JP6867021B2 - Overload detector, power transmission control device, overload detection method, and program - Google Patents

Overload detector, power transmission control device, overload detection method, and program Download PDF

Info

Publication number
JP6867021B2
JP6867021B2 JP2017100910A JP2017100910A JP6867021B2 JP 6867021 B2 JP6867021 B2 JP 6867021B2 JP 2017100910 A JP2017100910 A JP 2017100910A JP 2017100910 A JP2017100910 A JP 2017100910A JP 6867021 B2 JP6867021 B2 JP 6867021B2
Authority
JP
Japan
Prior art keywords
power
section
substation
transmission line
overload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100910A
Other languages
Japanese (ja)
Other versions
JP2018196312A (en
Inventor
和紀 塩見
和紀 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
NEC Platforms Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Platforms Ltd filed Critical NEC Platforms Ltd
Priority to JP2017100910A priority Critical patent/JP6867021B2/en
Publication of JP2018196312A publication Critical patent/JP2018196312A/en
Application granted granted Critical
Publication of JP6867021B2 publication Critical patent/JP6867021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、過負荷検出装置、方法、及びプログラムに関し、更に詳しくは、送電線の過負荷状態を検出する過負荷検出装置、方法、及びプログラムに関する。 The present invention relates to an overload detection device, a method, and a program, and more particularly to an overload detection device, a method, and a program for detecting an overload state of a transmission line.

また、本発明は、上記送電線の送電制御を行う送電制御装置に関する。 The present invention also relates to a power transmission control device that controls power transmission of the power transmission line.

送電線を過電流(過負荷)から保護する装置が知られている。例えば、特許文献1には、送電線に流れる電流を計測し、計測した電流が所定の設定値を超える場合に過負荷状態を検出する装置が記載されている。また、特許文献2には、送電線に流れる電流と送電線の周囲温度とに基づいて送電線の導体温度を演算し、導体温度が所定の設定値を超える場合に過負荷状態を検出する装置が記載されている。 Devices that protect transmission lines from overcurrent (overload) are known. For example, Patent Document 1 describes a device that measures a current flowing through a transmission line and detects an overload state when the measured current exceeds a predetermined set value. Further, Patent Document 2 describes a device that calculates the conductor temperature of a transmission line based on the current flowing through the transmission line and the ambient temperature of the transmission line, and detects an overload state when the conductor temperature exceeds a predetermined set value. Is described.

ここで、送電線には、例えば太陽光や風力などの再生可能エネルギーを用いて発電を行う発電機が接続される場合がある。一般に、そのような発電機の発電電力は、気象条件などに左右される。再生可能エネルギーの発電予測に関して、特許文献3には、日射量、風速、気温、及び降雨量などの様々な気象条件に基づいて、発電電力を予測することが開示されている。 Here, a generator that generates electricity using renewable energy such as solar power or wind power may be connected to the transmission line. In general, the power generated by such a generator depends on weather conditions and the like. Regarding the power generation prediction of renewable energy, Patent Document 3 discloses that the power generation is predicted based on various meteorological conditions such as the amount of solar radiation, the wind speed, the temperature, and the amount of rainfall.

特開2004−129428号公報Japanese Unexamined Patent Publication No. 2004-129428 特開平4−317511号公報Japanese Unexamined Patent Publication No. 4-317511 特開2014−26625号公報Japanese Unexamined Patent Publication No. 2014-26625

特許文献1及び2には、送電線の過負荷状態が検出された場合に、発電機と送電線との間に配置された遮断器を制御し、発電機から送電線への送電を停止することで、送電線の過負荷状態を回避することが記載されている。しかしながら、これら文献では、過負荷状態を事後的にしか検出できず、過負荷状態を事前に検知することはできない。このため、例えば電流が急激に増加し、過負荷が検出される前に電流の大きさが許容値を超えた場合に、送電線が破損する可能性がある。特許文献3は、単に、再生可能エネルギーの発電電力を予測することを開示しているに過ぎず、上記問題点を解消するための手段を提供しない。 In Patent Documents 1 and 2, when an overload state of a transmission line is detected, a breaker arranged between the generator and the transmission line is controlled to stop power transmission from the generator to the transmission line. By doing so, it is stated that the overload condition of the transmission line is avoided. However, in these documents, the overload state can be detected only after the fact, and the overload state cannot be detected in advance. Therefore, for example, if the current suddenly increases and the magnitude of the current exceeds the permissible value before the overload is detected, the transmission line may be damaged. Patent Document 3 merely discloses that the generated power of renewable energy is predicted, and does not provide a means for solving the above-mentioned problems.

本発明は、上記事情に鑑み、実際に過負荷状態となる前に送電線の過負荷状態を検知可能な過負荷検出装置、送電制御装置、過負荷検出方法、及びプログラムを提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide an overload detection device, a power transmission control device, an overload detection method, and a program capable of detecting an overload state of a transmission line before an actual overload state occurs. And.

上記目的を達成するために、本発明は、再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得する発電予測データ取得手段と、変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する区間電力算出手段と、前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段とを備える過負荷検出装置を提供する。 In order to achieve the above object, the present invention provides power generation prediction data showing a prediction result of the generated power of a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker. The power generation prediction data acquisition means for acquiring the power generation prediction data, the substation power data acquisition means for acquiring the substation power data including the data indicating the power transmitted from the substation to the transmission line, the power generation prediction data, and the substation. A section power calculation means for calculating the section power indicating the power of each divided section for each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator based on the power data. An overload detecting device including an overload determining means for comparing the section power with the threshold value set for each divided section and determining whether or not an overload state occurs in each of the divided sections. provide.

本発明は、また、再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得する発電予測データ取得手段と、変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する区間電力算出手段と、前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段と、前記過負荷判定手段における判定結果に応じて前記遮断器を制御する遮断器制御手段とを備える送電制御装置を提供する。 The present invention also obtains power generation prediction data indicating a power generation prediction result of a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker. Based on the acquisition means, the substation power data acquisition means for acquiring the substation power data including the data indicating the power transmitted from the substation to the transmission line, the power generation prediction data, and the substation power data. , A section power calculation means for calculating the section power indicating the power of each divided section for each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator, and the section power and each division. The overload determining means for comparing with the threshold value set for the section and determining whether or not an overload state occurs for each of the divided sections, and the overload determining means according to the determination result in the overload determining means. Provided is a power transmission control device including a breaker control means for controlling a breaker.

本発明は、再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力を予測し、変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得し、前記発電機の発電電力の予測結果を示す発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出し、前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷検出方法を提供する。 The present invention predicts the generated power of a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker, and transmits power supplied from the substation to the transmission line. The substation power data including the data indicating the above is acquired, and the transmission section of the transmission line is connected to the generator based on the power generation prediction data showing the prediction result of the generated power of the generator and the substation power data. For each of the plurality of divided sections divided by the node, the section power indicating the power of each divided section is calculated, the section power is compared with the threshold value set for each divided section, and the divided section is compared. Provided is an overload detection method for determining whether or not an overload state occurs for each of the above.

本発明は、コンピュータに、再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得し、変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得し、前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出し、前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する処理を実行させるためのプログラムを提供する。 The present invention acquires power generation prediction data showing the prediction result of the generated power of a generator that generates power by using renewable energy and supplies power to a transmission line connected via a breaker to a computer, and transforms the power. Substation power data including data indicating the power transmitted from the station to the transmission line is acquired, and the transmission section of the transmission line is the generator of the generator based on the power generation prediction data and the substation power data. For each of the plurality of divided sections divided by the connection node, the section power indicating the power of each divided section is calculated, the section power is compared with the threshold value set for each divided section, and the division is performed. Provided is a program for executing a process of determining whether or not an overload state occurs for each section.

本発明の過負荷検出装置、送電制御装置、過負荷検出方法、及びプログラムは、実際に過負荷状態となる前に送電線の過負荷状態を検知することができる。 The overload detection device, the power transmission control device, the overload detection method, and the program of the present invention can detect the overload state of the transmission line before the overload state actually occurs.

本発明の概略的な送電制御装置を示すブロック図。The block diagram which shows the schematic power transmission control apparatus of this invention. 本発明の一実施形態に係る過負荷検出装置を含む送電システムを示すブロック図。The block diagram which shows the power transmission system including the overload detection device which concerns on one Embodiment of this invention. 送電線過負荷検知装置の構成を示すブロック図。The block diagram which shows the structure of the transmission line overload detection device. 送電系統を示す系統図。A system diagram showing a power transmission system. 区間電力の算出に用いられる区間電力計算式を示す図。The figure which shows the section power calculation formula used for the calculation of a section power. 各分割区間に設定される判定しきい値を示す表。A table showing the judgment thresholds set for each division section. 区間電力の数値例を示す系統図。A system diagram showing a numerical example of section power. 区間電力計算式、計算結果、判定しきい値、及び過負荷状況の発生の有無を示す表。A table showing the section power calculation formula, calculation result, judgment threshold value, and whether or not an overload situation has occurred. 分割区間と遮断する発電機との対応関係を示す表。A table showing the correspondence between the divided section and the generator to be cut off. 遮断時の動作手順を示すフローチャート。A flowchart showing an operation procedure at the time of interruption. 復旧時の動作手順を示すフローチャート。A flowchart showing the operation procedure at the time of recovery.

