JP6866727B2 - Method for producing rosin ester and rosin ester - Google Patents

Method for producing rosin ester and rosin ester Download PDF

Info

Publication number
JP6866727B2
JP6866727B2 JP2017067475A JP2017067475A JP6866727B2 JP 6866727 B2 JP6866727 B2 JP 6866727B2 JP 2017067475 A JP2017067475 A JP 2017067475A JP 2017067475 A JP2017067475 A JP 2017067475A JP 6866727 B2 JP6866727 B2 JP 6866727B2
Authority
JP
Japan
Prior art keywords
component
rosin
production method
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067475A
Other languages
Japanese (ja)
Other versions
JP2017186324A (en
Inventor
幸治 山田
幸治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Publication of JP2017186324A publication Critical patent/JP2017186324A/en
Application granted granted Critical
Publication of JP6866727B2 publication Critical patent/JP6866727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins
    • C09F1/04Chemical modification, e.g. esterification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はロジンエステルの製造方法に関する。本製造方法により、淡色なロジンエステルが比較的短時間で提供できる。 The present invention relates to a method for producing a rosin ester. By this production method, a light-colored rosin ester can be provided in a relatively short time.

ロジンエステルはロジンとアルコールの反応物であり、従来、粘接着剤や印刷インキ、トラフィックペイント、ゴム及びプラスチック等の添加剤や改質剤として賞用されている。 Rosin ester is a reaction product of rosin and alcohol, and has been conventionally used as an additive or modifier for adhesives, printing inks, traffic paints, rubbers, plastics, and the like.

ところで、ロジンエステルの製造には一般に長時間を要する。これは、原料ロジン中の樹脂酸のカルボキシル基が第三級炭素に結合しており、その立体障害によって反応性が乏しいためである。 By the way, it generally takes a long time to produce a rosin ester. This is because the carboxyl group of the resin acid in the raw material rosin is bonded to the tertiary carbon, and the reactivity is poor due to its steric hindrance.

また、ロジンエステルは通常、黄色ないし黄褐色を呈しており、また高温に曝されると色調が劣化しやすい。これは、樹脂酸のうちアビエチン酸が分子内に共役二重結合を有し、この部位が酸化されるためである。 In addition, rosin esters are usually yellow to yellowish brown, and their color tone tends to deteriorate when exposed to high temperatures. This is because abietic acid among the resin acids has a conjugated double bond in the molecule and this site is oxidized.

ロジンエステルの製造時間を短縮化する手段としては、従来、例えば、硫酸、リン酸、亜リン酸及び次亜リン酸等の無機酸や、パラトルエンスルホン酸、メタンスルホン酸及びドデシルベンゼンスルホン酸等の有機酸、水酸化リチウム等のアルカリ金属化合物、水酸化カルシウム及び酸化マグネシウム等のアルカリ土類金属化合物、亜燐酸エステル等の反応触媒が公知である(特許文献1を参照)。 Conventionally, as means for shortening the production time of the rosin ester, for example, inorganic acids such as sulfuric acid, phosphoric acid, phosphoric acid and hypophosphoric acid, paratoluene sulfonic acid, methane sulfonic acid, dodecylbenzene sulfonic acid and the like are used. Reaction catalysts such as organic acids, alkali metal compounds such as lithium hydroxide, alkaline earth metal compounds such as calcium hydroxide and magnesium oxide, and phosphite esters are known (see Patent Document 1).

また、従来、不均化触媒としては、例えば2,2’−チオビス(4−メチル−6−ターシャリーブチルフェノール)等のフェノール系化合物(特許文献2を参照)が知られているが、この不均化触媒が淡色化する手段としても利用されている。 Further, conventionally, as a disproportionation catalyst, phenolic compounds such as 2,2'-thiobis (4-methyl-6-terrary butylphenol) (see Patent Document 2) have been known, but this is not possible. It is also used as a means for the leveling catalyst to lighten its color.

特公昭63−49713号公報Special Publication No. 63-49713 米国特許第3780013号公報U.S. Patent No. 3780013

しかしながら、特許文献1の手法では時短効果は不十分であり、また、得られるロジンエステルの色調も濃い。また特許文献2に記載のフェノール系化合物はエステル化触媒としての効果は乏しい。特に、ロジンエステルを製造する際にトリオールないしテトラオールのようなポリオールを用いる場合、製造時間は更に長時間化し、かつアビエチン酸中に含まれる共役二重結合が酸化されやすいため、淡色で且つ色調安定性も良好なロジンエステルを製造することが困難であった。 However, the method of Patent Document 1 is insufficient in the time saving effect, and the obtained rosin ester has a deep color tone. Further, the phenolic compound described in Patent Document 2 has little effect as an esterification catalyst. In particular, when a polyol such as triol or tetraol is used in the production of rosin ester, the production time is further extended, and the conjugated double bond contained in abietic acid is easily oxidized, resulting in a light color and a color tone. It was difficult to produce a rosin ester with good stability.

本発明の課題は、淡色なロジンエステルを短時間で効率よく製造できる方法の提供にある。 An object of the present invention is to provide a method capable of efficiently producing a pale rosin ester in a short time.

本発明者は、ロジンエステルの製造の際、アルカリ土類金属化合物と特定のアルキルホスホン酸誘導体を含む触媒群を用いたり、両者の反応物を触媒として用いたりすることにより前記課題が解決可能なことを見出した。即ち本発明は、以下に示すロジンエステルの製造方法に関する。 The present inventor can solve the above-mentioned problems by using a catalyst group containing an alkaline earth metal compound and a specific alkylphosphonic acid derivative in the production of a rosin ester, or by using a reaction product of both as a catalyst. I found that. That is, the present invention relates to the following method for producing a rosin ester.

項目1.ロジン類(A)とアルコール(B)を、下記一般式(1)で示されるホスホン酸誘導体(c1)及びアルカリ土類金属化合物(c2)又は
下記一般式(1)で示されるホスホン酸誘導体(c1)とアルカリ土類金属化合物(c2)の反応物である塩化合物(C’)を含む触媒群(C)の存在下でエステル化反応させることを特徴とする、ロジンエステルの製造方法。

Figure 0006866727
(式(1)中、Rは炭素数が少なくとも7のアルキル基を、Xは炭素数が少なくとも1のアルキル基又は水素を示す。) Item 1. The rosins (A) and the alcohol (B) are the phosphonic acid derivative (c1) represented by the following general formula (1) and the alkaline earth metal compound (c2) or the phosphonic acid derivative represented by the following general formula (1) (1). A method for producing a rosin ester, which comprises conducting an esterification reaction in the presence of a catalyst group (C) containing a salt compound (C') which is a reaction product of c1) and an alkaline earth metal compound (c2).
Figure 0006866727
(In the formula (1), R represents an alkyl group having at least 7 carbon atoms, and X represents an alkyl group or hydrogen having at least 1 carbon atoms.)

項目2.(A)成分が、原料ロジン類及び/又はその誘導体である、上記項目のいずれか1項に記載の製造方法。 Item 2. The production method according to any one of the above items, wherein the component (A) is a raw material rosin and / or a derivative thereof.

項目3.前記原料ロジン類が、ガムロジン、トール油ロジン及びウッドロジン並びにそれらの精製物からなる群より選ばれる少なくとも一種である、上記項目のいずれか1項に記載の製造方法。 Item 3. The production method according to any one of the above items, wherein the raw material rosins are at least one selected from the group consisting of gum rosins, tall oil rosins, wood rosins and purified products thereof.

項目4.前記誘導体が、不均化ロジン、水添ロジン、重合ロジン、及びα,β不飽和カルボン酸変性ロジン、並びにそれらの精製物からなる群より選ばれる少なくとも一種である、上記項目のいずれか1項に記載の製造方法。 Item 4. Any one of the above items, wherein the derivative is at least one selected from the group consisting of disproportionated rosin, hydrogenated rosin, polymerized rosin, α, β unsaturated carboxylic acid-modified rosin, and purified products thereof. The manufacturing method described in.

項目5.(B)成分が、トリオール、テトラオール及び/又はヘキサオールを含む、上記項目のいずれか1項に記載の製造方法。 Item 5. The production method according to any one of the above items, wherein the component (B) contains triol, tetraol and / or hexaol.

項目6.(c2)成分が、アルカリ土類金属の水酸化物、アルカリ土類金属の酸化物、アルカリ土類金属の無機酸塩、及びアルカリ土類金属の有機酸塩からなる群より選ばれる少なくとも一種を含む、上記項目のいずれか1項に記載の製造方法。 Item 6. At least one component (c2) selected from the group consisting of hydroxides of alkaline earth metals, oxides of alkaline earth metals, inorganic acid salts of alkaline earth metals, and organic acid salts of alkaline earth metals. The production method according to any one of the above items, including.

項目7.(c1)成分と(c2)成分のモル比(c1/c2)が0.01〜20である、上記項目のいずれか1項に記載の製造方法。 Item 7. The production method according to any one of the above items, wherein the molar ratio (c1 / c2) of the component (c1) to the component (c2) is 0.01 to 20.

項目8.(C)成分の使用量が、(A)成分に含まれるカルボキシル基1モルに対して(c2)成分が0.001〜1モル%となる範囲である、上記項目のいずれか1項に記載の製造方法。 Item 8. The item according to any one of the above items, wherein the amount of the component (C) used is in the range of 0.001 to 1 mol% of the component (c2) with respect to 1 mol of the carboxyl group contained in the component (A). Manufacturing method.

項目9.(C’)成分の使用量が、(A)成分に含まれるカルボキシル基1モルに対して0.001〜1モル%の範囲である、上記項目のいずれか1項に記載の製造方法。 Item 9. The production method according to any one of the above items, wherein the amount of the component (C') used is in the range of 0.001 to 1 mol% with respect to 1 mol of the carboxyl group contained in the component (A).

