より高圧水ジェット108として噴射させ、高圧水ジェット108とスロート104との間隙にベンチュリ効果により発生する負圧により、掘削パイプ(二重管)の内管101の外側と外管102の内側との間隙を通して地表より気体106を吸い込む。高圧水ノズル103より噴射された高圧水ジェット108は、掘削パイプ(二重管)の内管の外側と外管の内側との間隙を通して地表より吸い込まれた気体を気体皮膜107として纏わせて、土壌内等への到達距離を飛躍的に伸ばす。 A mode for carrying out the present invention will be described with reference to FIG. While pumping high-pressure water 105 from the high-pressure water pump unit for excavation through the inside of the inner pipe 101 of the excavation pipe (double structure), it is injected as a high-pressure water jet 108 from the high-pressure water nozzle 103, and the high-pressure water jet 108 and the throat 104 Due to the negative pressure generated by the venturi effect in the gap between the two, the gas 106 is sucked from the ground surface through the gap between the outside of the inner pipe 101 of the excavation pipe (double pipe) and the inside of the outer pipe 102. The high-pressure water jet 108 ejected from the high-pressure water nozzle 103 collects the gas sucked from the ground surface through the gap between the outside of the inner pipe of the excavation pipe (double pipe) and the inside of the outer pipe as a gas film 107. Dramatically increase the reach to the soil.

101 内管
102 外管
103 高圧水ノズル
104 スロート
105 高圧水
106 気体
107 気体皮膜
108 高圧水ジェット
101 Inner pipe 102 Outer pipe 103 High-pressure water nozzle 104 Throat 105 High-pressure water 106 Gas 107 Gas film 108 High-pressure water jet

日本海に代表される表層型MHと呼ばれる水深500〜5,000mの海底付近に形成された密集した塊状のMHの採掘や、南鳥島周辺の排他的経済水域内にある水深4,000〜6,000mの泥質堆積物(レアアース泥)の採掘や、陸上の都市部における建築物が密集している軟弱地盤の地盤改良工事における安全かつ土壌を切開しない施工方法などに高圧水ジェット噴射装置を使用する場合について、本発明を適用することにより、土壌内等への高圧水ジェットの到達距離が飛躍的に伸びることによって経済性が高くなるため、産業上の利用可能性が高いと判断する。 Dense and massive MH formed near the seabed at a depth of 500 to 5,000 m, which is called surface-type MH represented by the Sea of Japan, and 4,000 to 6 depths in the exclusive economic waters around Minamitorishima. A high-pressure water jet injection device is used for the mining of 000 m of mud deposits (rare earth mud) and the safe and non-cutting method for soil improvement work on soft ground where buildings are densely packed in urban areas on land. In the case of use, by applying the present invention, it is judged that the utility is high because the economic efficiency is increased by dramatically increasing the reach of the high-pressure water jet into the soil or the like.

Claims (3)

大水深の海底面下に賦存する鉱物資源の採掘において使用する高圧水ジェット噴射装置であって、
内管と外管の二重管で構成され、
掘削用高圧水ポンプユニットから前記内管の内側を通して高圧水を注入し前記内管の先端が絞られて径が細くなっている形状である高圧水ノズルから高圧水ジェットを噴射する構造と、
前記高圧水ノズルと、前記外管の先端が絞られて径が細くなっている形状であり、前記高圧水ノズルより突き出た位置にあるスロートとの間にある空間において発揮されるベンチュリ効果により発生する負圧を利用して、前記内管の外側と前記外管の内側との間隙を通して地表より気体を吸い込み、前記高圧水ノズルから噴射される前記高圧水ジェットに気体皮膜として纏わせる構造と、
からなる高圧水ジェット噴射装置。
A high-pressure water jet injection device used for mining mineral resources that exist under the seafloor at deep water.
Consists of a double pipe of inner pipe and outer pipe,
And structure for injecting high-pressure water jets from the high-pressure water nozzle is shaped from drilling high pressure water pump unit tip squeezed by the diameter of the injected high-pressure water within the tube is tapered through the inside of the inner tube,
And the high pressure water nozzle has a shape tip squeezed in diameter of the outer tube is tapered, generated by the Venturi effect exerted in the space between the throat in a protruding position from said high pressure water nozzle by utilizing the negative pressure, the structure in which the outside of the inner tube suction gas from the surface through the gap between the inside of the outer tube, clothed as a gas film on the high-pressure water jet ejected from the high-pressure water nozzle,
High-pressure water jet injection device consisting of.
気体として炭化水素ガスを使用する、請求項1に記載の高圧水ジェット噴射装置。 The high-pressure water jet injection device according to claim 1, wherein a hydrocarbon gas is used as the gas. 気体として不燃性ガスを使用する、請求項1に記載の高圧水ジェット噴射装置。 The high-pressure water jet injection device according to claim 1, wherein a nonflammable gas is used as the gas.
JP2019130791A 2019-07-16 2019-07-16 High-pressure water jet injection device using the Venturi effect Active JP6868758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019130791A JP6868758B2 (en) 2019-07-16 2019-07-16 High-pressure water jet injection device using the Venturi effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019130791A JP6868758B2 (en) 2019-07-16 2019-07-16 High-pressure water jet injection device using the Venturi effect