本発明の実施形態の説明に先立って、本発明の概要を説明する。図1は、本発明の概略的な送電制御装置(システム)を示す。送電制御装置20は、発電予測データ取得手段11、変電所電力データ取得手段12、区間電力算出手段13、過負荷判定手段14、及び遮断器制御手段21を有する。送電制御装置20の構成要素のうち、発電予測データ取得手段11、変電所電力データ取得手段12、区間電力算出手段13、及び過負荷判定手段14は、過負荷検出装置10を構成する。 Prior to the description of the embodiments of the present invention, the outline of the present invention will be described. FIG. 1 shows a schematic power transmission control device (system) of the present invention. The power transmission control device 20 includes a power generation prediction data acquisition unit 11, a substation power data acquisition unit 12, a section power calculation unit 13, an overload determination unit 14, and a circuit breaker control unit 21. Among the components of the power transmission control device 20, the power generation prediction data acquisition means 11, the substation power data acquisition means 12, the section power calculation means 13, and the overload determination means 14 constitute the overload detection device 10.

過負荷検出装置10は、再生可能エネルギーを利用して発電する発電機が接続される送電線において過負荷状態が発生しているか否かを判断する。各発電機は、遮断器を介して送電線に接続される。発電予測データ取得手段11は、再生可能エネルギーを利用して発電する発電機の発電電力の予測結果を示す発電予測データを取得する。変電所電力データ取得手段12は、変電所から発電機が接続される送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する。 The overload detection device 10 determines whether or not an overload state has occurred in a transmission line to which a generator that generates electricity using renewable energy is connected. Each generator is connected to a transmission line via a circuit breaker. The power generation prediction data acquisition means 11 acquires power generation prediction data indicating a prediction result of the generated power of a generator that generates power using renewable energy. The substation power data acquisition means 12 acquires substation power data including data indicating the power transmitted from the substation to the transmission line to which the generator is connected.

区間電力算出手段13は、発電予測データと変電所電力データとに基づいて、送電線の送電区間が発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する。過負荷判定手段14は、算出された区間電力と各分割区間に対して設定されたしきい値とを比較する。過負荷判定手段14は、比較結果に基づいて、分割区間のそれぞれについて過負荷状態が生じるか否かを判定する。遮断器制御手段21は、過負荷判定手段14における判定結果に応じて発電機と送電線との間に配置された遮断器を制御する。 The section power calculation means 13 indicates the power of each divided section for each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator, based on the power generation prediction data and the substation power data. Calculate the section power. The overload determining means 14 compares the calculated section power with the threshold value set for each divided section. The overload determining means 14 determines whether or not an overload state occurs for each of the divided sections based on the comparison result. The circuit breaker control means 21 controls the circuit breaker arranged between the generator and the transmission line according to the determination result in the overload determination means 14.

本実施形態では、変電所から送電線に送電される電力と、再生可能エネルギーを利用して発電する発電機の発電電力の予測値とに基づいて、各分割区間における送電電力が計算される。本発明では、発電電力の予測値を用いて過負荷状態の有無を判定することで、実際に過負荷状態が生じる前の段階で、過負荷状態の発生を検知することができる。過負荷状態の発生が検知された場合に、遮断器を制御して、発電機から送電線への送電を停止させることで、過負荷状態の回避が可能である。 In the present embodiment, the power transmitted in each divided section is calculated based on the power transmitted from the substation to the transmission line and the predicted value of the generated power of the generator that generates power using renewable energy. In the present invention, by determining the presence or absence of an overload state using the predicted value of the generated power, it is possible to detect the occurrence of the overload state before the actual overload state occurs. When the occurrence of an overload state is detected, the overload state can be avoided by controlling the circuit breaker to stop the power transmission from the generator to the transmission line.

以下、図面を参照しつつ、本発明の実施の形態を詳細に説明する。図2は、本発明の一実施形態に係る過負荷検出装置を含む送電システムを示す。この送電システムは、遠方監視制御装置101、送電線過負荷検知装置102、発電予測装置103、変電所104、及び遮断器105を含む。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 shows a power transmission system including an overload detection device according to an embodiment of the present invention. This power transmission system includes a remote monitoring and control device 101, a power transmission line overload detection device 102, a power generation prediction device 103, a substation 104, and a circuit breaker 105.

遠方監視制御装置101は、例えば電力会社などの中央制御室などに配置される。遠方監視制御装置101は、通信回線を介して変電所104と接続されており、変電所104の監視及び制御を実施する。遠方監視制御装置101は、例えば遠方の変電所104に設置された制御装置と通信する通信装置、オペレータに各種情報を表示する表示装置、オペレータの操作を受け付ける操作卓、及び各種演算や制御などを行うサーバなどを含む。遠方監視制御装置101は、図示しない発電所の運転や停止などの制御も行う。 The remote monitoring and control device 101 is arranged in, for example, a central control room of an electric power company or the like. The remote monitoring and control device 101 is connected to the substation 104 via a communication line, and monitors and controls the substation 104. The distant monitoring control device 101 includes, for example, a communication device that communicates with a control device installed in a distant substation 104, a display device that displays various information to the operator, an operation console that accepts the operator's operation, and various calculations and controls. Including the server to do. The remote monitoring and control device 101 also controls the operation and stop of a power plant (not shown).

発電予測装置103は、再生可能エネルギーを利用して発電する発電機(そのような発電機を有する発電所)の発電電力を予測する。発電予測装置103は、例えば日照、気温、風速、及び降雨量などの気象条件に基づいて、発電電力を予測する。発電予測装置103が発電電力を予測する際に使用するアルゴリズムは特に限定されず、発電予測装置103は、任意の計算手法を用いて発電電力を予測する。 The power generation prediction device 103 predicts the generated power of a generator (a power plant having such a generator) that generates power using renewable energy. The power generation prediction device 103 predicts the generated power based on meteorological conditions such as sunshine, temperature, wind speed, and rainfall. The algorithm used by the power generation prediction device 103 to predict the generated power is not particularly limited, and the power generation prediction device 103 predicts the generated power by using an arbitrary calculation method.

送電線過負荷検知装置102は、変電所104間を接続する送電線の過負荷状態を検知する。送電線過負荷検知装置102は、例えば、送電線を変電所104や図示しない発電所ごとの区間に分け、区間ごとに過負荷状態が生じるか否かを判断する。本実施形態では、送電線過負荷検知装置102は、発電予測装置103が予測した発電電力を用いて、過負荷状態が生じるか否かの判断を行う。送電線過負荷検知装置102は、過負荷状態が生じると判断すると、遠方監視制御装置101に遮断器105の制御を要求し、送電線へ送電電力を低下させる。 The transmission line overload detection device 102 detects the overload state of the transmission line connecting the substations 104. The transmission line overload detection device 102 divides the transmission line into sections for each substation 104 and a power plant (not shown), and determines whether or not an overload state occurs for each section. In the present embodiment, the transmission line overload detection device 102 uses the generated power predicted by the power generation prediction device 103 to determine whether or not an overload state occurs. When the transmission line overload detection device 102 determines that an overload state occurs, it requests the remote monitoring control device 101 to control the circuit breaker 105, and reduces the power transmitted to the transmission line.

送電線過負荷検知装置102及び発電予測装置103は、例えばプロセッサ及びメモリなどを含むコンピュータ装置として構成される。送電線過負荷検知装置102と発電予測装置103とは、物理的に分離している必要はなく、1つの装置として構成されていてもよい。あるいは、送電線過負荷検知装置102及び発電予測装置103の少なくとも一方は、遠方監視制御装置101の一部であってもよい。送電線過負荷検知装置102は、図1の過負荷検出装置10に対応し、遠方監視制御装置101及び送電線過負荷検知装置102は、図1の送電制御装置20に対応する。 The transmission line overload detection device 102 and the power generation prediction device 103 are configured as a computer device including, for example, a processor and a memory. The transmission line overload detection device 102 and the power generation prediction device 103 do not need to be physically separated, and may be configured as one device. Alternatively, at least one of the transmission line overload detection device 102 and the power generation prediction device 103 may be a part of the remote monitoring control device 101. The power transmission line overload detection device 102 corresponds to the overload detection device 10 of FIG. 1, and the remote monitoring control device 101 and the power transmission line overload detection device 102 correspond to the power transmission control device 20 of FIG.

図3は、送電線過負荷検知装置102の構成を示す。送電線過負荷検知装置102は、データ受信部121、データ入力部122、データ蓄積部123、区間電力算出部124、過負荷判定部125、及び遮断要求部126を有する。送電線過負荷検知装置102において、例えばデータ受信部121、区間電力算出部124、過負荷判定部125、及び遮断要求部126の機能は、コンピュータがプログラムに従って動作することで実現され得る。 FIG. 3 shows the configuration of the transmission line overload detection device 102. The transmission line overload detection device 102 includes a data reception unit 121, a data input unit 122, a data storage unit 123, a section power calculation unit 124, an overload determination unit 125, and a cutoff request unit 126. In the transmission line overload detection device 102, for example, the functions of the data reception unit 121, the section power calculation unit 124, the overload determination unit 125, and the cutoff request unit 126 can be realized by operating the computer according to the program.