項目10.エステル化反応を、更に不均化触媒(D)及び/又は酸化防止剤(E)が共存する条件で実施する、上記項目のいずれか1項に記載の製造方法。 Item 10. The production method according to any one of the above items, wherein the esterification reaction is further carried out under the condition that the disproportionation catalyst (D) and / or the antioxidant (E) coexist.

項目11.上記項目のいずれか1項に記載の製造方法で得られるロジンエステル。 Item 11. A rosin ester obtained by the production method according to any one of the above items.

本発明の製造方法によれば、ロジンエステルを淡色且つ短時間で効率よく製造できる。また、該ロジンエステルは、経時的な色調安定性や、加熱時の色調安定性(以下、加熱安定性)にも優れており、粘・接着付与剤、インキ用バインダー、コーティング用添加剤、ハンダフラックス用添加剤等として好適である。 According to the production method of the present invention, the rosin ester can be efficiently produced in a light color and in a short time. In addition, the rosin ester is also excellent in color tone stability over time and color tone stability during heating (hereinafter referred to as heating stability), and is an adhesive / adhesive binder, an ink binder, a coating additive, and a solder. It is suitable as an additive for flux and the like.

上記触媒群(C)及び塩化合物(C’)は、ロジンとポリオールのエステル化反応が関与する他の物質、例えばロジン変性マレイン酸樹脂、ロジン変性アルキド及びロジン変性フェノール樹脂等の製造においても有用であると推察される。 The catalyst group (C) and the salt compound (C') are also useful in the production of other substances involved in the esterification reaction of rosin and polyol, such as rosin-modified maleic acid resin, rosin-modified alkyd, and rosin-modified phenol resin. It is inferred that.

図1は、下記一般式(1)で示されるホスホン酸誘導体 あるいは、アルキルホスホン酸又はアルキルホスホン酸モノアルキルエステルのリン原子に直接結合したアルキル基炭素数と酸価が15.0以下となるために必要とする推定反応時間との関係を表したグラフである。縦軸は推定反応時間(hrs,275℃)を示し、横軸はリン原子に直接結合したアルキル基炭素数を示す。In FIG. 1, the number of carbon atoms and the acid value of the alkyl group directly bonded to the phosphorus atom of the phosphonic acid derivative represented by the following general formula (1) or the alkylphosphonic acid or the alkylphosphonic acid monoalkyl ester are 15.0 or less. It is a graph showing the relationship with the estimated reaction time required for. The vertical axis shows the estimated reaction time (hrs, 275 ° C.), and the horizontal axis shows the number of carbon atoms of the alkyl group directly bonded to the phosphorus atom.

本発明の製造方法は、ロジン類(A)(以下、(A)成分)とアルコール(B)(以下、(B)成分)を、所定のホスホン酸誘導体(c1)(以下、(c1)成分)及びアルカリ土類金属化合物(c2)(以下、(c2)成分)又は
(c1)成分と(c2)成分)の反応物である塩化合物(C’)(以下、(C’)成分)
を含む触媒群(C)(以下、(C)成分)の存在下でエステル化反応させることを特徴とする。
In the production method of the present invention, rosins (A) (hereinafter, component (A)) and alcohol (B) (hereinafter, component (B)) are mixed with a predetermined phosphonic acid derivative (c1) (hereinafter, component (c1)). ) And the alkaline earth metal compound (c2) (hereinafter, (c2) component) or the salt compound (C') (hereinafter, (C') component) which is a reaction product of the (c1) component and the (c2) component).
It is characterized in that the esterification reaction is carried out in the presence of the catalyst group (C) (hereinafter, the component (C)) containing the above.

(A)成分としては、各種公知の原料ロジン類及び/又はその誘導体を特に制限なく使用できる。 As the component (A), various known raw material rosins and / or derivatives thereof can be used without particular limitation.

前記原料ロジン類としては、例えば、ガムロジン、トール油ロジン及びウッドロジン並びにそれらの精製物(精製ロジン)等が挙げられる。 Examples of the raw material rosins include gum rosin, tall oil rosin and wood rosin, and purified products thereof (refined rosin).

前記誘導体としては、前記原料ロジン類から誘導される各種公知のものが挙げられる。例えば、不均化ロジン、水添ロジン、重合ロジン、及びα,β不飽和カルボン酸変性ロジン、並びにそれらの精製物(精製ロジン誘導体)等を例示できる。該不均化ロジンは、後述の不均化触媒(D)の存在下で製造されたものであってよい。該α,β不飽和カルボン酸変性ロジンは、前記原料ロジンとα,β不飽和カルボン酸とのディールス・アルダー反応物である。該α,β不飽和カルボン酸としては、例えば、アクリル酸、メタアクリル酸及びクロトン酸等のα,β不飽和モノカルボン酸、並びに(無水)マレイン酸及びフマル酸等のα,β不飽和ジカルボン酸が挙げられる。該α,β不飽和カルボン酸の使用量は限定されず、(A)成分中の共役二重結合含有樹脂酸に対して通常1〜100モル%程度、好ましくは2〜95モル%程度である。 Examples of the derivative include various known derivatives derived from the raw material rosins. For example, disproportionated rosin, hydrogenated rosin, polymerized rosin, α, β unsaturated carboxylic acid-modified rosin, and purified products thereof (purified rosin derivatives) can be exemplified. The disproportionated rosin may be produced in the presence of the disproportionation catalyst (D) described later. The α, β unsaturated carboxylic acid-modified rosin is a Diels-Alder reaction product of the raw material rosin and an α, β unsaturated carboxylic acid. Examples of the α, β unsaturated carboxylic acid include α, β unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and α, β unsaturated dicarboxylic acids such as (maleic anhydride) maleic acid and fumaric acid. Acid is mentioned. The amount of the α, β unsaturated carboxylic acid used is not limited, and is usually about 1 to 100 mol%, preferably about 2 to 95 mol%, based on the conjugated double bond-containing resin acid in the component (A). ..

本発明の製造方法によれば、(A)成分として原料ロジン類を用いた場合でも淡色なロジンエステルが得られる。また、不均化ロジン及び水添ロジン並びにそれらの精製物を用いた場合には、加熱安定性も良好なロジンエステルが得られる。また、α,β不飽和カルボン酸変性ロジン及び重合ロジンを用いた場合には、淡色で加熱安定性にも優れ、かつ高軟化点のロジンエステルが得られる。 According to the production method of the present invention, a pale rosin ester can be obtained even when the raw material rosins are used as the component (A). Further, when disproportionated rosin, hydrogenated rosin and their purified products are used, a rosin ester having good heating stability can be obtained. Further, when α, β unsaturated carboxylic acid-modified rosin and polymerized rosin are used, a rosin ester having a light color, excellent heat stability, and a high softening point can be obtained.

(B)成分としては、各種公知のアルコールを特に制限なく使用できる。具体的には、例えば、メチルアルコール、エチルアルコール、n―プロピルアルコール、イソプロピルアルコール、ブチルアルコール、n−ヘキシルアルコール、シクロヘキシルアルコール、フェネチルアルコール、ベンジルアルコール、n−オクチルアルコール、2−エチルヘキシルアルコール、デシルアルコール、ラウリルアルコール、ステアリルアルコール、メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、プロピレングリコールモノ−tert−ブチルエーテル、メチルカルビトール、エチルカルビトール、ブチルカルビトール、ヘキシルカルビトール及びポリエチレングリコール−モノメチルエーテル等のモノアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,2−ペンタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、1,4−ベンゼンジメタノール、ドデカンジオール及びシクロヘキサンジメタノール等のジオール;グリセリン、トリメチロールエタン及びトリメチロールプロパン等のトリオール;ペンタエリスリトール及びジグリセリン等のテトラオール;キシリトール等のペンタオール;ジペンタエリスリトール及びソルビトール等のヘキサオール;トリペンタエリスリトール等のオクタオール等が挙げられ、二種以上を併用できる。 As the component (B), various known alcohols can be used without particular limitation. Specifically, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, butyl alcohol, n-hexyl alcohol, cyclohexyl alcohol, phenethyl alcohol, benzyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol. , Lauryl alcohol, stearyl alcohol, methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, propylene glycol mono-tert-butyl ether, methyl carbitol, ethyl carbitol, butyl carbitol, hexyl carbitol and polyethylene glycol-monomethyl ether. Alcohol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-pentanediol, 1,5-pentanediol, 1,6- Diols such as hexanediol, 3-methyl-1,5-pentanediol, 1,4-benzenedimethanol, dodecanediol and cyclohexanedimethanol; triols such as glycerin, trimethylolethane and trimethylolpropane; pentaerythritol and diglycerin Tetraol such as xylitol; pentaol such as xylitol; hexaol such as dipentaerythritol and sorbitol; octaol such as tripentaerythritol, etc., and two or more thereof can be used in combination.

(B)成分としてトリオール及び/又はテトラオールを用いる場合、一般にはエステル化反応に長時間を要し、得られるロジンエステルも強く着色する傾向にあるが、本発明の方法によれば、淡色なロジンエステルを効率よく製造できる。また、該ロジンエステルは、粘・接着剤の粘着付与樹脂として用いた場合、アクリル樹脂等のベース樹脂と良く相溶し、また、所謂粘着三特性を発揮する。 When triol and / or tetraol is used as the component (B), the esterification reaction generally takes a long time, and the obtained rosin ester also tends to be strongly colored. However, according to the method of the present invention, the color is light. Rosin ester can be produced efficiently. Further, when the rosin ester is used as a pressure-sensitive adhesive resin for adhesives, it is well compatible with a base resin such as an acrylic resin, and exhibits so-called three adhesive properties.