Publications (2)

Publication Number Publication Date
JP2021014740A JP2021014740A (en) 2021-02-12
JP6868758B2 true JP6868758B2 (en) 2021-05-12

Family

ID=74531859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130791A Active JP6868758B2 (en) 2019-07-16 2019-07-16 High-pressure water jet injection device using the Venturi effect

Country Status (1)

Country Link
JP (1) JP6868758B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873703B2 (en) 2021-02-16 2024-01-16 Japan Petroleum Exploration Co., Ltd. Method of underground storage of injection gas containing CO2 gas and enhanced oil recovery
CN116988794B (en) * 2023-09-28 2024-02-20 长沙矿冶研究院有限责任公司 Negative pressure acquisition head and negative pressure acquisition equipment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689690A (en) * 1979-12-22 1981-07-21 Tomio Suzuki Jet excavator
JPH0694652B2 (en) * 1989-01-27 1994-11-24 鹿島建設株式会社 Cement injection device for large diameter ground improvement
JPH0312926U (en) * 1989-06-19 1991-02-08
JPH086308B2 (en) * 1991-03-20 1996-01-24 株式会社エヌ、アイ、テイ Deformation ground improvement body construction method
JP3181653B2 (en) * 1992-01-10 2001-07-03 清之 堀井 Water jet nozzle
JP3231427B2 (en) * 1992-11-04 2001-11-19 清之 堀井 Solidifying agent jet nozzle and solidifying agent injection method
JP2000202326A (en) * 1999-01-13 2000-07-25 Mitsubishi Heavy Ind Ltd In-air cavitation jet nozzle
JP2001172960A (en) * 1999-12-16 2001-06-26 Shohei Senda Ground improving or reinforcing method
US6638024B1 (en) * 2000-10-12 2003-10-28 Bruce Jay Hancock Hydraulic air compressor system—employing a body of fluid to provide compression
FI20012086A0 (en) * 2001-10-26 2001-10-26 Top Shark Oy Procedure and apparatus for utilizing wave energy
JP3479699B2 (en) * 2002-01-18 2003-12-15 飛島建設株式会社 Gas hydrate mining method and equipment
JP4817302B2 (en) * 2006-03-28 2011-11-16 小野田ケミコ株式会社 Injection structure of high-pressure injection agitator
US20150107905A1 (en) * 2013-10-16 2015-04-23 Islander LLC Hydraulic borehole mining system and method
JP5774147B2 (en) * 2014-01-28 2015-09-02 三和地下工事株式会社 Blow-type drilling fluid injection device and high-pressure injection ground improvement method
US9995127B1 (en) * 2015-09-22 2018-06-12 Geodrilling Technologies, Inc. Low-frequency pulsing sonic and hydraulic mining method
JP6887262B2 (en) * 2017-02-07 2021-06-16 小野田ケミコ株式会社 High-pressure injection agitation device with a down-the-hole hammer and high-pressure injection agitation method using this

Also Published As

Publication number Publication date
JP2021014740A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6679038B1 (en) Mining method of I-type hydrate system based on vomiting displacement of warm seawater and gravel
JP3479699B2 (en) Gas hydrate mining method and equipment
Spagnoli et al. Preliminary design of a trench cutter system for deep-sea mining applications under hyperbaric conditions
JP6868758B2 (en) High-pressure water jet injection device using the Venturi effect
Johnson Development of the Wink Sink in west Texas, USA, due to salt dissolution and collapse
CN109281707A (en) A kind of advanced control method of face roof absciss layer water damage
CN104879159A (en) Gas permeability-increase extraction device and method for soft coal seam stoping face
CN108798608A (en) A kind of exploitation of gas hydrates system and method
JP2014159710A (en) Methane hydrate production facility
Wei et al. A state-of-the-art review and prospect of gas hydrate reservoir drilling techniques
CN208763630U (en) A kind of exploitation of gas hydrates system
JP6432916B1 (en) Methane hydrate mining method
Dobson et al. Mining Technology Assists Oil Recovery from Wyoming Field
CN104254661A (en) Method of drilling a well
RU2664281C1 (en) Method for developing kimberlite deposits
CN103603371B (en) Environments such as subsea pipe-jacking project is removed obstacles backfill jacking construction method in advance
CN114562238A (en) Top control and sand prevention exploitation method for deep sea natural gas hydrate
JP2000355960A (en) Intake method for deep ocean water
JP2006045839A (en) Well device having fluid injecting and recovering functions, and method of setting the well device
CN112627796B (en) Construction method of brine mining channel system
JP7016077B2 (en) Gas hydrate mining equipment and mining method
Wu et al. Development of a novel suction cylinder exploitation device for marine natural gas hydrate and the feasibility studies
Pacheco-Martínez et al. Zoning map of ground failure risk due to land susbidence of San Luís Potosí, Mexico
Garnett Offshore diamond mining in southern Africa
SU1382980A1 (en) Method of degassing outburst-hazardous seams

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6868758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150