データ受信部121は、発電予測装置103から、再生可能エネルギーを利用して発電する発電機の発電電力の予測結果を示す発電予測データを取得する。発電予測装置103は、例えば翌日分の発電電力を予測する。発電予測装置103は、所定時間単位、例えば30分単位で発電電力を予測し、その予測結果を送電線過負荷検知装置102に送信する。データ受信部121は、例えば前日にその翌日の発電電力を予測した発電予測データを取得する。データ受信部121は、当日に発電電力の予測結果が変更になった場合は、変更後の発電予測データを取得する。 The data receiving unit 121 acquires power generation prediction data indicating a prediction result of the generated power of a generator that generates power using renewable energy from the power generation prediction device 103. The power generation prediction device 103 predicts, for example, the power generated for the next day. The power generation prediction device 103 predicts the generated power in predetermined time units, for example, in units of 30 minutes, and transmits the prediction result to the transmission line overload detection device 102. The data receiving unit 121 acquires, for example, power generation prediction data that predicts the power generated on the previous day and the next day. When the prediction result of the generated power is changed on the day, the data receiving unit 121 acquires the changed power generation prediction data.

また、データ受信部121は、遠方監視制御装置101から、変電所104(図2を参照)から送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する。データ受信部121は、遠方監視制御装置101から、例えば送電線電流を示すデータを取得する。データ受信部121は、例えば所定の周期で、遠方監視制御装置101から現在の送電電力を示すデータを取得する。データ受信部121は、遠方監視制御装置101から、例えば30分ごとに、変電所104から送電線に送電される送電電力を示すデータと、変電所104が送電線から受電する受電電力を示すデータとを取得する。データ受信部121は、図1の発電予測データ取得手段11及び変電所電力データ取得手段12として機能する。 In addition, the data receiving unit 121 acquires substation power data including data indicating the power transmitted from the substation 104 (see FIG. 2) to the transmission line from the remote monitoring and control device 101. The data receiving unit 121 acquires, for example, data indicating a transmission line current from the remote monitoring and control device 101. The data receiving unit 121 acquires data indicating the current power transmission power from the remote monitoring and control device 101, for example, at a predetermined cycle. The data receiving unit 121 includes data indicating the transmitted power transmitted from the remote monitoring and control device 101 to the transmission line from the substation 104, for example, and data indicating the received power received by the substation 104 from the transmission line every 30 minutes. And get. The data receiving unit 121 functions as the power generation prediction data acquisition means 11 and the substation power data acquisition means 12 of FIG.

データ入力部122は、送電線区間、区間電力計算式、過負荷の判定しきい値、過負荷状態が生じた場合に遮断の対象とする発電機、及びその際の遮断順位などを示す各種情報を入力する。データ入力部122は、例えばキーボードやポインティングデバイスなどの入力装置を含む。データ蓄積部123は、例えばハードディスク装置などの補助記憶装置であり、データ受信部121が取得した発電予測データ及び変電所電力データや、データ入力部122から入力された各種データを記憶する。 The data input unit 122 has various information indicating a transmission line section, a section power calculation formula, an overload determination threshold value, a generator to be shut off when an overload state occurs, a shutoff order at that time, and the like. Enter. The data input unit 122 includes an input device such as a keyboard or a pointing device. The data storage unit 123 is an auxiliary storage device such as a hard disk device, and stores power generation prediction data and substation power data acquired by the data reception unit 121, and various data input from the data input unit 122.

区間電力算出部124は、発電予測データと変電所電力データとに基づいて、送電線の送電区間が発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する。区間電力算出部124は、例えば送電線に対する変電所及び発電機の接続関係に応じて定義される区間電力計算式に従って、区間電力を算出する。区間電力計算式は、データ入力部122から入力され、データ蓄積部123に記憶される。区間電力計算式は、例えば送電線に接続された変電所の電力の送受電のパターンごとに定義される。 The section power calculation unit 124 indicates the power of each divided section for each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator based on the power generation prediction data and the substation power data. Calculate the section power. The section power calculation unit 124 calculates the section power according to the section power calculation formula defined according to the connection relationship between the substation and the generator to the transmission line, for example. The section power calculation formula is input from the data input unit 122 and stored in the data storage unit 123. The section power calculation formula is defined for each pattern of power transmission / reception of a substation connected to a transmission line, for example.

過負荷判定部125は、区間電力算出部124で算出された区間電力に基づいて、分割区間のそれぞれについて過負荷状態が生じるか否かを判定する。過負荷判定部125は、過負荷状態の判定では、区間電力と各分割区間に対して設定された判定しきい値とを比較する。過負荷判定部125は、区間電力が判定しきい値以上の場合は過負荷状態が生じると判定し、区間電力が判定しきい値未満の場合は過負荷状態が生じないと判定する。判定しきい値は、データ入力部122から入力され、データ蓄積部123に記憶される。 The overload determination unit 125 determines whether or not an overload state occurs for each of the divided sections based on the section power calculated by the section power calculation unit 124. The overload determination unit 125 compares the section power with the determination threshold value set for each divided section in determining the overload state. The overload determination unit 125 determines that an overload state occurs when the section power is equal to or greater than the determination threshold value, and determines that an overload state does not occur when the section power is less than the determination threshold value. The determination threshold value is input from the data input unit 122 and stored in the data storage unit 123.

遮断要求部126は、過負荷判定部125で過負荷状態が生じると判定されると、遮断器105の遮断要求を遠方監視制御装置101に送信する。遠方監視制御装置101は、図1の遮断器制御手段21に対応する手段を有しており、遮断要求部126から送信される遮断要求に従って、発電機の遮断(遮断器105の開閉)を制御する。遮断要求部126は、過負荷判定部125で過負荷状態が生じると判定されると、過負荷状態が生じると判定された分割区間に接続される発電機の少なくとも1つに対応する遮断器105を遮断して、発電機の少なくとも1つを送電線から分離させる。遮断要求部126は、例えば分割区間ごとに設定された遮断対象の発電機を、あらかじめ定められた遮断順序に基づいて分離(遮断)させる。 When the overload determination unit 125 determines that an overload state occurs, the circuit breaker request unit 126 transmits a circuit breaker request for the circuit breaker 105 to the remote monitoring control device 101. The remote monitoring control device 101 has means corresponding to the circuit breaker control means 21 of FIG. 1, and controls the circuit breaker (opening / closing of the circuit breaker 105) of the generator according to the circuit breaker request transmitted from the circuit breaker request unit 126. To do. When the overload determination unit 125 determines that an overload state occurs, the cutoff request unit 126 is a circuit breaker 105 corresponding to at least one of the generators connected to the divided section determined to cause the overload state. To separate at least one of the generators from the transmission line. The cutoff requesting unit 126 separates (cuts off), for example, the generators to be cut off set for each divided section based on a predetermined cutoff order.

なお、上記では、送電線過負荷検知装置102が遠方監視制御装置101から変電所電力データを取得する例を説明したが、これには限定されず、送電線過負荷検知装置102が変電所104から電力データを収集することとしてもよい。また、上記では、送電線過負荷検知装置102が、遠方監視制御装置101を通じて遮断器105を開閉する例を説明したが、これには限定されない。送電線過負荷検知装置102は、遮断器制御手段21に対応する手段を有していてもよく、遠方監視制御装置101を介さずに遮断器105の開閉を制御してもよい。 In the above description, an example in which the transmission line overload detection device 102 acquires the substation power data from the remote monitoring control device 101 has been described, but the present invention is not limited to this, and the transmission line overload detection device 102 is the substation 104. Power data may be collected from. Further, in the above description, an example in which the transmission line overload detection device 102 opens and closes the circuit breaker 105 through the remote monitoring control device 101 has been described, but the present invention is not limited to this. The transmission line overload detection device 102 may have a means corresponding to the circuit breaker control means 21, and may control the opening and closing of the circuit breaker 105 without going through the remote monitoring control device 101.

図4は、送電系統を示す。ここでは、変電所104(図2を参照)として、変電所A141と変電所B142とを考え、これら変電所A141及び変電所B142が、2つの送電線171及び172で接続されている場合を考える。変電所A141と送電線171との接続ノードをAL1とし、変電所B142と送電線171との接続ノードをBL1とする。また、変電所A141と送電線172との接続ノードをAL2とし、変電所B142と送電線172との接続ノードをBL2とする。 FIG. 4 shows a power transmission system. Here, consider the substation A141 and the substation B142 as the substation 104 (see FIG. 2), and consider the case where the substation A141 and the substation B142 are connected by two transmission lines 171 and 172. .. The connection node between the substation A141 and the transmission line 171 is AL1, and the connection node between the substation B142 and the transmission line 171 is BL1. Further, the connection node between the substation A141 and the transmission line 172 is AL2, and the connection node between the substation B142 and the transmission line 172 is BL2.