(A)成分及び(B)成分の使用量は特に限定されないが、通常、(B)成分の水酸基と(A)成分のカルボキシル基のモル比(OH/COOH)が0.6〜2程度となる範囲であればよい。 The amount of the component (A) and the component (B) used is not particularly limited, but usually, the molar ratio (OH / COOH) of the hydroxyl group of the component (B) to the carboxyl group of the component (A) is about 0.6 to 2. Any range is sufficient.

(C)成分をなす(c1)成分は、下記一般式(1)で示されるように、ホスホン酸誘導体であって、置換基として炭素数が少なくとも7のアルキル基を有するものであり、各種公知のものを特に制限なく使用できる。 As shown by the following general formula (1), the component (c1) constituting the component (C) is a phosphonic acid derivative having an alkyl group having at least 7 carbon atoms as a substituent, and is known in various ways. Can be used without any particular restrictions.

Figure 0006866727
(式(1)中、Rは炭素数が少なくとも7のアルキル基を、Xは炭素数が少なくとも1のアルキル基又は水素を示す。)
Figure 0006866727
(In the formula (1), R represents an alkyl group having at least 7 carbon atoms, and X represents an alkyl group or hydrogen having at least 1 carbon atoms.)

Rは直鎖状、分岐状及び環状の何れかであればよい。具体的には、ヘプチル基、n−オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、及びオクタデシル基等を例示できる。Rは、(c1)成分のエステル化触媒能の点より、炭素数が好ましくは7〜18程度であるのがよい。 R may be any of linear, branched and cyclic. Specifically, a heptyl group, an n-octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, an undecylic group, a dodecyl group, a tridecylic group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group and the like can be used. It can be exemplified. From the viewpoint of the esterification catalytic ability of the component (c1), R preferably has about 7 to 18 carbon atoms.

Xのうち、炭素数が少なくとも1のアルキル基は、直鎖状、分岐状及び環状の何れかであればよい。該アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基及びドデシル基等が挙げられる。該アルキル基は、得られるロジンエステルの色調(透明性)の点より、炭素数が2〜8程度であるのが好ましい。 Of X, the alkyl group having at least one carbon atom may be any of linear, branched and cyclic. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group. Can be mentioned. The alkyl group preferably has about 2 to 8 carbon atoms from the viewpoint of the color tone (transparency) of the obtained rosin ester.

(c1)成分の具体種としては、例えば、ヘプチルホスホン酸、n−オクチルホスホン酸、2−エチルヘキシルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸及び2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル等が挙げられる。これらの中でも、エステル化触媒能の点及び、得られるロジンエステルの色調の点より、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルが最も好ましい。 Specific species of the component (c1) include, for example, heptylphosphonic acid, n-octylphosphonic acid, 2-ethylhexylphosphonic acid, nonylphosphonic acid, decylphosphonic acid, undecylphosphonic acid, dodecylphosphonic acid, tridecylphosphonic acid, and the like. Examples thereof include tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, octadecylphosphonic acid and mono-2-ethylhexyl 2-ethylhexylphosphonate. Among these, mono-2-ethylhexyl 2-ethylhexylphosphonate is the most preferable from the viewpoint of esterification catalytic ability and the color tone of the obtained rosin ester.

(c2)成分としては、各種公知のアルカリ土類金属化合物を特に制限なく使用できる。具体的には、例えば、アルカリ土類金属水酸化物、アルカリ土類金属酸化物、アルカリ土類金属無機酸塩及びアルカリ土類金属有機酸塩からなる群より選ばれる少なくとも一種を例示できる。該アルカリ土類金属水酸化物としては、例えば、水酸化マグネシウム及び水酸化カルシウムが、該アルカリ土類金属酸化物としては酸化マグネシウム及び酸化カルシウム等が、該アルカリ土類金属無機酸塩としては硫酸マグネシウム、硫酸カルシウム、リン酸三マグネシウム・8水和物、ホスフィン酸マグネシウム・6水和物等の無機酸マグネシウム塩類や、リン酸三カルシウム、ホスフィン酸カルシウム等の無機酸カルシウム塩類等が挙げられる。
該アルカリ土類金属有機酸塩としてはギ酸マグネシウム二水和物、酢酸マグネシウム四水和物等の有機酸マグネシウム塩類や、ギ酸カルシウム及び酢酸カルシウム等の有機酸カルシウム塩類が挙げられ、二種以上を組み合わせてもよい。
As the component (c2), various known alkaline earth metal compounds can be used without particular limitation. Specifically, for example, at least one selected from the group consisting of alkaline earth metal hydroxides, alkaline earth metal oxides, alkaline earth metal inorganic acid salts and alkaline earth metal organic acid salts can be exemplified. Examples of the alkaline earth metal hydroxide include magnesium hydroxide and calcium hydroxide, the alkaline earth metal oxide includes magnesium oxide and calcium oxide, and the alkaline earth metal inorganic acid salt includes sulfuric acid. Examples thereof include inorganic acid magnesium salts such as magnesium, calcium sulfate, trimagnesium phosphate / octahydrate, magnesium phosphinate / hexahydrate, and inorganic acid calcium salts such as tricalcium phosphate and calcium phosphinate.
Examples of the alkaline earth metal organic acid salt include organic acid magnesium salts such as magnesium formate dihydrate and magnesium acetate tetrahydrate, and organic acid calcium salts such as calcium formate and calcium acetate. It may be combined.

(C)成分における、(c1)成分及び(c2)成分のモル比(c1/c2)は特に限定されないが、エステル化触媒能の観点より、通常、0.01〜20程度好ましくは0.02〜10である。 The molar ratio (c1 / c2) of the component (c1) and the component (c2) in the component (C) is not particularly limited, but is usually about 0.01 to 20 preferably 0.02 from the viewpoint of esterification catalytic ability. It is 10.

(C)成分には、必要に応じ、(c1)成分及び(c2)成分以外の反応触媒(以下、(c3)成分)を含めてよい。具体的には、例えば、ホスフィン酸等が挙げられ、二種以上を組み合わせてよい。(C)成分における、(c3)成分の含有率は特に限定されないが、通常、通常0〜5モル%程度である。 The component (C) may include a reaction catalyst other than the component (c1) and the component (c2) (hereinafter, the component (c3)), if necessary. Specifically, for example, phosphinic acid and the like can be mentioned, and two or more kinds may be combined. The content of the component (c3) in the component (C) is not particularly limited, but is usually about 0 to 5 mol%.

(C)成分の使用量は特に限定されないが、エステル化触媒としての効果を考慮すると、通常、(A)成分に含まれるカルボキシル基1モルに対して(c2)成分が0.001〜1モル%程度、好ましくは0.005〜0.6モル%程度となる範囲である。 The amount of the component (C) used is not particularly limited, but in consideration of the effect as an esterification catalyst, the component (c2) is usually 0.001 to 1 mol with respect to 1 mol of the carboxyl group contained in the component (A). It is in the range of about%, preferably about 0.005 to 0.6 mol%.

本発明の製造方法で用いる(C’)成分は、各種公知の方法で製造できる。具体的には、(c1)成分と(c2)成分を溶媒の存在で反応させることにより得られる。反応温度は特に限定されず、通常60〜150℃程度である。(c1)成分と(c2)成分の使用比率は特に限定されず、前者:後者のモル比が0.01:1〜20:1程度、好ましくは0.02:1〜10:1程度となる範囲であればよい。該溶媒としては、例えば、べンゼン、キシレン及びトルエン等が挙げられる。(C’)成分は、溶液として使用できるが、場合によりアセトン等の貧溶媒で析出させた後、必要に応じて各種公知の方法で再結晶化させ、固体として使用することもできる。 The (C') component used in the production method of the present invention can be produced by various known methods. Specifically, it is obtained by reacting the component (c1) and the component (c2) in the presence of a solvent. The reaction temperature is not particularly limited, and is usually about 60 to 150 ° C. The ratio of the component (c1) to the component (c2) used is not particularly limited, and the molar ratio of the former: the latter is about 0.01: 1 to 20: 1, preferably about 0.02: 1 to 10: 1. It may be in the range. Examples of the solvent include Benzen, xylene, toluene and the like. The component (C') can be used as a solution, but in some cases, it can be precipitated with a poor solvent such as acetone and then recrystallized by various known methods as needed to be used as a solid.

(C’)成分の使用量は特に限定されないが、エステル化触媒としての効率の点より、通常、(A)成分に含まれるカルボキシル基1モルに対して0.001〜1モル%程度、好ましくは0.005〜0.6モル%程度である。 The amount of the component (C') used is not particularly limited, but is usually preferably about 0.001 to 1 mol% with respect to 1 mol of the carboxyl group contained in the component (A) from the viewpoint of efficiency as an esterification catalyst. Is about 0.005 to 0.6 mol%.

本発明の製造方法では、(A)成分と(B)成分のエステル化反応を、(C)成分と、不均化触媒(D)(以下、(D)成分ともいう。)及び/又は酸化防止剤(E)(以下、(E)成分ともいう。)とが共存する条件下で実施できる。 In the production method of the present invention, the esterification reaction of the component (A) and the component (B) is the component (C), the disproportionation catalyst (D) (hereinafter, also referred to as the component (D)) and / or oxidation. It can be carried out under the condition that the inhibitor (E) (hereinafter, also referred to as the component (E)) coexists.

(D)成分を併用することで進行させることができる不均化反応は、随時、例えばエステル化反応前、エステル化反応中、エステル化終了後に、実施することができる。不均化反応を行うことによりロジンエステルの色調を向上させることができる。 The disproportionation reaction that can be carried out by using the component (D) in combination can be carried out at any time, for example, before the esterification reaction, during the esterification reaction, or after the esterification is completed. The color tone of the rosin ester can be improved by carrying out the disproportionation reaction.

(D)成分としては、各種公知の不均化触媒を特に制限なく使用できる。具体的には、均一系不均化触媒及び/又は不均一系不均化触媒が挙げられる。 As the component (D), various known disproportionation catalysts can be used without particular limitation. Specific examples thereof include a homogeneous disproportionation catalyst and / or a heterogeneous disproportionation catalyst.

均一系不均化触媒としては硫黄系触媒と沃素系触媒がある。硫黄系触媒としては、例えば、2,4−ビス(ドデシルチオメチル)−6−メチルフェノール、4,4’−ビス(フェノール)スルフィド、4,4’−ビス(フェノール)スルホキシド、4,4’−ビス(フェノール)スルホン、4,4’−ビス(フェノール)チオールスルフィナート、4,4’−ビス(フェノール)チオールスルホナート、2,2’−ビス(p−クレゾール)スルフィド、2,2’−ビス(p−クレゾール)スルホキシド、2,2’−ビス(p−クレゾール)スルホン、2,2’−ビス(p−t−ブチルフェノール)スルフィド、2,2’−ビス(p−t−ブチルフェノール)スルホキシド、2,2’−ビス(p−t−ブチルフェノール)スルホン、4,4’−ビス(6−t−ブチル−m−クレゾール)スルホン、4,4’−ビス(6−t−ブチル−m−クレゾール)スルホキシド、4,4’−ビス(6−t−ブチル−m−クレゾール)スルフィド、4,4’−ビス(6−t−ブチル−o−クレゾール)スルホキシド、4,4’−ビス(6−t−ブチル−o−クレゾール)スルフィド、4,4’−ビス(6−t−ブチル−o−クレゾール)スルホン、4,4’−ビス(レゾルシノール)スルフィド、4,4’−ビス(レゾルシノール)スルホキシド、4,4’−ビス(レゾルシノール)スルホン、1,1’−ビス(β−ナフトール)スルフィド、1,1’−ビス(β−ナフトール)スルホキシド、1,1’−ビス(β−ナフトール)スルホン、4,4’−ビス(α−ナフトール)スルフィド、4,4’−ビス(α−ナフトール)スルホキシド、4,4’−ビス(α−ナフトール)スルホン、t−アミルフェノールジスルフィドオリゴマー、ノニルフェノールジスルフィドオリゴマー等のチオフェノール系化合物が挙げられる。脱炭酸のような副反応を抑制でき、かつ、得られるロジンエステルの淡色化及び加熱安定性に寄与することから、ヒンダードフェノール型硫黄系不均化触媒に相当するものが好ましい。
沃素系触媒としては、例えば、ヨウ素、ヨウ化鉄等のヨウ化物等が挙げられ、二種以上を併用できる。
The homogeneous disproportionation catalyst includes a sulfur-based catalyst and an iodine-based catalyst. Examples of the sulfur-based catalyst include 2,4-bis (dodecylthiomethyl) -6-methylphenol, 4,4'-bis (phenol) sulfide, 4,4'-bis (phenol) sulfoxide, and 4,4'. -Bis (phenol) sulfone, 4,4'-bis (phenol) thiol sulfinate, 4,4'-bis (phenol) thiol sulfone, 2,2'-bis (p-cresol) sulfide, 2,2 '-Bis (p-cresol) sulfoxide, 2,2'-bis (p-cresol) sulfone, 2,2'-bis (pt-butylphenol) sulfide, 2,2'-bis (pt-butylphenol) ) Sulfoxide, 2,2'-bis (pt-butylphenol) sulfone, 4,4'-bis (6-t-butyl-m-cresol) sulfone, 4,4'-bis (6-t-butyl-) m-cresol) sulfoxide, 4,4'-bis (6-t-butyl-m-cresol) sulfide, 4,4'-bis (6-t-butyl-o-cresol) sulfoxide, 4,4'-bis (6-t-butyl-o-cresol) sulfide, 4,4'-bis (6-t-butyl-o-cresol) sulfone, 4,4'-bis (resorcinol) sulfide, 4,4'-bis ( Resolsinol) sulfoxide, 4,4'-bis (resorcinol) sulfone, 1,1'-bis (β-naphthol) sulfide, 1,1'-bis (β-naphthol) sulfoxide, 1,1'-bis (β-) Naftol) Sulfone, 4,4'-Bis (α-Naftol) Sulfone, 4,4'-Bis (α-Naftol) Sulfoxide, 4,4'-Bis (α-Naftol) Sulfone, t-amylphenol disulfide oligomer, Examples thereof include thiophenol compounds such as nonylphenol disulfide oligomers. A catalyst corresponding to a hindered phenol-type sulfur-based disproportionation catalyst is preferable because it can suppress side reactions such as decarboxylation and contributes to lightening and heating stability of the obtained rosin ester.
Examples of the iodide catalyst include iodides such as iodine and iron iodide, and two or more of them can be used in combination.

また不均一系不均化触媒としては、例えば、パラジウムカーボン、ロジウムカーボン、白金カーボン等の担持触媒;ニッケル、白金等の金属粉末が挙げられる。得られるロジンエステルの色調及び加熱安定性の点より該担持触媒が好ましい。 Examples of the non-uniform disproportionation catalyst include supported catalysts such as palladium carbon, rhodium carbon and platinum carbon; and metal powders such as nickel and platinum. The supported catalyst is preferable from the viewpoint of color tone and heating stability of the obtained rosin ester.

(D)成分の使用量は特に限定されないが、得られるロジンエステルの色調の点より、通常、(D)成分を使用する場合、均一系触媒としては(A)成分に対して0.01〜5質量%程度、好ましくは0.01〜1.0質量%添加するのが好ましい。また不均一系不均化触媒としては、0.005〜1.0質量%、好ましくは0.01〜0.1質量%程度添加するのが好ましい。 The amount of the component (D) used is not particularly limited, but from the viewpoint of the color tone of the obtained rosin ester, when the component (D) is usually used, the homogeneous catalyst is 0.01 to 0.01 to the component (A). It is preferable to add about 5% by mass, preferably 0.01 to 1.0% by mass. The heterogeneous disproportionation catalyst is preferably added in an amount of 0.005 to 1.0% by mass, preferably about 0.01 to 0.1% by mass.

(E)成分は、これを使用することで、目的とするロジンエステルの酸化劣化を防止でき、ロジンエステルの色調及び加熱安定性を向上できる。(E)成分としては、各種公知のものを特に制限なく使用でき、例えば、硫黄系酸化防止剤、チオフォスファイト系酸化防止剤、リン系酸化防止剤及びヒンダードフェノール系酸化防止剤からなる群より選ばれる少なくとも一種を使用できる。 By using the component (E), it is possible to prevent oxidative deterioration of the target rosin ester, and to improve the color tone and heating stability of the rosin ester. As the component (E), various known components can be used without particular limitation, and for example, a group consisting of a sulfur-based antioxidant, a thiophosphite-based antioxidant, a phosphorus-based antioxidant, and a hindered phenol-based antioxidant. At least one of the more selected can be used.

硫黄系酸化防止剤としては、例えば、2,4−ビス(ドデシルチオメチル)−6−メチルフェノール、4,6−ビス(オクチルチオメチル)−o−クレゾール、2,2−ビス[{3−(ドデシルチオ)−1−オキソプロポキシ}メチル]プロパン−1,3−ジイルビス[3−(ドデシルチオ)プロピオネート]など、フェノールスルフィド類以外の硫黄系有機化合物も利用可能である。 Examples of the sulfur-based antioxidant include 2,4-bis (dodecylthiomethyl) -6-methylphenol, 4,6-bis (octylthiomethyl) -o-cresol, and 2,2-bis [{3- Sulfur-based organic compounds other than phenol sulfides, such as (dodecylthio) -1-oxopropoxy} methyl] propan-1,3-diylbis [3- (dodecylthio) propionate], are also available.

チオフォスファイト系酸化防止剤としては、例えば、トリラウリルトリチオホスファイト、トリデシルトリチオホスファイト、トリベンジルトリチオホスファイト、トリシクロヘキシルトリチオホスファイト、トリ(2−エチルヘキシル)トリチオホスファイト、トリナフチルトリチオホスファイト、ジフェニルデシルトリチオホスファイト、ジフェニルラウリルトリチオホスファイト、テトラキス(メルカプトラウリル)−1,6−ジメルカプトヘキシレンジホスファイト、ペンタキス(メルカプトラウリル)ビス(1,6−ヘキシレン−ジメルカプト)トリチオホスファイト、ジオクチルジチオペンタエリスリトールジホスファイト、ジラウリルジチオペンタエリスリトールジホスファイト、フェニルラウリルジチオペンタエリスリトールジホスファイト等が挙げられ、二種以上を併用できる。 Examples of the thiophosphite-based antioxidant include trilauryl trithiophosphite, tridecyltrithiophosphite, tribenzyltrithiophosphite, tricyclohexyltrithiophosphite, tri (2-ethylhexyl) trithiophosphite, and trinaphthyllithiophos. Fight, Diphenyldecyltrithiophosphite, Diphenyllauryltrithiophosphite, Tetraquis (mercaptolauryl) -1,6-dimercaptohexylenediphosphite, pentax (mercaptolauryl) bis (1,6-hexylene-dimercapto) trithiophosphite , Dioctyl dithiopentaerythritol diphosphite, dilauryl dithiopentaerythritol diphosphite, phenyllauryl dithiopentaerythritol diphosphite and the like, and two or more of them can be used in combination.