変電所A141及び変電所B142は、それぞれ図示しない他の変電所や発電所にも接続されている。変電所A141及び変電所B142は、それぞれ他の変電所や発電所から電力の供給を受け、供給される電力を送電線171及び172に送電する。あるいは、変電所A141及び変電所B142は、送電線171及び172を介して電力を受電し、受電した電力を他の送電線などを介して他の変電所などに供給する。 The substation A141 and the substation B142 are also connected to other substations and power plants (not shown). Substation A141 and substation B142 receive power from other substations and power plants, respectively, and transmit the supplied power to transmission lines 171 and 172. Alternatively, the substation A141 and the substation B142 receive electric power via the transmission lines 171 and 172, and supply the received electric power to another substation or the like via another transmission line or the like.

送電線171には、再生可能エネルギーを利用して発電する発電機(G1)161及び発電機(G2)162が、対応する遮断器(CB1)151及び遮断器(CB2)152を介して接続される。送電線171と発電機161との接続ノードをg1とし、送電線171と発電機162との接続ノードをg2とする。一方、送電線172には、再生可能エネルギーを利用して発電する発電機(G3)163及び発電機(G4)164が、対応する遮断器(CB3)153及び遮断器(CB4)154を介して接続される。送電線172と発電機163との接続ノードをg3とし、送電線172と発電機164との接続ノードをg4とする。 A generator (G1) 161 and a generator (G2) 162 that generate electricity using renewable energy are connected to the transmission line 171 via the corresponding circuit breaker (CB1) 151 and the circuit breaker (CB2) 152. To. The connection node between the transmission line 171 and the generator 161 is g1, and the connection node between the transmission line 171 and the generator 162 is g2. On the other hand, in the transmission line 172, a generator (G3) 163 and a generator (G4) 164 that generate electricity using renewable energy are transmitted via the corresponding circuit breaker (CB3) 153 and the circuit breaker (CB4) 154. Be connected. The connection node between the transmission line 172 and the generator 163 is g3, and the connection node between the transmission line 172 and the generator 164 is g4.

上記の場合、送電線171の変電所A141と変電所B142との間の送電区間は、ノードAL1〜g1、ノードg1〜g2、及びノードg2〜BL2の3つの区間に分割される。また、送電線172の変電所A141と変電所B142との間の送電区間は、ノードAL2〜g3、ノードg3〜g4、及びノードg4〜BL2の3つの区間に分割される。区間電力算出部124(図3を参照)は、これら6つの区間(分割区間)における区間電力を算出する。 In the above case, the transmission section between the substation A141 and the substation B142 of the transmission line 171 is divided into three sections of nodes AL1 to g1, nodes g1 to g2, and nodes g2 to BL2. Further, the transmission section between the substation A141 and the substation B142 of the transmission line 172 is divided into three sections of nodes AL2 to g3, nodes g3 to g4, and nodes g4 to BL2. The section power calculation unit 124 (see FIG. 3) calculates the section power in these six sections (divided sections).

なお、説明簡略化のために、図4には簡略化された系統図が示されているが、送電系統はより複雑なものであってもよい。例えば、送電線は途中に分岐箇所を有していてもよく、ある変電所から送電された電力が、2つの変電所で受電されてもよい。 Although a simplified system diagram is shown in FIG. 4 for simplification of explanation, the power transmission system may be more complicated. For example, the transmission line may have a branch point in the middle, and the electric power transmitted from a certain substation may be received by two substations.

図5は、区間電力の算出に用いられる区間電力計算式を示す。前提として、ある送電線に対して送電を行う少なくとも1つの変電所が存在し、かつ、その送電線から受電する少なくとも1つの変電所が存在するものとする。変電所のノードの電力が「+」(0を含む正の数)の場合は変電所が送電を行う、つまり変電所からから送電線に電力(電流)が供給される旨を示し、「−」の場合は変電所が受電を行う、つまり変電所に対して送電線から電力が供給される旨を示す。 FIG. 5 shows a section power calculation formula used for calculating the section power. As a premise, it is assumed that there is at least one substation that transmits power to a certain transmission line and that there is at least one substation that receives power from that transmission line. When the power of the substation node is "+" (a positive number including 0), it indicates that the substation transmits power, that is, power (current) is supplied from the substation to the transmission line, and "-" In the case of "", it means that the substation receives power, that is, power is supplied to the substation from the transmission line.

区間電力計算式は、送電線に接続された変電所の電力の送受電のパターンごとに定義される。図5において、区間電力計算式に記述されるAL1、AL2、BL1、及びBL2は、変電所が送電線に現在送電している送電電力、又は変電所が送電線から現在受電している受電電力を表す。また、区間電力計算式に記述されるg1〜g4は、発電予測装置103(図2及び図3を参照)で予測された発電機151〜154の発電電力を表す。各分割区間の区間電力は、変電所104における送受電のパターンに応じてこれらの絶対値を加算することで、算出することができる。 The section power calculation formula is defined for each pattern of power transmission / reception of the substation connected to the transmission line. In FIG. 5, AL1, AL2, BL1, and BL2 described in the section power calculation formula are the transmission power currently transmitted by the substation to the transmission line, or the received power currently received by the substation from the transmission line. Represents. Further, g1 to g4 described in the section power calculation formula represent the generated power of the generators 151 to 154 predicted by the power generation prediction device 103 (see FIGS. 2 and 3). The section power of each divided section can be calculated by adding these absolute values according to the pattern of power transmission / reception at the substation 104.

例えば、変電所A141が送電線171及び172に送電し、変電所B142が送電線171及び172から受電する場合を考える。つまり、ノードAL1及びAL2の電力が「+」で、ノードBL1及びBL2の電力が「−」である場合を考える。この場合、各分割区間の区間電力計算式は、図5のNo.1で定義される。例えば図4に示される送電線171における発電機151と発電機152との間の送電区間(区間g1〜g2)の区間電力は、変電所A141から送電線171に供給される電力AL1と、発電機151の発電電力の予測値g1との和(AL1+g1)で算出される。なお、1つの送電線から受電する変電所が複数ある場合は、分岐直前の分割区間の区間電力を、受電している変電所の現在の受電電力の比で分配して区間電力を計算すればよい。 For example, consider the case where the substation A141 transmits power to the transmission lines 171 and 172 and the substation B142 receives power from the transmission lines 171 and 172. That is, consider the case where the power of the nodes AL1 and AL2 is "+" and the power of the nodes BL1 and BL2 is "-". In this case, the section power calculation formula for each divided section is No. 5 in FIG. Defined in 1. For example, the section power of the transmission section (section g1 to g2) between the generator 151 and the generator 152 in the transmission line 171 shown in FIG. 4 is the power AL1 supplied from the substation A141 to the transmission line 171 and the power generation. It is calculated by the sum (AL1 + g1) of the predicted value g1 of the generated power of the machine 151. If there are multiple substations that receive power from one transmission line, the section power can be calculated by dividing the section power of the split section immediately before branching by the ratio of the current received power of the substation receiving power. Good.

図6は、各分割区間に設定される判定しきい値を示す。この例では、分割区間(送電区間)AL1〜g1、g1〜g2、g2〜BL1、BL2〜g4、g4〜g3、及びg3〜AL2に対して、500MWが判定しきい値として設定されている。判定しきい値は、分割区間ごとに異なっていてもよい。過負荷判定部125(図3を参照)は、各分割区間に対して算出した区間電力と、各分割区間に対して設定された判定しきい値とを比較し、過負荷状態が生じる分割区間が存在するか否かを判断する。 FIG. 6 shows a determination threshold value set for each division section. In this example, 500 MW is set as the determination threshold value for the divided sections (transmission section) AL1 to g1, g1 to g2, g2 to BL1, BL2 to g4, g4 to g3, and g3 to AL2. The determination threshold value may be different for each division section. The overload determination unit 125 (see FIG. 3) compares the section power calculated for each division section with the determination threshold value set for each division section, and the division section in which the overload state occurs. Determine if exists.

図7は、区間電力の数値例を示す。ここでは、変電所A141が送電線171及び172に対してそれぞれ送電を行う場合を考える。データ受信部121(図3を参照)は、遠方監視制御装置101から、現在のノードAL1の送電電力+100MWと、ノードAL2の送電電力+200MWとを取得し、データ蓄積部123に変電所電力データとして記憶する。また、データ受信部121は、前日に、発電予測装置103から翌日分の各発電機の発電電力の予測結果を取得しており、データ蓄積部123に発電予測データとして記憶している。 FIG. 7 shows a numerical example of the section power. Here, consider the case where the substation A141 transmits power to the transmission lines 171 and 172, respectively. The data receiving unit 121 (see FIG. 3) acquires the current power transmission power of the node AL1 + 100 MW and the power transmission power of the node AL2 + 200 MW from the remote monitoring control device 101, and supplies the data storage unit 123 as substation power data. Remember. Further, the data receiving unit 121 has acquired the prediction result of the generated power of each generator for the next day from the power generation prediction device 103 on the previous day, and stores it in the data storage unit 123 as the power generation prediction data.