リン系酸化防止剤としては、例えば、亜リン酸、次亜リン酸及びそれらの金属塩、アミン塩、アンモニウム塩等の中和物、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2−エチルヘキシル)ホスファイト、トリデシルホスファイト、トリス(トリデシル)ホスファイト、ジフェニルモノ(2−エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、3,9−ビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、ジラウリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラホスファイト、テトラ(トリデシル)−4,4’−イソプロピリデンジフェニルジホスファイト、ビス(t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドなどが挙げられる。これらのうち、亜リン酸、次亜リン酸及びそれらの金属塩、アミン塩、アンモニウム塩等の中和物、ジフェニルハイドロゲンホスファイト、ビス(t−ブチルフェニル)ペンタエリスリトールジホスファイト、3,9−ビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(4−メチル−2,6−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等が挙げられ、二種以上を併用できる。 Examples of the phosphorus-based antioxidant include phosphorous acid, hypophosphorous acid and neutralized products such as metal salts, amine salts and ammonium salts thereof, triphenylphosphite, tris (nonylphenyl) phosphite, and tris (tris). 2-Ethylhexyl) phosphite, tridecylphosphite, tris (tridecyl) phosphite, diphenylmono (2-ethylhexyl) phosphite, diphenylmonodecylphosphite, diphenylmono (tridecyl) phosphite, 3,9-bis (2) , 6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, dilaurylhydrogenphosphite, diphenylhydrogenphosphite, tetraphenyl Dipropylene glycol diphosphite, tetraphenyltetra (tridecyl) pentaerythritol tetraphosphite, tetra (tridecyl) -4,4'-isopropyridene diphenyldiphosphite, bis (t-butylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphos Fight, distearyl pentaerythritol diphosphite, tris (2,4-di-t-butylphenyl) phosphite, hydrogenated bisphenol A / pentaerythritol phosphite polymer, 9,10-dihydro-9-oxa-10-phos Examples thereof include phenylanthrene-10-oxide. Of these, phosphite, hypophosphoric acid and neutralized products such as metal salts, amine salts and ammonium salts thereof, diphenylhydrogen phosphite, bis (t-butylphenyl) pentaerythritol diphosphite, 3,9 -Bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] Undecane, Bis (2,4-di-t) -Butylphenyl) pentaerythritol diphosphite, bis (4-methyl-2,6-di-t-butylphenyl) pentaerythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, distearyl pentaerythritol diphos Examples thereof include phyto, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and two or more thereof can be used in combination.

ヒンダードフェノール系酸化防止剤としては、例えば、トリエチレングリコールビス{3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオールビス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、ペンタエリスリチルテトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられ、二種以上を併用できる。 Examples of the hindered phenolic antioxidant include triethylene glycol bis {3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate} and 1,6-hexanediol bis {3- (3). , 5-di-t-butyl-4-hydroxyphenyl) propionate}, pentaerythrityltetrakis {3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate}, octadecyl-3- (3, 5-di-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- {3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1- Dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), Examples thereof include 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, and two or more thereof can be used in combination.

(E)成分の使用量は特に限定されないが、通常(E)成分を使用する場合、(A)成分に対して0.1〜5質量%程度、好ましくは0.2〜3質量%である。 The amount of the component (E) used is not particularly limited, but when the component (E) is usually used, it is about 0.1 to 5% by mass, preferably 0.2 to 3% by mass, based on the component (A). ..

(A)成分及び(B)成分のエステル化反応は、各種公知の製法を採用できる。具体的には、例えば、適当な反応容器に、(A)成分及び(B)成分と、(C)成分並びに必要に応じて(D)成分を仕込み、窒素やアルゴン等の不活性ガスの雰囲気下、通常150℃〜290℃で、生成水を留去しながらエステル化反応させればよい。(c1)成分と(c2)成分の添加順序も特に限定されず、同時又は順次であってよい。なお、必要に応じてエステル化反応前、エステル化反応中及び/又はエステル化終了後に(E)成分を仕込んでもよい。 For the esterification reaction of the component (A) and the component (B), various known production methods can be adopted. Specifically, for example, the components (A) and (B), the component (C) and, if necessary, the component (D) are charged in an appropriate reaction vessel, and the atmosphere of an inert gas such as nitrogen or argon is charged. The esterification reaction may be carried out at 150 ° C. to 290 ° C., usually at 150 ° C. to 290 ° C., while distilling off the produced water. The order of addition of the component (c1) and the component (c2) is not particularly limited, and may be simultaneous or sequential. If necessary, the component (E) may be charged before the esterification reaction, during the esterification reaction, and / or after the esterification is completed.

こうして得られるロジンエステルは淡色であり、通常、ハーゼン色調〜ガードナー色調が8G程度である。また、その物性は特に限定されないが、該ロジンエステルを粘着付与剤として用いる場合には、重量平均分子量が通常300〜4000程度であり、酸価が通常0.1〜200mgKOH/g程度であり、水酸基価が通常3〜100mgKOH/g程度である。また、形状は液状〜固体であり、固体状のものの軟化点は通常185℃以下である。また、該ロジンエステルは、経時的な色調安定性や、加熱時の色調安定性にも優れる。 The rosin ester thus obtained has a light color, and usually has a Hazen color tone to a Gardner color tone of about 8 G. The physical properties thereof are not particularly limited, but when the rosin ester is used as a tackifier, the weight average molecular weight is usually about 300 to 4000, and the acid value is usually about 0.1 to 200 mgKOH / g. The hydroxyl value is usually about 3 to 100 mgKOH / g. The shape is liquid to solid, and the softening point of the solid is usually 185 ° C. or lower. In addition, the rosin ester is also excellent in color stability over time and color stability during heating.

以下、実施例及び比較例を通じて本発明の具体的態様を詳細に説明するが、それらによって本発明の技術的範囲が限定されないことはもとよりである。また、各実施例及び比較例の合成例において、部又は%は重量基準であり、表中およびグラフの説明におけるmol%、OH/COOH比、モル比(c1/c2)についてはモル単位で計算をおこなった。 Hereinafter, specific embodiments of the present invention will be described in detail through Examples and Comparative Examples, but it goes without saying that the technical scope of the present invention is not limited thereto. Further, in each of the examples and the synthetic examples of the comparative examples, parts or% are based on weight, and mol%, OH / COOH ratio, and molar ratio (c1 / c2) in the table and in the explanation of the graph are calculated in molar units. Was done.

実施例1
上端に玉突き冷却管の連結された分水器、撹拌器及び窒素導入管を備える500ml容の4つ口コルベンに、中国ガムロジン(WW級:酸価170.0、軟化点86.0℃、色調8+G 以下、「中国ガムロジン」ときは同様。)300部を仕込み、窒素気流下に加熱溶融させた。次いで、反応系が160℃に達した時点で、ヘプチルホスホン酸0.34部、水酸化カルシウム0.07部及び硫黄系不均化触媒(4,4‘−チオビス(6−tert−ブチル−3−メチルフェノール)(商品名スミライザーWX−R、住友化学株式会社製))1.2部を仕込み、反応系が180℃に達した時点でペンタエリスリトール29.4部を仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間目よりサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、色調、酸価、水酸基価、軟化点及び重量平均分子量の物性評価をした。
Example 1
Chinese gum rosin (WW class: acid value 170.0, softening point 86.0 ° C, color tone) in a 500 ml four-necked flask equipped with a water diversion device, a stirrer and a nitrogen introduction tube connected to a ball thrust cooling pipe at the upper end. 8 + G or less, the same applies to "Chinese gum rosin".) 300 parts were charged and heated and melted under a nitrogen stream. Then, when the reaction system reached 160 ° C., 0.34 parts of heptylphosphonic acid, 0.07 parts of calcium hydroxide and a sulfur-based disproportionation catalyst (4,5'-thiobis (6-tert-butyl-3)). -Methylphenol) (trade name: Sumilyzer WX-R, manufactured by Sumitomo Chemical Co., Ltd.) (1.2 parts) was charged, and when the reaction system reached 180 ° C., 29.4 parts of pentaerythritol was charged. After that, the reaction system was set to 275 ° C. over about 2 hours, sampling was performed from the 2nd hour (6 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical properties of the sixth sample were evaluated for color tone, acid value, hydroxyl value, softening point, and weight average molecular weight.

(反応時間の算出法)
1)前記サンプリングによる酸価の測定値(計6個、但し実施例19、実施例20及び比較例14はサンプリング10回)を、縦軸を酸価及び横軸を時間とする平面上にプロットし、経時変化曲線(累乗近似曲線)を作成した。
2)当該曲線の近似式より、酸価15に到達するに要する時間(近似値)を求め、当該時間を反応時間とみなした。
(Calculation method of reaction time)
1) Plot the measured acid value by the sampling (6 in total, but 10 times in Example 19, Example 20 and Comparative Example 14) on a plane whose vertical axis is acid value and horizontal axis is time. Then, a change curve with time (a power approximation curve) was created.
2) The time required to reach the acid value 15 (approximate value) was obtained from the approximate expression of the curve, and the time was regarded as the reaction time.

(色調)
最終的に得られたロジンエステルについて、JISK0071−2に準じ、色調を実測した。
(Color tone)
The color tone of the finally obtained rosin ester was measured according to JIS K0071-2.

(酸価)
前記サンプリング(6回分、但し実施例19、実施例20及び比較例14はサンプリング10回分)後のロジンエステルについて、JIS K 5903に準じ、酸価を実測した。
(Acid value)
The acid value of the rosin ester after the sampling (6 samplings, but 10 samplings in Example 19, Example 20 and Comparative Example 14) was measured according to JIS K 5903.

(水酸基価)
前記6回目のサンプリング後(但し実施例19、実施例20及び比較例14はサンプリング10回目)のロジンエステルについて、JIS K 0070に準じ、水酸基価を実測した。
(Hydroxy group value)
The hydroxyl value of the rosin ester after the 6th sampling (however, in Example 19, Example 20 and Comparative Example 14 was the 10th sampling) was measured according to JIS K 0070.

(軟化点)
前記6回目のサンプリング後(但し実施例19、実施例20及び比較例14はサンプリング10回目)のロジンエステルについて、JIS K 5903に準じ、軟化点を実測した。
(Softening point)
The softening point of the rosin ester after the 6th sampling (however, in Example 19, Example 20 and Comparative Example 14 was the 10th sampling) was measured according to JIS K 5903.

(重量平均分子量)
前記6回目のサンプリング後(但し実施例19、実施例20及び比較例14はサンプリング10回目)のロジンエステルについて、市販のゲルパーミエーションクロマトグラフィー装置を用い、ポリスチレン換算値としての重量平均分子量を算出した。
(Weight average molecular weight)
For the rosin ester after the 6th sampling (however, in Example 19, Example 20 and Comparative Example 14 is the 10th sampling), the weight average molecular weight as a polystyrene-equivalent value was calculated using a commercially available gel permeation chromatography apparatus. did.

装 置 :東ソー株式会社(株)製GPCシステムHLC−8220
溶離液 :テトラヒドロフラン
検出器 :RI
カラム温度:40℃
流速 :1.0mL/min.
Equipment: GPC system HLC-8220 manufactured by Tosoh Corporation
Eluent: Tetrahydrofuran detector: RI
Column temperature: 40 ° C
Flow velocity: 1.0 mL / min.

実施例2〜5
表1で示す原料を用い、実施例1と同様の方法でロジンエステルを製造し、実施例1と同様のサンプリングを行い、物性評価も行った。
Examples 2-5
Using the raw materials shown in Table 1, a rosin ester was produced by the same method as in Example 1, sampling was performed in the same manner as in Example 1, and physical property evaluation was also performed.

実施例6
実施例1と同様の反応容器に、トルエン200.0部、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル46.8部を仕込み、撹拌しながら水酸化カルシウム5.76部を少しずつ添加した。昇温して1時間還流後、室温まで冷却し、濾紙濾過した。次いで、室温にて濾液に貧溶媒のアセトンを添加し、析出物を濾過によって採取し、白色生成物を得た。その後、この白色生成物を再結晶させることにより、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルカルシウム塩を得た。
Example 6
In the same reaction vessel as in Example 1, 200.0 parts of toluene and 46.8 parts of mono-2-ethylhexyl 2-ethylhexylphosphonate were charged, and 5.76 parts of calcium hydroxide was added little by little with stirring. The temperature was raised, refluxed for 1 hour, cooled to room temperature, and filtered through filter paper. Then, the poor solvent acetone was added to the filtrate at room temperature, and the precipitate was collected by filtration to obtain a white product. The white product was then recrystallized to give 2-ethylhexylphosphonic acid mono-2-ethylhexyl calcium salt.

次いで、実施例1と同様の反応容器にガムロジン300部を仕込み、窒素気流下に加熱溶融させた。次いで、反応系が160℃に達した時点で、表1に示す通りエステル化触媒である前記2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルカルシウム塩0.60部、及びスミライザーWX−R 1.2部を仕込み、反応系が180℃に達した時点でペンタエリスリトール29.4部を仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間毎にサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。 Next, 300 parts of gum rosin was charged in the same reaction vessel as in Example 1 and heated and melted under a nitrogen stream. Then, when the reaction system reached 160 ° C., as shown in Table 1, 0.60 part of the 2-ethylhexylphosphonic acid mono-2-ethylhexyl calcium salt and 1.2 parts of the simulator WX-R, which are esterification catalysts, were used. Was charged, and when the reaction system reached 180 ° C., 29.4 parts of pentaerythritol was charged. After that, the reaction system was set to 275 ° C. over about 2 hours, and sampling was performed every 2 hours (6 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

実施例7〜9
不均化触媒のスミライザーWX-Rを添加しない系であるが、原料ロジン種が不均化ロジンの場合、酸価154.7、軟化点81.0℃、色調X、また、水添ロジンの場合、酸価164.3、軟化点76.0℃、色調WWの樹脂を用いた以外、表1に示す原料を用いて、実施例1と同様の方法でロジンエステルを製造し、実施例1と同様のサンプリングを行い、物性評価も行った。
Examples 7-9
It is a system that does not add the disproportionate catalyst Sumilyzer WX-R, but when the raw material rosin species is disproportionate rosin, the acid value is 154.7, the softening point is 81.0 ° C, the color tone X, and the hydrogenated rosin In this case, a rosin ester was produced in the same manner as in Example 1 using the raw materials shown in Table 1 except that a resin having an acid value of 164.3, a softening point of 76.0 ° C., and a color tone of WW was used. The same sampling as in the above was performed, and the physical properties were also evaluated.

Figure 0006866727
Figure 0006866727

実施例10
実施例1と同様の反応容器に、ガムロジン300部を仕込み、窒素気流下に加熱溶融させた。次いで、反応系が160℃に達した時点で、表2に示す通り2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル0.58部、水酸化カルシウム0.01部及びスミライザーWX−R 1.2部を仕込み、反応系が180℃に達した時点でペンタエリスリトール29.4部を仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間目よりサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。
Example 10
In the same reaction vessel as in Example 1, 300 parts of gum rosin was charged and heated and melted under a nitrogen stream. Then, when the reaction system reached 160 ° C., 0.58 parts of mono-2-ethylhexyl 2-ethylhexylphosphonate, 0.01 part of calcium hydroxide and 1.2 parts of the simulator WX-R were added as shown in Table 2. When the reaction system reached 180 ° C., 29.4 parts of pentaerythritol was charged. After that, the reaction system was set to 275 ° C. over about 2 hours, sampling was performed from the 2nd hour (6 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

実施例11〜16
表2で示す原料を用い、実施例10と同様の方法でロジンエステルを製造し、実施例10と同様のサンプリングを行い、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性評価も行った。
Examples 11-16
Using the raw materials shown in Table 2, a rosin ester was produced by the same method as in Example 10, sampling was performed in the same manner as in Example 10, and the acid value of each sample was measured. In addition, the physical properties of the sixth sample were evaluated by the same method as described above.

Figure 0006866727
Figure 0006866727

比較例1
実施例1と同様の反応容器に、ガムロジン300部を仕込み、窒素気流下に加熱溶融させた。次いで、反応系が160℃に達した時点で、表3に示すようにエステル化触媒を添加せずスミライザーWX−R 1.2部を仕込み、反応系が180℃に達した時点でペンタエリスリトール29.4部を仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間毎にサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。
Comparative Example 1
In the same reaction vessel as in Example 1, 300 parts of gum rosin was charged and heated and melted under a nitrogen stream. Next, when the reaction system reached 160 ° C., 1.2 parts of the simulator WX-R was charged without adding an esterification catalyst as shown in Table 3, and when the reaction system reached 180 ° C., pentaerythritol 29 . 4 copies were prepared. After that, the reaction system was set to 275 ° C. over about 2 hours, and sampling was performed every 2 hours (6 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

比較例2
実施例1と同様の反応容器にガムロジン300部を仕込み、窒素気流下に加熱溶融させた。反応系が160℃に達した時点で、表3に示すようにスミライザーWX−R1.2部、及びヘプチルホスホン酸0.34部を仕込み、次いで反応系が180℃に達した時点でペンタエリスリトール29.4部仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間毎にサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。
Comparative Example 2
300 parts of gum rosin was charged in the same reaction vessel as in Example 1 and heated and melted under a nitrogen stream. When the reaction system reached 160 ° C, 1.2 parts of the simulator WX-R and 0.34 part of heptylphosphonic acid were charged as shown in Table 3, and then when the reaction system reached 180 ° C, pentaerythritol 29 was charged. . 4 copies were prepared. After that, the reaction system was set to 275 ° C. over about 2 hours, and sampling was performed every 2 hours (6 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

比較例3〜10
表3で示す原料を用い、比較例2と同様の方法でロジンエステルを製造し、比較例2と同様のサンプリングを行い、物性評価も行った。
Comparative Examples 3 to 10
Using the raw materials shown in Table 3, a rosin ester was produced by the same method as in Comparative Example 2, sampling was performed in the same manner as in Comparative Example 2, and physical property evaluation was also performed.

Figure 0006866727
Figure 0006866727

表3の比較例の中にも6回目(保温275℃×12時間目)のサンプリングで比較的色調の良いものもあるが、酸価が15まで低下するに要する時間が、6回目のサンプリング以降も更に14〜56時間反応させる必要があり、色調は悪化の一途をたどる傾向にある。 Some of the comparative examples in Table 3 have a relatively good color tone at the 6th sampling (heat retention 275 ° C × 12 hours), but the time required for the acid value to decrease to 15 is after the 6th sampling. Also needs to be reacted for another 14 to 56 hours, and the color tone tends to continue to deteriorate.