図8は、図7の例における区間電力計算式と、計算結果、判定しきい値、及び過負荷状況の発生の有無をまとめた表を示す。上記の場合、区間電力算出部124は、図5のNo.1の区間電力計算式を用いて、各分割区間の区間電力を算出する。区間電力算出部124は、例えばデータ受信部121が新たな変電所電力データを取得しデータ蓄積部123に記憶すると、その変電所電力データをデータ蓄積部123から読み出す。また、区間電力算出部124は、現在時刻が属する時間帯の次の時間帯における発電予測データをデータ蓄積部123から読み出す。区間電力算出部124は、読み出した変電所電力データと発電予測データとを区間電力計算式に適用し、次の時間帯のおける各分割区間の区間電力(その予測値)を算出する。 FIG. 8 shows a section power calculation formula in the example of FIG. 7, a calculation result, a determination threshold value, and a table summarizing the presence / absence of an overload situation. In the above case, the section power calculation unit 124 has the No. 5 in FIG. The section power of each divided section is calculated using the section power calculation formula of 1. When, for example, the data receiving unit 121 acquires new substation power data and stores it in the data storage unit 123, the section power calculation unit 124 reads the substation power data from the data storage unit 123. Further, the section power calculation unit 124 reads out the power generation prediction data in the time zone next to the time zone to which the current time belongs from the data storage unit 123. The section power calculation unit 124 applies the read substation power data and the power generation prediction data to the section power calculation formula, and calculates the section power (the predicted value thereof) of each divided section in the next time zone.

区間電力算出部124は、現在時刻が属する時間帯の次の時間帯において、例えばノードAL1〜g1の分割区間の区間電力が100MW、ノードg1〜g2の分割区間の区間電力が200MW、ノードg2〜BL1の分割区間の区間電力が300MWであるという計算結果を出力する。また、区間電力算出部124は、次の時間帯において、ノードBL2〜g4の分割区間の区間電力が600MW、ノードg4〜g3の分割区間の区間電力が400MW、ノードg3〜AL2の分割区間の区間電力が200MWであるという計算結果を出力する。 In the time zone next to the time zone to which the current time belongs, the section power calculation unit 124 has, for example, that the section power of the divided section of the nodes AL1 to g1 is 100 MW, the section power of the divided section of the nodes g1 to g2 is 200 MW, and the node g2 to g2. The calculation result that the section power of the partition section of BL1 is 300 MW is output. Further, in the next time zone, the section power calculation unit 124 has a section power of 600 MW for the divided section of the nodes BL2 to g4, 400 MW for the section power of the divided section of the nodes g4 to g3, and a section of the divided section of the nodes g3 to AL2. Outputs the calculation result that the power is 200 MW.

過負荷判定部125は、区間電力算出部124が計算した各分割区間の区間電力と判定しきい値とを比較する。各分割区間の判定しきい値が500MWであった場合、過負荷判定部125は、分割区間BL2〜g4の区間電力(600MW)が判定しきい値(500MW)を超えていると判定し、次の時間帯において、その区間で過負荷状態が生じると判断する。他の分割区間については、区間電力は判定しきい値を下回っているため、次の時間帯において過負荷状態は生じないと判断できる。 The overload determination unit 125 compares the section power of each divided section calculated by the section power calculation unit 124 with the determination threshold value. When the determination threshold value of each division section is 500 MW, the overload determination unit 125 determines that the section power (600 MW) of the division sections BL2 to g4 exceeds the determination threshold value (500 MW), and then determines that the interval power (600 MW) exceeds the determination threshold value (500 MW). It is judged that an overload state occurs in that section in the time zone of. For the other divided sections, since the section power is below the judgment threshold value, it can be judged that the overload state does not occur in the next time zone.

図9は、分割区間と過負荷が生じた場合に遮断する発電機との対応関係を示す。例えば管理者は、事前に、過負荷状態が生じると判断された場合に遮断する発電機及びその遮断順序を設定する情報を、データ入力部122(図3を参照)を用いて送電線過負荷検知装置102に入力している。遮断要求部126は、何れかの区間で過負荷状態が生じると判断されると、図9に示される情報を参照して、どの発電機を遮断するか、つまりどの発電機に対応する遮断器を「開」にするかを決定する。 FIG. 9 shows the correspondence between the divided section and the generator that shuts off when an overload occurs. For example, the administrator uses the data input unit 122 (see FIG. 3) to provide information for setting the generator to be shut off when it is determined that an overload condition occurs and the shutoff order thereof in advance. It is input to the detection device 102. When the cutoff requesting unit 126 determines that an overload state occurs in any section, the cutoff requesting unit 126 refers to the information shown in FIG. 9, which generator is cut off, that is, which generator corresponds to the breaker. To "open".

遮断要求部126は、遠方監視制御装置101を通じて、分割区間ごとに設定された遮断順位で、過負荷状態が解消するまで発電機を遮断する。遮断要求部126は、例えば分割区間BL2〜g4において過負荷状態が生じると判断された場合、遠方監視制御装置101に対して、発電機G4、G3、G2、G1の順で、対応する遮断器CB4、CB3、CB2、CB1を「開」に制御することを要求する。なお、分割区間BL2〜g4は送電線172の送電区間に含まれており、送電線172には発電機(G1)161及び発電機(G2)162は直接接続されていない。発電機161及び162の遮断が、送電線172において生じる過負荷状態の解消に有効でない場合、それら発電機は遮断順位から除外されていてもよい。 The cutoff requesting unit 126 shuts off the generator through the remote monitoring control device 101 in the cutoff order set for each divided section until the overload state is resolved. When it is determined that an overload state occurs in the divided sections BL2 to g4, for example, the circuit breaker requesting unit 126 corresponds to the remote monitoring control device 101 in the order of the generators G4, G3, G2, and G1. It is required to control CB4, CB3, CB2, and CB1 to "open". The divided sections BL2 to g4 are included in the power transmission section of the power transmission line 172, and the generator (G1) 161 and the generator (G2) 162 are not directly connected to the power transmission line 172. If the interruptions of the generators 161 and 162 are not effective in eliminating the overload condition that occurs in the transmission line 172, those generators may be excluded from the interruption order.

以下、動作手順を示す。図10は、遮断時の動作手順を示す。管理者などは、データ入力部122(図3を参照)を用いて、システムの動作に必要な各種情報(データ)を入力する(ステップA1)。ステップA1では、例えば送電線の送電区間を発電所や変電所で分割した分割区間を示す情報、各区間の区間電力計算式を定義する情報、区間ごとに設定された判定しきい値を示す情報、過負荷状態が生じる場合に遮断する発電機を指定する情報、及び遮断順位を示す情報などが入力される。ステップA1で入力された情報は、データ蓄積部123に記憶される。 The operation procedure is shown below. FIG. 10 shows an operation procedure at the time of interruption. An administrator or the like inputs various information (data) necessary for system operation by using the data input unit 122 (see FIG. 3) (step A1). In step A1, for example, information indicating a divided section in which a transmission section of a transmission line is divided by a power plant or a substation, information defining a section power calculation formula for each section, and information indicating a judgment threshold set for each section. , Information that specifies a generator to shut off when an overload condition occurs, information that indicates the shutoff order, and the like are input. The information input in step A1 is stored in the data storage unit 123.

データ受信部121は、発電予測装置103から発電予測データを取得する(ステップA2)。データ受信部121は、例えば発電予測装置103から、翌日分の発電予測結果を示す発電予測データを取得し、データ蓄積部123に記憶する。発電予測データの取得は、例えば1日に1回実施される。発電予測装置103が生成する発電予測データが変更された場合は、変更後の発電予測データがデータ蓄積部123に記憶され、以降の処理において使用される。 The data receiving unit 121 acquires power generation prediction data from the power generation prediction device 103 (step A2). The data receiving unit 121 acquires power generation prediction data indicating the power generation prediction result for the next day from, for example, the power generation prediction device 103, and stores it in the data storage unit 123. Acquisition of power generation prediction data is carried out, for example, once a day. When the power generation prediction data generated by the power generation prediction device 103 is changed, the changed power generation prediction data is stored in the data storage unit 123 and used in the subsequent processing.

データ受信部121は、遠方監視制御装置101から、変電所の現在の変電所電力データを取得する(ステップA3)。データ受信部121は、例えば所定時間が経過するごとに、定期的に遠方監視制御装置101から変電所電力データを取得し、データ蓄積部123に記憶する。 The data receiving unit 121 acquires the current substation power data of the substation from the remote monitoring control device 101 (step A3). The data receiving unit 121 periodically acquires the substation power data from the remote monitoring control device 101 and stores it in the data storage unit 123, for example, every time a predetermined time elapses.

区間電力算出部124は、ステップA2で取得された発電予測データと、ステップA3で取得された変電所電力データとを用いて、各分割区間の区間電力を算出する(ステップA4)。区間電力算出部124は、ステップA4では、例えば前日に取得された当日分の発電予測データと、現在の変電所電力データとに基づいて、分割区間のそれぞれについて区間電力を算出する。区間電力算出部124は、既に遮断された発電機がある場合は、その発電機を除外して区間電力を算出する。 The section power calculation unit 124 calculates the section power of each divided section by using the power generation prediction data acquired in step A2 and the substation power data acquired in step A3 (step A4). In step A4, the section power calculation unit 124 calculates the section power for each of the divided sections based on, for example, the power generation prediction data for the current day acquired on the previous day and the current substation power data. If there is a generator that has already been shut off, the section power calculation unit 124 excludes the generator and calculates the section power.