図1のグラフより、以下の考察が可能である。
1.実施例1,2,3,4及び比較例4の折れ線グラフは、アルキルホスホン酸のアルキル基の炭素数を6から18まで変化させた場合の酸価15.0まで下げるに要する推定反応時間の変化である。
2.アルキルホスホン酸のアルキル基の炭素数が6から10まで変化すると推定反応時間が急激に変化し、炭素数が10から18まではあまり変化の無いことが判る。
3.比較例5,6,7,8及び9は触媒効果のレベルを比較するために点線で示した。従って、横軸の目盛りは関係ない。
4.比較例5,6,8及び9はそれぞれ触媒濃度0.20mol%(対ロジン)の時の反応時間であるが、どの比較例よりも実施例1のアルキル基の炭素数が7のアルキルホスホン酸/Ca(OH)=0.20mol%/0.10mol%(対ロジン)の反応時間が短い。
5.実施例1のアルキルホスホン酸(アルキル基の炭素数7)/Ca(OH)=0.20mol%/0.10mol%(対ロジン)は、触媒濃度が高い比較例7のCa(OH)単独0.51mol%よりも反応時間が短い。
6.最も触媒効果の良好であったものは、実施例5の2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル/Ca(OH)=0.20mol%/0.10mol%(対ロジン)である。
From the graph of FIG. 1, the following considerations can be made.
1. 1. The line graphs of Examples 1, 2, 3 and 4 and Comparative Example 4 show the estimated reaction time required to reduce the acid value to 15.0 when the number of carbon atoms of the alkyl group of alkylphosphonic acid is changed from 6 to 18. It's a change.
2. It can be seen that when the carbon number of the alkyl group of the alkylphosphonic acid changes from 6 to 10, the estimated reaction time changes rapidly, and the carbon number does not change much from 10 to 18.
3. 3. Comparative Examples 5, 6, 7, 8 and 9 are shown by dotted lines to compare the levels of catalytic effect. Therefore, the scale on the horizontal axis is irrelevant.
4. Comparative Examples 5, 6, 8 and 9 have reaction times at a catalyst concentration of 0.20 mol% (against rosin), respectively. Alkylphosphonic acid having 7 carbon atoms in the alkyl group of Example 1 than any of Comparative Examples. The reaction time of / Ca (OH) 2 = 0.20 mol% / 0.10 mol% (vs. rosin) is short.
5. The alkylphosphonic acid (7 carbon atoms of the alkyl group) / Ca (OH) 2 = 0.20 mol% / 0.10 mol% (vs. rosin) of Example 1 has a high catalytic concentration of Ca (OH) 2 of Comparative Example 7. The reaction time is shorter than 0.51 mol% alone.
6. The one having the best catalytic effect was 2-ethylhexylphosphonate mono-2-ethylhexyl / Ca (OH) 2 = 0.20 mol% / 0.10 mol% (against rosin) of Example 5.

なお、実施例1,2,3,4,及び比較例4の触媒効果のレベルを比較するために、比較例5,6,7,8,9の結果を点線で表した。 In order to compare the levels of catalytic effects of Examples 1, 2, 3, 4, and Comparative Example 4, the results of Comparative Examples 5, 6, 7, 8, and 9 are shown by dotted lines.

実施例14
上端に玉突き冷却管の連結された分水器を500ml容の4つ口コルベンの側管に連結した。そのコルベンに表4に示すようにガムロジン150部、及び重合ロジン(酸価146.1、軟化点139.0℃、色調9−G)150部を仕込み、窒素気流下、加熱溶融して撹拌を開始した。それらを180℃で完全に溶融させた後、ペンタエリスリトール33.89部、グリセリン1.61部、2−エチル−ヘキシルホスホン酸モノ−2−エチルヘキシル0.54部、水酸化カルシウム0.07部、及びスミライザーWX−R 0.22部を仕込んだ。次いで、窒素気流下、2時間を要して250℃まで昇温し、2時間保温した。その後2時間を要して280℃まで昇温する。280℃に到達した時点を0時間目として、2時間毎にサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。
Example 14
A water diversion device with a billiard cooling pipe connected to the upper end was connected to a side pipe of a four-necked flask having a capacity of 500 ml. As shown in Table 4, 150 parts of gum rosin and 150 parts of polymerized rosin (acid value 146.1, softening point 139.0 ° C., color tone 9-G) were charged into the corben, and the mixture was heated and melted under a nitrogen stream and stirred. It started. After completely melting them at 180 ° C, 33.89 parts of pentaerythritol, 1.61 parts of glycerin, 0.54 parts of mono-2-ethylhexyl 2-ethyl-hexylphosphonate, 0.07 parts of calcium hydroxide, And 0.22 parts of the simulator WX-R were charged. Then, the temperature was raised to 250 ° C. over 2 hours under a nitrogen stream, and the temperature was kept warm for 2 hours. After that, it takes 2 hours to raise the temperature to 280 ° C. Sampling was performed every 2 hours (6 times in total) with the time when the temperature reached 280 ° C as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

実施例15〜16、比較例11
表4で示す原料を用い、実施例14と同様の方法でロジンエステルを製造し、実施例14と同様のサンプリングを行い、物性評価も行った。なお、実施例16ではエステル化触媒として2−エチル−ヘキシルホスホン酸モノ−2−エチルヘキシル0.54部、水酸化カルシウム0.07部を使用する替わりに、その水酸化カルシウムと等モル相当の2−エチル−ヘキシルホスホン酸モノ−2−エチルヘキシルカルシウム塩0.56部を使用した。また、比較例11ではエステル化触媒を使用しないで合成した。
Examples 15-16, Comparative Example 11
Using the raw materials shown in Table 4, a rosin ester was produced by the same method as in Example 14, sampling was performed in the same manner as in Example 14, and physical property evaluation was also performed. In Example 16, instead of using 0.54 parts of mono-2-ethylhexyl 2-ethyl-hexylphosphonate and 0.07 parts of calcium hydroxide as the esterification catalyst, 2 parts equivalent to the calcium hydroxide is equivalent to 2 parts. -Ethyl-hexylphosphonic acid Mono-2-ethylhexyl calcium salt 0.56 parts was used. Further, in Comparative Example 11, it was synthesized without using an esterification catalyst.

Figure 0006866727
Figure 0006866727

実施例17〜18
実施例1と同様の反応容器にトール油ロジン(酸価174.1、軟化点72.0℃、色調5G)又は中国ガムロジン300部を仕込み、窒素気流下、加熱撹拌を開始し、完全に溶融させた。その後、160℃で、フマル酸及びスミライザーWX−Rを各々表5に示す所定量添加した。次いで、200℃で2時間、反応系を保温することにより、ディールス・アルダー付加反応を行った。その後、ペンタエリスリトール、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、及び水酸化カルシウムを表5に示す所定量仕込んだ。その後、2時間を要して反応系を280℃まで昇温し、同温度に到達した時点を0時間目として、2時間毎にサンプリングを実施(計6回)し、各サンプルの酸価を測定した。また、6回目のサンプルについて、前記同様の方法で物性を評価した。
Examples 17-18
Tall oil rosin (acid value 174.1, softening point 72.0 ° C., color tone 5 G) or 300 parts of Chinese gum rosin was charged in the same reaction vessel as in Example 1, and heating and stirring were started under a nitrogen stream to completely melt the mixture. I let you. Then, at 160 ° C., fumaric acid and Sumilyzer WX-R were added in predetermined amounts shown in Table 5, respectively. Then, the Diels-Alder addition reaction was carried out by keeping the reaction system warm at 200 ° C. for 2 hours. Then, pentaerythritol, mono-2-ethylhexyl 2-ethylhexylphosphonate, and calcium hydroxide were charged in predetermined amounts shown in Table 5. After that, it took 2 hours to raise the temperature of the reaction system to 280 ° C., and sampling was performed every 2 hours (6 times in total) with the time when the temperature reached the same temperature as the 0th hour, and the acid value of each sample was measured. It was measured. In addition, the physical characteristics of the sixth sample were evaluated by the same method as described above.

比較例12〜13
比較例12、比較例13では、エステル化触媒を用いず、表5で示す原料を所定量用いて、それぞれ実施例17、実施例18と同様の方法でロジンエステルを製造し、それぞれ実施例17、実施例18と同様のサンプリングを行い、物性評価も行った。
Comparative Examples 12 to 13
In Comparative Example 12 and Comparative Example 13, rosin esters were produced in the same manner as in Examples 17 and 18, respectively, using the raw materials shown in Table 5 in a predetermined amount without using an esterification catalyst, respectively. , The same sampling as in Example 18 was performed, and the physical properties were also evaluated.

Figure 0006866727
Figure 0006866727

実施例19、比較例14
上端に玉突き冷却管の連結された分水器、撹拌器及び窒素導入管を備える500ml容の4つ口コルベンに、蒸留精製した不均化ロジン(酸価176.2、軟化点82.5℃、色調1G以下)300部を仕込み、窒素気流下に加熱溶融させた。反応系が170℃に達した時点で、実施例19では表6に示すように2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル0.60部、及び水酸化カルシウム0.07部を仕込み、次いでジペンタエリスリトール(水酸基含有率40.1%)39.5部を仕込んだ。その後約2時間かけて反応系を275℃とし、この時点を0時間目として、2時間目よりサンプリングを実施(計10回)し、各サンプルの酸価を測定した。また、10回目のサンプルについて、前記同様の方法で物性を評価した。比較例14では、表6に示すごとくエステル化触媒を添加しないこと以外実施例19と同様の処方にて合成を行い、またサンプリングを行い、各サンプルの酸価を測定した。また、10回目のサンプルについて前記同様の方法で物性評価した。
Example 19, Comparative Example 14
Distilled and purified disproportionate rosin (acid value 176.2, softening point 82.5 ° C.) in a 500 ml four-necked flask equipped with a water diversion device, a stirrer and a nitrogen introduction tube with a condensate cooling tube connected at the top. , Color tone 1G or less) 300 parts were charged and heated and melted under a nitrogen stream. When the reaction system reached 170 ° C., in Example 19, 0.60 part of mono-2-ethylhexyl 2-ethylhexylphosphonate and 0.07 part of calcium hydroxide were charged as shown in Table 6, and then dipenta. 39.5 parts of erythritol (hydroxyl content 40.1%) was charged. After that, the reaction system was set to 275 ° C. over about 2 hours, sampling was performed from the 2nd hour (10 times in total) with this time as the 0th hour, and the acid value of each sample was measured. In addition, the physical characteristics of the 10th sample were evaluated by the same method as described above. In Comparative Example 14, as shown in Table 6, synthesis was carried out according to the same formulation as in Example 19 except that the esterification catalyst was not added, and sampling was performed, and the acid value of each sample was measured. In addition, the physical properties of the 10th sample were evaluated by the same method as described above.

実施例20
実施例19においてエステル化触媒の2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル0.60部、及び水酸化カルシウム0.07部を仕込む折にイルガノックス1726を表6の処方に従って所定量仕込む以外、実施例19と同様にしてサンプリング及び物性評価を行った。
Example 20
In Example 19, when the esterification catalyst mono-2-ethylhexyl 2-ethylhexylphosphonate (0.60 part) and calcium hydroxide (0.07 part) were charged, Irganox 1726 was charged in a predetermined amount according to the formulation shown in Table 6. Sampling and physical property evaluation were performed in the same manner as in Example 19.

Figure 0006866727
*)BASFジャパン社製2,4−ビス(ドデシルチオメチル)−6−メチルフェノール
Figure 0006866727
*) BASF Japan 2,4-bis (dodecylthiomethyl) -6-methylphenol

Claims (10)

ロジン類(A)とアルコール(B)を、下記一般式(1)で示されるホスホン酸誘導体(c1)及びアルカリ土類金属化合物(c2)
又は下記一般式(1)で示されるホスホン酸誘導体(c1)とアルカリ土類金属化合物(c2)の反応物である塩化合物(C’)
を含む触媒群(C)の存在下でエステル化反応させることを特徴とする、ロジンエステルの製造方法。
Figure 0006866727
(式(1)中、Rは炭素数が少なくとも7のアルキル基を、Xは炭素数が少なくとも1のアルキル基又は水素を示す。)
The rosins (A) and the alcohol (B) are the phosphonic acid derivative (c1) and the alkaline earth metal compound (c2) represented by the following general formula (1).
Alternatively, the salt compound (C'), which is a reaction product of the phosphonic acid derivative (c1) represented by the following general formula (1) and the alkaline earth metal compound (c2).
A method for producing a rosin ester, which comprises conducting an esterification reaction in the presence of a catalyst group (C) containing the above.
Figure 0006866727
(In the formula (1), R represents an alkyl group having at least 7 carbon atoms, and X represents an alkyl group or hydrogen having at least 1 carbon atoms.)
(A)成分が、原料ロジン類及び/又はその誘導体である、請求項1の製造方法。 The production method according to claim 1, wherein the component (A) is a raw material rosin and / or a derivative thereof. 前記原料ロジン類が、ガムロジン、トール油ロジン及びウッドロジン並びにそれらの精製物からなる群より選ばれる少なくとも一種である、請求項2の製造方法。 The production method according to claim 2, wherein the raw material rosins are at least one selected from the group consisting of gum rosins, tall oil rosins, wood rosins, and purified products thereof. 前記誘導体が、不均化ロジン、水添ロジン、重合ロジン、及びα,β不飽和カルボン酸変性ロジン、並びにそれらの精製物からなる群より選ばれる少なくとも一種である、請求項2の製造方法。 The production method according to claim 2, wherein the derivative is at least one selected from the group consisting of disproportionated rosin, hydrogenated rosin, polymerized rosin, α, β unsaturated carboxylic acid-modified rosin, and purified products thereof. (B)成分が、トリオール、テトラオール及び/又はヘキサオールを含む、請求項1〜4のいずれかの製造方法。 The production method according to any one of claims 1 to 4, wherein the component (B) comprises triol, tetraol and / or hexaol. (c2)成分が、アルカリ土類金属の水酸化物、アルカリ土類金属の酸化物、アルカリ土類金属の無機酸塩、及びアルカリ土類金属の有機酸塩からなる群より選ばれる少なくとも一種を含む、請求項1〜5のいずれかの製造方法。 At least one component (c2) selected from the group consisting of hydroxides of alkaline earth metals, oxides of alkaline earth metals, inorganic acid salts of alkaline earth metals, and organic acid salts of alkaline earth metals. The production method according to any one of claims 1 to 5, which comprises. (c1)成分と(c2)成分のモル比(c1/c2)が0.01〜20である、請求項1〜6のいずれかの製造方法。 The production method according to any one of claims 1 to 6, wherein the molar ratio (c1 / c2) of the component (c1) to the component (c2) is 0.01 to 20. (C)成分の使用量が、(A)成分に含まれるカルボキシル基1モルに対して(c2)成分が0.001〜1モル%となる範囲である、請求項1〜7のいずれかの製造方法。 Any of claims 1 to 7, wherein the amount of the component (C) used is in the range of 0.001 to 1 mol% of the component (c2) with respect to 1 mol of the carboxyl group contained in the component (A). Production method. (C’)成分の使用量が、(A)成分に含まれるカルボキシル基1モルに対して0.001〜1モル%の範囲である、請求項1〜7のいずれかの製造方法。 The production method according to any one of claims 1 to 7, wherein the amount of the component (C') used is in the range of 0.001 to 1 mol% with respect to 1 mol of the carboxyl group contained in the component (A). エステル化反応を、更に不均化触媒(D)及び/又は酸化防止剤(E)が共存する条件で実施する、請求項1〜9のいずれかの製造方法。
The production method according to any one of claims 1 to 9, wherein the esterification reaction is further carried out under the condition that the disproportionation catalyst (D) and / or the antioxidant (E) coexists.
JP2017067475A 2016-03-31 2017-03-30 Method for producing rosin ester and rosin ester Active JP6866727B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070359 2016-03-31
JP2016070359 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186324A JP2017186324A (en) 2017-10-12
JP6866727B2 true JP6866727B2 (en) 2021-04-28

Family

ID=60046163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067475A Active JP6866727B2 (en) 2016-03-31 2017-03-30 Method for producing rosin ester and rosin ester

Country Status (3)

Country Link
JP (1) JP6866727B2 (en)
CN (1) CN107384217B (en)
TW (1) TWI740924B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7529976B2 (en) 2019-05-27 2024-08-07 千住金属工業株式会社 Flux composition containing maleic acid modified rosin ester or maleic acid modified rosin amide, flux containing same, and solder paste
WO2020241687A1 (en) * 2019-05-27 2020-12-03 千住金属工業株式会社 Flux composition containing maleic acid-modified rosin ester or maleic acid-modified rosin amide, flux containing said composition, and solder paste
CN110143990A (en) * 2019-05-31 2019-08-20 广西大学 A kind of method of catalytic esterification-separation coupling preparation food-grade rosin xylose ester
CN110950905A (en) * 2019-12-11 2020-04-03 南昌航空大学 Method for recovering P507 from waste P507 extraction organic phase
CN111393996B (en) * 2020-04-21 2022-02-15 广东科茂林产化工股份有限公司 Polymerized rosin mixed ester and preparation method and application thereof
CN112521862B (en) * 2020-12-14 2022-08-23 广东科茂林产化工股份有限公司 Rosin resin for acrylate pressure-sensitive adhesive and preparation method thereof
CN113913114B (en) * 2021-09-27 2022-05-17 广东科茂林产化工股份有限公司 Preparation method of degradable rosin resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861877B1 (en) * 1996-08-08 2004-04-14 New Japan Chemical Co.,Ltd. Rosin-based molecular crystal, nucleating agent for polyolefin resin, polyolefin resin composition, and moldings thereof
US6562888B1 (en) * 1998-07-27 2003-05-13 Arizona Chemical Company Light-colored rosin esters and adhesive compositions
GB9912210D0 (en) * 1999-05-25 1999-07-28 Acma Ltd Esterification catalysts
CN101475776B (en) * 2009-01-13 2011-08-31 中国林业科学研究院林产化学工业研究所 Preparation of light colore high softening point maleated rosin pentaerythritol

Also Published As

Publication number Publication date
CN107384217A (en) 2017-11-24
TWI740924B (en) 2021-10-01
TW201738336A (en) 2017-11-01
CN107384217B (en) 2021-02-02
JP2017186324A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6866727B2 (en) Method for producing rosin ester and rosin ester
US20110213120A1 (en) Rosin esters for non-woven applications, methods of making and using and products therefrom
US6022947A (en) Light-colored, low molecular weight phenolic-modified rosin esters
KR20160094948A (en) Stabilizer for thiol-ene compositions
US20070179277A1 (en) Rosin ester with low color and process for preparing same
US20110034669A1 (en) Rosin Ester with Low Color and Process for Preparing Same
US5830992A (en) Light color, color stable rosin esters and methods for preparing same
KR20140022059A (en) Rosin esters for non-wovens
JP6493215B2 (en) Process for producing light-colored refined tall oil rosin and tall oil rosin ester, light-colored refined tall oil rosin and tall oil rosin ester obtainable by the process
US11034858B2 (en) Light-colored rosin and rosin ester compositions
CN105722910B (en) Include polyvinyl composition
WO2016059230A1 (en) New branched polymers, their preparation process, and uses thereof
JPWO2017099146A1 (en) Printing ink resin, printing ink varnish, printing ink and method for producing printing ink resin
JP2014101361A (en) Oligomeric rosin esters for use in inks
WO2019183284A1 (en) Sulfur- and phosphorus-containing polymers, and methods of producing thereof
US9896537B2 (en) Norbornanyl rosin resin and process for preparing same
JP2008106047A (en) (meth)acryloyl group-containing rosin derivative and method for producing the same
TW200934787A (en) Method for controlling precipitation of metal from transition metal complex
JP5731818B2 (en) Anthracene derivative, curable composition, cured product, and method for producing anthracene derivative
JPH0252943B2 (en)
TWI675040B (en) Synthesis of bis(acyl)phosphines by activation of unreactive metal phosphides
KR102660466B1 (en) Novel polyacyloxymethyl-4,4'-acyloxybiphenyl compound
JP5464945B2 (en) Oxidation-stable rosin-modified phenolic resin and varnish for printing ink containing the same
KR20160001477A (en) Method for manufacturing rosin-modified phenolic resin
CN113045423A (en) High-performance resin based on polymerized rosin group and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6866727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250