過負荷判定部125は、ステップA4で算出された各分割の区間電力と、各分割区間の判定しきい値とを比較し、区間電力が判定しきい値以上であるか否かを判断する(ステップA5)。過負荷判定部125は、区間電力が判定しきい値以上である分割区間が存在する場合は、その分割区間において過負荷状態が生じると判定する。区間電力が判定しきい値よりも小さいと判断された場合、処理はステップA3に戻り、ステップA3において次の変電所電力データが取得される。 The overload determination unit 125 compares the section power of each division calculated in step A4 with the determination threshold value of each division section, and determines whether or not the section power is equal to or greater than the determination threshold value ( Step A5). The overload determination unit 125 determines that an overload state occurs in the divided section when there is a divided section in which the section power is equal to or higher than the determination threshold value. When it is determined that the section power is smaller than the determination threshold value, the process returns to step A3, and the next substation power data is acquired in step A3.

遮断要求部126は、ステップA5で過負荷状態が生じると判定されると、遠方監視制御装置101に遮断要求を送信し、送電線に接続される発電機の少なくとも1つを遮断する(ステップA6)。遮断要求部126は、例えば現在時刻が、過負荷状態が生じると判定された時間帯の開始時刻になると、遠方監視制御装置101に遮断要求を送信する。発電機が遮断されることで、送電線へ供給される電力が低下し、過負荷状態の発生を事前に回避することが可能である。その後、処理はステップA3に戻り、ステップA3において次の変電所電力データが取得される。 When the cutoff request unit 126 determines that an overload state occurs in step A5, the cutoff request unit 126 transmits a cutoff request to the remote monitoring control device 101 to shut off at least one of the generators connected to the transmission line (step A6). ). The cutoff request unit 126 transmits a cutoff request to the remote monitoring control device 101, for example, when the current time reaches the start time of the time zone in which the overload state is determined to occur. By shutting off the generator, the power supplied to the transmission line is reduced, and it is possible to avoid the occurrence of an overload state in advance. After that, the process returns to step A3, and the next substation power data is acquired in step A3.

なお、上記手順に従って遮断された遮断器(発電機)は、その発電機から送電線への送電を再開した場合でも過負荷状態が生じないと判定された場合に、復旧させることができる。例えば、遮断要求部126は、遮断器の遮断が実施された後で、かつ遮断された遮断器が再投入された場合でも過負荷状態が生じないと判定される場合は、遮断した遮断器の再投入を遠方監視制御装置101に要求してもよい。 The circuit breaker (generator) cut off according to the above procedure can be restored when it is determined that the overload state does not occur even when the power transmission from the generator to the transmission line is restarted. For example, if it is determined that the overload state does not occur even if the circuit breaker is re-introduced after the circuit breaker has been shut off, the circuit breaker requesting unit 126 of the circuit breaker has been cut off. The remote monitoring and control device 101 may be requested to be recharged.

図11は、遮断器の復旧時の手順を示す。区間電力算出部124は、遮断中の発電機があるか否かを判断する(ステップB1)。遮断中の発電機がない場合、処理はステップB1に戻る。区間電力算出部124は、ステップB1で遮断中の発電機があると判断した場合、発電機が復旧した場合の区間電力、つまり対応する遮断器が「閉」の場合の区間電力を算出する(ステップB2)。区間電力算出部124は、ステップB2では、例えば区間電力計算式に、遮断中の発電機の発電電力が含まれる分割区間について、区間電力を算出する。 FIG. 11 shows a procedure for restoring the circuit breaker. The section power calculation unit 124 determines whether or not there is a generator that is shut off (step B1). If there is no generator shut off, the process returns to step B1. When the section power calculation unit 124 determines that there is a generator that is shut off in step B1, the section power calculation unit 124 calculates the section power when the generator is restored, that is, the section power when the corresponding circuit breaker is “closed” ( Step B2). In step B2, the section power calculation unit 124 calculates the section power for the divided section including the generated power of the generator being cut off, for example, in the section power calculation formula.

過負荷判定部125は、ステップB2で算出された区間電力が、発電機の復旧に関連した復旧しきい値以下であるか否かを判断する(ステップB3)。復旧しきい値は、例えば、過負荷状態か否かの判定に用いられる判定しきい値よりも少し低い値に設定される。遮断要求部126は、ステップB3で区間電力が復旧しきい値以下であると判断されると、遠方監視制御装置101に復旧要求を送信し、遮断中の発電機に対応する遮断器を「閉」に制御する(ステップB4)。遮断器が「閉」となることで、発電機から送電線への送電が再開される。 The overload determination unit 125 determines whether or not the section power calculated in step B2 is equal to or less than the recovery threshold value related to the recovery of the generator (step B3). The recovery threshold value is set to a value slightly lower than the determination threshold value used for determining whether or not the overload state is present, for example. When the cutoff request unit 126 determines in step B3 that the section power is equal to or less than the recovery threshold value, the cutoff request unit 126 transmits a recovery request to the remote monitoring control device 101 and "closes" the circuit breaker corresponding to the generator being cut off. (Step B4). When the circuit breaker is "closed", power transmission from the generator to the transmission line is resumed.

ステップB3で区間電力が復旧しきい値よりも大きいと判断された場合、処理はステップB1に戻る。区間電力算出部124は、例えば新たな変電所電力データが得られるたびにステップB2を実行し、区間電力の算出結果を更新する。このようにすることで、過負荷状態が解消した場合に、発電機を送電系統に自動で復帰させることができる。なお、遮断された発電機の送電系統への復帰は、遠方監視制御装置101のオペレータが手動で実施してもよい。 If it is determined in step B3 that the section power is greater than the recovery threshold, the process returns to step B1. The section power calculation unit 124 executes step B2 every time, for example, new substation power data is obtained, and updates the section power calculation result. By doing so, when the overload state is resolved, the generator can be automatically returned to the power transmission system. The operator of the remote monitoring and control device 101 may manually return the cut-off generator to the power transmission system.

本実施形態では、送電線過負荷検知装置102は、発電予測装置103から再生可能エネルギーの発電電力の予測結果を取得する。送電線過負荷検知装置102は、送電線の分割区間ごとに、発電電力の予測結果を用いて、過負荷状態が生じるか否かを判定する。本実施形態では、過負荷状態が生じるか否かの判定に、再生可能エネルギーの発電電力の予測結果が用いられる。予測結果を用いて過負荷状態が生じるか否かを判定することで、実際に過負荷状態が生じる前に、過負荷状態が生じることを検知することができる。このため、再生可能エネルギーの発電電力が急激に増加するような場合でも、過負荷状態の発生を事前に検知することができ、送電線の破損や停電などの事態を防ぐことができる。 In the present embodiment, the transmission line overload detection device 102 acquires the prediction result of the generated power of the renewable energy from the power generation prediction device 103. The transmission line overload detection device 102 determines whether or not an overload state occurs by using the prediction result of the generated power for each divided section of the transmission line. In the present embodiment, the prediction result of the generated power of the renewable energy is used to determine whether or not an overload state occurs. By determining whether or not an overload state occurs using the prediction result, it is possible to detect that an overload state occurs before the overload state actually occurs. Therefore, even when the generated power of renewable energy suddenly increases, the occurrence of an overload state can be detected in advance, and situations such as damage to the transmission line and power failure can be prevented.

以上、本発明の実施形態を詳細に説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で上記実施形態に対して変更や修正を加えたものも、本発明に含まれる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and changes and modifications are made to the above-described embodiments without departing from the spirit of the present invention. Also included in the present invention.

上記実施形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、例えばフレキシブルディスク、磁気テープ、又はハードディスクなどの磁気記録媒体、例えば光磁気ディスクなどの光磁気記録媒体、CD(compact disc)、又はDVD(digital versatile disk)などの光ディスク媒体、及び、マスクROM(read only memory)、PROM(programmable ROM)、EPROM(erasable PROM)、フラッシュROM、又はRAM(random access memory)などの半導体メモリを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)を用いてコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバなどの有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above embodiment, the program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-temporary computer-readable media are magnetic recording media such as flexible disks, magnetic tapes, or hard disks, such as magneto-optical recording media such as magneto-optical discs, CDs (compact discs), or DVDs (digital versatile disks). Includes optical disk media such as, and semiconductor memories such as mask ROM (read only memory), PROM (programmable ROM), EPROM (erasable PROM), flash ROM, or RAM (random access memory). The program may also be supplied to the computer using various types of transient computer readable media. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。 For example, some or all of the above embodiments may also be described, but not limited to:

[付記1]
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量の予測結果を示す発電予測データを取得する発電予測データ取得手段と、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出する区間電力算出手段と、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段とを備える過負荷検出装置。
[Appendix 1]
A power generation prediction data acquisition means for acquiring power generation prediction data showing a prediction result of the amount of power generated by a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker.
Substation power data acquisition means for acquiring substation power data including data indicating the amount of power transmitted from the substation to the transmission line, and
Based on the power generation prediction data and the substation power data, the section power indicating the amount of power in each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator. Section power calculation means for calculating data and
An overload detection device including an overload determining means for comparing the section power data with a threshold value set for each divided section and determining whether or not an overload state occurs for each of the divided sections. ..

[付記2]
前記発電予測データ取得手段は、前日に当日の発電電力量を予測した発電予測データを取得する付記1に記載の過負荷検出装置。
[Appendix 2]
The overload detection device according to Appendix 1, wherein the power generation prediction data acquisition means acquires power generation prediction data that predicts the amount of power generated on the day before.

[付記3]
前記発電予測データ取得手段は、当日に前記発電機の発電電力量の予測が変更された場合は、変更後の発電予測データを取得する付記2に記載の過負荷検出装置。
[Appendix 3]
The overload detection device according to Appendix 2, wherein the power generation prediction data acquisition means acquires the changed power generation prediction data when the prediction of the power generation amount of the generator is changed on the day.

[付記4]
前記区間電力算出手段は、前記送電線に対する前記変電所及び前記発電機の接続関係に応じて定義される区間電力計算式に従って前記区間電力データを算出する付記1から3何れか1つに記載の過負荷検出装置。
[Appendix 4]
The section power calculation means is described in any one of Supplementary notes 1 to 3 for calculating the section power data according to the section power calculation formula defined according to the connection relationship between the substation and the generator to the transmission line. Overload detector.

[付記5]
前記区間電力計算式は、前記送電線に接続された変電所の電力の送受電のパターンごとに定義される付記4に記載の過負荷検出装置。
[Appendix 5]
The overload detection device according to Appendix 4, wherein the section power calculation formula is defined for each pattern of power transmission / reception of power of a substation connected to the transmission line.

[付記6]
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量の予測結果を示す発電予測データを取得する発電予測データ取得手段と、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、
前記発電予測データと前記送受電電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出する区間電力算出手段と、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段と、
前記過負荷判定手段における判定結果に応じて前記遮断器を制御する遮断器制御手段とを備える送電制御装置。
[Appendix 6]
A power generation prediction data acquisition means for acquiring power generation prediction data showing a prediction result of the amount of power generated by a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker.
Substation power data acquisition means for acquiring substation power data including data indicating the amount of power transmitted from the substation to the transmission line, and
Based on the power generation prediction data and the power transmission / reception power data, the section power indicating the amount of power in each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator. Section power calculation means for calculating data and
An overload determining means for comparing the section power data with the threshold value set for each divided section and determining whether or not an overload state occurs for each of the divided sections.
A power transmission control device including a circuit breaker control means that controls the circuit breaker according to a determination result in the overload determination means.

[付記7]
前記遮断器制御手段は、前記過負荷判定手段が過負荷状態が生じると判定すると、過負荷状態が生じると判定された分割区間に接続される発電機の少なくとも1つに対応する遮断器を遮断して、前記発電機の少なくとも1つを前記送電線から切り離す付記6に記載の送電制御装置。
[Appendix 7]
When the overload determining means determines that an overload state occurs, the circuit breaker control means shuts off a circuit breaker corresponding to at least one of the generators connected to the divided section determined to cause the overload state. The power transmission control device according to Appendix 6, wherein at least one of the generators is separated from the power transmission line.

[付記8]
前記遮断器制御手段は、あらかじめ定められた優先順位に従った順序で前記遮断器を遮断する付記7に記載の送電制御装置。
[Appendix 8]
The power transmission control device according to Appendix 7, wherein the circuit breaker control means shuts off the circuit breaker in an order according to a predetermined priority.

[付記9]
前記遮断器制御手段は、前記遮断器の遮断を実施した後で、かつ前記過負荷判定手段が前記遮断された遮断器が再投入された場合に過負荷状態が生じないと判定した場合、前記遮断した遮断器の再投入を行う付記7又は8に記載の送電制御装置。
[Appendix 9]
When the circuit breaker control means determines that an overload state does not occur when the circuit breaker is re-introduced after the circuit breaker has been shut off, the overload determining means said. The power transmission control device according to Appendix 7 or 8, wherein the circuit breaker that has been cut off is turned on again.

[付記10]
前記発電予測データを生成する発電予測装置を更に有する付記6から9何れか1つに記載の送電制御装置。
[Appendix 10]
The power transmission control device according to any one of Supplementary note 6 to 9, further comprising a power generation prediction device for generating the power generation prediction data.

[付記11]
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量を予測し、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得し、
前記発電機の発電電力量の予測結果を示す発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出し、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷検出方法。
[Appendix 11]
Predict the amount of power generated by a generator that uses renewable energy to generate electricity and supplies power to transmission lines connected via breakers.
Acquire substation power data including data indicating the amount of power transmitted from the substation to the transmission line.
Based on the power generation prediction data showing the prediction result of the power generation amount of the generator and the substation power data, each of the plurality of division sections in which the transmission section of the transmission line is divided by the connection node of the generator. , Calculate the section power data showing the amount of power in each divided section,
An overload detection method for comparing the section power data with a threshold value set for each divided section and determining whether or not an overload state occurs for each of the divided sections.

[付記12]
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量を予測し、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得し、
前記発電機の発電電力量の予測結果を示す発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出し、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定し、
前記過負荷状態が生じるか否かの判定結果に応じて前記遮断器を制御する送電制御方法。
[Appendix 12]
Predict the amount of power generated by a generator that uses renewable energy to generate electricity and supplies power to transmission lines connected via breakers.
Acquire substation power data including data indicating the amount of power transmitted from the substation to the transmission line.
Based on the power generation prediction data showing the prediction result of the power generation amount of the generator and the substation power data, each of the plurality of division sections in which the transmission section of the transmission line is divided by the connection node of the generator. , Calculate the section power data showing the amount of power in each divided section,
The section power data is compared with the threshold value set for each divided section, and it is determined whether or not an overload state occurs for each of the divided sections.
A power transmission control method for controlling the circuit breaker according to a determination result of whether or not the overload state occurs.

[付記13]
コンピュータに、
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量の予測結果を示す発電予測データを取得し、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得し、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出し、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する処理を実行させるためのプログラム。
[Appendix 13]
On the computer
Acquire power generation prediction data showing the prediction result of the amount of power generated by a generator that uses renewable energy to generate power and supplies power to transmission lines connected via a breaker.
Acquire substation power data including data indicating the amount of power transmitted from the substation to the transmission line.
Based on the power generation prediction data and the substation power data, the section power indicating the amount of power in each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator. Calculate the data,
A program for comparing the section power data with the threshold value set for each divided section and executing a process of determining whether or not an overload state occurs for each of the divided sections.

[付記14]
コンピュータに、
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力量の予測結果を示す発電予測データを取得し、
変電所から前記送電線へ供給される送電電力量を示すデータを含む変電所電力データを取得し、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力量を示す区間電力データを算出し、
前記区間電力データと各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定し、
前記過負荷状態が生じるか否かの判定結果に応じて前記遮断器を制御する処理を実行させるためのプログラム。
[Appendix 14]
On the computer
Acquire power generation prediction data showing the prediction result of the amount of power generated by a generator that uses renewable energy to generate power and supplies power to transmission lines connected via a breaker.
Acquire substation power data including data indicating the amount of power transmitted from the substation to the transmission line.
Based on the power generation prediction data and the substation power data, the section power indicating the amount of power in each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator. Calculate the data,
The section power data is compared with the threshold value set for each divided section, and it is determined whether or not an overload state occurs for each of the divided sections.
A program for executing a process of controlling the circuit breaker according to a determination result of whether or not the overload state occurs.

10:過負荷検出装置
11:発電予測データ取得手段
12:変電所電力データ取得手段
13:区間電力算出手段
14:過負荷判定手段
20:送電制御装置
21:遮断器制御手段
101:遠方監視制御装置
102:送電線過負荷検知装置
103:発電予測装置
104、141、142:変電所
105、151〜154:遮断器
121:データ受信部
122:データ入力部
123:データ蓄積部
124:区間電力算出部
125:過負荷判定部
126:遮断要求部
161〜164:発電機
171、172:送電線
10: Overload detection device 11: Power generation prediction data acquisition means 12: Substation power data acquisition means 13: Section power calculation means 14: Overload determination means 20: Power transmission control device 21: Circuit breaker control means 101: Remote monitoring control device 102: Transmission line overload detection device 103: Power generation prediction device 104, 141, 142: Substation 105, 151-154: Circuit breaker 121: Data receiving unit 122: Data input unit 123: Data storage unit 124: Section power calculation unit 125: Overload determination unit 126: Cutoff request unit 161 to 164: Generator 171 and 172: Transmission line

Claims (10)

再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得する発電予測データ取得手段と、
変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する区間電力算出手段と、
前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段とを備える過負荷検出装置。
A power generation prediction data acquisition means for acquiring power generation prediction data showing the prediction result of the generated power of a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker.
Substation power data acquisition means for acquiring substation power data including data indicating the power transmitted from the substation to the transmission line, and
Based on the power generation prediction data and the substation power data, for each of the plurality of division sections in which the transmission section of the transmission line is divided by the connection node of the generator, the section power indicating the power of each division section is calculated. Section power calculation means to calculate and
An overload detecting device including an overload determining means for comparing the section power with a threshold value set for each divided section and determining whether or not an overload state occurs in each of the divided sections.
前記区間電力算出手段は、前記送電線に対する前記変電所及び前記発電機の接続関係に応じて定義される区間電力計算式に従って前記区間電力を算出する請求項1に記載の過負荷検出装置。 The overload detection device according to claim 1, wherein the section power calculation means calculates the section power according to a section power calculation formula defined according to the connection relationship between the substation and the generator to the transmission line. 前記区間電力計算式は、前記送電線に接続された変電所の電力の送受電のパターンごとに定義される請求項2に記載の過負荷検出装置。 The overload detection device according to claim 2, wherein the section power calculation formula is defined for each pattern of power transmission / reception of power of a substation connected to the transmission line. 再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得する発電予測データ取得手段と、
変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得する変電所電力データ取得手段と、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出する区間電力算出手段と、
前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷判定手段と、
前記過負荷判定手段における判定結果に応じて前記遮断器を制御する遮断器制御手段とを備える送電制御装置。
A power generation prediction data acquisition means for acquiring power generation prediction data showing the prediction result of the generated power of a generator that generates power using renewable energy and supplies power to a transmission line connected via a breaker.
Substation power data acquisition means for acquiring substation power data including data indicating the power transmitted from the substation to the transmission line, and
Based on the power generation prediction data and the substation power data, for each of the plurality of division sections in which the transmission section of the transmission line is divided by the connection node of the generator, the section power indicating the power of each division section is calculated. Section power calculation means to calculate and
An overload determining means for comparing the section power with the threshold value set for each divided section and determining whether or not an overload state occurs for each of the divided sections.
A power transmission control device including a circuit breaker control means that controls the circuit breaker according to a determination result in the overload determination means.
前記遮断器制御手段は、前記過負荷判定手段が過負荷状態が生じると判定すると、過負荷状態が生じると判定された分割区間に接続される発電機の少なくとも1つに対応する遮断器を遮断して、前記発電機の少なくとも1つを前記送電線から切り離す請求項4に記載の送電制御装置。 When the overload determining means determines that an overload state occurs, the circuit breaker control means shuts off a circuit breaker corresponding to at least one of the generators connected to the divided section determined to cause the overload state. The power transmission control device according to claim 4, wherein at least one of the generators is separated from the power transmission line. 前記遮断器制御手段は、あらかじめ定められた優先順位に従った順序で前記遮断器を遮断する請求項5に記載の送電制御装置。 The power transmission control device according to claim 5, wherein the circuit breaker control means shuts off the circuit breaker in an order according to a predetermined priority. 前記遮断器制御手段は、前記遮断器の遮断を実施した後で、かつ前記過負荷判定手段が前記遮断された遮断器が再投入された場合に過負荷状態が生じないと判定した場合、前記遮断した遮断器の再投入を行う請求項5又は6に記載の送電制御装置。 When the circuit breaker control means determines that an overload state does not occur when the circuit breaker is re-introduced after the circuit breaker has been shut off, the overload determining means said. The power transmission control device according to claim 5 or 6, wherein the circuit breaker that has been cut off is turned on again. 前記発電予測データを生成する発電予測装置を更に有する請求項4から7何れか1項に記載の送電制御装置。 The power transmission control device according to any one of claims 4 to 7, further comprising a power generation prediction device that generates the power generation prediction data. 再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力を予測し、
変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得し、
前記発電機の発電電力の予測結果を示す発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出し、
前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する過負荷検出方法。
Predict the power generated by a generator that uses renewable energy to generate electricity and supplies power to transmission lines connected via circuit breakers.
Acquire substation power data including data indicating the power transmitted from the substation to the transmission line.
Based on the power generation prediction data showing the prediction result of the generated power of the generator and the substation power data, for each of the plurality of divided sections in which the transmission section of the transmission line is divided by the connection node of the generator. Calculate the section power indicating the power of each divided section,
An overload detection method for comparing the section power with a threshold value set for each divided section and determining whether or not an overload state occurs for each of the divided sections.
コンピュータに、
再生可能エネルギーを利用して発電し、遮断器を介して接続される送電線に電力を供給する発電機の発電電力の予測結果を示す発電予測データを取得し、
変電所から前記送電線へ供給される送電電力を示すデータを含む変電所電力データを取得し、
前記発電予測データと前記変電所電力データとに基づいて、前記送電線の送電区間が前記発電機の接続ノードで分割された複数の分割区間のそれぞれについて、各分割区間の電力を示す区間電力を算出し、
前記区間電力と各分割区間に対して設定されたしきい値とを比較し、前記分割区間のそれぞれについて過負荷状態が生じるか否かを判定する処理を実行させるためのプログラム。
On the computer
Acquire power generation prediction data showing the prediction result of the generated power of the generator that generates power using renewable energy and supplies power to the transmission line connected via the breaker.
Acquire substation power data including data indicating the power transmitted from the substation to the transmission line.
Based on the power generation prediction data and the substation power data, for each of the plurality of division sections in which the transmission section of the transmission line is divided by the connection node of the generator, the section power indicating the power of each division section is calculated. Calculate and
A program for comparing the section power with the threshold value set for each divided section and executing a process of determining whether or not an overload state occurs in each of the divided sections.
JP2017100910A 2017-05-22 2017-05-22 Overload detector, power transmission control device, overload detection method, and program Active JP6867021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100910A JP6867021B2 (en) 2017-05-22 2017-05-22 Overload detector, power transmission control device, overload detection method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100910A JP6867021B2 (en) 2017-05-22 2017-05-22 Overload detector, power transmission control device, overload detection method, and program

Publications (2)

Publication Number Publication Date
JP2018196312A JP2018196312A (en) 2018-12-06
JP6867021B2 true JP6867021B2 (en) 2021-04-28

Family

ID=64571842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100910A Active JP6867021B2 (en) 2017-05-22 2017-05-22 Overload detector, power transmission control device, overload detection method, and program

Country Status (1)

Country Link
JP (1) JP6867021B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591247B2 (en) * 1997-11-04 2004-11-17 株式会社日立製作所 Loosely coupled power system controller
JP2003061247A (en) * 2001-08-10 2003-02-28 Toshiba Corp Device for calculating section load in distribution line
JP3926616B2 (en) * 2001-12-12 2007-06-06 関西電力株式会社 Operating system of distribution system linked to distributed power supply
JP2004056996A (en) * 2002-05-31 2004-02-19 Hitachi Ltd Local electric power intelligence supervisory system and its operation method
JP2004274812A (en) * 2003-03-05 2004-09-30 Hitachi Ltd Method for supporting to maintain power quality in distribution system and system
JP2008187806A (en) * 2007-01-29 2008-08-14 Chugoku Electric Power Co Inc:The Distributed power supply transfer interrupting system and its communicating method
JP5935268B2 (en) * 2011-09-05 2016-06-15 住友電気工業株式会社 Power generation control system
JP6773025B2 (en) * 2015-03-25 2020-10-21 日本電気株式会社 Data analysis device, data analysis method, and program

Also Published As

Publication number Publication date
JP2018196312A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
Amraee et al. Probabilistic under frequency load shedding considering RoCoF relays of distributed generators
US20240313535A1 (en) Proactive intelligent load shedding
JP4616206B2 (en) Power system stability determination method and apparatus
JP7085336B2 (en) How to control the power distribution microgrid
Zhang et al. Remedial action schemes and defense systems
US10734810B2 (en) Coordinated frequency load shedding protection method using distributed electrical protection devices
JP2016534706A (en) Method and apparatus for detecting and correcting instability within a distribution system
Sass et al. Automated corrective actions by VSC-HVDC-systems: A novel remedial action scheme
JP7131971B2 (en) Power system stabilization system and power system stabilization method
US20220239149A1 (en) Method for monitoring an electricity supply grid
Farzinfar et al. Coordinated protection and control scheme for smooth transition from grid-connected to islanded mode of microgrids
Staszewski et al. DLR-supported overcurrent line protection for blackout prevention
Riquelme-Dominguez et al. Improved harmony search algorithm to compute the underfrequency load shedding parameters
Yao et al. Forewarned is forearmed: An automated system for remedial action schemes
JP6867021B2 (en) Overload detector, power transmission control device, overload detection method, and program
US20230018146A1 (en) Method and central computer arrangement for predicting a grid state, and computer program product
Hoseinzadeh et al. Centralized coordination of load shedding and protection system of transmission lines
Nie et al. Measuring and Enabling Transmission Systems Resiliency with Renewable Wind Energy Systems
Nanou et al. Evaluation of DC voltage control strategies for multi-terminal HVDC grids comprising island systems with high RES penetration
Arghandeh et al. Synchronized measurements and their applications in distribution systems: An update
JP4044512B2 (en) Power system stabilization control device and power system stabilization control method
Hoese Control algorithm of a WAPS for the Central Interconnected Power System in Chile (SIC)
Yosia et al. Real Time Simulation of New Defense Scheme Based on Centralized Remedial Action Scheme For Batam-Bintan Electrical System Implementation
Štefko et al. Design of a Protection System for Distributed Energy Sources in Distribution Grids.
JP2015027199A (en) Power system stabilization system and power system stabilization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6867021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150